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Hypersurfaces of Randers Spaces with Constant Mean Curvature

Jintang Li

Abstract. Let (M
n+1

, F ) be a complete simply connected Randers space with F (x, Y )

= a(x, Y ) + b(x, Y ), where a(x, Y ) =
√
aij(x)Y iY j and b(x, Y ) = bi(x)Y i are a

Riemannian metric and a 1-form on the smooth (n + 1)-dimensional manifold M

respectively. Assume the 1-form b is parallel with respect to a and the sectional

curvature KM of M with respect to a satisfies δ(n) ≤ KM ≤ 1. In this paper, we

study the compact hypersurface (M,F ) of the Randers space (M
n+1

, F ) with constant

mean curvature |H| and prove that if the norm square S of the second fundamental

form of (M,F ) with respect to the Finsler metric F satisfies a certain inequality, then

S = n|H|2 and M is the unit sphere or equality holds. In that case, we describe all

M that satisfy this equality, which generalizes the result of [8] from the Riemannian

case to the Randers space.

1. Introduction

Let M be an n-dimensional smooth manifold and π : TM →M be the natural projection

from the tangent bundle. Let (x, Y ) be a point of TM with x ∈ M , Y ∈ TxM and let

(xi, Y i) be the local coordinate on TM with Y = Y i ∂
∂xi

. A Finsler metric on M is a

function F : TM → [0,+∞) satisfying the following properties:

(i) Regularity: F (x, Y ) is smooth in TM \ 0;

(ii) Positive homogeneity: F (x, λY ) = λF (x, Y ) for λ > 0;

(iii) Strong convexity: The fundamental quadratic form g = gij(x, Y ) dxi ⊗ dxj is posi-

tively definite, where gij = 1
2∂

2(F 2)/(∂Y i∂Y j).

Recent studies on Finsler manifolds have taken on a new look and Finsler manifolds

can be also applied to biology and physics, etc. In these researches, people find that there

is a quite important metric constructed from a Riemannian metric a and a 1-form b on

the smooth manifold M . We call this metric a Randers metric which is firstly studied
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by G. Randers and be applied in studying the navigation problems, etc. In [7], Z. Shen

studied the projectively flat Randers metrics and have classified projectively flat Randers

metrics with constant flag curvature. In [2], D. Bao, C. Robles and Z. Shen have completed

classification of strongly convex Randers metrics with constant flag curvature.

The Riemannian submanifolds are important in modern differential geometry. There

has been a long history for the study of Riemannian submanifolds. Many researches

have been done and improved in the field of the classification theorems for Riemannian

submanifolds.

For the Randers space (M,a+b), where a and b are a Riemannian metric and a 1-form

on M respectively, there are many the Randers spaces (M,a + b) with b parallel with

respect to a, which isn’t Riemannian. See the example below:

Example 1.1. Let M be a 6-dimensional real vector space with the Cartesian coordinates

x1, x2, x3, x4, x5, x6. For the Euclidean metric a = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 +

dx4 ⊗ dx4 + dx5 ⊗ dx5 + dx6 ⊗ dx6 and a 1-form b = λdx6 on M , where λ < 1 is

some positive constant, then 1-form b is parallel with respect to the Riemannian metric

a. The Randers space (M,F ) constructed from a and b isn’t Riemannian. Let M =

S1(1/3)× S2(2/3) ⊂M be an H-torus, where S1(1/3) =
{

(x1, x2) : (x1)2 + (x2)2 = 1/3
}

and S2(2/3) =
{

(x3, x4, x5) : (x3)2 + (x4)2 + (x5)2 = 2/3
}

. When the Euclidean metric a

is pulled back to M , it yields a Riemannian metric a. Since when 1-form dx6 is pulled

back to M , the pull-back 1-form vanishes, the pull-back 1-form b of b to M gives b = 0.

Therefore we have that the Finsler metric F induces a Riemannian metric F = a on M ,

i.e., the M with respect to the induced metric F = a is a Riemannian submanifold of

Randers space (M,F ).

Motivated by the example above, we study the submanifolds of Randers space. In this

paper, by the Gauss formula of Chern connection for Finsler submanifolds, we study the

hypersurfaces of Randers space (M
n+1

, a+ b) with b parallel with respect to a and obtain

the following classification theorem.

Theorem 1.2 (Main Theorem). Let (M
n+1

, F ) be a complete simply connected Randers

space constructed from a Riemannian metric a and a 1-form b, where b is parallel with

respect to a. Assume M
n+1

is a δ(n)-pinching Riemannian manifold with respect to the

Riemannian metric a, i.e., the sectional curvature KM of M with respect to the Rieman-

nian metric a satisfies δ(n) ≤ KM ≤ 1. If Mn is a compact hypersurface of (M
n+1

, F )

with constant mean curvature |H| and the norm square S of the second fundamental form

of (M,F ) with respect to the Finsler metric F satisfies α(1−δ) ≤ S−n |H|2 ≤ BH , where

α = 1
12

√
n(n− 1)(52n− 50) and BH is the positive solution of the following equation

−x− n(n− 2)√
n(n− 1)

|H|x1/2 + nδ −
(
α+

7

2

)
(1− δ) = 0,
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then either M is the unit sphere or S−n |H|2 = BH and one of the following cases occurs:

(1) H = 0 and M = Sk
(√

k/n
)
×Sn−k

(√
(n− k)/n

)
is a minimal Clifford hypersurface,

(2) H 6= 0, n ≥ 3 and M = S1(r1) × Sn−1(r2) is an H-torus, where r21 + r22 = 1 and

r22 < (n− 1)/2,

(3) H 6= 0, n = 2 and M = S1(r1) × S1(r2) is an H-torus, where r21 + r22 = 1 and

r21 6= 1/2.

Remark 1.3. Theorem 1.2 generalizes the result of [8] from the Riemannian case to the

Randers space.

2. Preliminaries

Let (Mn, F ) be an n-dimensional Finsler manifold. F inherits the Hilbert form, the

fundamental tensor and the Cartan tensor as follows:

ω =
∂F

∂Y i
dxi, gY = gij(x, Y ) dxi ⊗ dxj , AY = Aijk dx

i ⊗ dxj ⊗ dxk, Aijk :=
F∂gij
2∂Y k

.

It is well known that there exists uniquely the Chern connection ∇ on π∗TM with

∇ ∂
∂xi

= ωji
∂
∂xj

and ωji = Γjik dx
k satisfying that

d(dxi)− dxj ∧ ωij = −dxj ∧ ωij = 0 and dgij − gikωkj − gjkωki = 2Aijk
δY k

F
,

where δY i = dY i+N i
j dx

j , N i
j = γijkY

k− 1
FA

i
jkγ

k
stY

sY t and γijk are the formal Christoffel

symbols of the second kind for gij .

The curvature 2-forms of the Chern connection ∇ are

dωij − ωkj ∧ ωik = Ωi
j =

1

2
Rijkl dx

k ∧ dxl +
1

F
P ijkl dx

k ∧ δY l,

where Rijkl and P ijkl are the components of the hh-curvature tensor and hv-curvature

tensor of the Chern connection, respectively.

Take a g-orthonormal frame
{
ei = uji

∂
∂xj

}
with en = ` for each fibre of π∗TM and

{
ωi
}

is its dual coframe, where π : TM → M denotes the natural projection. The collection{
ωi, ωin

}
forms an orthonormal basis for T ∗(TM \ {0}) with respect to the Sasakitype

metric gij dx
i⊗ dxj + gij δY

i⊗ δY j . The pull-back of the Sasaki metric from TM \ {0} to

the sphere bundle SM is a Riemannian metric ĝ = gij dx
i⊗dxj+δab ωan⊗ωbn. The collection{

eHi , ên+λ
}

forms an orthonormal basis on the sphere bundle SM , where eHi = uji
δ
δxj

=

uji
(
∂
∂xj
−Nk

j
∂

∂Y k

)
denotes the horizontal part of ei and ên+λ = ujλ

F∂
∂Y j , λ = 1, 2, . . . , n− 1.

Thus the volume element dVSM of SM may be defined as

dVSM = dv ∧ ω1
n ∧ · · · ∧ ωn−1n = Ω dx ∧ dτ,
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where dv =
√

det(gij) dx, Ω = det(gij/F ), dτ =
∑

i(−1)i−1Y idY 1 ∧ · · · ∧ d̂Y i ∧ · · · ∧ dY n,

dx = dx1 ∧ · · · ∧ dxn.

The volume form dVM of an n-dimensional Finsler manifold (M,F ) can be defined by

dVM = σ(x) dx, σ(x) =
1

Cn−1

∫
SxM

Ω dτ,

where SxM = {Y ∈ TxM : F (Y ) = 1} is the fibre of SM at point x and Cn−1 denotes the

volume of the unit Euclidean sphere Sn−1 .

ϕ : (Mn, F )→ (M
n+p

, F ) is called an isometric immersion from a Finsler manifold to

a Finsler manifold if F (Y ) = F (ϕ∗(Y )). We have that (see, [6])

gY (U, V ) = gϕ∗(Y )(ϕ∗(U), ϕ∗(V )),

AY (U, V,W ) = Aϕ∗(Y )(ϕ∗(U), ϕ∗(V ), ϕ∗(W )),
(2.1)

where Y,U, V,W ∈ TM , g and A are the fundamental tensor and the Cartan tensor of

M , respectively.

It can be seen from (2.1) that ϕ∗(ω) = ω, where ω is the Hilbert form of M .

In the following we simplify AY and gY to A and g, respectively. Any vector field

U ∈ Γ(TM) will be identified with the corresponding vector field dϕ(U) ∈ Γ(TM). We

will use the following convention:

1 ≤ i, j, . . . ≤ n; n+ 1 ≤ α, β, . . . ≤ n+ p;

1 ≤ λ, µ, . . . ≤ n− 1; 1 ≤ A,B, . . . ≤ n+ p.

Let ϕ : (Mn, F )→ (M
n+p

, F ) be an isometric immersion. Take a g-orthonormal frame

form {eA} for each fibre of π∗TM and
{
ωA
}

is its local dual coframe, such that {ei} is

a frame field for each fibre of π∗TM and ωn is the Hilbert form, where π : TM → M

denotes the natural projection. Let θAB and ωij denote the Chern connection 1-form of F

and F , respectively, i.e., ∇eA = θBAeB and ∇ei = ωji ej , where ∇ and ∇ are the Chern

connection of M and M , respectively. We obtain that A(ei, ej , en) = A(eA, eB, en) = 0,

where en = Y i

F
∂
∂xi

is the natural dual of the Hilbert form ωn.

The collection
{
eHi , ên+λ

}
forms an orthonormal basis on the projectivized tangent

bundle PTM and
{
ωi, ωλn

}
is its local dual coframe, where eHi = uji

δ
δxj

= uji
(
∂
∂xj
−Nk

j
∂

∂Y k

)
denotes the horizontal part of ei, ên+λ = ujλ

δ
δY j = ujλ

F∂
∂Y j , ωi = vij dx

j and ωλn = vλj δY
j .

we have ωα = 0 on the projectivized tangent bundle PTM . By the structure equations of
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M , we have that θαj ∧ ωj = 0, which implies that θαj = hαijω
i, hαij = hαji. Let

∇V = ∇V + ωi ⊗B(V, ei)

+
∑
i

{
A(V, ej , B(ei, en))−A(ej , ei, B(V, en))

−A(V, ei, B(ej , en))−
∑
λ

A(ej , V, eλ)A(eλ, ei, B(en, en))

+
∑
λ

A(ej , ei, eλ)A(eλ, V, B(en, en))

+
∑
λ

A(V, ei, eλ)A(eλ, ej , B(en, en))
}
ωj ⊗ ei,

(2.2)

where V = viei ∈ Γ(π∗TM), B(V, ei) = θαi (V )eα = vjhαijeα.

If the ∇ is the Chern connection of M , then we obtain in [3] that the ∇ is the induced

Chern connection of M .

We obtain from (2.2) that (see, [3])

ωji = θji −Ψjikω
k,

where

Ψjik = hαjnAkiα − hαknAjiα − hαinAkjα − hαnnAiksAsjα + hαnnAijsAskα + hαnnAjksAsiα.

In particular,

ωni = θni − hαnnAkiαωk.

Using the almost g-compatibility, we have

θjα =
(
−hαij − 2hβniAjαβ + 2hβnnAjλαAiλβ

)
ωi − 2Ajαλω

λ
n.

In particular, θnα = −hαniωi.
We quote the following propositions.

Proposition 2.1. (Gauss equations, [3]) Let ϕ : (Mn, F ) → (M
n+p

, F ) be an isometric

immersion from a Finsler manifold to a Finsler manifold, then we have that

P jikλ = P
j
ikλ + Ψjik;λ − 2ΨsikAjsλ − 2hαikAjλα,

Rjikl = R
j
ikl − hαikhαjl + hαilh

α
jk + Ψjik|l −Ψjil|k + ΨsikΨjsl −ΨsilΨjsk

− 2hαikh
β
nlAjαβ + 2hαilh

β
nkAjαβ + 2hαikh

β
nnAjsαAlsβ − 2hαilh

β
nnAjsαAksβ

− hαnnAslαP
j
iks + hαnnAskαP

j
ils + hαnlP

j
ikα − hαnkP

j
ilα,

where “ ; ” and “ | ” denote the vertical and the horizontal covariant differentials with

respect to the Chern connection ∇ respectively.
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Proposition 2.2. (Codazzi equations, [3]) Let ϕ : (Mn, F )→ (M
n+p

, F ) be an isometric

immersion from a Finsler manifold to a Finsler manifold, then we have that

hαij;λ = −Pαijλ,

hαij|k − h
α
ik|j = −Rαijk + hβnjP

α
ikβ − h

β
nkP

α
ijβ

− hαlkΨlij + hαljΨlik − hβnnAljβP
α
ikl + hβnnAlkβP

α
ijl.

Proposition 2.3. [3] An isometric immersion ϕ : (M,F ) → (M,F ) is minimal if and

only if ∫
SM
〈V,B(en, en)〉 dVSM = 0,

or ∫
SM
〈V, nH〉 dVSM = 0,

for any vector V ∈ Γ(TM)⊥, where B = hαij eα ⊗ ωi ⊗ ωj,

H =
1

n

∑
i

{
B(ei, ei) +

∑
α

[
2C(eα, ei,∇eHi (Fen))

+ (∇FeHn C)(ei, ei, eα) + 2C(∇FeHn ei, ei, eα)
]
eα

}
,

(2.3)

and C = A
F

, eHi = uji
(
∂
∂xj
−Nk

j
∂

∂Y k

)
denotes the horizontal part of ei = uji

∂
∂xj

.

Definition 2.4. H is called the mean curvature vector and the length |H| of it is called

the mean curvature.

Let (M
n+p

, F ) be a Randers space with F = a + b, where a =

√
aABY

A
Y
B

is a

Riemannian metric and b = bA dx
A is a 1-form.

In [1], we know that

`A = ˜̀
A + βA,

where `A = gABY
B

F
and ˜̀A = aABY

B

a .

Proposition 2.5. Let (M
n+1

, F ) be a Randers space constructed from a Riemannian met-

ric a and 1-form b. If Mn is a hypersurface of (M
n+1

, F ), then Ajln+1 = An+1n+1n+1 = 0

and Ψijk = 0.

Proof. For the Randers space (M
n+1

, F ), in [1] we have that

(2.4) A

(
∂

∂xA
,
∂

∂xB
,
∂

∂xC

)
=

1

2

[
ηAB

(
bC −

b

a
˜̀
C

)
+ ηBC

(
bA −

b

a
˜̀
A

)
+ ηCA

(
bB −

b

a
˜̀
B

)]
,

where ηAB = gAB − `A`B.
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For the 1-form b = bi dx
i on M , define a 1-form b

∗
on the projectivized tangent bundle

PTM as b
∗

= (bi ◦ π) dxi. By the fact that 1-form β = βi dx
i is globally defined on M ,

we have that 1-form b
∗

is globally defined on PTM .

Since the collection
{
eHi , ên+λ

}
forms an orthonormal basis on the projectivized tan-

gent bundle PTM and
{
ωi, ωλn

}
is its dual coframe, where ωi = vij dxj and ωλn = vλi

δY i

F =

vλi

(
dY i−N i

j dx
j

F

)
, so 1-form b

∗
can be written as b

∗
= bi dx

i = βiω
i on PTM . Then

b
∗
(en+1) = biω

i(en+1) = 0, which implies uin+1bi = 0, where en+1 = uin+1
∂
∂xi

is the

unit normal vector with respect to the Finsler metric F . This, together with uin+1`i =

g(en+1, en) = 0 and the fact `i = ˜̀
i + bi, implies that uin+1

˜̀
i = F

a a(en+1, en) = 0. Then

by uCAu
D
BηCD = δAB − δACδBD and (2.4), we obtain that

An+1ij = ukn+1u
l
iu
s
jA

(
∂

∂xl
,
∂

∂xk
,
∂

∂xs

)
= 0,

and

An+1n+1n+1 = ukn+1u
l
n+1u

s
n+1A

(
∂

∂xl
,
∂

∂xk
,
∂

∂xs

)
= 0.

This completes the proof of Proposition 2.5.

Let γijk and γ̃ijk are the formal Christoffel symbols of the Finsler metric F and the

Riemannian metric a respectively. In [1], we have that

(2.5) γijk =
F

a
γ̃ijk −

a

2F
ηjk

(
bl,xi ˜̀l − b

a
γ̃nni

)
+

1

2
(♣ijk +♣ikj),

where

♣ijk =
a

F
ηij

(
bl,xk

˜̀l − b

a
γ̃nnk

)
+ `ibj,xk − `jbk,i + `kbi,xj

+ ξi(γ̃jnk + γ̃njk)− ξj(γ̃kni + γ̃nki) + ξk(γ̃inj + γ̃nij)

− ξi ˜̀j γ̃nnk + ξj
˜̀
kγ̃nni − ξk ˜̀iγ̃nnj

(2.6)

and ξi = `i − F
a
˜̀
i, bi,xj = ∂bi

∂xj
, ˜̀i = Y

i

a , γ̃njk = ˜̀iγ̃ijk, γ̃jnk = ˜̀iγ̃jik.
Proposition 2.6. Let (M

n+1
, F ) be a Randers space constructed from a Riemannian

metric a and 1-form b, where b is parallel with respect to a. If Mn is a hypersurface of

(M
n+1

, F ), then {
Γ
l
jku

j
nu

k
λ

∂

∂xl
− γ̃ljkujnukλ

∂

∂xl

}N
=
{
An+1n+1λγ̃inju

j
nu

i
n+1 −An+1n+1λΓ

s
jk
˜̀kujnuin+1asi

}
en+1,

where XN denotes the normal component of X.
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Proof. Using the fact ηiju
i
n+1u

j
n = ηiju

i
lu
j
n = 0 and ηiku

i
µu

k
λ = δλµ, we have that

(2.7)

{[
a

F

(
bs,xk

˜̀s − b

a
γ̃nnk

)
ηij +

a

F

(
bs,xj ˜̀s − b

a
γ̃nnj

)
ηik

]
ujnu

k
λg
il ∂

∂xl

}N
= 0.

When b is parallel with respect to a, we have bi,xj−bj,xi = 0. Since `ku
k
λ = 0 and `ju

j
n = 1,

we obtain that

(2.8)

{[
`ibj,xk − `jbk,i + `kbi,xj + `ibk,xj − `kbj,i + `jbi,xk

]
ujnu

k
λg
il ∂

∂xl

}N
= 0.

From ujnξj = 0 and ukλξk = −F
a
˜̀
ku

k
λ, we obtain that{[

ξi(γ̃jnk + γ̃njk)− ξj(γ̃kni + γ̃nki) + ξk(γ̃inj + γ̃nij)

− ξi(γ̃knj + γ̃nkj)− ξk(γ̃jni + γ̃nji) + ξj(γ̃ink + γ̃nik)
]
ujnu

k
λg
il ∂

∂xl

}N
= −F

a
˜̀
ku

k
λ(γ̃inj − γ̃jni)ujnuin+1en+1.

(2.9)

Using uin+1
˜̀
i = 0, ˜̀jujn = a

F
and γ̃nni = F

a γ̃jniu
j
n, we see that

{[
−ξi ˜̀j γ̃nnk + ξj

˜̀
kγ̃nni − ξk ˜̀iγ̃nnj − ξi ˜̀kγ̃nnj + ξk

˜̀
j γ̃nni − ξj ˜̀iγ̃nnk]ujnukλgil ∂∂xl

}N
= −F

a
˜̀
ku

k
λγ̃jniu

j
nu

i
n+1en+1.

(2.10)

Substituting (2.7)–(2.10) into (2.6) implies that

(2.11)

{
1

2
(♣ijk +♣ikj)gilujnukλ

∂

∂xl

}N
= − a

2F
˜̀
ku

k
λγ̃inju

j
nu

i
n+1en+1.

Since gij = F
a (aij − ˜̀i ˜̀j) + `i`j and ˜̀i = `i − bi, we obtain that

F

a
γ̃ijku

j
nu

k
λg
il ∂

∂xl

= γ̃sjku
j
nu

k
λgisu

i
n+1en+1 + (γ̃sjku

j
nu

k
λ`s − γ̃sjkujnukλbs)en +

F

a
γ̃sjku

j
nu

k
λu

i
µasieµ

=

〈
γ̃sjku

j
nu

k
λ

∂

∂xs
, en+1

〉
g

en+1 +

(〈
γ̃sjku

j
nu

k
λ

∂

∂xs
, en

〉
g

en − γ̃sjkujnukλbs

)
en

+ γ̃sjku
j
nu

k
λu

i
µ

{
gsi − `s`i +

F

a
˜̀
s
˜̀
i

}
eµ

= γ̃sjku
j
nu

k
λ

∂

∂xs
− γ̃sjkujnukλbsen +

F

a
γ̃sjku

j
nu

k
λu

i
µ
˜̀
s
˜̀
ieµ.

(2.12)
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Using ηjku
j
nukλ = 0, we have that −1

2

(
bs,xi ˜̀s− b

a γ̃nni
)
ηjku

j
nukλg

il ∂
∂xl

= 0. It follows from

ηiju
i
n+1u

j
λ = 0 and (2.3) that An+1n+1λ = 1

2
F
a u

k
λbk. Substituting this, (2.11) and (2.12)

into (2.5), we obtain that

(2.13)

{
γljku

j
nu

k
λ

∂

∂xl
− γ̃ljkujnukλ

∂

∂xl

}N
= An+1n+1λγ̃inju

j
nu

i
n+1en+1.

On the other hand, we have that{[
Γ
l

jk − γljk
]
ujnu

k
λ

∂

∂xl

}N
=

{
− gli

[
A

(
∂

∂xi
,
∂

∂xj
,
∂

∂xs

)
N
s

k

F
−A

(
∂

∂xk
,
∂

∂xj
,
∂

∂xs

)
N
s

i

F

+A

(
∂

∂xi
,
∂

∂xk
,
∂

∂xs

)
N
s

j

F

]
ujnu

k
λ

∂

∂xl

}N
= −An+1n+1λΓ

s

jk
˜̀kujnuin+1asien+1.

(2.14)

We get Proposition 2.6 immediately from (2.13) and (2.14).

Similarly, we can obtain the following

Proposition 2.7. Let (M
n+1

, F ) be a Randers space constructed from a Riemannian

metric a and 1-form b, where b is parallel with respect to a. If Mn is a hypersurface of

(M
n+1

, F ), then{
Γ
l
jku

j
nu

k
n

∂

∂xl
− γ̃ljkujnukn

∂

∂xl

}N
= −1

2

(
bs,xi ˜̀i − b

a
γ̃nni

)
uin+1en+1.

A direct calculation gives

(2.15) d

(
b

a

)
=

(
bs,xi ˜̀i − b

a
γ̃nni

)
dxi +

(
bia− b˜̀i

a2

)
dY

i
.

Since d( ba)(en+1) = 0 on the projectivized tangent bundle PTM , we see that (bs,xi ˜̀i−
b
a γ̃nni)u

i
n+1 = 0 from (2.15). Then we get that

{
Γ
l
jku

j
nukn

∂
∂xl
− γ̃ljku

j
nukn

∂
∂xl

}N
= 0 from

Proposition 2.7. Substituting this into Proposition 2.6 yields that
{

Γ
l
jku

j
nukλ

∂
∂xl
− γ̃ljku

j
nukλ

∂
∂xl

}N
= 0. we obtain immediately

Proposition 2.8. Let (M
n+1

, F ) be a Randers space constructed from a Riemannian

metric a and 1-form b, where b is parallel with respect to a. If Mn is a hypersurface of

(M
n+1

, F ), then
{
∇en −∇

α
en

}N
= 0.

Proposition 2.9. Let (M
n+1

, F ) be a Randers space constructed from a Riemannian

metric a and 1-form b, where b is parallel with respect to a. If Mn is a hypersurface of

(M
n+1

, F ), then hn+1
ij An+1n+1λ = 0 and hn+1

ij θn+1
n+1 = 0.
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Proof. Since uin+1`i = 〈en+1, en〉g = 0 and uin+1
˜̀
i = 〈en+1, en〉a = 0, where `i =

gijY
j

F
,˜̀

i =
aijY

j

a and en+1 = uin+1
∂
∂xi

is the unit normal vector with respect to the Finsler metric

F , together with the fact gij = F
a (aij− ˜̀i ˜̀j)+`i`j , we obtain that 〈en+1, en+1〉a = a

F
. This

implies that ẽn+1 =

√
F
a en+1 is the unit normal vector with respect to the Riemannian

metric a. Then from Proposition 2.8 we get that

(2.16) θn+1
n =

〈
∇en, en+1

〉
g

=
F

a

〈
∇en, en+1

〉
a

=

√
a

F

〈
∇aẽn, ẽn+1

〉
a
,

where ẽn = ˜̀i ∂
∂xi

= Y
i

a
∂
∂xi

.

Similarly, we have that

θn+1
n+1 =

〈
∇aen+1, en+1

〉
g

+ Φiω
i

=
F

a

〈
∇a
(√

α

F
ẽn+1

)
,

√
a

F
ẽn+1

〉
a

+ Φiω
i

=

√
F

a
d

√
a

F
+ Φiω

i,

(2.17)

where Φl =
{
a
F

(bs,xj ˜̀j − b
a γ̃nnj)−A(en+1, en+1,

1
F
N
s
j
∂
∂xs )

}
ujl and

(2.18)
〈
∇aẽn+1, ẽn

〉
a

= −
〈
ẽn+1,∇

a
ẽn

〉
a

= −

√
F

a
θn+1
n .

Let θ̃ab denotes the Levi-Civita connection 1-form with respect to the Riemannian met-

ric a, i.e., ∇a ∂
∂xa = θ̃ba

∂
∂xb

= γ̃bac dx
c ⊗ ∂

∂xb
and ẽn+1 = ũin+1

∂
∂xi

. Now exterior differentiate

the right-hand side of (2.16), we obtain that from (2.17) and (2.18)

d

(√
a

F

〈
∇aẽn, ẽn+1

〉
a

)

= d

(√
a

F

)
∧
〈
∇aẽn, ẽn+1

〉
a

+

√
a

F
d
{
d(˜̀i)ũjn+1aij + ˜̀iũjn+1ajlθ̃

l
i

}
= d

(√
a

F

)
∧
〈
∇aẽn, ẽn+1

〉
a

+

√
a

F

{
aij d(ũjn+1) ∧ d(˜̀i) + alj ˜̀i d(ũjn+1) ∧ θ̃li

+ akiũ
j
n+1 θ̃

k
j ∧ d(˜̀i) + akl ˜̀iũjn+1 θ̃

k
j ∧ θ̃li

}
+

1

2
Kn+1nkl ω

k ∧ ωl

= d

(√
a

F

)
∧
〈
∇aẽn, ẽn+1

〉
a

+

√
a

F

〈
∇aẽn+1,

∂

∂xl

〉
a

∧ dxl(∇aẽn) +
1

2
Kn+1nkl ω

k ∧ ωl

= θn+1
n+1 ∧ θn+1

n −
√
a

F
Φl ω

l ∧ θn+1
n +

√
a

F

〈
∇aẽn+1, el

〉
a
∧ ωl(∇aẽn) +

1

2
Kn+1nkl ω

k ∧ ωl

(2.23)
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= θn+1
n+1 ∧ θn+1

n −
√
a

F
Φl ω

l ∧ θn+1
n

+

√
a

F

{〈
∇aẽn+1, en

〉
a
∧ ωn

[
d

(
F

a

)
en +

F

a
∇aen

]
+
〈
∇aẽn+1, eλ

〉
a
∧ ωλ

(
F

a
∇en

)}
+

1

2
Kn+1nkl ω

k ∧ ωl

=

θn+1
n+1 ∧ θn+1

n +

√
a

F

−
√
F

a
θn+1
n ∧ d

(
F

a

)
−
〈
ẽn+1,∇

a
eλ

〉
a
∧
(
F

a
θλn

)[
mod (ωk ∧ ωl)

]
=

{
θn+1
n+1 ∧ θn+1

n + 2
F

a
θn+1
n ∧ θn+1

n+1 − θ
n+1
λ ∧ θλn

}[
mod (ωk ∧ ωl)

]
,

where the K
A
BCD is the curvature tensor of M with respect to the Riemannian metric a.

On the other hand, we have that

dθn+1
n = −θn+1

n+1 ∧ θ
n+1
n − θn+1

λ ∧ θλn +
1

2
Rn+1nkl ω

k ∧ ωl

+ P
n+1
nkλ ω

k ∧ ωλn + P
n+1
nkn+1 ω

k ∧ ωn+1
n .

(2.24)

Note θn+1
n+1 = −An+1n+1λω

λ
n from Proposition 2.5. Now substituting (2.23) and (2.24) into

(2.16) yields that

(2.25) 2
b

a
hn+1
nk An+1n+1λ = −Pn+1

nkλ .

Set k = n in (2.25), we have that b
ah

n+1
nn An+1n+1λ = 0.

(1) In case b 6= 0. Obviously, hn+1
nn An+1n+1λ = 0.

(2) In case b = 0. We have gAB = aAB and AABC = F
2
∂gAB

∂Y
C = 0.

Then these two statements imply that hn+1
nn An+1n+1λ = 0. When hn+1

nn = 0, exterior

differentiate this, we get that hn+1
nn|jω

j + hn+1
nn;λω

λ
n + hn+1

nλ ωλn = 0. On the other hand,

when b is parallel with respect to a, we have P
A
BCλ = 0, hence we have that hn+1

nn;λ = 0

from the first formula of Proposition 2.2. The above two formulas yield hn+1
nλ and hence

hn+1
in An+1n+1λ = 0. It is easy to see that hn+1

ni = 0, ∀ i or An+1n+1λ = 0, ∀λ. When

hn+1
ni = 0, ∀ i, we have that hn+1

in|j ω
j + hn+1

in;λω
λ
n + hn+1

iλ ωλn = 0. On the other hand, we have

that P
n+1
nkλ = 0 from (2.24), which together with the first formula of Proposition 2.2 yields

that hn+1
in;λ = 0. Then we have hn+1

iλ = 0 and obtain Proposition 2.9 immediately.

Proposition 2.10. Let (M
n+1

, F ) be a Randers space constructed from a Riemannian

metric a and a 1-form b, where b is parallel with respect to a. If Mn is a hypersurface of

(M
n+1

, F ) with constant mean curvature |H|, then
∑

i h
n+1
ii = n |H| is constant.
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Proof. It follows from Propositions 2.5 and 2.9 that

0 = d
(
hn+1
ij Aλn+1n+1

)
=
(
hn+1
ij|k Aλn+1n+1 + hn+1

ij Aλn+1n+1|k + hn+1
ij Aλn+1n+1;n+1h

n+1
nk

)
ωk

+
(
hn+1
ij;µAλn+1n+1 + hn+1

ij Aλn+1n+1;µ

)
ωµn,

which gives that

hn+1
ij Ain+1n+1;λ = 0.

It follows from (2.25) and AABC;D = AABD;C that

(∇FeHn C)(ei, ei, en+1) = Ciin+1;λθ
λ
n(FeHn ) + Ciin+1;n+1θ

n+1
n (FeHn )

= FCiin+1;n+1h
n+1
nn

= 0.

(2.26)

Since we are assuming that |H| is constant, it follows that
∑

i h
n+1
ii = n |H| from (2.3)

and (2.26).

Proposition 2.11. Let (M
n+1

, F ) be a Randers space constructed from a Riemannian

metric a and a 1-form b, where b is parallel with respect to a. If Mn is a hypersurface of

Randers space (M
n+1

, F ), then

hn+1
ij;λ;µ = hn+1

ij;µ;λ,

hn+1
ij|k;λ = hn+1

ij;λ|k − h
n+1
µj Pµikλ − h

n+1
iµ Pµjkλ − h

n+1
ij;µ P

µ
nkλ,

hn+1
ij|k|l − h

n+1
ij|k|l = hn+1

sj Rsikl + hn+1
is Rsjkl + hn+1

ij;λR
λ
nkl.

Proof. It follows from Proposition 2.9 that

(2.27) hn+1
ij|k ω

k + hn+1
ij;λ ω

λ
n = dhn+1

ij − hn+1
kj ωki − hn+1

ik ωkj .

Exterior differentiate the left-hand side of (2.27), we obtain that

dhn+1
ij|k ∧ ω

k + hn+1
ij|k dω

k + dhn+1
ij;λ ∧ ω

λ
n + hn+1

ij;λ dω
λ
n

=
{
hn+1
ij|k|lω

l + hn+1
ij|k;lω

l
n + hn+1

lj|k ω
l
i + hn+1

il|k ω
l
j + hn+1

ij|l ω
l
k

}
∧ ωk + hn+1

ij|k

{
−ωkl ∧ ωl

}
+
{
hn+1
ij;λ|lω

l + hn+1
ij;λ;µω

µ
n + hn+1

lj;λ ω
l
i + hn+1

il;λ ω
l
j + hn+1

ij;µ ω
µ
λ

}
∧ ωλn

+ hn+1
ij;λ

{
−ωλµ ∧ ωµn +

1

2
Rλnls ω

l ∧ ωs + P λnlµ ω
l ∧ ωµn

}
=

{
−hn+1

ij|k|l +
1

2
hij;λR

λ
nkl

}
ωk ∧ ωl − hn+1

ij;λ;µ ω
λ
n ∧ ωµn

+
{
−hn+1

ij|k;µ + hn+1
ij;µ|k + hn+1

ij;λ P
λ
nkl

}
ωk ∧ ωµn

+ hn+1
lj|k ω

l
i ∧ ωk + hn+1

il|k ωlj ∧ ωk + hn+1
lj;λ ω

l
i ∧ ωλn + hn+1

il;λ ωlj ∧ ωλn.

(2.28)
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Exterior differentiate the right-hand side of (2.27), we obtain that

− dhn+1
kj ∧ ω

k
i − hn+1

kj dωki − dhn+1
ik ∧ ωkj − hn+1

ik dωkj

= −
{
hn+1
kj|l ω

l + hn+1
kj;λω

λ
n + hn+1

lj ωlk + hn+1
kl ωlj

}
∧ ωki

− hn+1
kj

{
−ωkl ∧ ωli +

1

2
Rkils ω

l ∧ ωs + P kilλ ω
l ∧ ωλn

}
−
{
hn+1
ik|l ω

l + hn+1
ik;λω

λ
n + hn+1

lk ωli + hn+1
il ωlk

}
∧ ωkj

− hn+1
ik

{
−ωkl ∧ ωlj +

1

2
Rkjls ω

l ∧ ωs + P kjlλ ω
l ∧ ωλn

}
=

{
−1

2
hn+1
sj Rsikl −

1

2
hn+1
is Rkjkl

}
ωk ∧ ωl +

{
−hn+1

sj P sikλ − hn+1
sj P kjkλ

}
ωk ∧ ωλn

− hn+1
kj|l ω

l ∧ ωki − hn+1
kj;λ ω

λ
n ∧ ωki − hn+1

ik|l ω
l ∧ ωkj − hn+1

ik;λ ω
λ
n ∧ ωkj .

(2.29)

It can be seen from (2.28) and (2.29) that

hn+1
ij;λ;µ ω

λ
n ∧ ωµn +

{
hn+1
ij|k|l −

1

2
hn+1
sj Rsikl −

1

2
hn+1
is Rsjkλ −

1

2
hn+1
ij;λR

λ
nkl

}
ωk ∧ ωl

+
{
hn+1
ij|k;λ − h

n+1
ij;λ|k + hn+1

ij;µ P
µ
nkkl + hn+1

is P sjkλ + hn+1
sj P sikλ

}
ωk ∧ ωλn = 0.

(2.30)

We obtain Proposition 2.11 immediately from (2.30).

3. Main theorem

Let (M
n+1

, F ) be a Randers space constructed from a Riemannian metric a and a 1-form

b, where b is parallel with respect to a and (Mn, F ) be a hypersurface of (M
n+1

, F ) with

constant mean curvature. By Proposition 2.10, we have that∑
i

hii|jω
j +

∑
i

hii;jω
j
n = d

∑
i

hii −
∑
ij

hjiω
j
i −

∑
ij

hijω
j
i

= −
∑
ij

hij(ω
j
i + ωij)

= 2
∑
ij

hijAijkω
k
n,

(3.1)

where hij = hn+1
ij .

It follows from (3.1) that

(3.2)
∑
i

hii|j = 0 and
∑
i

hii;j = 2
∑
ik

hikAikj .
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Exterior differentiate the first formula of (3.2), we obtain that∑
i

hii|j|kω
k +

∑
i

hii|j;kω
k
n = d

∑
i

hii|j −
∑
ik

hki|jω
k
i −

∑
ik

hik|jω
k
i −

∑
ik

hii|kω
k
j

= −
∑
ik

hik|j(ω
k
i + ωik)

= 2
∑
ik

hik|lAilkω
l
n,

so we have that ∑
i

hii|j|k = 0 and
∑
i

hii|j;k = 2
∑
il

hil|jAilk.

On the other hand, when b is parallel with respect to a, we have P
a
bcλ = 0, hence

Proposition 2.1, together with Proposition 2.5, implies that

(3.3) Pnijλ = 0 and Rjikl = R
j
ikl − hαikhαjl + hαilh

α
jk,

and Proposition 2.2 together with Proposition 2.5 implies that

(3.4) hij;k = 0 and hij|k = hik|j −R
n+1
ijk .

The pull-back of the Sasaki metric gij dx
i ⊗ dxj + gij δY

i ⊗ δY j from TM \ {0} to the

sphere bundle SM is a Riemannian metric ĝ = gij dx
i ⊗ dxj + δab ω

a
n ⊗ ωbn. We need the

following lemma.

Lemma 3.1. [5] For X =
∑

i xiω
i ∈ Γ(π∗T ∗M), divĝX =

∑
i xi|i +

∑
µ,λ xµP

n
λλµ.

Let S =
∑

ij(hij)
2 be the norm square of the second fundamental form of (M,F ) and

ω = dS = S|iω
i + S;iω

i
n, then ω is a global section on π∗T ∗M . By the first formula of

(3.4), i.e., S;i = 0, the first formula of (3.3) and Lemma 3.1, we have that

divĝ ω = div

2
∑
i,j,k

hijhij|kω
k

 = 2

∑
i,j,k

hijhij|k


|k

= 2
∑
i,j,k

h2ij|k + 2
∑
i,j,k

hijhij|k|k.

(3.5)

It can be seen from (3.5), (3.3), (3.4) and Proposition 2.11 that

divĝ ω = 2
∑
i,j,k

h2ij|k − 2
∑
i,j,k

hij

{
R
n+1
kik|j +R

n+1
ijk|k

}
+ 2

∑
i,j,k,s

hij
{
hsiR

s
kjk + hksR

s
ijk

}
= 2

∑
i,j,k

h2ij|k − 2
∑
i,j,k

hij

{
R
n+1
kik|j +R

n+1
ijk|k

}
+ 2

∑
i,j,k,s

hij
{
hsiR

s
kjk + hksR

s
ijk

}
+
∑
i,j,s

2n |H|hijhsihsj − 2S2.

(3.6)
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Let bij = hij − |H| δij . Then (3.6) becomes that

divĝ ω = 2
∑
i,j,k

b2ij|k − 2
∑
i,j,k

bij

{
R
n+1
kik|j +R

n+1
ijk|k

}
+ 2

∑
i,j,k,s

bij
{
bsiR

s
kjk + bksR

s
ijk

}
+
∑
i,j,s

2n |H| bijbsibsj

− 2(S − n |H|2)2 + 2n |H|2 (S − n |H|2).

(3.7)

Proposition 3.2. Let (M
n+1

, F ) be a Randers space constructed from a Riemannian

metric a and a 1-form b, where b is parallel with respect to a. If the sectional curvature

KM of M with respect to the Riemannian metric a satisfies δ ≤ KM ≤ 1, then

(1)
∣∣∣RACBC∣∣∣ ≤ 1

2(1− δ), for A 6= B,

(2)
∣∣∣RABCD∣∣∣ ≤ 2

3(1− δ), for A, B, C, D distinct with each other.

Proof. Let K
A
BCD be the curvature tensor of M with respect to the Riemannian metric

a. If the sectional curvature KM of M with respect to the Riemannian metric a satisfies

δ ≤ KM ≤ 1, then

(1)
∣∣∣KA

CBC

∣∣∣ ≤ 1
2(1− δ), for A 6= B,

(2)
∣∣∣KA

BCD

∣∣∣ ≤ 2
3(1− δ), for A, B, C, D distinct with each other.

On the other hand, when 1-form b is parallel with respect to a, we have that Γ
A
BC =

γ̃ABC , which implies that R
A
BCD = K

A
BCD. This proves Proposition 3.2.

Proposition 3.3. Let (M
n+1

, F ) be a Randers space constructed from a Riemannian

metric a and a 1-form b, where b is parallel with respect to a. Assume the sectional

curvature KM of M with respect to the Riemannian metric a satisfies δ ≤ KM ≤ 1. If

(Mn, F ) is a hypersurface of (M
n+1

, F ) with constant mean curvature, then∑
i,j,k

(bijbsiR
s
kjk + bijbksR

s
ijk) ≥ nδ(S − n |H|

2)− 7

2
(1− δ)(S − n |H|2).

Proof. It follows from Proposition 3.2 that∑
i,j,k

(bijbsiR
s
kjk + bijbksR

s
ijk) = b2ijR

j
kjk + b2ijR

j
iji − biibjjR

j
iji

+
∑
s 6=j

bijbsiR
s
kjk + 2

∑
i 6=k

bijbjkR
j
ijk + 2

∑
s 6=k

biihskR
s
iik

=
∑
i 6=j

b2ijR
j
kjk + b2ijR

j
iji +

1

2
(bii − bjj)2R

j
iji
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+
∑
s 6=j

bijbsiR
s
kjk + 2

∑
i 6=k

bijbjkR
j
ijk + 2

∑
s 6=k

biibskR
s
iik

≥ nδ(S − n |H|2)− 7

2
(1− δ)(S − n |H|2).

Proposition 3.4. Let (M
n+1

, F ) be a Randers space constructed from a Riemannian

metric a and a 1-form b, where b is parallel with respect to a. Assume the sectional

curvature KM of M with respect to the Riemannian metric a satisfies δ ≤ KM ≤ 1. If

Mn is a compact hypersurface of (M
n+1

, F ) with constant mean curvature, then∫
SM

∑
i,j,k

[
b2ij|k −

(
bijR

n+1
kik|j + bijR

n+1
ijk|k

)]
dVSM ≥ −

∫
SM

1

72
n(n−1)(26n−25)(1−δ)2 dVSM .

Proof. Let X =
∑

i,j

(
bikR

n+1
jij + bijR

n+1
ijk

)
ωk. It follows from Lemma 3.1 and the second

formula of (3.4) that∑
i,j,k

b2ij|k −
∑
i,j,k

(
bikR

n+1
jij|k + bijR

n+1
ijk|k

)
=
∑
i,j,k

b2ij|k +
∑
i,j,k

(
bik|kR

n+1
jij + bij|kR

n+1
ijk

)
− divĝX

=
∑
i,j,k

b2ij|k +
∑
i,j,k

bij|kR
n+1
ijk −

∑
i

(∑
j

R
n+1
jij

)2

− divĝX

≥ −1

4

∑
i,j,k

(
R
n+1
ijk

)2
− 1

4
n(n− 1)2(1− δ)2 − divĝX

≥ − 1

72
n(n− 1)(26n− 25)(1− δ)2 − divĝX.

(3.8)

Integrating (3.8) yields Proposition 3.4.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Using the fact
∑

i,j,s n |H| bijbisbsj ≥ −
n−2√
n(n−1)

n |H| (s−n |H|2)3/2,
substituting Propositions 3.3 and 3.4 into (3.7), we have that

0 ≥
∫
SM

{
− (S − n |H|2)2 + nδ(S − n |H|2)− 7

2
(1− δ)(S − n |H|2)

− n− 2√
n(n− 1)

n |H| (S − n |H|2)3/2 − 1

72
n(n− 1)(26n− 25)(1− δ)2

}
dVSM .

(3.9)

From our assumption condition S − n |H|2 ≤ BH , we can obtain that

−(S − n |H|2) + nδ − 7

2
(1− δ)− n− 2√

n(n− 1)
n |H| (S − n |H|2)1/2 − α(1− δ) ≥ 0,
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which together with S − n |H|2 ≥ α(1− δ) yields that

− (S − n |H|2)2 + nδ(S − n |H|2)− 7

2
(1− δ)(S − n |H|2)

− n− 2√
n(n− 1)

n |H| (S − n |H|2)3/2 − 1

72
n(n− 1)(26n− 25)(1− δ)2 ≥ 0.

(3.10)

It follows from (3.9) and (3.10) that all inequalities in (3.8) are actually equalities.

Then we get that bij|k = R
n+1
ijk , ∀ i, j, k and

∣∣∣Rn+1
jij

∣∣∣ = 1
2(1 − δ), ∀ i 6= j. It can be seen

from bij|k = R
n+1
ijk , ∀ i, j, k that R

n+1
jij = R

n+1
ijj = 0. Then it is easy to see that δ = 1. This,

together with the parallel 1-form b, implies that M is a Berwald manifold with constant

flag curvature K = 1, then M is a complete simply connected Riemannian manifold with

constant curvature 1. Hence we obtain Theorem 1.2 immediately.

Using the same way as the proof of Theorem 1.2, we can also obtain the following

Theorem 3.5. Let (M
n+1

, F ) be a complete simply connected Randers space constructed

from a Riemannian metric a and a 1-form b, where b is parallel with respect to a. Assume

the sectional curvature KM of M with respect to the Riemannian metric a satisfies δ(n) ≤
KM ≤ 1. If Mn is a compact hypersurface of (M

n+1
, F ) with constant mean curvature

|H| and the norm square S of the second fundamental form of (M,F ) with respect to the

Finsler metric F satisfies B1 ≤
√
S − n |H|2 ≤ B2, where B1, B2 (0 ≤ B1 < B2) are the

solutions of the following equation

−x4 − n− 2√
n(n− 1)

n |H|x3 +

[
nδ − 7

2
(1− δ)

]
x2 − 1

72
n(n− 1)(26n− 25)(1− δ)2 = 0,

then either M is the unit sphere or S−n |H|2 = B2 and one of the following cases occurs:

(1) H = 0 and M = Sk
(√

k/n
)
×Sn−k

(√
(n− k)/n

)
is a minimal Clifford hypersurface,

(2) H 6= 0, n ≥ 3 and M = S1(r1) × Sn−1(r2) is an H-torus, where r21 + r22 = 1 and

r22 < (n− 1)/2,

(3) H 6= 0, n = 2 and M = S1(r1) × S1(r2) is an H-torus, where r21 + r22 = 1 and

r21 6= 1/2.
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