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A Note on co-Higgs Bundles

Edoardo Ballico and Sukmoon Huh*

Abstract. We show that for any ample line bundle on a smooth complex projective

variety with nonnegative Kodaira dimension, the semistability of co-Higgs bundles of

implies the semistability of bundles. Then we investigate the criterion for surface X

to have H0(TX) = H0(S2TX) = 0, which implies that any co-Higgs structure of rank

two is nilpotent.

1. Introduction

A co-Higgs bundle on a smooth complex projective variety X is a pair (E ,Φ), where E is

a vector bundle on X and Φ, the co-Higgs field, is a morphism E → E ⊗TX , satisfying the

integrability condition Φ∧Φ = 0. It is introduced and developed in [6,7] as a generalized

vector bundle over X, considered as a generalized complex manifold.

There have been recent interests on the classification of stable co-Higgs bundles on

lower dimensional varieties. In [13,14], Rayan describe the moduli spaces of stable co-Higgs

bundles of rank two both on the projective line and on the projective plane, and show

several non-existence results of them over varieties with nonnegative Kodaira dimension

κ(X) ≥ 0. The main philosophy is that the existence of stable co-Higgs bundles determine

the position of X toward negative direction in the Kodaira spectrum. Indeed it is shown

in [4] that if dim(X) = 2, the existence of semistable co-Higgs bundle (E ,Φ) of rank two

with Φ nilpotent, implies that X is either uniruled, a torus, or a properly elliptic surface,

up to finite étale cover. Colmenares also describes the moduli space of semistable co-Higgs

bundles of rank two on Hirzebruch surfaces in [2, 3].

Our goal in this article is twofold. We first investigate the relationship between semista-

bility of (E ,Φ) and semistability of E .
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Theorem 1.1. With respect to any ample line bundle on a smooth projective variety with

nonnegative Kodaira dimension, if a co-Higgs bundle (E ,Φ) is semistable, then E is also

semistable.

In fact, when we disregard the condition on Kodaira dimension, we also get a similar

statement on stabilities under the assumption that the strict order of instability is low (see

Proposition 2.8). The results give a way to study moduli of semistable co-Higgs bundles,

with a base on the study of moduli of semistable bundles. Indeed, Proposition 2.11 asserts

that any semistable co-Higgs bundle of rank two over a surface of general type has a trivial

co-Higgs field, and so the semistability of co-Higgs bundles of rank two is equivalent to

the semistability of bundles.

Then we pay our attention to the case when X is a surface and the rank of co-Higgs

bundles is two. Under vanishing of H0(TX), the existence of unstable co-Higgs bundle of

rank two implies that the co-Higgs field is nilpotent (see Lemma 2.5), while any non-trivial

global tangent vector field suggests an example of strictly semistable co-Higgs bundle of

arbitrary rank with injective co-Higgs field (see Remark 2.6). It motivates to seek for

additional conditions to assure that a semistable co-Higgs bundle has a nilpotent co-

Higgs field. By the argument in [13, Theorem 7.1, pp. 148–149], the vanishing condition

H0(TX) = H0(S2TX) = 0 implies that co-Higgs fields are nilpotent. Indeed, any surface

can achieve this vanishing after a finite number of blow-ups.

Theorem 1.2. For a surface X, there exists a surface X ′ and a birational morphism

u : X ′ → X with the following property. If v : X ′′ → X ′ is any birational morphism, then

every rank two co-Higgs field on X ′′ is nilpotent.

Since, due to the Enriques-Kodaira classification, we have a list of minimal model Y of

X together with information on H0(TY ) and H0(S2TY ), we are able to find several classes

of surfaces with the prescribed vanishing: blow-ups of the projective plane, Hirzebruch

surfaces, abelian surfaces and a type of properly elliptic surfaces.

Let us summarize here the structure of this article. In Section 2 we introduce the

definition of co-Higgs bundles and a notion of semistability with respect to a fixed ample

line bundle. Then we discuss the relationship between semistability of co-Higgs bundles

and semistability of bundles, together with nilpotent co-Higgs fields. Main ingredients

are the generic nefness of the cotangent bundle of non-uniruled X and certain extensions

that nilpotent co-Higgs fields induce. In Section 3, we study the extensions above via

holomorphic foliation in [15] to characterize the base variety X in Kodaira spectrum, when

it admits a semistable co-Higgs bundle of rank two whose bundle factor is not semistable

with non-zero co-Higgs field. In Section 4, we mainly work on the criterion for vanishing

H0(TX) and H0(S2TX) and it is observed that the vanishing can be achieved by blow-ups

sufficiently many times.
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2. Preliminaries

Throughout the article our base field is the field C of complex numbers. We will always

assume that X is a smooth projective variety with a fixed very ample line bundle OX(1)

and the tangent bundle TX . For a coherent sheaf E on a projective scheme X, we denote

E ⊗OX(t) by E(t) for t ∈ Z. The dimension of cohomology group H i(X, E) is denoted by

hi(X, E) and we will skip X in the notation, if there is no confusion.

Lemma 2.1. Ω1
X(2) is globally generated.

Proof. Consider X as a subvariety of a projective space Pr such that the embedding is

given by a complete linear system |OX(1)|. Then we have an exact sequence

0→ N∨X|Pr(2)→ Ω1
Pr(2)|X → Ω1

X(2)→ 0,

where NX|Pr is the normal bundle of X in Pr. Note that Ω1
Pr(2) is 0-regular by the Bott

formula. Thus it is globally generated and so is Ω1
X(2).

In particular, we have h0(TX(−2)) = 0. Now we give the definition of co-Higgs bundle,

which is the main object of this article.

Definition 2.2. A co-Higgs bundle on X is a pair (E ,Φ) where E is a vector bundle on

X and Φ ∈ H0(End(E)⊗ TX) for which Φ ∧Φ = 0 as an element of H0(End(E)⊗∧2TX).

Here Φ is called the co-Higgs field of (E ,Φ) and the condition Φ ∧ Φ = 0 is called the

integrability.

We may constrain ourselves to the co-Higgs bundles (E ,Φ) with trace zero, i.e., Φ is

contained in H0(End0(E) ⊗ TX), because each co-Higgs field Φ can be decomposed as

(φ1, φ2), where φ1 ∈ H0(End0(E)⊗TX) and φ2 ∈ H0(TX) due to the splitness of the trace

map sequence: 0 → End0(E) → End(E)
tr→ OX → 0. In particular, if H0(TX) = 0, then

every co-Higgs field has trace-zero.

Definition 2.3. A co-Higgs bundle (E ,Φ) is semistable (resp. stable) if

degF
rankF

≤ (resp. <)
deg E
rank E

for every coherent subsheaf 0 ( F ( E with Φ(F) ⊂ F ⊗ TX .

The following observation shows why to consider (non-)existence results for co-Higgs

bundles (E ,Φ) with Φ 6= 0 one usually assume that (E ,Φ) is semistable.

Remark 2.4. Take a positive integer k such that TX(k) is globally generated and choose

a non-zero section σ ∈ H0(TX(k)). For an integer r ≥ 2, set E := OX ⊕OX(k)⊕(r−1). If

we define a map Φ: E → E ⊗ TX to send the factor OX to one of the factor, TX(k), of

E ⊗ TX using σ and send OX(k)⊕(r−1) onto 0. By construction we have Φ ◦Φ = 0 and so

Φ ∧ Φ = 0.
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Lemma 2.5. Assume that H0(TX) = 0. If a co-Higgs bundle (E ,Φ) of rank two on X is

not stable, then Φ is nilpotent.

Proof. We may assume Φ 6= 0. Since (E ,Φ) is not stable, there is a line subbundle L ⊂ E
such that Φ(L) ⊂ L⊗ TX and degL ≥ degR/2, where R := det(E). The saturation L′ of

L in E satisfies Φ(L′) ⊂ L′ ⊗ TX , because L′ ⊗ TX is the saturation of L⊗ TX in E ⊗ TX .

Thus we may assume that L is saturated in E with an exact sequence

(2.1) 0→ L → E → IZ ⊗R⊗ L∨ → 0.

Due to vanishingH0(TX) = 0, the inclusion Φ(L) ⊂ L⊗TX implies Φ(L) = 0. So Φ induces

a map u : IZ ⊗R⊗ L∨ → E ⊗ TX . Composing u with the map E ⊗ TX → IZ ⊗R⊗ TX
induced by (2.1) we get a map v : IZ ⊗ R ⊗ L∨ → IZ ⊗ R ⊗ L∨ ⊗ TX . Again from

H0(TX) = 0 we get v = 0, i.e., Im(Φ) ⊂ L⊗ TX and so Φ2 = 0.

Remark 2.6. Assume H0(TX) 6= 0 with a fixed non-zero section σ ∈ H0(TX). Fix an

open subset U ⊂ X, where TX is trivial and let {∂1, ∂2} be a basis of TU ∼= O⊕2U . If

Φ: L → L ⊗ TX is the map induced by σ for a line bundle L, then we may write Φ|U =

f1(z)∂1 + f2(z)∂2 with fi(z) ∈ H0(OU ). We have Φ ∧ Φ = (f1f2 − f2f1)∂1 ∧ ∂2 = 0

(see [2, Remark 2.29] and [3]) and so (L,Φ) is a co-Higgs bundle. For a fixed integer r ≥ 1,

let (E ,Φ) denote the co-Higgs bundle which is the direct sum of r copies of (L⊕r, σ). Then

Φ is injective and so it is not nilpotent. Notice that (E ,Φ) is strictly semistable for any

polarization on X.

Remark 2.7. Let E be a vector bundle of rank two on X, which is not semistable with

respect to OX(1) with the following destabilizing sequence

(2.2) 0→ L → E → IZ ⊗A → 0.

Assume the existence of a co-Higgs field Φ on X such that (E ,Φ) is semistable. Clearly

we get Φ 6= 0. Since h0(TX(−2)) = 0 by Lemma 2.1, we have h0(IZ ⊗A⊗ (L∨)⊗2(2)) > 0.

Later in Proposition 3.3 we see that (E ,Φ) is associated to a foliation by rational curves.

For a vector bundle E of rank two on X, let us choose R ∈ Pic(X) so that F := E ⊗R
has a non-zero section with a 2-codimensional zero locus Z and an exact sequence

(2.3) 0→ OX → F → IZ ⊗ L → 0

with L := det(F) = det(E) ⊗ R⊗2 ∈ Pic(X). Note that there is an obvious bijection

between the co-Higgs fields (and the co-Higgs integrable structures) of E and F . The

strict order of instability of E is the maximal integer k such that h0(L(−k)) > 0 for all

possible sequences (2.3) and R, denoted by ordin(E). In particular, the strict order of

instability is invariant under the twist by line bundles.
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Proposition 2.8. Let E be an unstable bundle of rank two on X with ordin(E) ≤ −3.

Then (E ,Φ) is not stable for any co-Higgs field Φ.

Proof. Take a maximal destabilizing line subbundleR of E and consider (2.3). It is enough

to show that Φ(R∨) ⊂ R∨ ⊗ TX for every non-zero co-Higgs field Φ: E → E ⊗ TX . Then

R∨ would destabilize the co-Higgs bundle (E ,Φ). Note that ordin(E) ≤ −3 implies that

H0(L(2)) = 0. With notations above, let Φ′ : F → F ⊗ TX be the non-zero map induced

by Φ. Then we need to prove that Φ′(OX) ⊂ OX ⊗ TX , i.e., that the induced map

OX → IZ ⊗ L ⊗ TX is a zero map. Since H0(L(2)) = 0, so we have H0(IZ ⊗ L(2)) = 0.

Since Ω1
X(2) is globally generated by Lemma 2.1, we have H0(IZ ⊗ L⊗ TX) = 0.

Proposition 2.8 is sharp, as shown in [13, Remarks 3.1, 5.1 and Proposition 5.1] and [14,

Proposition 5.1]. When κ(X) is non-negative, Proposition 2.8 may be improved in the

following way, applying Definition 2.3 with H instead of OX(1).

Theorem 2.9. Let X be a smooth projective variety with κ(X) ≥ 0. For any ample line

bundle H on X, if E is a torsion-free sheaf which is not H-semistable, then no co-Higgs

sheaf (E ,Φ) is H-semistable.

Proof. Set n := dim(X) and r := rank(E), and let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E
be the Harder-Narasimhan filtration of E (see [8]). Since E is not semistable, we have

r ≥ 2 and k ≥ 2. We may also assume n ≥ 2, since the case n = 1 is known in

[13, 14]. If Φ(E1) ⊂ E1 ⊗ TX , then (E ,Φ) is not semistable and so we may also assume

that Φ(E1) * E1 ⊗ TX . Therefore Φ|E1 induces a non-zero map u : E1 → (E/E1)⊗ TX . Set

A := Im(u) and then it is torsion-free. Let 0 = A0 ⊂ A1 ⊂ · · · ⊂ As = A be the Harder-

Narasimhan filtration of A. Two of the properties of the Harder-Narasimhan filtration

say that

• Ei/E1 is torsion-free for i = 2, . . . , k and

• 0 ⊂ E2/E1 ⊂ · · · ⊂ E/E1 is the Harder-Narasimhan filtration of E/E1.

Since A is a quotient of the semistable sheaf E1, the normalized Hilbert polynomial of A1

and each subquotients Ai+1/Ai with 0 ≤ i < s, is at least the one of E1 and so bigger than

the ones of Ei/Ei−1 for i = 2, . . . , k.

Fix an integer m� 0 so that H⊗m is very ample and take a general complete intersec-

tion C ⊂ X of n−1 elements of |H⊗m|. By [11,15] or [12, Theorem 4.1], Ω1
X |C is nef. Since

Ei, Ei/Ei−1, Aj and Aj/Aj−1 are all torsion-free for i = 1, . . . , k and j = 1, . . . , s, they are

locally free outside a finite union of two-codimensional subvarieties of X. Thus for a gen-

eral C all these sheaves are locally free in a neighborhood of C. Since u is non-zero, we get

a non-zero map v : A|C → (E/E1)⊗TX|C and so a non-zero map w : Ω1
X |C → A

∨
|C⊗E/E1|C .
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By [10] the restrictions A1|C , Ei/Ei−1|C , and Aj/Aj−1|C for i = 2, . . . , k and j = 2, . . . , s,

are all semistable, i.e., the restriction to C of the Harder-Narasimhan filtrations of E and

A are the Harder-Narasimhan filtrations of the vector bundles E|C and A|C , respectively.

Note that

• the slope of the tensor product of two vector bundles on C is the sum of their slopes

and

• the tensor product of two semistable bundles on C is semistable (see [9, Corol-

lary 6.4.14]).

Thus all the Harder-Narasimhan subquotients of A∨|C ⊗ (E/E1)|C are semistable vector

bundles of negative degree. Let 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fh be the Harder-Narasishan

filtration of A∨|C ⊗ (E/E1)|C and let l be the minimal integer such that Im(w) ⊆ Fl.
Since Ω1

X |C is nef, any quotient of Ω1
X |C has non-negative degree. If l = 1, every non-

zero subsheaf of F1 has negative degree, since F1 is semistable with deg(F1) < 0, a

contradiction. If l > 1, then we get a contradiction taking the composition of w with the

surjection Fl → Fl/Fl−1.

As shown in [14], many unstable vector bundles such as decomposable ones may give

stable co-Higgs bundles. The next observation and Lemma 2.1 shows in particular that

we cannot increase too much the stability. In case of stable bundles this phenomenon may

be measured by the following observation.

Remark 2.10. In (2.3) assume h0(IZ ⊗ L ⊗ TX) = 0, e.g., h0(IZ ⊗ L(2)) = 0, and then

every co-Higgs field on F preserves OX . Thus for fixed L and “large” Z we have several

examples in which any co-Higgs field cannot be more stable than the order of stability

represented by the non-zero map OX → F in (2.3).

Note that for any line bundle A ∈ Pic(X), a co-Higgs bundle (E ,Φ) is semistable or

stable if and only if (E ⊗ A,ΦA) has the same property, where ΦA is induced by Φ by

tensoring with A. So in case of rank two, we may reduce many problems to the case in

which det(E) is in a prescribed class of Pic(X)/(2 Pic(X)). For many surfaces we have

2 Pic(X) ( Pic(X) and so we cannot reduce all problems to the case in which det(E) ∼= OX ,

e.g., if X is a surface of general type, which is not minimal. This explains why we

extend [13, Theorem 7.1] in the following way; we also exclude the strictly semistable

case.

Proposition 2.11. Let X be a surface of general type. Then there is no semistable co-

Higgs bundle (E ,Φ) of rank two with Φ 6= 0.

Proof. Since X is of general type, we have H0(TX) = 0 and so Φ has trace zero. The

integrability Φ ∧ Φ = 0 gives a map Φ ◦ Φ: E → E ⊗ S2TX . As in the proof of [13,
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Theorem 7.1, pp. 148–149], we get L := ker(Φ) 6= 0. Since Φ is not trivial, L is a line

bundle and E fits into an exact sequence

(2.4) 0→ L → E → IZ ⊗A → 0

with Z a zero-dimensional subscheme and A a line bundle. The proof of loc. cit. also

gives that Φ(E) ⊂ L ⊗ TX and so Φ ◦ Φ = 0. Since Φ(L) = 0 ⊂ L ⊗ TX and (E ,Φ) is

semistable, we have degL ≤ degA. Note that Φ induces a non-zero map u : OX → B⊗TX
with B := L ⊗ A∨. In particular, for a fixed integer m � 0 and a general C ∈ |OX(m)|,
we have u|C 6= 0. On the other hand, by [12, Theorem 4.11] and [11] the vector bundle

(Ω1
X)|C is ample, and so h0(C, (B ⊗ TX)|C) = 0, a contradiction.

3. Rank two co-Higgs bundles on surfaces and foliations

From now on we always assume that X is a smooth projective surface.

Remark 3.1. In general, for a co-Higgs bundle (E ,Φ) with a non-injective Φ 6= 0, the sheaf

L := ker(Φ) is saturated of rank one in E and so E fits in an exact sequence (2.4) with

det(E) ∼= L ⊗ A and Z a zero-dimensional subscheme. Note that Φ is nilpotent if and

only if Φ(E) ⊂ L ⊗ TX . Assume that Φ is nilpotent. From Φ(L) = 0, Φ induces a map

φ : IZ ⊗ A → L ⊗ TX with Im(Φ) = Im(φ). If degL > degA (resp. degL ≥ degA),

then both E and (E ,L) are not semistable (resp. not stable). Now assume degL ≤ degA
(resp. degL < degA) and that (E ,Φ) is not stable (resp. semistable). Then there is a

saturated line bundle L′ ⊂ E such that Φ(L′) ⊂ L′ ⊗ TX and degL′ > degL. Since

Φ(E) ⊂ L ⊗ TX , we get L′ ⊗ TX ⊆ L ⊗ TX , contradicting the inequality degL′ > degL.

Hence in case of degL ≤ degA, we are in the set-up of [4].

Remark 3.2. Assume H0(TX) 6= 0 and take a non-zero section σ ∈ H0(TX). For E :=

OX ⊕ OX with a fixed basis {e1, e2} of H0(E), define Φ: E → E ⊗ TX to be induced by

( 0 σ
0 0 ). Then Φ is a non-trivial nilpotent field whose associated foliation is the saturated

foliation associated to σ.

Let us assume for the moment that X is a smooth and non-rational projective surface

X with negative Kodaira dimension κ(X) = −∞. Let u : X → Y be the minimal model

of X and then u is a finite sequence of blow-ups of points. Denoting the Albanese variety

of X by C, we get that C is a smooth curve of positive genus q = h1(OX) and there is

a vector bundle F of rank two on C such that Y = P(F). Here we may assume that F
is initialized, i.e., h0(F) > 0 and h0(F ⊗ L∨) = 0 for all L ∈ Picd(C) with d ≥ 1. If

π : Y → C denotes the projection, then f = π ◦ u : X → C is the Albanese map of X.

Letting Tf be the relative tangent sheaf of f , we have an exact sequence

0→ Tf → TX → IW ⊗ (ωX ⊗ Tf )∨ → 0
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with W a zero-dimensional subscheme of X supported by the critical locus of f .

Proposition 3.3. Let (E ,Φ) be a semistable co-Higgs bundle of rank two on a surface X

with E not semistable and Φ 6= 0. Then we have κ(X) = −∞ and Φ induces a meromorphic

foliation on X whose general leaf is a smooth rational curve. Moreover if we assume that

X is not rational, then there exists a nonnegative divisor D and a line bundle A such that

E fits into an exact sequence

(3.1) 0→ Tf (−D)⊗A → E → IZ ⊗A → 0

with deg Tf (−D) > 0, where f : X → C is the Albanese mapping.

Proof. Set R := det(E). Since (E ,Φ) is semistable and E is not, then there exists a line

subbundle L ⊂ E such that degL > degR/2 with an exact sequence

(3.2) 0→ L → E → IZ ⊗R⊗ L∨ → 0

with Z a zero-dimensional scheme. The assumption on (E ,Φ) gives Φ(L) * L ⊗ TX .

Composing Φ|L with the map E ⊗ TX → IZ ⊗ R ⊗ L∨ ⊗ TX induced by (3.2), we get a

non-zero map v : L → IZ ⊗R⊗ L∨ ⊗ TX and so an injective map j : L⊗2 ⊗R∨ → TX . If

we let N ⊂ TX be the saturation of j(L⊗2 ⊗R∨), then we have N ∼= L⊗2 ⊗R∨(D) with

either D = ∅ or D an effective divisor. In particular, we get degN ≥ degL⊗2 ⊗R∨ > 0.

By a theorem of Miyaoka and Shepherd-Barron (see [15]), N is the tangent sheaf of a

meromorphic foliation by curves with a rational curve as a general leaf. Since q is positive,

this foliation is induced by the Albanese map f : X → C, i.e., N ∼= Tf , and we may take

A := R⊗L∨.

4. Surfaces with H0(TX) = H0(S2TX) = 0

Recall that if there is no non-trivial global tangent vector field, then the existence of unsta-

ble co-Higgs bundle of rank two implies that the co-Higgs field is nilpotent by Lemma 2.5.

On the other hand, it is observed in Lemma 2.6 that any non-trivial global tangent vector

field suggests an example of strictly semistable co-Higgs bundle of arbitrary rank with

injective co-Higgs field.

Lemma 4.1. [4, 13] Let X be a smooth surface such that H0(TX) = H0(S2TX) = 0. If

(E ,Φ) is any co-Higgs bundle of rank two on X, then Φ is nilpotent. Moreover, if (E ,Φ)

is stable and κ(X) ≥ 0, then we have Φ = 0.

Proof. Note that H0(TX) = 0 implies that Φ is trace-free. The first assertion is from the

proof of [13, Theorem 7.1, pp. 148–149]. For the second, if Φ 6= 0, then by [4, Theorem 1.1]

(E ,Φ) is strictly semistable, a contradiction.
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In [4] the classification of smooth surfaces with semistable co-Higgs bundles of rank

two with nilpotent co-Higgs fields is done. This together with Lemma 4.1 motivates to

investigate the criterion for the vanishing H0(TX) = H0(S2TX) = 0.

Remark 4.2. Let X be a smooth projective surface. The space H0(TX) of global tangent

vector fields, is the tangent space of the algebraic group Aut0(X) at the identity map X →
X. So if π : X → Y is the blow-up at p ∈ Y , then we get H0(X,TX) ∼= H0(Y, Ip ⊗ TY ).

Iterating the observation in Remark 4.2, we get information on H0(TX), with respect

to κ(X). Recall that any smooth rational surface has as its minimal model either P2 or a

Hirzebruch surface Fe for e ∈ N \ {1}.
(1) Assume that X is rational and that there is a birational morphism X → Y with Y

the blow-up of P2 at four points of P2, no three of them collinear. Then we get H0(TX) = 0.

(2) Let πi : F0 = P1 × P1 → P1 for i = 1, 2, denote the projection on the i-th factor.

Let Y be the blow-up of F0 at a finite set of points S ⊂ F0 such that ](πi(S)) ≥ 3 for each

i. Then we get H0(TY ) = 0. Thus if there is a birational morphism X → Y , then we also

get H0(TX) = 0.

(3) We have Fe = P(OP1 ⊕ OP1(−e)) and every automorphism of Fe preserves the

ruling P(OP1 ⊕ OP1(−e)) → P1. Let us take e > 0. If S is a general subset of Fe with

](S) ≥ max {3, e+ 1}, then we get h0(IS⊗TFe) = 0 from h0(End(OP1⊕OP1(−e)) = 3+e.

If we assume the existence of a birational morphism X → Y with Y the blow-up of Fe at

S, then we get h0(TX) ≤ h0(TY ) = 0.

(4) Let us assume X is a non-rational surface with κ(X) = −∞. Then we have

q := h1(OX) > 0 and the Albanese variety f : X → C of X has as target a smooth curve

C of genus q and P1 as its general fiber. There exists a vector bundle G of rank two

on C and a finite sequence u : X → Y of blowing ups such that π : Y = P(G) → C is

P1-bundle over C and f = π ◦ u. Here we may assume that G is initialized, i.e., h0(G) > 0

and h0(G ⊗ L∨) = 0 for all L ∈ Picd(C) with d ≥ 1. If q ≥ 2 and G is simple, then we

get H0(TY ) = 0 and so H0(TX) = 0. If G is not simple, then we get an upper bound

for h0(TY ) in terms of h0(End(G)) and so, as in part (c), we get many X with minimal

model Y and h0(TX) = 0. This observation also applies in the case q = 1, when G is

decomposable. If q = 1 and G is indecomposable, then we get h0(End(G)) = 2 by Atiyah’s

classification of vector bundles on elliptic curves.

(5) Assume κ(X) = 0 and let u : X → Y be the morphism to its minimal model. From

the list of possible surface Y in [1, p. 244] we have H0(TY ) = 0, unless Y is an Abelian

surface or it has an Abelian surface as a finite unramified covering. If Y is an Abelian

surface, then we have H0(Ip ⊗ TY ) = 0 for all p ∈ Y . Hence we get H0(TX) 6= 0 if

and only if X is either an Abelian surface or a bi-elliptic surface. In particular, we have

H0(TX) = 0 if X is not a minimal model.
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(6) Let Y be a projective surface with κ(Y ) = 1 and h0(TY ) > 0. Since Y has only

finitely many rational curves and only a one-dimensional family of elliptic curves, we have

h0(TY ) = 1 and so h0(Ip ⊗ TY ) = 0 for a general p ∈ Y . Thus we have H0(TX) = 0 if X

has Y as its minimal model, but it factors through a blow-up of Y at a general point of

Y . We saw that H0(TX) = 0 if the minimal model Y ′ of X satisfies H0(TY ′) = 0.

(7) In case of κ(X) = 2, we have H0(TX) = 0, because X has neither a positive

dimensional family of elliptic curves nor a positive dimensional family of rational curves.

Remark 4.3. Let X be a smooth projective surface. Assume the existence of a finite

unramified covering u : Y → X with H0(S2TY ) = 0. Since u is unramified, we get

u∗(S2TX) = S2TY and so H0(S2TX) = 0. In particular [13, Lemma 7.1] shows that

H0(S2TX) = 0, if X is an Enriques surface.

Let u : X → Y be the blow-up at one point p ∈ Y and set D := u−1(p). We

have D ∼= P1 and OD(D) is the line bundle on D of degree −1. The natural map

H0(Ω1
Y ) → H0(Ω1

X) is an isomorphism. Hence H0(S2Ω1
X) contains a three-dimensional

linear subspace spanning S2Ω1
X outside the exceptional locus D of the map u : X → Y .

We have an exact sequence

(4.1) 0→ TX → u∗(TY )→ OD(−D)→ 0

(see [5, Lemma 15.4(iv)]), in which OD(−D) is the line bundle on D ∼= P1 of degree 1.

From (4.1) we also get a map S2TX → u∗(S2TY ), which is an isomorphism outside D.

Applying u∗, we get a map u∗(S
2TX) → S2TY which is an isomorphism on Y \ {p}, and

in particular it is injective as a map of sheaves.

Remark 4.4. Let u : X → Y be a birational morphism of smooth surfaces. Since u is a

finite sequence of blow-ups of points, we have u∗(OX) = OY and Riu∗(OX) = 0 for all

i > 0. The natural map S2TX → u∗(S2TY ) is injective, because it is an isomorphism

outside finitely many divisors of X. Applying u∗ and the projection formula, we get an

inclusion u∗(H
0(S2TX)) ⊆ H0(S2TY ).

Lemma 4.5. Let u : X → Y be a blow-up at a point p on a smooth surface Y . If

j : H0(S2TX)→ H0(S2TY ) is the map induced by u∗, then Im(j) ⊆ H0(Ip ⊗ S2TY ).

Proof. It is sufficient to prove that Im(j1) ⊆ H0(Ip⊗T⊗2Y ), where j1 : H0(T⊗2X )→ H0(T⊗2Y )

is the map induced by u∗. The corresponding map u∗(TX)→ TY has Ip⊗TY as its image

and u∗(OD(−D)) = C⊕2p . The sequence (4.1) tensored with u∗(TY ) gives an inclusion

TX ⊗ u∗(TY ) → u∗(T⊗2Y ). Applying u∗ and the projection formula, we get an injective

map j2 : H0(Ip⊗T⊗2Y )→ H0(T⊗2Y ). Now j1 factors through j2, implying the assertion.

Lemma 4.6. Let Y be a smooth projective surface such that H0(S2TY ) = 0. For a

birational morphism u : X → Y , we get H0(S2TX) = 0.
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Proof. Since u is the composition of finitely many blow-ups, it is sufficient to prove it when

u is the blow-up at a point p ∈ Y . Denote by E := u−1(p) the exceptional divisor and set

s′ := s|X\E for a section s ∈ H0(S2TX). Then s′ induces s1 ∈ H0(Y \ {p} , (S2TY )|Y \{p})

and it extends to σ ∈ H0(S2TY ) by Hartogs’ theorem, because S2TY is locally free. By

assumption we have σ = 0. It implies that s′ = 0, which also implies s = 0.

Lemma 4.7. Let X be a smooth and compact complex surface whose minimal model

Y 6∼= X is either a complex torus or C×W with C an elliptic curve and W a smooth curve

of genus at least two. Then we have H0(S2TX) = 0.

Proof. Since X 6∼= Y , there is a blow-up B → Y at a point p ∈ Y and a birational

morphism X → B. Remark 4.2 and Lemma 4.5 give H0(TB) = H0(S2TB) = 0 and then

Remark 4.4 gives H0(TX) = H0(S2TX) = 0.

Remark 4.8. Let f : X → W be an unramified covering between smooth surfaces. If

H0(TW ) 6= 0 (resp. H0(S2TW ) 6= 0), then we have H0(TX) 6= 0 (resp. H0(S2TW ) 6= 0).

Now assume that W is not minimal and take any D ⊂W with D ∼= P1 and D2 = −1. Let

v : W →W ′ be the blow-down of D. Since D has an open simply connected neighborhood

in the Euclidean topology, there is an unramified covering f ′ : X ′ → W ′ and a map

v′ : X → X ′ such that v′ is the blow-down of deg(f) disjoint exceptional curves and

f ′ ◦ v′ = v ◦ f .

Proposition 4.9. Let Y be a smooth surface and S ⊂ Y be any finite subset such that

H0(IS⊗TY ) = H0(IS⊗S2TY ) = 0. If X is any smooth surface with a birational morphism

u : X → Y with S contained in the image of divisors of X contracted by u, then we have

h0(TX) = h0(S2TX) = 0. In particular, Φ is trivial for any co-Higgs bundle of rank two

on X.

Proof. By Remarks 4.2, 4.4 and Lemma 4.5, we have H0(TX) = H0(S2TX) = 0. Now we

may apply Lemma 4.1 for the second assertion.

Remark 4.10. Let Y be a minimal surface with κ(Y ) = 0. We have H0(TY ) = H0(S2TY ) =

0, unless either Y is an Abelian surface or a bielliptic surface. Thus in Proposition 4.9

with κ(Y ) = 0, we may take either S = ∅ or, in the two exceptional cases, as S any point

of Y by Remark 4.8.

Remark 4.11. The surface Y = C ×W described in Lemma 4.7 and Proposition 4.13 is

the only one, up to a finite unramified covering, with H0(TY ) 6= 0 and κ(Y ) = 1. This

can be obtained by Lemma 4.5 and Remark 4.8 for these surfaces and their unramified

coverings.

Proposition 4.12. Let (E ,Φ) be a co-Higgs bundle of rank two on an Abelian surface X.
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(i) If E is simple, then either Φ = 0 or Φ is injective. In particular, (E ,Φ) is stable,

semistable, strictly semistable or unstable if and only if E has the same property.

(ii) If E is not semistable, then (E ,Φ) is not semistable.

(iii) If E is strictly semistable and indecomposable, but not simple, then (E ,Φ) is strictly

semistable.

Proof. Note that we have TX ∼= O⊕2X and so Φ: E → E⊕2. If E is simple, then there are

c1, c2 ∈ C such that Φ = (c1 idE , c2 idE). So for any sheaf B ⊂ E , we have Φ(B) ⊂ B ⊗ TX ,

implying (i). The assertion (ii) is a special case of Theorem 2.9.

Now assume that E is strictly semistable, but not simple. Since E is strictly semistable,

then it fits in an exact sequence (2.2) with degA = degL. Since E is not simple, either

(2.2) is not the unique destabilizing sequence of E or Hom(IZ ⊗ A,L) is not trivial. In

the former case we have Z = ∅ and E ∼= L ⊕A; in this case we get

dim End(E) =

2 if A 6∼= L,

4 if A ∼= L.

In the latter case the condition degA = degL implies A ∼= L. So we get either either

Z = ∅ and (2.2) splits or dim End(E) = 3. If E is indecomposable, then we have A ∼= L
and any endomorphism of E sends L into itself. Thus we get Φ(L) ⊂ L⊗ TX .

Proposition 4.13. Let X = C ×W , where C and W are smooth curves of genus one

and g ≥ 2, respectively.

(i) If E is simple, then either Φ = 0 or Φ is injective. In particular, (E ,Φ) is stable,

semistable, strictly semistable or unstable if and only if E has the same property.

(ii) If E is not semistable, then (E ,Φ) is not semistable.

(iii) If E is strictly semistable and indecomposable, but not simple, then (E ,Φ) is strictly

semistable.

Proof. Let π2 : X → W denote the projection and then we have TX ∼= OX ⊕ R with

R∨ ∼= π∗2(ωW ). Here R∨ is spanned, but not trivial. If E is either simple or semistable,

then Φ is associated to an endomorphism of E , because there is no non-zero map E → E⊗R.

If E is simple, then we get Φ(B) ⊂ B ⊗OX ⊕ {0} ⊂ B ⊗ TX and so the part (i). Parts (ii)

and (iii) are proved as in Proposition 4.12.
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Remark 4.14. Let Fe for e ≥ 0, be a Hirzebruch surface with Pic(Fe) ∼= Z⊕2 ∼= Z 〈h, f〉,
where f is a ruling π : Fe → P1 and h is a section of this ruling with h2 = −e. We have

TFe
∼= OFe(2f)⊕OFe(2h+ ef),

S2TFe
∼= OFe(4f)⊕OFe(2h+ (e+ 2)f)⊕OFe(4h+ 2ef)).

Now fix a finite subset S ⊂ Fe.
(a) Assume e = 0 and we may consider F0 as a smooth quadric surface in P3. Letting

η : F0 → P1 be the other projection, we have h0(IS ⊗ TF0) = 0 if and only if ](π(S)) ≥ 3

and ](η(S)) ≥ 3. We have h0(IS ⊗ S2TF0) = 0 if and only if ](π(S)) ≥ 5, ](η(S)) ≥ 5 and

S is not contained in other quadric surfaces in P3. If h0(IS ⊗ S2TF0) = 0, then we have

](S) ≥ 9. Conversely, if ](S) ≥ 9 and S is general in F0, then we get h0(IS ⊗ S2TF0) = 0.

(b) Assume e = 1 and let u : F1 → P2 denote the blow-down of h. The linear system

|OF1(2h+ f)| has h as its base locus and u is induced by |h+ f |. Then the linear system

|OF1(4h+ 2f)| has 2h as its base locus and H0(OF1(2h+ 2f)) = u∗(H0(OP2(2)). We have

h0(IS ⊗ TF1) = 0 if and only if ](π(S)) ≥ 3. We have H0(IS ⊗ S2TF1) = 0 if and only if

h0(P2, Iu(S)(2)) = 0.

(c) Assume e ≥ 2 and that S is general. We have

h0(OFe(2h+ ef)) = h0(OFe(h+ ef)) = e+ 2,

h0(OFe(4h+ 2ef)) = h0(OFe(2h+ 2ef)) = 3e+ 3,

and this implies that H0(IS ⊗ TFe) = 0 if ](S) ≥ e + 2 and H0(IS ⊗ S2TFe) = 0 if

](S) ≥ 3e+ 3.

Remark 4.15. Take a finite subset S ⊂ P2 and assume the existence of p ∈ S such that

h0(IS\{p}(2)) = 0. By part (b) of Remark 4.14 we have h0(IS⊗TP2) = h0(IS⊗S2TP2) = 0.

Lemma 4.1 with Remarks 4.14 and 4.15 give the following.

Corollary 4.16. Let X be a rational surface with a relative minimal model u : X → Y

and fix a finite subset S ⊂ Y such that u−1(o) contains a curve for o ∈ S. Assume that

• if Y = P2, then there exists p ∈ S such that H0(IS\{p}(2)) = 0;

• if Y = Fe, then S is general in Fe and

](S) ≥

9− 3e if e ≤ 1,

3e+ 3 if e ≥ 2.

Then Φ is nilpotent for any co-Higgs bundle (E ,Φ) of rank two on X.
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