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A Nonconforming Finite Element Method for Constrained Optimal Control

Problems Governed by Parabolic Equations

Hong-Bo Guan* and Dong-Yang Shi

Abstract. In this paper, a nonconforming finite element method (NFEM) is proposed
for the constrained optimal control problems (OCPs) governed by parabolic equations.
The time discretization is based on the finite difference methods. The state and
co-state variables are approximated by the nonconforming FQ:°* elements, and the
control variable is approximated by the piecewise constant element, respectively. Some
superclose properties are obtained for the above three variables. Moreover, for the
state and co-state, the convergence and superconvergence results are achieved in L2-

norm and the broken energy norm, respectively.

1. Introduction

The state constrained OCPs play a crucial role in many science and engineering appli-
cations (cf. [2,3]). But the exact solutions do not always exist or are difficult to be
obtained for this kind of problems, so researching the corresponding numerical algorithms
becomes very meaningful. [10] firstly gave the FEM for the elliptic OCPs and proved the
convergence property. Later, [4] provided the optimality conditions and some important
theoretical analyses for elliptic OCPs. Based on this research, more and more literatures
appeared to study the FEMs for the OCPs governed by PDEs. For instance, [5] proved
the convergence of FE approximations to OCPs governed by semi-linear elliptic equations
with finitely many state constraints. Later, [6] extended these results to a less regular set-
ting for the states, and gave the convergence analysis of FEM for semi-linear distributed
and boundary control problems. On the other hand, [15] proposed a discretization concept
which utilized for the discretization of the control variable the relation between adjoint
state and control. The key feature is not to discretize the space of admissible control,
but to implicitly utilize the first order optimality conditions and the discretization of the
state and adjoint equations for the discretization of the control. Moreover, the linear FE

was used to discretize the state equation and the error estimate of L?-norm was obtained
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in [8]. Recently, a lot of studies are focusing on the conforming FEM for OCPs governed
by elliptic equations, Stokes equations, convection-dominated diffusion equations, and so
on (cf. [20,21,32]).

Some usual notations of Sobolev spaces and norms are presented in the following.
Let H*(Q) be the standard Sobolev space of k-differential functions and less than k-
differential functions in L?(2) with norm || - ||, and semi-norm |- |, respectively. Hg ()
denotes the closure of the space C5°(2) in H(Q), Wk°°(2) denotes the Sobolev space of k-
differential functions and less than k-differential functions are bounded. For Sobolev space

Y, LP(m1, mgo;Y) is the space of measurable Y-valued functions 9 of t € (m1, mg) with the

1/p
n0orm [[9(| 1o (1, gy = (fan |19(-,t)|§’,> if 1 <p < oo, or the norm [|9]] oo (1) moivy =
€SS SUDP,,, <ty [V( -, )|y < 00 if p = oo.
In this paper, we will consider the following OCP with state constrained: find (y,u) €

L2(0,T;Y) x L0, T;U), such that

1 (T ) )
1.1 . 1 ( _ )dt
(1) ot o [ Iy =l + ol

subject to

vy — Ay = f+ Bu in €,
(1.2) y=0 on 012,
y(z,0) = o in Q,

where « is a positive constant parameter, €2 is a bounded polygon in R?, z = (1, 22) € Q,
f € L%0,T; L*(2)) is a given function, Y = H}(Q) N H3(Q), U = HY(Q), B is a linear

continuous operator, and K* is defined as
K'={veU:v<0,ae in Q}.

For the above parabolic OCPs, [17] investigated a FEM and obtained the O(h%/279)
convergence order. Later, by using the optimality conditions, [7] studied the fully discrete
mixed FEM for semilinear parabolic OCPs, O(h + At) error estimates are derived. [22]
reported a posteriori error estimates for both the state and the control approximation.
Recently, [31] derived the O(h? + At) order superconvergence results by using the linear
FE approximations.

However, the findings mentioned above are mainly contributions to the conforming
FEMs. In fact, NFEs have some advantages comparing with the conforming ones. For ex-
ample, for the Crouzeix-Raviart type NFEs, such as Q°" element [23], EQ'°" element [18],
CNQY°" element 16|, Pj-nonconforming triangular element [1], etc. Since the unknowns
of the elements are associated with the element edges or faces, each degree of freedom be-

longs to at most two elements, the use of the NFEs facilitates the exchange of information
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across each subdomain and provides spectral radius estimates for the iterative domain de-
composition operator (cf. [9]). Especially, the nonconforming FQ'°* element has attracted
scientists’ more and more attentions to be applied to many problems. For example, [1§]
studied its superconvergence properties for the second order elliptic problems, [24] applied
this element to solve diffusion-convection-reaction equation, [26] considered its supercon-
vergence behaviors on anisotropic meshes, [29] used it to deal with the Signorini problem
and obtained the global superconvergence results. Furthermore, this element was also
employed to solve the Maxwell’s equations [27], nonlinear Sobolev equation 28] and some
other different problems [13,25[/30]. Recently, we also researched the NFEM and mixed
FEM for stationary OCPs, and obtained the superconvergence results and optimal order
error estimates in [11,[12], respectively.

The aim of this paper is to derive the global superclose and superconvergence properties
of NFEM for parabolic OCPs, in which the EQ'°* element is employed to approximate
the state and co-state. The rest of this paper is organized as follows. In the next section,
the discrete formulation will be presented for the OCPs. In Section [3] the superclose
property will be established for the control variable. In Section [d] the superclose and

superconvergence results will be derived both for the state and co-state variables.

2. The discrete formulation and some lemmas

By [19], we know that (1.1))—(1.2]) has a unique solution (y, u) and that (y,u) is the solution
of (L.1)—(T.2) if and only if there is a co-state p € L?(0,T;Y) such that (y,p,u) satisfies

the following optimality conditions:

(e,v) +a(y,v) = (f + Bu,v) Vv € Hy(9),
y(2,0) = yo in €,
(2.1) —(pe,v) + a(p,v) = (y = ya,v) Vo € Hy(Q),
p(x,T) =0 in €,
\(au—{—B*p,v—u)ZO Vv e K*,

where a(y,v) = [, VyVvdz, (f + Bu,v) = [(f + Bu)vdzx.
In (2.1)), let @ = QOUQT, where Q° = {z € Q : u(z) = 0} and Q" = {z € Q : u(z) < 0},
then
(au+ B*p,v —u) >0 in Q°,
(au+ B*p,v —u) =0 in QF.

Let 0 =tp <t; < - <tn_1 <ty =T divide [0,T] to N parts averagely, 0 < At =
T/N < 1/2, up = u(x,tn), yn = y(z,tn), Pn = p(x,tn), fn = f(x,t,). Then we have the
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following difference discrete scheme for the time variable t:

(%,0) + a(ymv) = (fn + Bunav) Yo e H&(Q),
(2 2) (W?U) + a(pn_l,’u) = (yn - yg,'U> Vv e H&(Q)a
pN =10 in Q,

\(aun—}-B*pn_l,v—un)zO Yove K*.

On one hand, let T}, be a family of triangular subdivision of {2 with the mesh size 0 <
h1 < 1. The corresponding FE space Uy, contains the piecewise constants. Il : L2() —
Uy, is the interpolation operator on Up,. In the meantime, we denote K}, by the convex
set associated with K* in Uy, as Kp, = K* N Uy, .

On the other hand, let T}, be a family of rectangular subdivision of €2 with the mesh size
0 < hy < 1. For any given K € Ty, let Z1 = (x0— hay, Yo — hay )y Z2 = (X0 + hay, Yo — hay ),
Z3 = (w0+hz,, Yo+he,) and Zy = (20— hzy, Yo+ he,) be the four vertices of K, I; = Z; Z;11
(i=1,2,3,4 mod 4). The corresponding EQ'°* FE space [26] is defined as

Vi, = {v e L*(Q), v|g € span(l,z1, x2, 22, 23), /[U] ds=0,lCOK,VK € ThQ},
l

where [v] denotes the jump of v across the edge F' if F is an internal edge, and it is equal
to v itself if [ is a boundary edge. Let IIj,: H!(Q) — V},, be the associated interpolation
operator on Vj,,, Il = IIj, |k satisfies

Jr(v —=TIgv)de =0,
fli(v —Igv)ds =0, i=1,234.

Let y", pP and u!* denote the FE approximation of 4, p and u at t,,, respectively, then
we have the following fully-discrete nonconforming FE scheme of ([2.2]) as follows:

(yﬁ_ﬁl,vo +an(yl,vn) = (fo + Bul,v,) Yo € Vi,
Y = Tpyyo,

@3 (P ) + anhw) = 0 =) Vo € Vi
pi =0,
(aufy + B*pl_y,vn — uft) >0 Vo e Ky,

where ap,(yp, vp) = ZKeTh2 S VynVup dz.
The following two lemmas have been proved in [26] and [28], respectively, which play

an important role in our theoretical analysis.
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Lemma 2.1. Let y € Y, then for all v, € V},,, we have

/ vh ds| < Ch2 yll5 llvnlly, »

here and later, ¢ is a generic positive constant independent of hi or ha, and |-, =
1/2
(ZKeTh |3 K) is a broken energy norm on Vj,.
, 11,

Proof. For any K € T},, we define operators Py and FPy; as

1 1
Pov:/ vdx, Po-w:/wds,
K| Jk S ul

respectively, where |K| and |/;| denote the measures of K and [;, respectively.
It can be checked that

0 0
Z / —vh ds = Z |: — P J (’Uh — P()l’Uh) dxy + / ai(vh - P()th) dxo
KeTh, KET, 1, 912 1, 071
0
85 (vn, — Pogvp) dz — . 01 - (vn — Poavp) d2
4
> > M

KEThZ =1

By the definition of Py, we get

/ (vn(z1, Y0 — hay) — Porvn(z1, Yo — hay)) dzy dzo
K

4hg, hy
- thg Uh(xla yO - hz‘g) dl‘l -t

/ vp (21, Yo — ha,) dz1 = 0.
I il Ju

Noticing that (v — Poivn)|;, equals (v, — Posvp)|i, and g—;”; is only dependent on z1, we

can derive that

zo+hay &y 8y
My + M3 = / 87(9517% + hey) — T(ml,yo — hay) | (v — Porvn) do
IO*hzl x2 X2
mO“thl yO“thQ 82
= / / 8 "l (.%'1, xg) de (?)h — P()l’l)h) dxl
zo—ha; Yyo—ha,
ZO+hzl OJthz 82u 62
/ / (2 — P0> (v, — Porvp) dxg dzq
o—hz; JYo—ha, dx; (%2
2u 9%y
= ‘ 022~ 5.2 OKHUh—POWhHo,K

< chi uls g [only g -

Similarly, My + My < ch? |u| 3.1¢ [Unly e - Thus the desired result follows. O
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Lemma 2.2. Let ¢ € L?(0,T;Y) and ¢! € Vj,, be the solutions of

(@tvv) + CL((,O,U) = (fv ’U) Vo e H&(Q)7

(2.4)
SD(:E?O) = %o mn )
and
@Z*@Z—l h o
(2 5) At yUp | + ah(%%avh) - (fnavh) \V/Uh € VhQ,

0t = pye0,

respectively, then there holds the following optimal error estimate:

N
max_||¢, — " 0+At2’cpn—g0Z
n=1

2
< c(h? + At
1<n<N h—c( 2+ )a

in which @, = @(x,t,).

Proof. Letting t = t,, and v = vy, in (2.4]), we can get that

(2.6 (S on) + anlon.v0) = (1)

9pn _ Oy
where =5 = 5 ’t:tn'

Subtracting (2.6) form (2.5)), we have

O¢n  On — Pn-1 Pon— Pl ono1— @k h
< at — At , Up + At - At s Up +ah(80n _Spnavh)
2.7
(2.7) - Don
= vy, ds.
OK 8n

}(€7h2

We denote ¢, — ¢! by 6, then letting vj, = 6, in ([2.7)), there yields
2 2 2
16nllg — I0n—1llg + 22t [|6n ][,

< —2A¢ <&p” . 90”‘1,9”) NS / Obng s
0K

ot At on
KETh2
tn 2
¥
<c(an? [ 2N der A0+ A o3 10,1
n—1 2

which means that

(1 — A)[[8llg — 101115 + At |16l

(28) < C(At)2 /tn 890

tn—1

2
dt + At [|0,]lf + cAthd [|nll3 -
2

ot
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Summing ([2.8) from 1 to n, we have
(2.9) 16allg < c(h3 + (A1)?).

On the other hand, summing ({2.8]) from 1 to NV, we can obtain that
N
(2.10) ALY 0l < (k3 + At).
n=1
Combining (2.9) and ([2.10) gives the desired result. O

3. Superclose property of the control u

Lemma 3.1. Let (y,(ul), p,_1(ul)) be the solution of

(Lt omsC) o)+ oy (uf),0) = (fu+ Bulto) Yo e HY(Q),
3.1) yo(uyy) = Tnyo,

(Poolinl) ) 4 afpoa (uf), 0) = (yn () — v v) Vo€ HE(Q),

pN(u?L) =0,
where we assumed that uz (n=1,2,...,N) are given, then there holds

N ) 1/2 N ) 1/2
Ry hy R

max|pn—(uy) pn_1‘1 < (2:1&(%(%) Yn 0) < C< > At = n 0) :

Proof. From (2.2]) and (3.1]), we have the following error equation:

(32) 1 o1 () = puCel) = (ot = ), 0) + @1 (1) = p1,0) = () = i, ).

Choosing v = p,_1(u?) — pp(ul) — (pn_1 — pn) in (3.2)), we can get that

N ‘pn 1(ul) = pu(ul) = (pn—1 — pn) z+% (‘pnl(UZ) _pnfl‘j— Pu(uly) = pn j)
< |lvm ) = |, [[po- 1< %) = pa(ul) = (o = o)
2
< At ‘ yn(un) - ynHO + AL Hpn—l(uZ) _pn(ug) - (pn—l _pn) s
which is
2 2
(3.3) P () = pat| = [pn(l) =] < A fun(u) = 0

Summating (3.3]) in time from n to N, we have

Pn1(up) —Pn—1’ < (Z At‘

(3.4) max

1<n<N Yn(tin) = Yn

1/2
2)
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On the other hand, from ([2.2)) and (3.1]), we could get that

(3.5) é(yn(um - yn—l(uZ) = (Yn = Yn-1),v) + a(yn(uZ) — Yny V) = (B(ulﬁ — Up), V).

Choosing v = y,(ul) — y, in (3.5), there yields

1 h 2 h 2 h 2
AL (( Yn(Up) — Yn . ‘ Yn—1(uy) — yn—1’ 0> + | Yn(uy) — Yn )
2 2
gc‘uZ—un O‘yn(UZ)—yn . SCHuﬁ—un 0+‘yn(UZ)—yn .
So
h 2 h 2 h 2
(3.6) (1—2At¢) ‘ Yn(Un) — Yn 0 ’ Yn—1(Up) — Yn—1 0 < cAt ‘ Up, — Un 0’

then by summating (3.6) in time from 1 to n and noticing that 1 > (1 — 2A¢)™ > (1 —
2AH)N > 72T we find that

N
2 2
h 2T h
(3.7) | max, Yn(Up) — Yn . < ce*” At E 1 ’ Up = Un||
n—=
Combining (3.4) and (3.7)) completes the proof. O

Lemma 3.2. Let p,_1(y!') be the solution of

hy__ h
(Petnl) o) a1 (), 0) = (il — wikv), Vo € H(Q),

(3.8)
pN(UZ) =0,
where we assumed that yﬁ (n=1,2,...,N) are given, then there holds
2
A {po-1(un) = ph)| | < ohy + (A7),

Proof. By (3.1) and (3.8), we have the following error equation:

ey () 2nlo)  ur 0) ) )+ s (08— a4,
= (yn(ult) — yh,v).

Choosing v = pp_1(ul) — p,_1(y?) in (3.9)), there yields

o

<]

2

pn(ufz) —Pn(y]ﬁ) pn—l(”ﬁ) _pn—l(yZ) 1

2
Pn—1(UZ) - pn—l(yﬁ) - ‘

2
)+
0

0
2

2
0 + Hpnfl(urg) - pnfl(yZ)

)
0

which is
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2

Prn—1(u ) Pn— l(yn) yn(“ﬁ)_yz

2
(1 - 2A¢) ’ ‘

§2At’

2
pn(“ﬁ) - pn(ya};) 0

o
Summating the above equation in time from n to N and noticing that py(u?) = py(y") =

0, we can obtain that

2

(1—2AH)N " () = Y|

" < oAt Z ‘
So, using the fact that 1 > (1 — 2A6)N =" > (1 — 2A1)N > 72T we find that
< CZ At|

Noticing that (y,p ;) and y,(u?, pp_1(y!)) are the solutions of (2.3) and (3.1)), respec-
tively, by using Lemma [2.2] directly, we can obtain that

Prn— 1( ) Pn— l(yn)

2
(3.10) max Y (ult) — o .

| max |- 1(ul) = pn_1(y?)

2
hy |7 <t 2
(3.11) max () | < e+ (A0)?)
and
2
(3.12) maxpar (9 P | < ehd + (A1),

Therefore, from (3.10)—(3.12)) and the triangle inequality, the desired result follows. O

Theorem 3.3. Letu, € K* andu! € K}, be the solutions of ([2.2) and (2.3)), respectively,

then there holds the following superclose result:

2
. < c(h3 + hi + (At)?).

N
(3.13) Y Hthun b
n=1

Proof. Noting the fact that v/ and ITy, up, are both in Kj, C K*, then substituting them
into the inequalities (2.2) and (2.3]), respectively, there yield

(att, + B*pr—1,un — uZ) <0 and (au,’?b + B*pn 15U n — I, u,) <0.

Then we can derive that

h 2
ozH Uy, — Hp, up 0
h
= a(un Hh Un, U n thun)
< pn 1, U thun)— (thun, thun)

(-B
(B*(pn 1— pn 1)a Uy, Hh1un) (B Pn—1,u Z_ Un)
- (B*pnflv Unp — thun) - (thun7 Uy, thun)
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< (B*(Pr—1 = Ph—1)s ury = ay ) + alup, upy — )
— (B*Pn—1,tn — My un) — (U, i, ufy — Ty, un)
= (oup, + B*pr—1, p un — up) + (B* (pr—1 — Pr—1(ul)), ul — Iy, up)
+ (B (P (ult) = plh_y), uly — Ty up)
= (@t + B*pr_1, M,y — ) + (B*(Pp—1 — pu_1(u?)), ul — uy,)
+ (B*(Pn—1 = p—1(uy))s tun = Tayun) + (B* (D1 (uy) = po_y),ugy — Hay un)

4
= Z M;
=1

Now we start to estimate each M; (i = 1,2,3,4). Noticing that (au, + B*pn—1)|o+ =0
and (ITp, up — un)|go = 0, it is easy to know that M; = 0.

By (2.2) and (3.1]), we have
M2 = (pn—l _pn—1< h) B( h_ Un))
—a(yn( ) YnyPn—1 — Pn— 1( h))

25 () = 501 = (i~ ya1): Pt — o (u)
= (yn(uZ) ~ YnyYn — yn(“ﬁ)) + é(pn — Pn-1— (pn(uh) Pn—1(u )) Yn(u h) Yn)

1
+ E(yn(%}i) - yn—l(UZ) — (Yn — Yn—1), Pn—1 —pn—l(UZ))

1 1
= o Pn = ), yn () = yn) = 15 (Pt = P (), Y1 () = Y1)

h 2
yn(un) —Yn 0

By the property of interpolation operator IIj,, we can derive that

|M3| - ‘ pn 1= Pn— 1( )) th (B*(pnfl _pnfl(u}é)))aun - thun)

< ch? |pn-1— pn-1(u ))‘ |tn]; -

By Cauchy inequality, we have

2
M| < ¢ =

Pn— 1( ) pn 1‘

0

Thus,

-

<X [(p — pu(u )yn( ") =) = Pre1 = Pac1(Ul), Yn—1(ul) — yn_1)
2

Pn— 1( ) pnlo

+ chl D1 — pn_l(ufl) +c
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Notlcmg that py — pn(ul) =0, yo(ul) — yo = 0 and using Lemmas there yields

Z At Huz — Iy, up z
< ch2 Z At

2
< chy (
n=1

c(hf +h3 +h3 +

2

pnl_pnl h "i‘ ZAt

Pn— 1 Pn 1)‘0

) 1/2 1/2
0) + ch? (2_31 At ([T, uy, — un||§> +e(hy + (A1)?)

2

)
0

u,, — Ip, up

th Un

which completes the proof. O

Theorem 3.4. Under the assumptions of Theorem we have

h

2
—unogcm?+@+4Aw%.

Proof. Noting that

n||? 2 n||?
‘ Un — U || < | |lun — O un|lg + Hﬂfuun — n||,
and
[t = Ipy unllg < chfunly
the desired result can be obtained by Theorem and the triangle inequality. O

Remark 3.5. The above error estimate is optimal, but which is one half order lower than
Theorem So we consider to derive the negative norm error estimate to obtain the

superclose and superconvergence results for y and p.

Theorem 3.6. Under the assumptions of Theorem we have

c(h3 + h3 + (At)?).

Proof. For any ® € H'(2), we have

(Up — ul', & — 11, ®) < ‘un—

1o = 1ma, @l

(3.14)

||Un - thunHO =+ Hthun - UZ O) H(I) - th(I)HO

and

(3.15) (up — ufm I, ®) = (Ip, up — uf‘l, I, @) = (Ip, up — ul

n’

)
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So, from (3.13]), (3.14) and (3.15)), we can get that

h 2
Up — U, P
n— U H ZAt sup |( n nQ )|
ne1 ®cH (D) 217
N h 2 h 2
|(un, — ult, ® — T, @)|” + | (un — ult, 11, @))|
<c¢ sup At 5
PeH (D), H(I)Hl
N 2
< chi + CZ At Hthun —ul .
n=1
c(h} + hy + (At)?),
which is the desired result. O

4. Superconvergence analysis of y and p

The following two properties are essential to our analysis, which can be found in [2§]
and [29], respectively: for y € H'(2), there hold

ah(y - Hh2yavh) =0, Vop € th

and

lonllo < cllvallys  Von € Vi,

Theorem 4.1. Let y, € Y and y! € V},, be the solutions of (2.2) and ([2.3), respectively,

then there hold the following error estimates for yp:

(4.1) max |y, — Iy, yn 0 (hg/2 + h3 4+ At)
and

2
(4.2) U = Ty < c(h + B + (A1)?).

Proof. For convenience, we denote &, = y" — I}, vy, and 1, = p,yn — yn. By [@2.2)) and
(2.3), letting the test function vy, = &, we get the error equation as follows:

é(ﬁn —&n—1,&n) + an(én, &n) = (B(“h — Un),&n) —

(4.3) N Z/ 8yn

KGT;2

1
7(7771 — Nn—1, €n)

By the Cauchy inequality, the left-hand terms of (4.3)) can be estimated as

1

(4‘4) E(S —&n— 17571) + ah(&n,fn) = 2At(”§n”0 ”571—1”(2)) + ”fn”}%
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Now we only need to estimate the right-hand terms of (4.3)). First, we have

1
(45) |l = wa),&)| < efful —wa|| gally < el —ua|”+ 2l
Secondly,
1 c 1 c [t 87)
=m0 < =il gl < 55 [ |G| e+ el
(4.6) e oy "
<2 dt
<t | G| degledi
Lastly, by Lemma we get
yn 4 2 1 2
(4.7) Z 7§n ds < ch3 |lynlls 1€nll) < ch3 llynlls + 6 I&nlls-
KET,
Substitute (4.4)—(4.7) into (4.3)), there yields
oy 2

2 tn
(4:8) (I&ally = len-119)+ At a2 < et |[uf — un|” +ch /

tn—1

So, by using Theorem and summating (4.8]) in time from 1 to n, there yields (4.1)).
Similarly, by summating (4.8) from 1 to N, we can get (4.2). The proof is thus
completed. ]

dt+ch3 At yn|3 -

ot |,

Theorem 4.2. Let p, €Y and p! € V},, be the solutions of [2.2) and ([2.3), respectively,

there holds the following error estimates for py:

ho_ 3/2
(4.9) 012X ||Pn 1}, pn s < c(hy" + h3 + At)
and
2
(4.10) P = Thopn|| < c(hi+ b3+ (A1)?).

Proof. Let 6,, = pl' —Tl1,pn, Co = pypn — pr. By (2.2) and (2.3), letting the test function
vp = 01, we get the error equation as follows:

1
Kt(en—l - Hna gn—l) + ah(en—la en—l)
(4.11) 1 Opn—
= (yﬁ — Yn, 671—1) - E(Cn—l - Cn; en—l) + Z % 19n—1 ds.
oK on
KET}LQ

By Cauchy inequality, the left-hand terms of (4.11)) can be estimated as

1

(412) E(en—l — On, en—l) + ah(an—l’ On— )

o (16113 = 160 12) + 1o
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Now we only need to estimate the right-hand terms of (4.11)). First, by Theorem we

have

2 1
’(y ym n—1 ’ = ‘ _Hh1ym6n 1)‘ < C‘ thyn ~ Hen—lu}%
(4.13) MG
o(hi +ha + (At)*) + & 16l
Secondly,
1
E(Cﬂ - Cnfb 971*1)
Cc 2 tn
(4.14) < EHCn_Cn—lHo H‘gn 1||h— At E dt+ Hen 1||h
chél tn 1 9p 2 9
< = dt + = ||0p—1]]7 -
<5t [ G| e g e

Lastly, by Lemma we get

Opn—
@) [ g ds < ol 10ally < b Il + 5 100l
KeTy, Ok

Substitute (4.12))—(4.15)) into (4.11)), there yields

(161115 — 116xll) + At |61 15

(4.16) ap|?

ot

Noticing the fact that [|dn]|, = 0, then summating ([4.16) from n + 1 to N yields ([4.9).
Similarly, by summating (4.16)) from 1 to N, we can get (4.10). The proof is thus
completed. O

tn
c(h3 + hi + (At)?) + ch%/

tn—1

dt + chyAt [[yall3

2

The following theorem reports the convergence results for y and p in L?-norm:

Theorem 4.3. Under the assumptions of Theorems we have the following error

estimates for y and p, respectively:

3/2 2
— <
| max, yn c(hy’” + hy + At)
and

. —pll| < e(hd? +n3 .
(4.17) o JUBE ’ Pn anO < c(hy"” + hy + At)

Proof. By (4.1 and the interpolation theory, there holds

max - yz < c(hs/2 + 13 + Ab).

1<n<N
Similarly, by || and the interpolation theory, we can get 1| The proof is thus
completed. n

<
2 o = Tl + [ = o1
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In order to obtain the global superconvergence results for y and p in the broken energy
norm, we combine four neighbouring elements K, K», K3, K4 € T}, into a big rectangular
element Ky (see Figure 4.1). Thy, presents the corresponding new partition (cf. [18]). We
construct the interpolated postprocessing operator as follows:

thzw\Ko € PQ(K()) VKO € T2h2,
Jp, (Map,w —w)ds =0 i=1,2,3,4,
lequ (gp,w — w) dz =0, szuK4(H2h2w —w)der =0 VKj€ Toy,,

in which L; (i = 1,2,3,4) are the four edges of Ky, P» denotes the set of polynomials of
degree 2.

Figure 4.1: Big element K

The following properties for Ty, have been validated in [1§]:

Hap, p,w = ap,w Vw e H(Q),
(4.18) [Hap,w — w, < chl|w|,,; YweHTHQ),0<r<2,
Manyvnlly, < ¢ lloally Yo, € Vi,

Theorem 4.4. Under the assumptions of Theorems [L.IHA.2], we have the following super-

convergence results for y and p, respectively:

i:lm(

2
Un — H%yﬁHh < c(h} + h3 + (At)?)

and
N-1
(4.19) 3 A ’
n=0

Proof. By (4.18]) and Theorem there hold

2
P — oy, pl! LS c(hi + hy + (At)?).

2 2

N N
Z At HHQhQthyn - H2h2y2 h Z At HH2h2 (Hh2 Yn — yi],l)
n=1 n=1

h

N
2
< e At| My, - vl]| < elhi+n3+(20)%)
n=1
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and
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lyn — H2h2thyn”Z = |lyn — H2hzyn”i < Chg ‘yn,g

So we have

N
> At ‘
n=1

2

N
2
h Z At Hyn - HZhQHthn + H2h2 th Yn — H2h2y7hi
n=1

Y — Top, "

h

2

N N
2
< Z At [[yn — Mapy Mpyynlly, + Z At HHZhQthyn — Map,yp .
n=1

n=1

< c(h? + b3 + (A1)?).

Similarly, by (4.18)) and Theorem [4.2] we can get (4.19). The proof is thus completed. []
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