Some Remarks on Measure-theoretic Entropy for a Free Semigroup Action

Huihui Hui and Dongkui Ma*

Abstract

In this paper, we study some properties about measure-theoretic entropy for a free semigroup action. We show some properties like conjugacy, power rule and affinity about the measure-theoretic entropy for a free semigroup action.

1. Introduction

The notion of entropy plays an important role in dynamic systems. In 1959, Kolmogorov and Sinai introduced the notion of measure-theoretic entropy. In 1965, the notion of topological entropy was introduced by Adler, Konheim and McAndrew [1]. Along with the deepening of the study, some researchers tried to find some suitable generalizations of topological entropy and measure-theoretic entropy for other systems and study these entropies. For example, the entropy of countable amenable group actions was studied by Ornstein and Weiss [15], Rudolph and Weiss [16], Dooley and Zhang [9] et al. The entropy of countable sofic group actions was studied by Bowen [4, 5], Kerr and Li [11], Chung and Zhang [7] et al. Kirillov [12] introduced the notion of entropy for the action of finitely generated groups of measure-preserving transformations. Bis [2] and Bufetov 6] introduced the notion of the topological entropy for a free semigroup action. Bis and Urbański [3], Ma and Wu [14], Wang, Ma and Lin [18, 19] and so on further studied the topological entropy for a free semigroup action. The notion of measure-theoretic entropy for a nonautonomous dynamical system was introduced by Zhu, Liu, Xu and Zhang [20]. Lin, Ma and Wang [13 introduced the notion of measure-theoretic entropy for a free semigroup action.

Since entropy appeared to be an important invariant in ergodic theory and dynamical systems, on the basis of [13], we further study the property of the measure-theoretic entropy for a free semigroup action. This paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we give some properties of the measure-theoretic entropy for a free semigroup action.

Received July 8, 2016; Accepted October 11, 2016.
Communicated by Yingfei Yi.
2010 Mathematics Subject Classification. 37A05, 37A35, 37B40, 37D35.
Key words and phrases. Measure-theoretic entropy, Free semigroup of actions, Conjugacy, Power rule, Affine.
*Corresponding author.

2. Preliminaries

Before studying the measure-theoretic entropy for a free semigroup action, we introduce some notations. Denote by F_{m}^{+}the set of all finite words of symbols $0,1, \ldots, m-1$. For any $w \in F_{m}^{+},|w|$ stands for the length of w, that is, the number of symbols in w. Obviously, F_{m}^{+}with respect to this law of composition is a free semigroup with m generators. If $w, w^{\prime} \in F_{m}^{+}$, then let $w w^{\prime}$ be the word obtained by writing w^{\prime} to the right of w. We write $w \leq w^{\prime}$ if there exists a word $w^{\prime \prime} \in F_{m}^{+}$such that $w^{\prime}=w^{\prime \prime} w$.

Denote by Σ_{m} the set of all two-side infinite sequences of symbols $0,1, \ldots, m-1$, i.e.,

$$
\Sigma_{m}=\left\{\omega=\left(\ldots, \omega_{-1}, \omega_{0}, \omega_{1}, \ldots\right) \mid \omega_{i}=0,1, \ldots, m-1 \text { for all integers } i\right\} .
$$

A metric on Σ_{m} is introduced by

$$
d\left(\omega, \omega^{\prime}\right)=\frac{1}{2^{k}}, \quad \text { where } k=\inf \left\{|n|: \omega_{n} \neq \omega_{n}^{\prime}\right\}
$$

Obviously, Σ_{m} is compact with respect to this metric. Recall that the Bernoulli shift $\sigma_{m}: \Sigma_{m} \rightarrow \Sigma_{m}$ is a homeomorphism of Σ_{m} given by the formula:

$$
\left(\sigma_{m} \omega\right)_{i}=\omega_{i+1}
$$

Let $\omega \in \Sigma_{m}, w \in F_{m}^{+}, a, b$ integers, and $a \leq b$. We write $\left.\omega\right|_{[a, b]}=w$ if $w=$ $\omega_{a} \omega_{a+1} \cdots \omega_{b-1} \omega_{b}$.

Let (X, \mathscr{B}, μ) be a probability space. Suppose that a free semigroup with m generators acts on X; denote the maps corresponding to the generators by $f_{0}, f_{1}, \ldots, f_{m-1}$; we assume that these maps are measure-preserving transformations. Let $w \in F_{m}^{+}, w=$ $w_{1} w_{2} \cdots w_{k}$, where $w_{i}=0,1, \ldots, m-1$ for all $i=1,2, \ldots, k$. Let $f_{w}=f_{w_{1}} f_{w_{2}} \cdots f_{w_{k}}$, $f_{w}^{-1}=f_{w_{k}}^{-1} f_{w_{k-1}}^{-1} \cdots f_{w_{1}}^{-1}$. Obviously, $f_{w w^{\prime}}=f_{w} f_{w^{\prime}}$.

Let (X, \mathscr{B}, μ) be a probability space. Let $\xi=\left\{A_{1}, \ldots, A_{k}\right\}$ be a finite partition of (X, \mathscr{B}, μ). Let $\eta=\left\{C_{1}, \ldots, C_{l}\right\}$ be another finite partition of (X, \mathscr{B}, μ). The join of ξ and η is the partition

$$
\xi \vee \eta=\left\{A_{i} \cap C_{j}: 1 \leq i \leq k, 1 \leq j \leq l\right\} .
$$

We write $\xi \leq \eta$ to mean that each element of ξ is a union of elements of η. Under the convention that $0 \log 0=0$, the entropy of the partition ξ is

$$
H_{\mu}(\xi)=-\sum_{i=1}^{k} \mu\left(A_{i}\right) \log \mu\left(A_{i}\right)
$$

The conditional entropy of ξ relative to η is given by

$$
H_{\mu}(\xi \mid \eta)=-\sum_{\mu\left(C_{j}\right) \neq 0} \sum_{i=1}^{k} \mu\left(A_{i} \cap C_{j}\right) \log \frac{\mu\left(A_{i} \cap C_{j}\right)}{\mu\left(C_{j}\right)} .
$$

We denote the set of all finite partitions of X by \mathcal{L}, then $\rho(\xi, \eta):=H_{\mu}(\xi \mid \eta)+H_{\mu}(\eta \mid \xi)$ is a metric on \mathcal{L}.

Let (X, \mathscr{B}, μ) be a probability space and $f_{0}, f_{1}, \ldots, f_{m-1}$ measure-preserving transformations on X. If all $f_{i}, i=0,1, \ldots, m-1$, preserve the same probability measure μ, then we say that $f_{0}, f_{1}, \ldots, f_{m-1}$ preserve μ, or μ is an f_{i}-invariant measure. Denote by $M\left(f_{0}, \ldots, f_{m-1}\right)$ the set of all probability measures which are invariant under all f_{i}.

The following example shows that $M\left(f_{0}, \ldots, f_{m-1}\right)$ can be nonempty even if some f_{i} and f_{j} do not commute with each other.

Example 2.1. [13, Example 5.4] Let A and B be the endomorphisms on the twodimensional torus \mathbb{T}^{2} introduced by the matrices

$$
\left(\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
1 & -1 \\
-1 & -3
\end{array}\right)
$$

respectively. Let H be the semigroup generated by A and B. Obviously, H is a nonAbelian semigroup. Let μ be the Haar measure defined on \mathbb{T}^{2}. Then we have $\mu \in M(A, B)$, i.e., $M(A, B) \neq \emptyset$.

If $\xi \in \mathcal{L}$, denote

$$
h_{\mu}\left(f_{0}, \ldots, f_{m-1}, \xi\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{m^{n}} \sum_{|w|=n} H_{\mu}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \xi\right)\right]
$$

In the paper [13], the measure-theoretic entropy for a free semigroup action is defined by

$$
h_{\mu}\left(f_{0}, \ldots, f_{m-1}\right)=\sup _{\xi \in \mathcal{L}} h_{\mu}\left(f_{0}, \ldots, f_{m-1}, \xi\right)
$$

If we let $\mathscr{F}:=\left\{f_{0}, \ldots, f_{m-1}\right\}$, then we also denote $h_{\mu}\left(f_{0}, \ldots, f_{m-1}\right)$ by $h_{\mu}(\mathscr{F})$.
Remark 2.2. If $m=1$, then $h_{\mu}\left(f_{0}\right)$ is the classical measure-theoretic entropy of a single transformation (see e.g., 17).

Let X be a compact metric space with metric d. Assume that $f_{0}, f_{1}, \ldots, f_{m-1}$ are continuous maps on X. To each $w \in F_{m}^{+}$, a new metric d_{w} on X (named Bowen metric) is given by

$$
d_{w}\left(x_{1}, x_{2}\right)=\max _{w^{\prime} \leq w} d\left(f_{w^{\prime}}\left(x_{1}\right), f_{w^{\prime}}\left(x_{2}\right)\right) .
$$

Let $\varepsilon>0$, a subset E of X is said to be a $\left(w, \varepsilon, f_{0}, \ldots, f_{m-1}\right)$-spanning subset if, for $\forall x \in X, \exists y \in E$ with $d_{w}(x, y)<\varepsilon$. The minimal cardinality of a $\left(w, \varepsilon, f_{0}, \ldots, f_{m-1}\right)$ spanning subset of X is denoted by $B\left(w, \varepsilon, f_{0}, \ldots, f_{m-1}\right)$. Let

$$
B\left(n, \varepsilon, f_{0}, \ldots, f_{m-1}\right)=\frac{1}{m^{n}} \sum_{|w|=n} B\left(w, \varepsilon, f_{0}, \ldots, f_{m-1}\right) .
$$

In the paper [6], the topological entropy for a free semigroup action is defined by

$$
h\left(f_{0}, \ldots, f_{m-1}\right)=\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log B\left(n, \varepsilon, f_{0}, \ldots, f_{m-1}\right) .
$$

By the Partial Variational Principle from the paper [13, we have

$$
\sup _{\mu \in M\left(f_{0}, \ldots, f_{m-1}\right)} h_{\mu}\left(f_{0}, \ldots, f_{m-1}\right) \leq h\left(f_{0}, \ldots, f_{m-1}\right)
$$

Let (X, \mathscr{B}, μ) be a probability space. Define an equivalence relation on \mathscr{B} by saying A and B are equivalent if and only if $\mu(A \triangle B)=0$. Let $\widetilde{\mathscr{B}}$ denote the collection of equivalence classes. Then $\widetilde{\mathscr{B}}$ is a Boolean σ-algebra under the operation of complementation, union and intersection inherited from \mathscr{B}. The measure μ induces a measure $\widetilde{\mu}$ on $\widetilde{\mathscr{B}}$ by $\widetilde{\mu}(\widetilde{B})=\mu(B)$. (Here \widetilde{B} is the equivalence class to which B belongs.) The pair $(\widetilde{\mathscr{B}}, \widetilde{\mu})$ is called a measure algebra.

Let $\left(X_{1}, \mathscr{B}_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mathscr{B}_{2}, \mu_{2}\right)$ be probability spaces with measure algebras $\left(\widetilde{\mathscr{B}_{1}}, \widetilde{\mu_{1}}\right)$, $\left(\widetilde{\mathscr{B}_{2}}, \widetilde{\mu_{2}}\right)$. The measure algebras are isomorphic if there is a bijection $\Phi: \widetilde{\mathscr{B}}_{2} \rightarrow \widetilde{\mathscr{B}}_{1}$ which preserves complements, countable unions and intersections and satisfies $\widetilde{\mu_{1}}(\Phi \widetilde{B})=\widetilde{\mu_{2}}(\widetilde{B})$, $\forall \widetilde{B} \in \mathscr{B}_{2}$.

Let T_{i} be a measure-preserving transformation of the probability space ($X_{i}, \mathscr{B}_{i}, \mu_{i}$), $i=1,2$. We say that T_{1} is conjugate to T_{2} if there is a measure-algebra isomorphism $\Phi:\left(\widetilde{\mathscr{B}_{2}}, \widetilde{\mu_{2}}\right) \rightarrow\left(\widetilde{\mathscr{B}_{1}}, \widetilde{\mu_{1}}\right)$ such that $\Phi \widetilde{T}_{2}^{-1}=\widetilde{T}_{1}^{-1} \Phi$, where $\widetilde{T}_{i}^{-1}:\left(\widetilde{\mathscr{B}_{i}}, \widetilde{\mu_{i}}\right) \rightarrow\left(\widetilde{\mathscr{B}} i, \widetilde{\mu_{i}}\right)$ defined by $\widetilde{T}_{i}^{-1}(\widetilde{B})=\left(T_{i}^{-1}(B)\right)^{\sim}, i=1,2($ see 17$)$.

3. Main results

In this section, we give some results about the measure-theoretic entropy for a free semigroup action. Let us consider the following situation: $\left(X_{1}, \mathscr{B}_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mathscr{B}_{2}, \mu_{2}\right)$ are probability spaces. Assume that f_{0}, \ldots, f_{m-1} are measure-preserving transformations on $\left(X_{1}, \mathscr{B}_{1}, \mu_{1}\right)$ and g_{0}, \ldots, g_{m-1} are measure-preserving transformations on $\left(X_{2}, \mathscr{B}_{2}, \mu_{2}\right)$. We say that f_{0}, \ldots, f_{m-1} is conjugate to g_{0}, \ldots, g_{m-1} if there is a measure-algebra isomorphism $\Phi:\left(\widetilde{\mathscr{B}_{2}}, \widetilde{\mu_{2}}\right) \rightarrow\left(\widetilde{\mathscr{B}_{1}}, \widetilde{\mu_{1}}\right)$ such that for any $i=0,1, \ldots, m-1, \Phi \widetilde{g}_{i}^{-1}=\widetilde{f}_{i}^{-1} \Phi$. Observe that if $m=1$, this definition coincides with the classical case 17].

Theorem 3.1. The measure-theoretic entropy for a free semigroup action is a conjugacy invariant.

Proof. Let $\left(X_{1}, \mathscr{B}_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mathscr{B}_{2}, \mu_{2}\right)$ be two probability spaces. Let f_{0}, \ldots, f_{m-1} be measure-preserving transformations on $\left(X_{1}, \mathscr{B}_{1}, \mu_{1}\right)$ and g_{0}, \ldots, g_{m-1} measure-preserving transformations on ($X_{2}, \mathscr{B}_{2}, \mu_{2}$).

Since ($X_{1}, \mathscr{B}_{1}, \mu_{1}$) is conjugate to ($X_{2}, \mathscr{B}_{2}, \mu_{2}$), then there is an isomorphism of measure algebras $\Phi:\left(\widetilde{\mathscr{B}}_{2}, \widetilde{\mu_{2}}\right) \rightarrow\left(\widetilde{\mathscr{B}}_{1}, \widetilde{\mu_{1}}\right)$ such that $\Phi \widetilde{g}_{i}^{-1}=\widetilde{f}_{i}^{-1} \Phi(\forall i=0,1, \ldots, m-1)$. Let $\xi=\left\{A_{1}, \ldots, A_{r}\right\}$ be any finite partition of X_{2}. Choose $B_{i} \in \mathscr{B}_{1}$, such that $\widetilde{B_{i}}=\Phi\left(\widetilde{A_{i}}\right)$ and so that $\eta=\left\{B_{1}, \ldots, B_{r}\right\}$ forms a partition of $\left(X_{1}, \mathscr{B}_{1}, \mu_{1}\right)$.

For any $w \in F_{m}^{+},|w|=n, \bigcap_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} B_{w^{\prime}}$ has the same measure as $\bigcap_{w^{\prime} \leq w} g_{w^{\prime}}^{-1} A_{w^{\prime}}$, where $B_{w^{\prime}} \in \eta, A_{w^{\prime}} \in \xi$, since

$$
\begin{aligned}
\Phi\left(\bigcap_{w^{\prime} \leq w}\left(g_{w^{\prime}}^{-1} A_{w^{\prime}}\right)^{\sim}\right) & =\Phi\left(\bigcap_{w^{\prime} \leq w} \widetilde{g_{w^{\prime}}}-1 \widetilde{A_{w^{\prime}}}\right)=\bigcap_{w^{\prime} \leq w} \Phi \widetilde{g_{w^{\prime}}}-1\left(\widetilde{A_{w^{\prime}}}\right) \\
& =\bigcap_{w^{\prime} \leq w} \widetilde{f_{w^{\prime}}-1} \Phi\left(\widetilde{A_{w^{\prime}}}\right)=\bigcap_{w^{\prime} \leq w} \widetilde{f_{w^{\prime}}}-1 \widetilde{B_{w^{\prime}}}=\bigcap_{w^{\prime} \leq w}\left(f_{w^{\prime}}^{-1} B_{w^{\prime}}\right)^{\sim}
\end{aligned}
$$

Thus, $H_{\mu_{1}}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \eta\right)=H_{\mu_{2}}\left(\bigvee_{w^{\prime} \leq w} g_{w^{\prime}}^{-1} \xi\right)$ which implies that

$$
h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)=h_{\mu_{2}}\left(g_{0}, \ldots, g_{m-1}, \xi\right)
$$

And then

$$
\sup _{\xi} h_{\mu_{2}}\left(g_{0}, \ldots, g_{m-1}, \xi\right) \leq \sup _{\eta} h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)
$$

That is

$$
h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right) \geq h_{\mu_{2}}\left(g_{0}, \ldots, g_{m-1}\right)
$$

By symmetry we then get that

$$
h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right)=h_{\mu_{2}}\left(g_{0}, \ldots, g_{m-1}\right) .
$$

Remark 3.2. If $m=1$, the above result coincides with the result that the classical measuretheoretic entropy (see, [17, Theorem 4.11]).

It is well known that there is a power rule for the measure-theoretic entropy of the classical measure-preserving system, that is, for any transformation f which preserves μ we have $h_{\mu}\left(f^{k}\right)=k h_{\mu}(f)$, where $k \in \mathbb{N} 17$. For the measure-theoretic entropy for a free semigroup action, we can get the following result.

Theorem 3.3. Let (X, \mathscr{B}, μ) be a probability space and f_{0}, \ldots, f_{m-1} preserve μ. Let $\mathscr{F}:=\left\{f_{0}, \ldots, f_{m-1}\right\}$ and $\mathscr{F}^{k}:=\left\{g_{0}, \ldots, g_{m^{k}-1}\right\} \quad(k \in \mathbb{N})$, where $g_{i} \in\left\{f_{w} \mid f_{w}=\right.$ $\left.f_{w_{0}} \circ f_{w_{1}} \circ \cdots \circ f_{w_{k-1}}, w \in F_{m}^{+},|w|=k, w_{j}=0, \ldots, m-1, \forall j=0, \ldots, k-1\right\}$, then $h_{\mu}\left(\mathscr{F}^{k}\right) \leq k h_{\mu}(\mathscr{F})$.

Proof. Let ξ be any finite partition of X. For any $w \in F_{m}^{+},|w|=n k, w=w_{0} w_{1} \cdots w_{k-1} w_{k}$ $\cdots w_{n k-1}$, denote $w^{0}=w_{0}^{0} w_{1}^{0} \cdots w_{n-1}^{0}$, where $w_{i}^{0}=w_{i k} w_{i k+1} \cdots w_{i k+k-1}$, then $g_{w^{0}}=$
$g_{w_{0}^{0}} \circ g_{w_{1}^{0}} \circ \cdots \circ g_{w_{n-1}^{0}}=f_{w}$. We have

$$
\begin{aligned}
h_{\mu}\left(\mathscr{F}^{k}, \xi\right) & =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{\left(m^{k}\right)^{n}} \sum_{\left|w^{0}\right|=n} H_{\mu}\left(\bigvee_{w^{\prime} \leq w^{0}} g_{w^{\prime}}^{-1} \xi\right)\right] \\
& =k \lim _{n \rightarrow \infty} \frac{1}{n k}\left[\frac{1}{m^{n k}} \sum_{\left|w^{0}\right|=n} H_{\mu}\left(\bigvee_{w^{\prime} \leq w^{0}} g_{w^{\prime}}^{-1} \xi\right)\right] \\
& \leq k \lim _{n \rightarrow \infty} \frac{1}{n k}\left[\frac{1}{m^{n k}} \sum_{|w|=n k} H_{\mu}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \xi\right)\right] \\
& =k h_{\mu}(\mathscr{F}, \xi) \\
& \leq k h_{\mu}(\mathscr{F}) .
\end{aligned}
$$

It is natural to ask if we can get the opposite inequality, i.e., $h_{\mu}\left(\mathscr{F}^{k}\right) \geq k h_{\mu}(\mathscr{F})$? And then $h_{\mu}\left(\mathscr{F}^{k}\right)=k h_{\mu}(\mathscr{F})$ holds. But up to now we haven't solved it.

Lemma 3.4. Let (X, \mathscr{B}, μ) be a probability space and f_{0}, \ldots, f_{m-1} transformations preserve μ. If ξ is a finite partition of X, for any $w \in F_{m}^{+},|w|=n-1, n \in \mathbb{N}$, we have

$$
H_{\mu}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \xi\right)=H_{\mu}(\xi)+\sum_{\left|w^{*}\right|=1}^{n-1} H_{\mu}\left(\xi \mid \bigvee_{\substack{w^{\prime} \leq w^{*} \\\left|w^{\prime}\right| \geq 1}} f_{w^{\prime}}^{-1} \xi\right)
$$

where w^{*} satisfies that there is a $w^{* *}$ such that $w=w^{*} w^{* *}$.
Proof. We show by induction that the formula holds for all n.
For $n=1$ it is clear, and if we assume it true for $n=p$ then it also holds for $n=p+1$ because for any $w, w^{0} \in F_{m}^{+}, w=i_{p-1} \cdots i_{1} i_{0}, w^{0}=i_{p-1} \cdots i_{1}$, we have

$$
\left.\begin{array}{rl}
H_{\mu}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \xi\right) & =H_{\mu}\left(\left(f_{i_{0}}^{-1} \bigvee_{w^{\prime} \leq w^{0}} f_{w^{\prime}}^{-1} \xi\right) \bigvee \xi\right) \\
& =H_{\mu}\left(f_{i_{0}}^{-1} \bigvee_{w^{\prime} \leq w^{0}} f_{w^{\prime}}^{-1} \xi\right)+H_{\mu}\left(\xi \mid \underset{\substack{w^{\prime} \leq w \\
\left|w^{\prime}\right| \geq 1}}{ } f_{w^{\prime}}^{-1} \xi\right) \\
& =H_{\mu}\left(\bigvee_{w^{\prime} \leq w^{0}} f_{w^{\prime}}^{-1} \xi\right)+H_{\mu}\left(\underset{\xi}{\xi} \mid \underset{\substack{w^{\prime} \leq w \\
\left|w^{\prime}\right| \geq 1}}{\bigvee} f_{w^{\prime}}^{-1} \xi\right.
\end{array}\right) .
$$

$$
=H_{\mu}(\xi)+\sum_{\left|w^{*}\right|=1}^{p} H_{\mu}\left(\xi \mid \bigvee_{\substack{w^{\prime} \leq w^{*} \\\left|w^{\prime}\right| \geq 1}} f_{w^{\prime}}^{-1} \xi\right),
$$

where w^{*} satisfies that there is a $w^{* *}$ such that $w=w^{*} w^{* *}$. That is, it also holds for $n=p+1$, thus the formula holds for any $n \in \mathbb{N}$.

Theorem 3.5. Let (X, \mathscr{B}, μ) be a probability space and f_{0}, \ldots, f_{m-1} transformations preserve μ. If ξ is a finite partition of X, we have

$$
h_{\mu}\left(f_{0}, \ldots, f_{m-1}, \xi\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{m^{n}} \sum_{|w|=n} \sum_{\left|w^{*}\right|=1}^{n} H_{\mu}\left(\xi \mid \bigvee_{\substack{w^{\prime} \leq w^{*} \\\left|w^{\prime}\right| \geq 1}} f_{w^{\prime}}^{-1} \xi\right)\right]
$$

where $w \in F_{m}^{+}, w=i_{n-1} \cdots i_{0}$ and w^{*} satisfies that there is a $w^{* *}$ such that $w=w^{*} w^{* *}$. Proof. By Lemma 3.4, for any $w \in F_{m}^{+},|w|=n$, w^{*} satisfies that there is a $w^{* *} \in F_{m}^{+}$ such that $w=w^{*} w^{* *}$, we have

$$
H_{\mu}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \xi\right)=H_{\mu}(\xi)+\sum_{\left|w^{*}\right|=1}^{n} H_{\mu}\left(\xi \mid \bigvee_{\substack{w^{\prime} \leq w^{*} \\\left|w^{\top}\right| \geq 1}} f_{w^{\prime}}^{-1} \xi\right)
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{m^{n}} \sum_{|w|=n} H_{\mu}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \xi\right)\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{m^{n}} \sum_{|w|=n} \sum_{\left|w^{*}\right|=1}^{n} H_{\mu}\left(\xi \mid \bigvee_{\substack{w^{\prime} \leq w^{*} \\\left|w^{\prime}\right| \geq 1}} f_{w^{\prime}}^{-1} \xi\right)\right]
$$

That is,

$$
h_{\mu}\left(f_{0}, \ldots, f_{m-1}, \xi\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{m^{n}} \sum_{|w|=n} \sum_{\left|w^{*}\right|=1}^{n} H_{\mu}\left(\xi \mid \bigvee_{\substack{w^{\prime} \leq w^{*} \\\left|w^{\prime}\right| \geq 1}} f_{w^{\prime}}^{-1} \xi\right)\right]
$$

where $w \in F_{m}^{+}, w=i_{n-1} \cdots i_{0}$ and w^{*} satisfies that there is a $w^{* *}$ such that $w=w^{*} w^{* *}$.
Similar to the classical measure-preserving systems, we can show that the measuretheoretic entropy map for a free semigroup action is affine.

Theorem 3.6. Let (X, \mathscr{B}) be a measurable space and f_{0}, \ldots, f_{m-1} measurable transformations of X. Then for any f_{i}-invariant probability measure μ_{1}, μ_{2} and $p \in[0,1]$, where $i=0, \ldots, m-1$, we have

$$
h_{p \mu_{1}+(1-p) \mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right)=p h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right)+(1-p) h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right)
$$

Proof. Without loss of generality, assume $0<p<1$. As in the proof of Theorem 8.1 of (17], for any finite partition ξ of X we have

$$
0 \leq H_{p \mu_{1}+(1-p) \mu_{2}}(\xi)-p H_{\mu_{1}}(\xi)-(1-p) H_{\mu_{2}}(\xi) \leq \log 2
$$

If η is any finite partition of X, then for any $w \in F_{m}^{+},|w|=n$, by putting $\xi=$ $\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \eta$ in the above formula, we have

$$
\begin{aligned}
0 \leq & \frac{1}{m^{n}} \sum_{|w|=n} H_{p \mu_{1}+(1-p) \mu_{2}}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \eta\right)-p\left[\frac{1}{m^{n}} \sum_{|w|=n} H_{\mu_{1}}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \eta\right)\right] \\
& -(1-p)\left[\frac{1}{m^{n}} \sum_{|w|=n} H_{\mu_{2}}\left(\bigvee_{w^{\prime} \leq w} f_{w^{\prime}}^{-1} \eta\right)\right] \\
\leq & \frac{1}{m^{n}} \sum_{|w|=n} \log 2 \\
= & \log 2
\end{aligned}
$$

Thus

$$
\begin{aligned}
0 & \leq h_{p \mu_{1}+(1-p) \mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)-p h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)-(1-p) h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{n} \log 2=0
\end{aligned}
$$

That is,
(3.1) $h_{p \mu_{1}+(1-p) \mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)=p h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)+(1-p) h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)$.

Clearly,

$$
\begin{equation*}
h_{p \mu_{1}+(1-p) \mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right) \leq p h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right)+(1-p) h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right) \tag{3.2}
\end{equation*}
$$

We now show the opposite inequality. Let $\varepsilon>0$, choose $\eta_{1}, \eta_{2}>0$ such that

$$
\begin{aligned}
& h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}, \eta_{1}\right)> \begin{cases}h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right)-\varepsilon & h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right)<\infty \\
\frac{1}{\varepsilon} & h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right)=\infty\end{cases} \\
& h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta_{2}\right)> \begin{cases}h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right)-\varepsilon & h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right)<\infty \\
\frac{1}{\varepsilon} & h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right)=\infty\end{cases}
\end{aligned}
$$

Putting $\eta=\eta_{1} \vee \eta_{2}$ in (3.1) gives

$$
\begin{aligned}
h_{p \mu_{1}+(1-p) \mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta\right) & =p h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)+(1-p) h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta\right) \\
& \geq p h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}, \eta_{1}\right)+(1-p) h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta_{2}\right)
\end{aligned}
$$

If $h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right), h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right)<\infty$, then

$$
h_{p \mu_{1}+(1-p) \mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)>p h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right)+(1-p) h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right)-\varepsilon .
$$

If $h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right)=\infty$ or $h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right)=\infty$, then

$$
h_{p \mu_{1}+(1-p) \mu_{2}}\left(f_{0}, \ldots, f_{m-1}, \eta\right)>\frac{1}{\varepsilon} \cdot \min \{p, 1-p\} .
$$

Therefore

$$
\begin{equation*}
h_{p \mu_{1}+(1-p) \mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right) \geq p h_{\mu_{1}}\left(f_{0}, \ldots, f_{m-1}\right)+(1-p) h_{\mu_{2}}\left(f_{0}, \ldots, f_{m-1}\right) \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), the desired equality holds.
Example 3.7. Let K be a unit circle, $f_{1}: x \mapsto x+a_{1}(\bmod 1), f_{2}: x \mapsto x+a_{2}(\bmod 1)$, where $a_{1}, a_{2} \in K$. Let G be a free semigroup generated by f_{1} and f_{2}. Then G is equicontinuous and preserves Haar measure μ. We can get $h\left(f_{1}, f_{2}\right)=0$, and then by the Partial Variational Principle we have $h_{\mu}\left(f_{1}, f_{2}\right)=0$.

Proof. By the definition of equicontinuity, $\forall \varepsilon>0, \exists \delta>0, \forall x, y \in K$, if $d(x, y)<\delta$, then $d(f(x), f(y))<\varepsilon$. For any $f \in G$, since K is a compact space, $\exists M>0$ such that for any $w \in F_{2}^{+}, B\left(w, \varepsilon, f_{1}, f_{2}\right) \leq M$, we have $B\left(n, \varepsilon, f_{1}, f_{2}\right) \leq M$. And then $\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log B\left(n, \varepsilon, f_{1}, f_{2}\right)=0$, therefore $h\left(f_{1}, f_{2}\right)=0$.

By the Partial Variational Principle of [13], we have $\sup _{\mu \in M\left(f_{1}, f_{2}\right)} h_{\mu}\left(f_{1}, f_{2}\right) \leq h\left(f_{1}, f_{2}\right)$. Thus $h_{\mu}\left(f_{1}, f_{2}\right)=0$.

For convenience, we give the following lemma.
Lemma 3.8. [19, Theorem 5.9] Let A_{0}, \ldots, A_{m-1} be surjective endomorphisms of \mathbb{T}^{p}. If for each $0 \leq i \leq m-1$ all eigenvalues of the matrix $\left[A_{i}\right]$ which represents A_{i} are of modulus greater than or equal to 1 , then

$$
\log \frac{1}{m}\left(\sum_{i=0}^{m-1} \prod_{j=1}^{p}\left|\lambda_{j}^{(i)}\right|\right) \leq h\left(A_{0}, \ldots, A_{m-1}\right) \leq \log \frac{1}{m}\left(\sum_{i=0}^{m-1} \Lambda_{i}^{p}\right)
$$

where $\lambda_{1}^{(i)}, \lambda_{2}^{(i)}, \ldots, \lambda_{p}^{(i)}$ are the eigenvalues of $\left[A_{i}\right], 0 \leq i \leq m-1$, counted with their multiplicities, and Λ_{i} is the biggest eigenvalues of $\sqrt{\left[A_{i}\right]\left[A_{i}\right]^{T}}, 0 \leq i \leq m-1$. In particular for the case $p=1$, we have

$$
h\left(A_{0}, \ldots, A_{m-1}\right)=\log \frac{1}{m}\left(\sum_{i=0}^{m-1}\left|\lambda_{1}^{(i)}\right|\right),
$$

where $\lambda_{1}^{(i)}$ is the degree of the endomorphism A_{i} of S^{1}, for every $0 \leq i \leq m-1$, where S^{1} denotes the unite circle.

Example 3.9. Let S^{1} be the unit circle, $f_{i}: x \mapsto \lambda_{i} x(\bmod 1), \lambda_{i} \in \mathbb{N}, i=0,1, \ldots, m-1$. By Lemma 3.8, we have $h\left(f_{0}, \ldots, f_{m-1}\right)=\log \frac{1}{m} \sum_{i=0}^{m-1} \lambda_{i}$. And then by the Partial Variational Principle of [13], we have

$$
h_{\mu}\left(f_{0}, \ldots, f_{m-1}\right) \leq h\left(f_{0}, \ldots, f_{m-1}\right)=\log \frac{1}{m} \sum_{i=0}^{m-1} \lambda_{i}
$$

where μ is the Haar measure.

Acknowledgments

The authors really appreciate the referees' valuable remarks and suggestions that helped a lot. The work was supported by National Natural Science Foundation of China (grant no. 11671149).

References

[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), no. 2, 309-319. https://doi.org/10.2307/1994177
[2] A. Biś, Entropies of a semigroup of maps, Discrete Contin. Dyn. Systs. 11 (2004), no. 2-3, 639-648. https://doi.org/10.3934/dcds.2004.11.639
[3] A. Biś and M. Urbański, Some remarks on topological entropy of a semigroup of continuous maps, Cubo 8 (2006), no. 2, 63-71.
[4] L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217-245.
https://doi.org/10.1090/s0894-0347-09-00637-7
[5] _ A measure-conjugacy invariant for free group actions, Ann. of Math. (2) 171 (2010), no. 2, 1387-1400. https://doi.org/10.4007/annals.2010.171.1387
[6] A. Bufetov, Topological entropy of free semigroup actions and skew-product transformations, J. Dynam. Control Systems 5 (1999), no. 1, 137-143.
https://doi.org/10.1023/A:1021796818247
[7] N.-P. Chung and G. Zhang, Weak expansiveness for actions of sofic groups, J. Funct. Anal. 268 (2015), no. 11, 3534-3565. https://doi.org/10.1016/j.jfa.2014.12.013
[8] J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 25 (1972), no. 1, 11-30. https://doi.org/10.1007/bf00533332
[9] A. H. Dooley and G. Zhang, Local entropy theory of a random dynamical system, Mem. Amer. Math. Soc. 233 (2015), no. 1099, vi+106 pp.
https://doi.org/10.1090/memo/1099
[10] Y. Katznelson and B. Weiss, Commuting measure-preserving transformations, Israel J. Math. 12 (1972), no. 2, 161-173. https://doi.org/10.1007/bf02764660
[11] D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501-558. https://doi.org/10.1007/s00222-011-0324-9
[12] A. A. Kirillov, Dynamical systems, factors and group representations, Uspehi Mat. Nauk. 22 (1967), no. 5, 67-80.
[13] X. Lin, D. Ma and Y. Wang, On the measure-theoretic entropy and topological pressure of free semigroup actions, to appear in Ergodic Theory Dynam. Systems.
https://doi.org/10.1017/etds.2016.41
[14] D. Ma and M. Wu, Topological pressure and topological entropy of a semigroup of maps, Discrete Contin. Dyn. Systs. 31 (2011), no. 2, 545-557.
https://doi.org/10.3934/dcds.2011.31.545
[15] D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), no. 1, 1-141.
https://doi.org/10.1007/bf02790325
[16] D. J. Rudolph and B. Weiss, Entropy and mixing for amenable group actions, Ann. of Math. (2) 151 (2000), no. 3, 1119-1150. https://doi.org/10.2307/121130
[17] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer-Verlag, New York, 1982. https://doi.org/10.1007/978-1-4612-5775-2
[18] Y. Wang and D. Ma, On the topological entropy of a semigroup of continuous maps, J. Math. Anal. Appl. 427 (2015), no. 2, 1084-1100. https://doi.org/10.1016/j.jmaa.2015.02.082
[19] Y. Wang, D. Ma and X. Lin, On the topological entropy of free semigroup actions, J. Math. Anal. Appl. 435 (2016), no. 2, 1573-1590. https://doi.org/10.1016/j.jmaa.2015.11.038
[20] Y. Zhu, Z. Liu, X. Xu and W. Zhang, Entropy of nonautonomous dynamical systems, J. Korean Math. Soc. 49 (2012), no. 1, 165-185. https://doi.org/10.4134/jkms.2012.49.1.165

Huihui Hui and Dongkui Ma
School of Mathematics, South China University of Technology, Guangzhou 510641, P. R. China

E-mail address: Hh1453823833@126.com, dkma@scut.edu.cn

