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Maximal Multilinear Commutators on Non-homogeneous Metric Measure

Spaces

Jie Chen and Haibo Lin*

Abstract. Let (X , d, µ) be a metric measure space satisfying the so-called upper dou-

bling condition and the geometrically doubling condition. Let T∗ be the maximal

Calderón-Zygmund operator and ~b := (b1, . . . , bm) be a finite family of R̃BMO(µ)

functions. In this paper, the authors establish the boundedness of the maximal mul-

tilinear commutator T∗,~b generated by T∗ and ~b on the Lebesgue space Lp(µ) with

p ∈ (1,∞). For ~b = (b1, . . . , bm) being a finite family of Orlicz type functions, the

weak type endpoint estimate for the maximal multilinear commutator T∗,~b generated

by T∗ and ~b is also presented. The main tool to deal with these estimates is the

smoothing technique.

1. Introduction

It is well known that the theory of Calderón-Zygmund operators is one of the core research

areas in harmonic analysis. During the development of Calderón-Zygmund theory, the

space of homogeneous type introduced by Coifman and Weiss [7, 8] is considered to be

a natural setting for Calderón-Zygmund operators and function spaces. Recall that a

quasi-metric space (X , d) equipped with a non-negative measure µ is called a space of

homogeneous type in the sense of Coifman and Weiss [7,8] if (X , d, µ) satisfies the measure

doubling condition: there exists a positive constant C(µ) such that, for all balls B(x, r) :=

{y ∈ X : d(x, y) < r} with x ∈ X and r ∈ (0,∞),

(1.1) µ(B(x, 2r)) ≤ C(µ)µ(B(x, r)).

This measure doubling condition is one of the most crucial assumptions in the classical

harmonic analysis.

On the other hand, in the last two decades, many classical results concerning the

Calderón-Zygmund operators and function spaces have been proved still valid for metric

Received June 27, 2016; Accepted January 24, 2017.

Communicated by Duy-Minh Nhieu.

2010 Mathematics Subject Classification. Primary: 47B47; Secondary: 42B20, 42B35, 30L99.

Key words and phrases. non-homogeneous metric measure space, maximal Calderón-Zygmund operator,

R̃BMO function, Orlicz type space, commutator.

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11301534 and

11471042) and Da Bei Nong Education Fund (Grant No. 1101-2413002).

*Corresponding author.

1133



1134 Jie Chen and Haibo Lin

spaces equipped with non-doubling measures; see, for example, [4, 6, 14, 27–30, 34–38]. In

particular, let µ be a non-negative Radon measure on Rd which only satisfies the polynomial

growth condition that there exist some positive constants C0 and n ∈ (0, d] such that, for

all x ∈ Rd and r ∈ (0,∞),

(1.2) µ(B(x, r)) ≤ C0r
n,

where B(x, r) :=
{
y ∈ Rd : |x− y| < r

}
. Such a measure does not need to satisfy the

doubling condition (1.1). The analysis on such non-doubling context plays a striking role

in solving several long-standing problems related to the analytic capacity, like Vitushkin’s

conjecture or Painlevé’s problem; see [36, 38]. Tolsa [34] introduced the atomic Hardy

space H1,p
atb(µ), for q ∈ (1,∞], and its dual space, RBMO(µ), the space of functions with

regularized bounded mean oscillation, with respect to µ as in (1.2), and established the

boundedness on Lp(µ) with p ∈ (1,∞) of commutators generated by Carderón-Zygmund

operators and RBMO(µ) functions. Chen and Miao [5] proved that the maximal commu-

tator generated by the maximal Calderón-Zygmund operator and the RBMO(µ) function

is bounded on Lp(µ) with p ∈ (1,∞). The weak type endpoint estimate for the maximal

commutator generated by the maximal Calderón-Zygmund operator and the Orlicz type

function was obtained by Hu et al. [16]. Li and Jiang [22] established the corresponding

results for the maximal multilinear commutators.

However, as was pointed out by Hytönen in [17], the measure µ satisfying the polyno-

mial growth condition is different from, not general than, the doubling measure. Hytönen

[17] introduced a new class of metric measure spaces satisfying both the so-called upper

doubling condition and the geometrically doubling condition (see, respectively, Defini-

tions 1.1 and 1.3 below), which are also simply called non-homogeneous metric measure

spaces. These new class of metric measure spaces include both metric measure spaces of

homogeneous type and metric measure spaces equipped with non-doubling measures as

special cases. We mention that several equivalent characterizations for the upper doubling

condition were recently established by Tan and Li [32,33].

From now on, we always assume that (X , d, µ) is a metric measure space of non-

homogeneous type in the sense of Hytönen [17]. In this new setting, Hytönen [17] intro-

duced the space RBMO(µ) and established the corresponding John-Nirenberg inequality,

and Hytönen and Martikainen [19] further established a version of Tb theorem. Later,

Hytönen et al. [21] and Bui and Duong [2], independently, introduced the atomic Hardy

space H1,p
atb(µ) and proved that the dual space of H1,p

atb(µ) is RBMO(µ). Recently, Fu et

al. [11] established the boundedness of multilinear commutators generated by Calderón-

Zygmund operators and RBMO(µ) functions. Bui [1] obtained the Lp(µ)-boundedness of

the maximal commutator generated by the maximal Calderón-Zygmund operator and the

RBMO(µ) function under the additional assumption that there exists a positive constant
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m such that λ(x, ar) = amλ(x, r) for all x ∈ X and a, r ∈ (0,∞), where λ is the dominat-

ing function of the measure µ (see Definition 1.1 below). The boundedness of commutators

of multilinear singular integrals on Lebesgue spaces was obtained by Xie et al. [40]. In ad-

dition, Fu et al. [10] introduced a version of the atomic Hardy space H̃1,p,γ
atb,ρ(µ) (⊂ H1,p

atb(µ)

and simply denoted by H̃1(µ)) and its corresponding dual space R̃BMO(µ) (⊃ RBMO(µ);

see Definition 1.8 below) via the discrete coefficients K̃
(ρ)
B,S . Very recently, Lin et al. [23]

proved that the commutator of the Calderón-Zygmund operator with R̃BMO(µ) function

is bounded from the atomic Hardy space H̃1(µ) into the weak Lebesgue space L1,∞(µ).

More research on function spaces and the boundedness of various operators on metric

measure spaces of non-homogeneous type can be found in [18, 20, 24, 26]. We refer the

reader to the survey [41] and the monograph [42] for more developments on harmonic

analysis in this setting.

The main purpose of this paper is to establish the boundedness of the maximal

multilinear commutators in the present setting (X , d, µ). Precisely, let T∗ be the max-

imal Calderón-Zygmund operator associated with the truncated operator Tε and ~b :=

(b1, . . . , bm) be a finite family of R̃BMO(µ) functions. We establish the boundedness of the

maximal multilinear commutator T∗ ,~b generated by T∗ and ~b on the Lebesgue space Lp(µ)

with p ∈ (1,∞). This generalizes the corresponding result in [1]. For ~b = (b1, . . . , bm)

being a finite family of Orlicz type functions (see Definition 1.12 below), the L logL type

endpoint estimate for the maximal multilinear commutator T∗ ,~b generated by T∗ and ~b is

also presented. The main tool to deal with these estimates is the smoothing technique.

We mention that this smoothing technique was used by Segovia and Torrea [31] in the

setting of classical Euclidean spaces and by Garćıa-Cuerva and Martell [12] in the setting

of metric measure spaces equipped with non-doubling measures.

To state our main results, we first recall some necessary notions and notations. We start

with the following notion of upper doubling metric measure spaces originally introduced

by Hytönen [17] (see also [18,26]).

Definition 1.1. A metric measure space (X , d, µ) is said to be upper doubling if µ is

a Borel measure on X and there exist a dominating function λ : X × (0,∞) → (0,∞)

and a positive constant C(λ), depending on λ, such that, for each x ∈ X , r → λ(x, r) is

non-decreasing and, for all x ∈ X and r ∈ (0,∞),

(1.3) µ(B(x, r)) ≤ λ(x, r) ≤ C(λ)λ(x, r/2).

Remark 1.2. (i) Obviously, a space of homogeneous type is a special case of upper

doubling spaces, where we take the dominating function λ(x, r) := µ(B(x, r)) for

all x ∈ X and r ∈ (0,∞). On the other hand, the d-dimensional Euclidean space
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Rd with any Radon measure µ as in (1.2) is also an upper doubling space by taking

λ(x, r) := C0r
n for all x ∈ Rd and r ∈ (0,∞).

(ii) Let (X , d, µ) be upper doubling with λ being the dominating function on X × (0,∞)

as in Definition 1.1. It was proved in [21] that there exists another dominating

function λ̃ such that λ̃ ≤ λ, C
(λ̃)
≤ C(λ) and, for all x, y ∈ X with d(x, y) ≤ r,

(1.4) λ̃(x, r) ≤ C
(λ̃)
λ̃(y, r).

(iii) It was shown in [32] that the upper doubling condition is equivalent to the weak

growth condition: there exist a dominating function λ : X × (0,∞) → (0,∞), with

r → λ(x, r) non-decreasing, positive constants C(λ), depending on λ, and σ such

that

(iii)1 for all r ∈ (0,∞), t ∈ [0, r], x, y ∈ X and d(x, y) ∈ [0, r],

|λ(y, r + t)− λ(x, r)| ≤ C(λ)

[
d(x, y) + t

r

]σ
λ(x, r);

(iii)2 for all x ∈ X and r ∈ (0,∞), µ(B(x, r)) ≤ λ(x, r).

(iv) It was proved in [23] that the dominating function λ satisfying (1.4) has the fol-

lowing property: for any fixed ball B ⊂ X , if x1, x2 ∈ B and y ∈ X \ (kB) with

k ∈ [2,∞), then there exists a positive constant C such that C−1λ(x1, d(x1, y)) ≤
λ(x2, d(x2, y)) ≤ Cλ(x1, d(x1, y)); see [23, Lemma 2.3].

The following definition of geometrically doubling is well known in analysis on metric

spaces, which can be found in Coifman and Weiss [7, pp. 66–67], and is also known as

metrically doubling (see, for example, [13, p. 81]). Moreover, spaces of homogeneous type

are geometrically doubling, which was proved by Coifman and Weiss in [7, pp. 66–68].

Definition 1.3. A metric space (X , d) is said to be geometrically doubling if there exists

some N0 ∈ N := {1, 2, . . .} such that, for any ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞),

there exists a finite ball covering {B(xi, r/2)}i of B(x, r) such that the cardinality of this

covering is at most N0.

Remark 1.4. Let (X , d) be a metric space. In [17], Hytönen showed that the following

statements are mutually equivalent:

(i) (X , d) is geometrically doubling;

(ii) for any ε ∈ (0, 1) and any ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞), there exists a

finite ball covering {B(xi, εr)}i of B(x, r) such that the cardinality of this covering

is at most ε−n0 , here and hereafter, N0 is as in Definition 1.3 and n0 := log2N0;
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(iii) for every ε ∈ (0, 1), any ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞) contains at

most ε−n0 centers of disjoint balls {B(xi, εr)}i;

(iv) there exists M ∈ N such that any ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞)

contains at most M centers {xi}i of disjoint balls {B(xi, r/4)}Mi=1.

A metric measure space (X , d, µ) is called a non-homogeneous metric measure space if

(X , d) is geometrically doubling and (X , d, µ) is upper doubling. Based on Remark 1.2(ii),

from now on, we always assume that (X , d, µ) is a non-homogeneous metric measure space

with the dominating function λ satisfying (1.4).

Although the measure doubling condition is not assumed uniformly for all balls in the

non-homogeneous metric measure space (X , d, µ), it was shown in [17] that there still exist

many balls which have the following (α, β)-doubling property. In what follows, for any

ball B ⊂ X , we denote its center and radius, respectively, by cB and rB and, moreover,

for any ρ ∈ (0,∞), we denote the ball B(cB, ρrB) by ρB.

Definition 1.5. Let α, β ∈ (1,∞). A ball B ⊂ X is said to be (α, β)-doubling if µ(αB) ≤
βµ(B).

To be precise, it was proved in [17, Lemma 3.2] that, if a metric measure space (X , d, µ)

is upper doubling and α, β ∈ (1,∞) with β > [C(λ)]
log2 α =: αν , then, for any ball B ⊂ X ,

there exists some j ∈ Z+ := {0}∪N such that αjB is (α, β)-doubling. Moreover, let (X , d)

be geometrically doubling, β > αn0 with n0 := log2N0 and µ a Borel measure on X which

is finite on bounded sets. Hytönen [17, Lemma 3.3] also showed that, for µ-almost every

x ∈ X , there exist arbitrary small (α, β)-doubling balls centered at x. Furthermore, the

radii of these balls may be chosen to be of the form α−jr for j ∈ N and any preassigned

number r ∈ (0,∞). Throughout this article, for any α ∈ (1,∞) and ball B, the smallest

(α, βα)-doubling ball of the form αjB with j ∈ Z+ is denoted by B̃α, where

βα := α3(max{n0,ν}) + [max {5α, 30}]n0 + [max {3α, 30}]ν .

Also, for any ball B of X , we denote by B̃ the smallest (6, β6)-doubling cube of the

form 6jB with j ∈ Z+, especially, throughout this paper.

The following discrete coefficient K̃
(ρ)
B,S was first introduced by Bui and Duong [2] as

analogous of the quantity introduced by Tolsa [34] (see also [35]) in the setting of non-

doubling measures; see also [9,10]. Before we recall the definition of K̃
(ρ)
B,S , we first give an

assumption, when we speak of a ball B in (X , d, µ), it is understood that it comes with a

fixed center and radius, although these in general are not uniquely determined by B as a

set; see [13, pp. 1–2]. In other words, for any two balls B,S ⊂ X , if B = S, then cB = cS

and rB = rS . From this, we deduce that if B ⊂ S, then rB ≤ 2rS , which plays an essential

role in the definition of K̃
(ρ)
B,S ; see also Remark 1.7(i) and [9, pp. 314–315] for some details.
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Definition 1.6. For any ρ ∈ (1,∞) and any two balls B ⊂ S ⊂ X , let

K̃
(ρ)
B,S := 1 +

N
(ρ)
B,S∑

k=−blogρ 2c

µ(ρkB)

λ(cB, ρkrB)
,

here and hereafter, for any a ∈ R, bac represents the biggest integer which is not bigger

than a, and N
(ρ)
B,S is the smallest integer satisfying ρN

(ρ)
B,SrB ≥ rS .

Remark 1.7. (i) With the definition of N
(ρ)
B,S and the fact that rB ≤ 2rS , we deduce

that N
(ρ)
B,S ≥

⌈
− logρ 2

⌉
= −

⌊
logρ 2

⌋
, which makes the definition of K̃

(ρ)
B,S sense.

(ii) By a change of variables and (1.3), we easily conclude that

K̃
(ρ)
B,S ∼ 1 +

N
(ρ)
B,S+blogρ 2c+1∑

k=1

µ(ρkB)

λ(cB, ρkrB)
,

where the implicit equivalent positive constants are independent of balls B ⊂ S ⊂ X ,

but depend on ρ.

(iii) A continuous version, KB,S , of the coefficient in Definition 1.6 was introduced in

[17,21] as follows. For any two balls B ⊂ S ⊂ X , let

KB,S := 1 +

∫
(2S)\B

1

λ(cB, d(x, cB))
dµ(x).

It was proved in [21] that KB,S has all properties similar to those for K̃
(ρ)
B,S as in

Lemma 2.1 below. Unfortunately, KB,S and K̃
(ρ)
B,S are usually not equivalent, but,

for (Rd, | · | , µ) with µ as in (1.2),

(1.5) KB,S ∼ K̃(ρ)
B,S

with implicit equivalent positive constants independent of B and S; see [10] for more

details on this.

Now we recall the R̃BMOρ,γ(µ) space associated with K̃
(ρ)
B,S , which was first introduced

by Fu et al. [10].

Definition 1.8. Let ρ ∈ (1,∞) and γ ∈ [1,∞). A function f ∈ L1
loc(µ) is said to be in

the space R̃BMOρ,γ(µ) if there exists a positive constant C̃ and, for any ball B ⊂ X , a

number fB such that

(1.6)
1

µ(ρB)

∫
B
|f(x)− fB| dµ(x) ≤ C̃
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and, for any two balls B and B1 such that B ⊂ B1,

(1.7) |fB − fB1 | ≤ C̃
[
K̃

(ρ)
B,B1

]γ
.

The infimum of the positive constant C̃ satisfying both (1.6) and (1.7) is defined to be the

R̃BMOρ,γ(µ) norm of f and denoted by ‖f‖
R̃BMOρ,γ(µ)

.

Remark 1.9. (i) It was pointed out by Fu et al. [10] that the space R̃BMOρ,γ(µ) is

independent of ρ ∈ (1,∞) and γ ∈ [1,∞). In what follows, we denote R̃BMOρ,γ(µ)

simply by R̃BMO(µ).

(ii) When (X , d, µ) = (Rd, | · | , µ) with µ as in (1.2), by (1.5), we see that R̃BMO(µ)

becomes the regularized BMO(µ) space, RBMO(µ), introduced in [34] for γ = 1

and in [14] for γ ∈ (1,∞). For general metric measure spaces of non-homogeneous

type, if we replace K̃
(ρ)
B,S by KB,S in Definition 1.8, then R̃BMO(µ) becomes the space

RBMO(µ) in [17]. Obviously, for ρ ∈ (1,∞) and γ ∈ [1,∞), RBMO(µ) ⊂ R̃BMO(µ).

However, it is unclear whether RBMO(µ) = R̃BMO(µ) or not.

Definition 1.10. A function K ∈ L1
loc({X × X} \ {(x, x) : x ∈ X}) is called a Calderón-

Zygmund kernel if there exists a positive constant C, such that,

(i) for all x, y ∈ X with x 6= y,

(1.8) |K(x, y)| ≤ C 1

λ(x, d(x, y))
;

(ii) there exist positive constants δ ∈ (0, 1] and c(K), depending on K, such that, for all

x, x̃, y ∈ X with d(x, y) ≥ c(K)d(x, x̃),

(1.9) |K(x, y)−K(x̃, y)|+ |K(y, x)−K(y, x̃)| ≤ C [d(x, x̃)]δ

[d(x, y)]δλ(x, d(x, y))
.

A linear operator T is called the Calderón-Zygmund operator with kernel K satisfying

(1.8) and (1.9) if, for all f ∈ L∞b (µ) := {f ∈ L∞(µ) : supp(f) is bounded},

(1.10) Tf(x) :=

∫
X
K(x, y)f(y) dµ(y), x /∈ supp(f).

A new example of the operator with kernel satisfying (1.8) and (1.9) is the so-called

Bergman-type operator appearing in [39]; see also [19] for an explanation. Let ε ∈ (0,∞).

The truncated operator Tε is defined by setting, for suitable f and x ∈ X ,

Tεf(x) :=

∫
d(x,y)>ε

K(x, y)f(y) dµ(y).
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The maximal operator T∗ associated with the {Tε}ε>0 is defined by setting, for suitable f

and x ∈ X ,

T∗f(x) := sup
ε>0
|Tεf(x)| .

As a corollary of [25, Theorem 1.5], we see that T∗ is bounded on Lp(µ) for all p ∈ (1,∞)

and from L1(µ) to L1,∞(µ); see also [1, 2]. Let ~b := (b1, . . . , bm) be a finite family of

R̃BMO(µ) functions. We simply write ‖~b‖
R̃BMO(µ)

:= ‖b1‖R̃BMO(µ)
· · · ‖bm‖R̃BMO(µ)

. The

maximal multilinear commutator T∗ ,~b generated by T∗ and ~b is defined by setting, for

x ∈ X ,

(1.11) T∗ ,~bf(x) := sup
ε>0

∣∣∣Tε,~bf(x)
∣∣∣ = sup

ε>0

∣∣∣∣∣
∫
d(x,y)>ε

m∏
i=1

[bi(x)− bi(y)]K(x, y)f(y) dµ(y)

∣∣∣∣∣ .
One of the main results of this paper is stated as follows.

Theorem 1.11. Let m ∈ N and bi ∈ R̃BMO(µ) for all i ∈ {1, . . . ,m}. Let T and

T∗ ,~b be as in (1.10) and (1.11), respectively. Assume that T is bounded on L2(µ). Then

the maximal multilinear commutator T∗ ,~b is bounded on Lp(µ) for all p ∈ (1,∞). More

precisely, there exists a positive constant C such that, for all f ∈ Lp(µ),∥∥∥T∗ ,~bf∥∥∥Lp(µ) ≤ C‖~b‖R̃BMO(µ)
‖f‖Lp(µ) .

To consider the endpoint estimate for T∗ ,~b, we first introduce the following Orlicz type

function space ˜OscexpLr(µ), which is a variant with non-doubling measure of the space

OscexpLr in [15].

Definition 1.12. For r ∈ [1,∞), a locally integrable function f is said to belong to the

space ˜OscexpLr(µ) if there exists a positive constant C such that,

(i) for all balls B,∥∥f −m
B̃

(f)
∥∥
expLr,B,µ/µ(2B)

:= inf

{
λ ∈ (0,∞) :

1

µ(2B)

∫
B

exp

(∣∣f −m
B̃

(f)
∣∣

λ

)r
dµ ≤ 2

}
≤ C;

(ii) for any doubling balls B ⊂ S ⊂ X ,

|mB(f)−mS(f)| ≤ CK̃(ρ)
B,S ,

here and hereafter, for all balls B and f ∈ L1
loc(µ), mB(f) denotes its mean over B,

namely, mB(f) := 1
µ(B)

∫
B f(x) dµ(x).
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The minimal constant C satisfying (i) and (ii) is the ˜OscexpLr(µ) norm of f and defined

by ‖f‖ ˜OscexpLr (µ)
.

Remark 1.13. If we replace K̃
(ρ)
B,S by KB,S in Definition 1.12, then ˜OscexpLr(µ) becomes the

space OscexpLr(µ) in [11]. Obviously, for any r ∈ [1,∞), ˜OscexpLr(µ) ⊂ R̃BMO(µ) and,

for all f ∈ ˜OscexpLr(µ), ‖f‖
R̃BMO(µ)

≤ ‖f‖ ˜OscexpLr (µ)
. Moreover, from John-Nirenberg’s

inequality in [34], it follows that ˜OscexpL1(µ) = R̃BMO(µ).

Let m ∈ N, ri ∈ [1,∞) and bi ∈ ˜OscexpLri (µ) for i ∈ {1, . . . ,m}. Let ~b = (b1, . . . , bm)

and r ∈ [1,∞) with 1/r = 1/r1 + · · ·+ 1/rm, we simply write

‖~b‖ ˜OscexpLr (µ)
:= ‖b1‖ ˜OscexpLr1 (µ)

· · · ‖bm‖ ˜OscexpLrm (µ)
.

Now we state another main result of this paper as follows.

Theorem 1.14. Let m ∈ N, ri ∈ [1,∞) and bi ∈ ˜OscexpLri (µ) for i ∈ {1, . . . ,m}. Let

T and T∗ ,~b be as in (1.10) and (1.11), respectively. Assume that T is bounded on L2(µ).

Then there exists a positive constant C such that, for all t ∈ (0,∞) and all f ∈ L∞b (µ),

µ
({
x ∈ X :

∣∣∣T∗ ,~bf(x)
∣∣∣ > t

})
≤ CΦ1/r

(
‖~b‖ ˜OscexpLr (µ)

)∫
X

Φ1/r

(
|f(y)|
t

)
dµ(y),

where 1/r = 1/r1 + · · ·+ 1/rm and, for all t ∈ (0,∞) and s ∈ (0,∞), Φs(t) = t logs(2 + t).

This paper is organized as follows. Section 2 is devoted to proving Theorem 1.11.

We first recall some necessary lemmas, and then introduce some new “smooth” kernels.

Moreover, we prove that the smoothing technique is still suitable for the present set-

ting. At the end of this section, by borrowing some ideas from the proofs of [1, Theo-

rem 3.3], [11, Theorem 1.9] and [22, Theorem 1.1], we prove Theorem 1.11. In Section 3,

we prove Theorem 1.14 via the generalized Hölder’s inequality and the Calderón-Zygmund

decomposition.

Finally, we make some conventions on notation. Throughout this paper, we always

denote by C, C̃, c or c̃ a positive constant which is independent of the main parameters,

but they may vary from line to line. Constants with subscripts, such as C0 and c0, do not

change in different occurrences. Furthermore, we use C(α) to denote a positive constant

depending on the parameter α. The expression Y . Z means that there exists a positive

constant C such that Y ≤ CZ. The expression A ∼ B means that A . B . A. Given

any q ∈ (0,∞), let q′ := q/(q− 1) denote its conjugate index. Also, for any subset E ⊂ X ,

χE denotes its characteristic function.
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2. Proof of Theorem 1.11

We begin with some necessary lemmas. The following useful properties of K̃
(ρ)
B,S were

proved in [9].

Lemma 2.1. Let (X , d, µ) be a non-homogeneous metric measure space.

(i) For any ρ ∈ (1,∞), there exists a positive constant C(ρ), depending on ρ, such that,

for all balls B ⊂ R ⊂ S, K̃
(ρ)
B,R ≤ C(ρ)K̃

(ρ)
B,S.

(ii) For any α ∈ [1,∞) and ρ ∈ (1,∞), there exists a positive constant C(α,ρ), depending

on α and ρ, such that, for all balls B ⊂ S with rS ≤ αrB, K̃
(ρ)
B,S ≤ C(α,ρ).

(iii) For any ρ ∈ (1,∞), there exists a positive constant C(ρ,ν), depending on ρ and ν,

such that, for all balls B, K̃
(ρ)

B,B̃ρ
≤ C(ρ,ν). Moreover, letting α, β ∈ (1,∞), B ⊂ S

be any two concentric balls such that there exists no (α, β)-doubling ball in the form

of αkB with k ∈ N, satisfying B ⊂ αkB ⊂ S, then there exists a positive constant

C(α,β,ν), depending on α, β and ν, such that K̃
(ρ)
B,S ≤ C(α,β,ν).

(iv) For any ρ ∈ (1,∞), there exists a positive constant c(ρ,ν), depending on ρ and ν,

such that, for all balls B ⊂ R ⊂ S,

K̃
(ρ)
B,S ≤ K̃

(ρ)
B,R + c(ρ,ν)K̃

(ρ)
R,S .

(v) For any ρ ∈ (1,∞), there exists a positive constant c̃(ρ,ν), depending on ρ and ν,

such that, for all balls B ⊂ R ⊂ S, K̃
(ρ)
R,S ≤ c̃(ρ,ν)K̃

(ρ)
B,S.

(vi) For any ρ1, ρ2 ∈ (1,∞), there exist positive constants c(ρ1,ρ2,ν) and C(ρ1,ρ2,ν), de-

pending on ρ1, ρ2 and ν, such that, for all balls B ⊂ S,

c(ρ1,ρ2,ν)K̃
(ρ1)
B,S ≤ K̃

(ρ2)
B,S ≤ C(ρ1,ρ2,ν)K̃

(ρ1)
B,S .

The following four lemmas are related to the space R̃BMO(µ). Lemma 2.2 can be

proved by an argument similar to that used in the proof of [11, Lemma 3.1]. Lemma 2.3

is an equivalent characterization of the space R̃BMO(µ) established in [23, Lemma 2.15].

Lemmas 2.4 and 2.5 were proved in [3].

Lemma 2.2. Let f ∈ R̃BMO(µ), q ∈ (0,∞) and, for all x ∈ X ,

fq(x) :=

f(x) if |f(x)| ≤ q,

q f(x)
|f(x)| if |f(x)| > q.

Then fq ∈ R̃BMO(µ) and there exists a positive constant C, independent of f , such that

‖fq‖R̃BMO(µ)
≤ C ‖f‖

R̃BMO(µ)
.
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Lemma 2.3. Let η, ρ ∈ (1,∞), and βρ be as in (1.5). For f ∈ L1
loc(µ), the following

statements are equivalent:

(i) f ∈ R̃BMO(µ);

(ii) there exists a positive constant C such that, for all balls B,

1

µ(ηB)

∫
B

∣∣f(x)−m
B̃ρ

(f)
∣∣ dµ(x) ≤ C

and, for all (ρ, βρ)-doubling balls B ⊂ S,

|mB(f)−mS(f)| ≤ CK̃(ρ)
B,S .

Moreover, the infimum of the above constant C is equivalent to ‖f‖
R̃BMO(µ)

.

Lemma 2.4. Let m ∈ N, bi ∈ R̃BMO(µ) for i ∈ {1, . . . ,m}, ρ, η ∈ (1,∞) and q ∈ [1,∞).

Then there exists a positive constant C such that, for any ball B,{
1

µ(ρB)

∫
B

m∏
i=1

∣∣bi(x)−m
B̃η

(bi)
∣∣q dµ(x)

}1/q

≤ C
m∏
i=1

‖bi‖R̃BMO(µ)
.

Lemma 2.5. Let f ∈ R̃BMO(µ) and ρ ∈ (1,∞). Then, for all two balls B ⊂ S ⊂ X , we

have ∣∣m
B̃ρ

(f)−m
S̃ρ

(f)
∣∣ . ‖f‖

R̃BMO(µ)
K̃

(ρ)
B,S .

We also need to recall some known conclusion from [2, Sections 4.1 and 7.1] and [17,

Corollary 3.6].

Lemma 2.6. Let p ∈ (1,∞).

(i) Let r ∈ (1, p) and ρ ∈ [5,∞). The following maximal operators, defined by setting,

for all f ∈ Lp(µ) and x ∈ X ,

Mr,(ρ)f(x) := sup
B3x

[
1

µ(ρB)

∫
B
|f(x)|r dµ(x)

]1/r
,

Nf(x) := sup
B3x

B (6,β6)-doubling

1

µ(B)

∫
B
|f(x)| dµ(x)

and

M(ρ)f(x) := sup
B3x

1

µ(ρB)

∫
B
|f(x)| dµ(x)

are bounded on Lp(µ). Moreover, for ρ ∈ [5,∞), M(ρ) is bounded from L1(µ) to

L1,∞(µ).
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(ii) |f(x)| ≤ Nf(x) for almost every x ∈ X .

For any f ∈ L1
loc(µ), recall that the sharp maximal function M#f in [2] is defined by

setting, for all x ∈ X ,

M#f(x) := sup
B3x

1

µ(6B)

∫
B

∣∣f(y)−m
B̃

(f)
∣∣ dµ(y) + sup

x∈B⊂S
B,S (6,β6)-doubling

|mB(f)−mS(f)|
K̃

(6)
B,S

.

The following lemma is just [2, Theorem 4.2].

Lemma 2.7. Let f ∈ L1
loc(µ) satisfy

∫
X f(x) dµ(x) = 0 when ‖µ‖ := µ(X ) <∞. Assume

that, for some p ∈ (1,∞), inf {1, Nf} ∈ Lp(µ). Then there exists a positive constant C,

independent of f , such that

‖Nf‖Lp(µ) ≤ C‖M
#f‖Lp(µ).

Notice that the truncated kernel Kε(x, y) = K(x, y)χ{d(x,y)≥ε}(x, y) may not be a

Calderón-Zygmund kernel, which is a problem in studying the boundedness of the maximal

multilinear commutators. To overcome this problem, we use the smoothing technique

(see [1, 12, 31]) by replacing Kε(x, y) with some new “smooth” kernels, and then use

the properties of sharp maximal operator M# to estimate the multilinear commutators

associated with the “smooth” kernels and R̃BMO(µ) functions.

Definition 2.8. Let K be the Calderón-Zygmund kernel and φ, ψ ∈ C∞([0,∞)) such

that χ[2,∞) ≤ φ ≤ χ[1,∞), χ[0,1/2) ≤ ψ ≤ χ[0,3) and, for all t ∈ (0,∞), |φ′(t)| ≤ C/t,

|ψ′(t)| ≤ C/t, where C is a positive constant. Let ε ∈ (0,∞). Define the kernel Kφ
ε (x, y)

associated with K and φ, and the kernel Kψ
ε (x, y) associated with ψ, respectively, by

setting

Kφ
ε (x, y) := K(x, y)φ

(
d(x, y)

ε

)
and Kψ

ε (x, y) :=
1

λ(x, ε)
ψ

(
d(x, y)

ε

)
.

Lemma 2.9. Let Kφ
ε and Kψ

ε be as in Definition 2.8. Then Kφ
ε and Kψ

ε are Calderón-

Zygmund kernels satisfying conditions (1.8) and (1.9), where the positive constants are

independent of ε.

Proof. We first deal with the kernel Kφ
ε . By the properties of φ, it is easy to see that the

kernel Kφ
ε (x, y) satisfies condition (1.8). To prove (1.9), let x, x′, y ∈ X with d(x, y) ≥

c(K)d(x, x′) and δ ∈ (0, 1] be as in Definition 1.10(ii). Here, we may assume that c(K) > 1.

In fact, if c(K) ∈ (0, 1], then we can choose c̃(K) > 1 such that, for all d(x, y) ≥ c̃(K)d(x, x′),

(1.9) holds true. By c(K) > 1, we see that

d(x′, y) ≥ d(x, y)− d(x, x′) ≥
c(K) − 1

c(K)
d(x, y)
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and

d(x′, y) ≤ d(x, x′) + d(x, y) ≤
c(K) + 1

c(K)
d(x, y).

Hence, we have

(2.1) d(x, y) ∼ d(x′, y).

We consider the following four cases of d(x, y) and d(x′, y).

Case (I): d(x, y) ≤ ε and d(x′, y) ≤ ε. In this case, d(x, y)/ε ≤ 1 and d(x′, y)/ε ≤ 1.

Notice that φ ∈ C∞ and χ[2,∞) ≤ φ ≤ χ[1,∞). From this, it follows that φ(t) = 0 for all

t ∈ [0, 1], which leads to ∣∣∣Kφ
ε (x, y)−Kφ

ε (x′, y)
∣∣∣ = 0.

Case (II): d(x, y) > ε and d(x′, y) ≤ ε. In this case, by Case (I), we have Kφ
ε (x′, y) = 0.

By the mean value theorem and |φ′(t)| ≤ C/t, we conclude that, for all t1, t2 ∈ (0,∞),

(2.2) |φ(t1)− φ(t2)| . |t1 − t2|
1

min {t1, t2}
,

which, together with the fact that φ(1) = 0, d(x, y)/ε > 1, (2.1) and (1.8), implies that∣∣∣Kφ
ε (x, y)−Kφ

ε (x′, y)
∣∣∣ = |K(x, y)|

∣∣∣∣φ(d(x, y)

ε

)
− φ(1)

∣∣∣∣
.

1

λ(x, d(x, y))

∣∣∣∣d(x, y)

ε
− 1

∣∣∣∣ 1

min {d(x, y)/ε, 1}

.
1

λ(x, d(x, y))

∣∣∣∣d(x, y)− d(x′, y)

ε

∣∣∣∣
.

1

λ(x, d(x, y))

d(x, x′)

d(x′, y)
.

[d(x, x′)]δ

[d(x, y)]δλ(x, d(x, y))
.

Case (III): d(x, y) ≤ ε and d(x′, y) > ε. In this case, d(x, y) ≤ ε < d(x′, y). This,

together with the fact that φ(1) = 0, (2.2), (1.8) and (1.4), shows that∣∣∣Kφ
ε (x, y)−Kφ

ε (x′, y)
∣∣∣ =

∣∣K(x′, y)
∣∣ ∣∣∣∣φ(d(x′, y)

ε

)
− φ(1)

∣∣∣∣
.

1

λ(x′, d(x′, y))

(
d(x′, y)

ε
− 1

)
1

min {d(x′, y)/ε, 1}

.
1

λ(y, d(x′, y))

d(x′, y)− d(x, y)

ε

.
1

λ(y, d(x, y))

d(x′, y)− d(x, y)

d(x, y)

.
1

λ(x, d(x, y))

d(x, x′)

d(x, y)
.

[d(x, x′)]δ

[d(x, y)]δλ(x, d(x, y))
.
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Case (IV): d(x, y) > ε and d(x′, y) > ε. In this case, from the fact that 0 ≤ φ ≤ 1,

(1.9), (2.1) and (2.2), we deduce that∣∣∣Kφ
ε (x, y)−Kφ

ε (x′, y)
∣∣∣

≤
∣∣K(x, y)−K(x′, y)

∣∣ φ(d(x′, y)

ε

)
+ |K(x, y)|

∣∣∣∣φ(d(x, y)

ε

)
− φ

(
d(x′, y)

ε

)∣∣∣∣
.

[d(x, x′)]δ

[d(x, y)]δλ(x, d(x, y))
+

1

λ(x, d(x, y))

d(x, x′)

min {d(x, y), d(x′, y)}

.
[d(x, x′)]δ

[d(x, y)]δλ(x, d(x, y))
+

1

λ(x, d(x, y))

d(x, x′)

d(x, y)

.
[d(x, x′)]δ

[d(x, y)]δλ(x, d(x, y))
,

which implies that Kφ
ε satisfies (1.9).

Now we turn to estimate Kψ
ε . We first prove that Kψ

ε satisfies (1.8). Indeed, if

d(x, y) ≥ 3ε, by the properties of ψ, we have Kψ
ε = 0, and if d(x, y) < 3ε, by the fact ψ is

bounded and (1.3), we see that

(2.3) Kψ
ε (x, y) ≤ 1

λ(x, ε)
.

1

λ(x, d(x, y))
.

Finally, we show that Kψ
ε satisfies (1.9) with δ = min {σ, 1}, where σ is as in Re-

mark 1.4(iii). We consider the following four cases:

Case (I) d(x, y) ≥ 3ε and d(x′, y) ≥ 3ε;

Case (II) d(x, y) < 3ε and d(x′, y) ≥ 3ε;

Case (III) d(x, y) ≥ 3ε and d(x′, y) < 3ε;

Case (IV) d(x, y) < 3ε and d(x′, y) < 3ε.

By (2.3) and an argument similar to the estimate of Kφ
ε , we can prove that our desired

results hold in Cases (I), (II) and (III). It remains to deal with the Case (IV). Let x, x′, y ∈
X with d(x, y) ≥ 2d(x, x′).

In this case, from the fact that 0 ≤ ψ ≤ 1, Remark 1.2(iii), (2.2), (2.1) and (2.3), we

deduce that∣∣∣Kψ
ε (x, y)−Kψ

ε (x′, y)
∣∣∣ =

∣∣∣∣ 1

λ(x, ε)
ψ

(
d(x, y)

ε

)
− 1

λ(x′, ε)
ψ

(
d(x′, y)

ε

)∣∣∣∣
≤
∣∣∣∣ 1

λ(x, ε)
− 1

λ(x′, ε)

∣∣∣∣+
1

λ(x, ε)

∣∣∣∣ψ(d(x, y)

ε

)
− ψ

(
d(x′, y)

ε

)∣∣∣∣
.
|λ(x′, ε)− λ(x, ε)|
λ(x, ε)λ(x′, ε)

+
1

λ(x, ε)

d(x, x′)

min {d(x, y), d(x′, y)}
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.
1

λ(x, ε)

(
d(x, x′)

ε

)σ
+

1

λ(x, ε)

d(x, x′)

d(x, y)

.
1

λ(x, ε)

(
d(x, x′)

d(x, y)

)σ
+

1

λ(x, ε)

d(x, x′)

d(x, y)

.
[d(x, x′)]δ

λ(x, d(x, y))[d(x, y)]δ
,

and finish the proof of Kψ
ε .

Combining the estimate for Kφ
ε and Kψ

ε , we complete the proof of Lemma 2.9.

We introduced the operators T φ∗ and Tψ∗ , respectively, associated with Kφ
ε and Kψ

ε by

setting, for all x ∈ X ,

T φ∗ f(x) := sup
ε>0
|T φε f(x)| = sup

ε>0

∣∣∣∣∫
X
Kφ
ε (x, y)f(y) dµ(y)

∣∣∣∣
and

Tψ∗ f(x) := sup
ε>0
|Tψε f(x)| = sup

ε>0

∫
X
Kψ
ε (x, y) |f(y)| dµ(y).

It is easy to see that, for all x ∈ X ,

max
{
T φ∗ f(x), Tψ∗ f(x)

}
≤ T∗f(x) + CM(5)f(x).

Therefore, T φ∗ and Tψ∗ are bounded on Lp(µ) for p ∈ (1,∞) and from L1(µ) to L1,∞(µ).

Define the multilinear commutators T φ
∗ ,~b

and Tψ
∗ ,~b

, respectively, associated with T φε and

Tψε by setting, for all x ∈ X ,

T φ
∗ ,~b
f(x) := sup

ε>0

∣∣∣T φ
ε,~b
f(x)

∣∣∣
= sup

ε>0

∣∣∣∣∣
∫
X

m∏
i=1

[bi(x)− bi(y)]Kφ
ε (x, y)f(y) dµ(y)

∣∣∣∣∣
and

Tψ
∗ ,~b
f(x) := sup

ε>0

∣∣∣Tψ
ε,~b
f(x)

∣∣∣
= sup

ε>0

∫
X

∣∣∣∣∣
m∏
i=1

[bi(x)− bi(y)]

∣∣∣∣∣Kψ
ε (x, y) |f(y)| dµ(y).

Lemma 2.10. Let T∗ ,~b be the maximal multilinear commutator as in (1.11). Then there

exist φ and ψ as in Definition 2.8 and a positive constant C such that, for the multilinear

commutators T φ
∗ ,~b

and Tψ
∗ ,~b

, respectively, associated with φ and ψ,

(2.4) T∗ ,~bf ≤ T
φ

∗ ,~b
f + CTψ

∗ ,~b
f.
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Proof. Let φ be as in Definition 1.10, that is φ ∈ C∞([0,∞)), χ[2,∞) ≤ φ ≤ χ[1,∞) and

φ′(t) ≤ C/t for t ∈ (0,∞). From (1.11) and the definition of T φ
∗ ,~b

, we deduce that∣∣∣Tε,~bf ∣∣∣− ∣∣∣T φε,~bf ∣∣∣
=

∣∣∣∣∣
∫
d(x,y)>ε

m∏
i=1

(b(x)− b(y))K(x, y)f(y) dµ(y)

∣∣∣∣∣
−

∣∣∣∣∣
∫
X

m∏
i=1

(b(x)− b(y))Kφ
ε (x, y)f(y) dµ(y)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
X

m∏
i=1

(b(x)− b(y))K(x, y)

[
χ(1,∞)

(
d(x, y)

ε

)
− φ

(
d(x, y)

ε

)]
f(y) dµ(y)

∣∣∣∣∣
.
∫
X

1

λ(x, d(x, y))

∣∣∣∣χ(1,∞)

(
d(x, y)

ε

)
− φ

(
d(x, y)

ε

)∣∣∣∣
∣∣∣∣∣
m∏
i=1

[b(x)− b(y)]

∣∣∣∣∣ |f(y)| dµ(y).

Let ψ(t) = χ[0,∞)(t) − φ(t). Then it is not hard to show that ψ ∈ C∞([0,∞)), χ[0,1/2) ≤
ψ ≤ χ[0,3) and |ψ′(t)| ≤ C/t for t ∈ (0,∞), which implies that ψ satisfies the conditions

of Definition 1.10. Now we consider the following two cases of d(x, y).

Case (I): d(x, y) ≤ ε or d(x, y) > 2ε. In this case, χ(1,∞)

(
d(x,y)
ε

)
− φ

(
d(x,y)
ε

)
= 0.

Thus,∣∣∣Tε,~bf ∣∣∣− ∣∣∣T φε,~bf ∣∣∣ .
∫
X

1

λ(x, ε)
ψ

(
d(x, y)

ε

) ∣∣∣∣∣
m∏
i=1

[b(x)− b(y)]

∣∣∣∣∣ |f(y)| dµ(y) =
∣∣∣Tψ
ε,~b

∣∣∣ .
Case (II): ε < d(x, y) ≤ 2ε. In this case, by (1.3), we see that λ(x, ε) ∼ λ(x, d(x, y)).

It then follows that∣∣∣Tε,~bf ∣∣∣− ∣∣∣T φε,~bf ∣∣∣ . 1

λ(x, ε)

∫
X
ψ

(
d(x, y)

ε

) ∣∣∣∣∣
m∏
i=1

[b(x)− b(y)]

∣∣∣∣∣ |f(y)| dµ(y) =
∣∣∣Tψ
ε,~b

∣∣∣ ,
which, together with the estimate for Case (I), completes the proof of Lemma 2.10.

In the sequel, for i ∈ {1, . . . ,m}, we denote by Cmi the family of all finite subsets

σ := {σ(1), . . . , σ(i)} of {1, . . . ,m} with i different elements. For any σ ∈ Cmi , the

complementary sequence σ′ is given by σ′ := {1, . . . ,m}\σ. Let~b = (b1, . . . , bm) be a finite

family of locally integrable functions. For all i ∈ {1, . . . ,m} and σ = {σ(1), . . . , σ(i)} ∈
Cmi , we define

[b(x)− b(y)]σ := [bσ(1)(x)− bσ(1)(y)] · · · [bσ(i)(x)− bσ(i)(y)],

[b(x)−mB(b)]σ := [bσ(1)(x)−mB(bσ(1))] · · · [bσ(i)(x)−mB(bσ(i))]

and

[mS(b)−mB(b)]σ := [mS(bσ(1))−mB(bσ(1))] · · · [mS(bσ(i))−mB(bσ(i))],
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where B and S are balls in X and x, y ∈ X . With this notation, we write

‖~bσ‖R̃BMO(µ)
:=
∥∥bσ(1)∥∥R̃BMO(µ)

· · ·
∥∥bσ(i)∥∥R̃BMO(µ)

.

We are now in position to prove the Lp-boundedness of maximal commutator T∗ ,~b.

Proof of Theorem 1.11. By (2.4), we only need to show that, for all p ∈ (1,∞),

(2.5)
∥∥∥T φ∗ ,~bf∥∥∥Lp(µ) . ‖~b‖R̃BMO(µ)

‖f‖Lp(µ)

and

(2.6)
∥∥∥Tψ∗ ,~bf∥∥∥Lp(µ) . ‖~b‖R̃BMO(µ)

‖f‖Lp(µ) .

The proof of (2.5) and (2.6) are completely analogous. So, we only deal with (2.5). We

show this by induction on m ∈ N.

By an argument similar to that used in the proof of [1, Theorem 3.3], we deduce that

(2.5) is valid for m = 1. Now assume that m ≥ 2 and, for any i = {1, . . . ,m− 1} and any

subset σ = {σ(1), . . . , σ(i)} of {1, . . . ,m}, T φ
∗ ,~bσ

is bounded on Lp(µ) for any p ∈ (1,∞).

By Lemma 2.2 and a standard limit argument, without loss of generality, we may assume

that bi is a bounded function for any i ∈ {1, . . . ,m}. Let p ∈ (1,∞). We first claim that,

for all r ∈ (1, p), f ∈ Lp(µ), and x ∈ X ,

M#
(
T φ
∗ ,~b
f
)

(x) . ‖~b‖
R̃BMO(µ)

[
Mr,(6)(T

φ
∗ f)(x) +Mr,(5)f(x)

]
+

m−1∑
i=1

∑
σ∈Cmi

‖~bσ‖R̃BMO(µ)
Mr,(6)

(
T φ
∗ ,~bσ′

f
)

(x).
(2.7)

To prove (2.7), for all B ⊂ X , we denote

hB := mB

(
T φ∗

(
m∏
i=1

[
bi −mB̃

(bi)
]
fχX\ 6

5
B

))
.

As in the proof of [34, Theorem 9.1], it suffices to show that, for all x ∈ X and B with

B 3 x,

1

µ(6B)

∫
B

∣∣∣T φ∗ ,~bf − hB∣∣∣ dµ ≤ C‖~b‖R̃BMO(µ)

[
Mr,(5)f(x) +Mr,(6)(Tf)(x)

]
+
m−1∑
i=1

∑
σ∈Cmi

‖~bσ‖R̃BMO(µ)
Mr,(6)

(
T φ
∗ ,~bσ′

f
)

(x),
(2.8)

and, for all x ∈ X , ball B and doubling ball S with x ∈ B ⊂ S,

|hB − hS | ≤ C
[
K̃

(6)
B,S

]m+1
{
‖~b‖

R̃BMO(µ)

[
Mr,(5)f(x) +Mr,(6)(Tf)(x)

]
+
m−1∑
i=1

∑
σ∈Cmi

‖~bσ‖R̃BMO(µ)
Mr,(6)

(
T φ
∗ ,~bσ′

f
)

(x)

}
.

(2.9)
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We first prove (2.8). Notice that, for all x, y ∈ X ,

(2.10)
m∏
i=1

[
bi(x)−m

B̃
(bi)
]

=
m∑
i=0

∑
σ∈Cmi

[b(x)− b(y)]σ′
[
b(y)−m

B̃
(b)
]
σ
,

where, if i = 0, we set σ′ = {1, . . . ,m}, σ = ∅ and [b(y) −m
B̃

(b)]∅ = 1. It then follows

that, for all y ∈ X ,

(2.11) T φ
ε,~b
f(y) = T φε

(
m∏
i=1

[
bi −mB̃

(bi)
]
f

)
(y)−

m∑
i=1

∑
σ∈Cmi

[
b(y)−m

B̃
(b)
]
σ
T φ
ε,~bσ′

f(y),

where, if i = m, T φ
ε,~bσ′

f = T φε f . Therefore, for all balls B 3 x,

1

µ(6B)

∫
B

∣∣∣Tφ∗ ,~bf(y)− hB
∣∣∣ dµ(y)

.
1

µ(6B)

1

µ(B)

∫
B

∫
B

∣∣∣∣∣sup
ε>0

∣∣∣Tφ
ε,~b
f(y)

∣∣∣− sup
ε>0

∣∣∣∣∣Tφε
(

m∏
i=1

[
bi −mB̃(bi)

]
fχX\ 6

5B

)
(z)

∣∣∣∣∣
∣∣∣∣∣ dµ(z) dµ(y)

.
1

µ(6B)

1

µ(B)

∫
B

∫
B

sup
ε>0

∣∣∣∣∣∣Tφε
(

m∏
i=1

[
bi −mB̃(bi)

]
f

)
(y)−

m∑
i=1

∑
σ∈Cmi

[
b−mB̃(b)

]
σ
Tφ
ε,~bσ′

f(y)

−Tφε

(
m∏
i=1

[
bi −mB̃(bi)

]
fχX\ 6

5B

)
(z)

∣∣∣∣∣ dµ(z) dµ(y)

.
1

µ(6B)

∫
B

Tφ∗

(
m∏
i=1

[
bi −mB̃(bi)

]
fχ 6

5B

)
(y) dµ(y)

+

m∑
i=1

∑
σ∈Cmi

1

µ(6B)

∫
B

∣∣[b(y)−mB̃(b)
]
σ

∣∣Tφ
∗ ,~bσ′

f(y) dµ(y)

+
1

µ(6B)

1

µ(B)

∫
B

∫
B

sup
ε>0

∣∣∣∣∣Tφε
(

m∏
i=1

[
bi −mB̃(bi)

]
fχX\ 6

5B

)
(y)

−Tφε

(
m∏
i=1

[
bi −mB̃(bi)

]
fχX\ 6

5B

)
(z)

∣∣∣∣∣ dµ(z) dµ(y)

=: I1 + I2 + I3.

By a slight modified argument similar to that used in the proof of (3.11) of [11, The-

orem 1.9], we conclude that, for all x ∈ B,

I1 + I3 . ‖~b‖R̃BMO(µ)
Mr,(5)f(x)

and

I2 .
m∑
i=1

∑
σ∈Cmi

‖~bσ‖R̃BMO(µ)
Mr,(6)

(
T φ
∗ ,~bσ′

f
)

(x),

which completes the proof of (2.8).
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The proof of (2.9) is similar to that of (3.10) of [11, Theorem 1.9]. The details are

omitted here. Then we complete the proof of (2.7).

We now prove that (2.5) holds true for any m ≥ 2 by considering the following two

cases.

Case (I): µ(X ) = ∞. In this case, notice we assume that bi is bounded for i ∈
{1, . . . ,m}. It follows from the Lp-boundedness of T φ∗ that T φ

∗ ,~b
f ∈ Lp(µ), which, together

with Lemma 2.6(i), implies that inf{1, N(T φ
∗ ,~b
f)} ∈ Lp(µ). By Lemma 2.6(ii), Lemma 2.7,

the Lp-boundedness of T φ∗ and the assumption that T φ
∗ ,~bσ′

is bounded on Lp(µ) for all

p ∈ (1,∞), we conclude that, for all p ∈ (1,∞) and f ∈ Lp(µ),∥∥∥T φ∗ ,~bf∥∥∥Lp(µ) ≤
∥∥∥N (T φ∗ ,~bf)∥∥∥Lp(µ) .

∥∥∥M#
(
T φ
∗ ,~b
f
)∥∥∥

Lp(µ)

. ‖~b‖
R̃BMO(µ)

[∥∥∥Mr,(6)(T
φ
∗ f)

∥∥∥
Lp(µ)

+
∥∥Mr,(5)(f)

∥∥
Lp(µ)

]
+
m−1∑
i=1

∑
σ∈Cmi

‖~bσ‖R̃BMO(µ)

∥∥∥Mr,(6)

(
T φ
∗ ,~bσ′

f
)∥∥∥

. ‖~b‖
R̃BMO(µ)

[∥∥∥T φ∗ f∥∥∥
Lp(µ)

+ ‖f‖Lp(µ)
]

+
m−1∑
i=1

∑
σ∈Cmi

‖~bσ‖R̃BMO(µ)

∥∥∥T φ∗ ,~bσ′f
∥∥∥
Lp(µ)

. ‖~b‖
R̃BMO(µ)

‖f‖Lp(µ) .

Case (II): µ(X ) < ∞. In this case, by Lemma 2.4 and the Lebesgue dominated

convergence theorem, we see that, for all r ∈ (1,∞),

(2.12)

[
1

µ(X )

∫
X

m∏
i=1

|bi(x)− bX |r dµ(x)

]1/r
.

m∏
i=1

‖bi‖R̃BMO(µ)
,

where bX := 1
µ(X )

∫
X b(y) dµ(y). Write

N
(
T φ
∗ ,~b
f
)
≤ N

(
T φ
∗ ,~b
f −mX

(
T φ
∗ ,~b
f
))

+
∣∣∣mX (T φ∗ ,~bf)∣∣∣ .

Notice that
∫
X [T φ

∗ ,~b
f(x)−mX (T φ

∗ ,~b
f)] dµ(x) = 0, and, for all p ∈ (1,∞),∫

X

[
min

{
1, N

(
T φ
∗ ,~b
f −mX

(
T φ
∗ ,~b
f
))

(x)
}]p

dµ(x) ≤ µ(X ) <∞.

Then by Lemma 2.7 and the fact that M#(T φ
∗ ,~b
f −mX (T φ

∗ ,~b
f)) = M#(T φ

∗ ,~b
f), we see that∥∥∥N (T φ∗ ,~bf −mX (T φ∗ ,~bf))∥∥∥Lp(µ) .

∥∥∥M#
(
T φ
∗ ,~b
f −mX

(
T φ
∗ ,~b
f
))∥∥∥

Lp(µ)

∼
∥∥∥M#

(
T φ
∗ ,~b
f
)∥∥∥

Lp(µ)
. ‖~b‖

R̃BMO(µ)
‖f‖Lp(µ) .
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For the term |mX (T φ
∗ ,~b
f)|, by (2.11), we further write

∣∣∣T φ∗ ,~bf ∣∣∣ ≤
∣∣∣∣∣T φ∗

(
m∏
i=1

[bi −mX (bi)]f

)∣∣∣∣∣+
m∑
i=1

∑
σ∈Cmi

∣∣∣[b−mX (b)]σT
φ

∗ ,~bσ′
f
∣∣∣ .

By the Hölder inequality, (2.12) and the Lq(µ)-boundedness of T φ∗ for all q ∈ (1, p], we

have ∥∥∥∥∥mX
(
T φ∗

(
m∏
i=1

[bi −mX (bi)]f

))∥∥∥∥∥
Lp(µ)

=

{∫
X

∣∣∣∣∣ 1

µ(X )

∫
X
T φ∗

(
m∏
i=1

[bi −mX (bi)]f

)
(y) dµ(y)

∣∣∣∣∣
p

dµ(x)

}1/p

= [µ(X )]1/p−1
∫
X
T φ∗

(
m∏
i=1

[bi −mX (bi)]f

)
(y) dµ(y)

. [µ(X )]1/p+1/q−1

∥∥∥∥∥T φ∗
(

m∏
i=1

[bi −mX (bi)]f

)∥∥∥∥∥
Lq(µ)

.

∥∥∥∥∥
m∏
i=1

[bi −mX (bi)]f

∥∥∥∥∥
Lq(µ)

.

{∫
X

∣∣∣∣∣
m∏
i=1

[bi(y)−mX (bi)]

∣∣∣∣∣
q

|f(y)|q dµ(y)

}1/q

.


∫
X

∣∣∣∣∣
m∏
i=1

[bi(y)−mX (bi)]

∣∣∣∣∣
pq/(p−q)

dµ(y)


(p−q)/(pq){∫

X
|f(y)|p dµ(y)

}1/p

. ‖~b‖
R̃BMO(µ)

‖f‖Lp(µ) .

From the Hölder inequality, the assumption that T φ
∗ ,~bσ′

is bounded on Lp(µ) for all p ∈
(1,∞) and Lemma 2.4, we deduce that∥∥∥mX ([b−mX (b)]σT

φ

∗ ,~bσ′
f
)∥∥∥

Lp(µ)

. [µ(X )]1/p−1
∫
X
|[b(y)−mX (b)]σ|T

φ

∗ ,~bσ′
f(y) dµ(y)

.
∥∥∥T φ∗ ,~bσ′f

∥∥∥
Lp(µ)

{
1

µ(X )

∫
X
|[b(y)−mX (b)]σ|p

′
dµ(y)

}1/p′

. ‖~b‖
R̃BMO(µ)

‖f‖Lp(µ) ,

which implies that ‖mX (T φ
∗ ,~b
f)‖Lp(µ) . ‖~b‖

R̃BMO(µ)
‖f‖Lp(µ). Combining the above two

estimates, we also obtain the desired conclusion in this case, which completes the proof of

(2.5). Then we finish the proof of Theorem 1.11.
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3. Proof of Theorem 1.14

To prove Theorem 1.14, we need the following generalized Hölder’s inequality presented

in [11].

Lemma 3.1. There exists a positive constant C, depending only on m, such that, for all

locally integrable functions f and bi with i ∈ {1, . . . ,m}, all balls B and 1/r = 1/r1 + · · ·+
1/rm with ri ∈ [1,∞) for i ∈ {1, . . . ,m},

1

µ(2B)

∫
B
|f(x)b1(x) · · · bm(x)| dµ(x)

≤ C ‖b1‖expLr1 ,B,µ/µ(2B) · · · ‖bm‖expLrm ,B,µ/µ(2B) ‖f‖L(logL)1/r,B,µ/µ(2B) ,

where, for α ∈ (0,∞),

‖f‖L(logL)α,B,µ/µ(2B) := inf

{
λ ∈ (0,∞) :

1

2B

∫
B

|f(x)|
λ

logα
(

2 +
|f(x)|
λ

)
dµ(x) ≤ 1

}
and

‖f‖expLα,B,µ/µ(2B) := inf

{
λ ∈ (0,∞) :

1

µ(2B)

∫
B

exp

(
|f(x)|
λ

)α
dµ(x) ≤ 2

}
.

The following Calderón-Zygmund decomposition is analogous to [2, Theorem 6.3] and

its proof is also analogous to that of [2, Theorem 6.3]. The details are omitted. Let γ0 be

a fixed positive constant satisfying that γ0 > max{C3 log2 6
(λ) , 63n0}, where C(λ) is as in (1.3)

and n0 is as in Remark 1.4(ii).

Lemma 3.2. Let p ∈ [1,∞), f ∈ Lp(µ) and t ∈ (0,∞) (t > (γ0)
1/p ‖f‖Lp(µ) /[µ(X )]1/p

when µ(X ) <∞). Then the following hold true.

(i) There exists an almost disjoint family {6Bj}j of balls such that {Bj}j is pairwise

disjoint,

1

µ(62Bj)

∫
Bj

|f(x)|p dµ(x) >
tp

γ0
for all j,

1

µ(62ηBj)

∫
ηBj

|f(x)|p dµ(x) ≤ tp

γ0
for all j and all η ∈ (2,∞)

and

|f(x)| ≤ t for µ-almost every x ∈ X \
⋃
j

6Bj .
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(ii) For each j, let Sj be a (3 × 62, C
log2(3×62)+1
λ )-doubling ball of the family {(3 ×

62)kBj}k∈N and ωj := χ6Bj/
(∑

k χ6Bk

)
. Then there exists a family {ϕj}j of func-

tions such that, for each j, supp(ϕj) ⊂ Sj, ϕj has a constant sign on Sj,∫
X
ϕj(x) dµ(x) =

∫
6Bj

f(x)ωj(x) dµ(x),∑
j

|ϕj(x)| ≤ γt for µ-almost every x ∈ X ,

where γ is some positive constant, depending only on (X , µ), and there exists a

positive constant C, independent of f , t and j, such that, when p = 1, it holds true

that

‖ϕj‖L∞(µ) µ(Sj) ≤ C
∫
X
|f(x)ωj(x)| dµ(x)

and, when p ∈ (1,∞), it holds true that[∫
Sj

|ϕj(x)|p dµ(x)

]1/p
[µ(Sj)]

1/p′ ≤ C

tp−1

∫
X
|f(x)ωj(x)|p dµ(x).

By (2.4), to prove Theorem 1.14, it suffices to prove the operators T φ
∗ ,~b

and Tψ
∗ ,~b

satisfy

the same type estimate. Precisely, we have the following result.

Lemma 3.3. Under the same assumption as Theorem 1.14, there exists a positive constant

C such that, for all t ∈ (0,∞) and all f ∈ L∞b with bounded support,

(3.1) µ
({
x ∈ X :

∣∣∣T φ∗ ,~bf(x)
∣∣∣ > t

})
≤ CΦ1/r

(
‖~b‖ ˜OscexpLr (µ)

)∫
X

Φ1/r

(
|f(y)|
t

)
dµ(y)

and

(3.2) µ
({
x ∈ X :

∣∣∣Tψ∗ ,~bf(x)
∣∣∣ > t

})
≤ CΦ1/r

(
‖~b‖ ˜OscexpLr (µ)

)∫
X

Φ1/r

(
|f(y)|
t

)
dµ(y).

Proof. Similar to the proof of [15, Theorem 4], without loss of generality, we may assume

that, for all m ∈ N and i ∈ {1, . . . ,m}, ‖bi‖ ˜OscexpLri (µ)
= 1.

The proof of (3.1) is parallel to that of [14, Theorem 4] with slight modifications. The

details are omitted.

We now prove (3.2). For each fixed |f | and t ∈ (0,∞), by applying Lemma 3.2 and its

notation, we see that |f(x)| = g(x) + h(x), where

h(x) :=
∑
j

[|f(x)|ωj(x)− ϕj(x)] =:
∑
j

hj(x).
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Write

Tψ
∗ ,~b
f(x) = sup

ε>0

∣∣∣∣∣
∫
X
Kψ
ε (x, y)

∣∣∣∣∣
m∏
i=1

[bi(x)− bi(y)]

∣∣∣∣∣ |f(y)| dµ(y)

∣∣∣∣∣
. sup

ε>0

∣∣∣∣∣
∫
X
Kψ
ε (x, y)

∣∣∣∣∣
m∏
i=1

[bi(x)− bi(y)]

∣∣∣∣∣h(y) dµ(y)

∣∣∣∣∣
+ sup

ε>0

∣∣∣∣∣
∫
X
Kψ
ε (x, y)

∣∣∣∣∣
m∏
i=1

[bi(x)− bi(y)]

∣∣∣∣∣ g(y) dµ(y)

∣∣∣∣∣
. sup

ε>0

∣∣∣∣∣
∫
X
Kψ
ε (x, y)

∣∣∣∣∣
m∏
i=1

[bi(x)− bi(y)]

∣∣∣∣∣h(y) dµ(y)

∣∣∣∣∣+ Tψ
∗ ,~b
g(x) =: M(x) +N(x).

By Lemma 3.2, it is easy to see that |g(x)| . t for µ-almost every x ∈ X and ‖g‖2L2(µ) .

t ‖f‖L1(µ), which, together with the Lp-boundedness of Tψ
∗ ,~b

, further implies that

µ ({x ∈ X : N(x) > t}) . t−2
∥∥∥Tψ∗ ,~bg∥∥∥2L2(µ)

. t−2 ‖g‖2L2(µ) . t−1
∫
X
|f(y)| dµ(y).

From Lemma 3.2(i), we have

µ

⋃
j

62Bj

 .
1

t

∫
X
|f(y)| dµ(y).

Therefore, the proof of (3.2) can be reduced to proving that

(3.3) µ
({
x ∈ X \ ∪j62Bj : |M(x)| > t

})
.
∫
X

|f(y)|
t

log1/r
(

2 +
|f(y)|
t

)
dµ(y).

We prove (3.3) by induction on m ∈ N.

For m = 1, the proof is similar to that of [16, Lemma 2.1]. The details are omitted

here. Now we assume that m ≥ 2 and, for any i ∈ {1, . . . ,m− 1} and any subset σ =

{σ(1), . . . , σ(i)} of {1, . . . ,m− 1}, (3.2) holds true. The fact that Kψ
ε (x, y) ≥ 0 and∫

X hj(y) dµ(y) = 0, together with (2.10), implies that

M(x) . sup
ε>0

∣∣∣∣∣∣
∑
j

∫
X

[
Kψ
ε (x, y)

∣∣∣∣∣
m∏
i=1

[bi(x)− bi(y)]

∣∣∣∣∣
−Kψ

ε (x, xj)

∣∣∣∣∣
m∏
i=1

[
b(x)−m

B̃j
(b)
]∣∣∣∣∣
]
hj(y) dµ(y)

∣∣∣∣∣
. sup

ε>0

∑
j

∫
X

∣∣∣∣∣Kψ
ε (x, y)

[ m∏
i=1

[
bi(x)−m

B̃j
(bi)
]
−

m∏
i=1

[
bi(y)−m

B̃j
(bi)
]

−
m−1∑
i=1

∑
σ∈Cmi

[bi(x)− bi(y)]σ

[
bi(y)−m

B̃j
(bi)
]
σ′

]
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−Kψ
ε (x, xj)

m∏
i=1

[
bi(x)−m

B̃j
(bi)
]∣∣∣∣∣ |hj(y)| dµ(y)

.
∑
j

∣∣∣∣∣
m∏
i=1

[
b(x)−m

B̃j
(b)
]∣∣∣∣∣ sup

ε>0

∫
X

∣∣∣Kψ
ε (x, y)−Kψ

ε (x, xj)
∣∣∣ |hj(y)| dµ(y)

+ Tψ∗

∑
j

m∏
i=1

[
bi −mB̃j

(bi)
]
hj

 (x)

+
m−1∑
i=1

∑
σ∈Cmi

Tψ
∗ ,~bσ

∑
j

[
bi −mB̃j

(bi)
]
σ′
hj

 (x)

=: M1(x) +M2(x) +

m−1∑
i=1

∑
σ∈Cmi

M3(x).

Similar to the estimate for V (x) in the proof of [16, Lemma 2.1], we have∫
X\

⋃
j 6

2Bj

M1(x) dµ(x) .
∫
X
|f(y)| dµ(y).

The generalized Hölder’s inequality via an argument similar to that used in the estimates

for T II
~b
h(x) and T III

~bσ′
h(x) in [14, pp. 252–254] shows that

µ
({
x ∈ X \ ∪j62Bj : M2(x) > t

})
.
∫
X

|f(y)|
t

log1/r
(

2 +
|f(y)|
t

)
dµ(y)

and

µ ({x ∈ X : M3(x) > t}) .
∫
X

|f(y)|
t

log1/r
(

2 +
|f(y)|
t

)
dµ(y),

which implies (3.3) and hence completes the proof of Lemma 3.3.
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