TAIWANESE JOURNAL OF MATHEMATICS Vol. 21, No. 2, pp. 429–440, April 2017 DOI: 10.11650/tjm/7807 This paper is available online at http://journal.tms.org.tw

Some Remarks on Measure-theoretic Entropy for a Free Semigroup Action

Huihui Hui and Dongkui Ma^{*}

Abstract. In this paper, we study some properties about measure-theoretic entropy for a free semigroup action. We show some properties like conjugacy, power rule and affinity about the measure-theoretic entropy for a free semigroup action.

1. Introduction

The notion of entropy plays an important role in dynamic systems. In 1959, Kolmogorov and Sinai introduced the notion of measure-theoretic entropy. In 1965, the notion of topological entropy was introduced by Adler, Konheim and McAndrew [1]. Along with the deepening of the study, some researchers tried to find some suitable generalizations of topological entropy and measure-theoretic entropy for other systems and study these entropies. For example, the entropy of countable amenable group actions was studied by Ornstein and Weiss [15], Rudolph and Weiss [16], Dooley and Zhang [9] et al. The entropy of countable sofic group actions was studied by Bowen [4, 5], Kerr and Li [11], Chung and Zhang [7] et al. Kirillov [12] introduced the notion of entropy for the action of finitely generated groups of measure-preserving transformations. Bis [2] and Bufetov [6] introduced the notion of the topological entropy for a free semigroup action. Bis and Urbański [3], Ma and Wu [14], Wang, Ma and Lin [18, 19] and so on further studied the topological entropy for a free semigroup action. The notion of measure-theoretic entropy for a nonautonomous dynamical system was introduced by Zhu, Liu, Xu and Zhang [20]. Lin, Ma and Wang [13] introduced the notion of measure-theoretic entropy for a free semigroup action.

Since entropy appeared to be an important invariant in ergodic theory and dynamical systems, on the basis of [13], we further study the property of the measure-theoretic entropy for a free semigroup action. This paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we give some properties of the measure-theoretic entropy for a free semigroup action.

*Corresponding author.

Received July 8, 2016; Accepted October 11, 2016.

Communicated by Yingfei Yi.

²⁰¹⁰ Mathematics Subject Classification. 37A05, 37A35, 37B40, 37D35.

Key words and phrases. Measure-theoretic entropy, Free semigroup of actions, Conjugacy, Power rule, Affine.

2. Preliminaries

Before studying the measure-theoretic entropy for a free semigroup action, we introduce some notations. Denote by F_m^+ the set of all finite words of symbols $0, 1, \ldots, m-1$. For any $w \in F_m^+$, |w| stands for the length of w, that is, the number of symbols in w. Obviously, F_m^+ with respect to this law of composition is a free semigroup with m generators. If $w, w' \in F_m^+$, then let ww' be the word obtained by writing w' to the right of w. We write $w \leq w'$ if there exists a word $w'' \in F_m^+$ such that w' = w''w.

Denote by Σ_m the set of all two-side infinite sequences of symbols $0, 1, \ldots, m-1$, i.e.,

$$\Sigma_m = \{ \omega = (\dots, \omega_{-1}, \omega_0, \omega_1, \dots) \mid \omega_i = 0, 1, \dots, m-1 \text{ for all integers } i \}$$

A metric on Σ_m is introduced by

$$d(\omega, \omega') = \frac{1}{2^k}$$
, where $k = \inf \{ |n| : \omega_n \neq \omega'_n \}$.

Obviously, Σ_m is compact with respect to this metric. Recall that the Bernoulli shift $\sigma_m \colon \Sigma_m \to \Sigma_m$ is a homeomorphism of Σ_m given by the formula:

$$(\sigma_m \omega)_i = \omega_{i+1}.$$

Let $\omega \in \Sigma_m$, $w \in F_m^+$, a, b integers, and $a \leq b$. We write $\omega|_{[a,b]} = w$ if $w = \omega_a \omega_{a+1} \cdots \omega_{b-1} \omega_b$.

Let (X, \mathscr{B}, μ) be a probability space. Suppose that a free semigroup with m generators acts on X; denote the maps corresponding to the generators by $f_0, f_1, \ldots, f_{m-1}$; we assume that these maps are measure-preserving transformations. Let $w \in F_m^+$, $w = w_1 w_2 \cdots w_k$, where $w_i = 0, 1, \ldots, m-1$ for all $i = 1, 2, \ldots, k$. Let $f_w = f_{w_1} f_{w_2} \cdots f_{w_k}$, $f_w^{-1} = f_{w_k}^{-1} f_{w_{k-1}}^{-1} \cdots f_{w_1}^{-1}$. Obviously, $f_{ww'} = f_w f_{w'}$.

Let (X, \mathscr{B}, μ) be a probability space. Let $\xi = \{A_1, \ldots, A_k\}$ be a finite partition of (X, \mathscr{B}, μ) . Let $\eta = \{C_1, \ldots, C_l\}$ be another finite partition of (X, \mathscr{B}, μ) . The join of ξ and η is the partition

$$\xi \lor \eta = \{A_i \cap C_j : 1 \le i \le k, 1 \le j \le l\}.$$

We write $\xi \leq \eta$ to mean that each element of ξ is a union of elements of η . Under the convention that $0 \log 0 = 0$, the entropy of the partition ξ is

$$H_{\mu}(\xi) = -\sum_{i=1}^{k} \mu(A_i) \log \mu(A_i).$$

The conditional entropy of ξ relative to η is given by

$$H_{\mu}(\xi \mid \eta) = -\sum_{\mu(C_j) \neq 0} \sum_{i=1}^{k} \mu(A_i \cap C_j) \log \frac{\mu(A_i \cap C_j)}{\mu(C_j)}.$$

We denote the set of all finite partitions of X by \mathcal{L} , then $\rho(\xi, \eta) := H_{\mu}(\xi | \eta) + H_{\mu}(\eta | \xi)$ is a metric on \mathcal{L} .

Let (X, \mathscr{B}, μ) be a probability space and $f_0, f_1, \ldots, f_{m-1}$ measure-preserving transformations on X. If all f_i , $i = 0, 1, \ldots, m-1$, preserve the same probability measure μ , then we say that $f_0, f_1, \ldots, f_{m-1}$ preserve μ , or μ is an f_i -invariant measure. Denote by $M(f_0, \ldots, f_{m-1})$ the set of all probability measures which are invariant under all f_i .

The following example shows that $M(f_0, \ldots, f_{m-1})$ can be nonempty even if some f_i and f_j do not commute with each other.

Example 2.1. [13, Example 5.4] Let A and B be the endomorphisms on the twodimensional torus \mathbb{T}^2 introduced by the matrices

$$\begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & -1 \\ -1 & -3 \end{pmatrix}$$

respectively. Let H be the semigroup generated by A and B. Obviously, H is a non-Abelian semigroup. Let μ be the Haar measure defined on \mathbb{T}^2 . Then we have $\mu \in M(A, B)$, i.e., $M(A, B) \neq \emptyset$.

If $\xi \in \mathcal{L}$, denote

$$h_{\mu}(f_0,\ldots,f_{m-1},\xi) = \lim_{n \to \infty} \frac{1}{n} \left[\frac{1}{m^n} \sum_{|w|=n} H_{\mu} \left(\bigvee_{w' \le w} f_{w'}^{-1} \xi \right) \right]$$

In the paper [13], the measure-theoretic entropy for a free semigroup action is defined by

$$h_{\mu}(f_0,\ldots,f_{m-1}) = \sup_{\xi \in \mathcal{L}} h_{\mu}(f_0,\ldots,f_{m-1},\xi).$$

If we let $\mathscr{F} := \{f_0, \ldots, f_{m-1}\}$, then we also denote $h_{\mu}(f_0, \ldots, f_{m-1})$ by $h_{\mu}(\mathscr{F})$.

Remark 2.2. If m = 1, then $h_{\mu}(f_0)$ is the classical measure-theoretic entropy of a single transformation (see e.g., [17]).

Let X be a compact metric space with metric d. Assume that $f_0, f_1, \ldots, f_{m-1}$ are continuous maps on X. To each $w \in F_m^+$, a new metric d_w on X (named Bowen metric) is given by

$$d_w(x_1, x_2) = \max_{w' \le w} d(f_{w'}(x_1), f_{w'}(x_2)).$$

Let $\varepsilon > 0$, a subset E of X is said to be a $(w, \varepsilon, f_0, \ldots, f_{m-1})$ -spanning subset if, for $\forall x \in X, \exists y \in E$ with $d_w(x, y) < \varepsilon$. The minimal cardinality of a $(w, \varepsilon, f_0, \ldots, f_{m-1})$ -spanning subset of X is denoted by $B(w, \varepsilon, f_0, \ldots, f_{m-1})$. Let

$$B(n,\varepsilon,f_0,\ldots,f_{m-1}) = \frac{1}{m^n} \sum_{|w|=n} B(w,\varepsilon,f_0,\ldots,f_{m-1}).$$

In the paper [6], the topological entropy for a free semigroup action is defined by

$$h(f_0,\ldots,f_{m-1}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log B(n,\varepsilon,f_0,\ldots,f_{m-1}).$$

By the Partial Variational Principle from the paper [13], we have

$$\sup_{\mu \in M(f_0, \dots, f_{m-1})} h_{\mu}(f_0, \dots, f_{m-1}) \le h(f_0, \dots, f_{m-1}).$$

Let (X, \mathscr{B}, μ) be a probability space. Define an equivalence relation on \mathscr{B} by saying Aand B are equivalent if and only if $\mu(A \triangle B) = 0$. Let $\widetilde{\mathscr{B}}$ denote the collection of equivalence classes. Then $\widetilde{\mathscr{B}}$ is a Boolean σ -algebra under the operation of complementation, union and intersection inherited from \mathscr{B} . The measure μ induces a measure $\widetilde{\mu}$ on $\widetilde{\mathscr{B}}$ by $\widetilde{\mu}(\widetilde{B}) = \mu(B)$. (Here \widetilde{B} is the equivalence class to which B belongs.) The pair $(\widetilde{\mathscr{B}}, \widetilde{\mu})$ is called a measure algebra.

Let $(X_1, \mathscr{B}_1, \mu_1)$ and $(X_2, \mathscr{B}_2, \mu_2)$ be probability spaces with measure algebras $(\widetilde{\mathscr{B}}_1, \widetilde{\mu_1})$, $(\widetilde{\mathscr{B}}_2, \widetilde{\mu_2})$. The measure algebras are isomorphic if there is a bijection $\Phi \colon \widetilde{\mathscr{B}}_2 \to \widetilde{\mathscr{B}}_1$ which preserves complements, countable unions and intersections and satisfies $\widetilde{\mu_1}(\Phi \widetilde{B}) = \widetilde{\mu_2}(\widetilde{B})$, $\forall \widetilde{B} \in \mathscr{B}_2$.

Let T_i be a measure-preserving transformation of the probability space $(X_i, \mathscr{B}_i, \mu_i)$, i = 1, 2. We say that T_1 is conjugate to T_2 if there is a measure-algebra isomorphism $\Phi : (\widetilde{\mathscr{B}}_2, \widetilde{\mu}_2) \to (\widetilde{\mathscr{B}}_1, \widetilde{\mu}_1)$ such that $\Phi \widetilde{T_2}^{-1} = \widetilde{T_1}^{-1} \Phi$, where $\widetilde{T_i}^{-1} : (\widetilde{\mathscr{B}}_i, \widetilde{\mu}_i) \to (\widetilde{\mathscr{B}}_i, \widetilde{\mu}_i)$ defined by $\widetilde{T_i}^{-1}(\widetilde{B}) = (T_i^{-1}(B))^{\sim}, i = 1, 2$ (see [17]).

3. Main results

In this section, we give some results about the measure-theoretic entropy for a free semigroup action. Let us consider the following situation: $(X_1, \mathscr{B}_1, \mu_1)$ and $(X_2, \mathscr{B}_2, \mu_2)$ are probability spaces. Assume that f_0, \ldots, f_{m-1} are measure-preserving transformations on $(X_1, \mathscr{B}_1, \mu_1)$ and g_0, \ldots, g_{m-1} are measure-preserving transformations on $(X_2, \mathscr{B}_2, \mu_2)$. We say that f_0, \ldots, f_{m-1} is conjugate to g_0, \ldots, g_{m-1} if there is a measure-algebra isomorphism $\Phi: (\widetilde{\mathscr{B}}_2, \widetilde{\mu_2}) \to (\widetilde{\mathscr{B}}_1, \widetilde{\mu_1})$ such that for any $i = 0, 1, \ldots, m-1, \Phi \widetilde{g_i}^{-1} = \widetilde{f_i}^{-1} \Phi$. Observe that if m = 1, this definition coincides with the classical case [17].

Theorem 3.1. The measure-theoretic entropy for a free semigroup action is a conjugacy invariant.

Proof. Let $(X_1, \mathscr{B}_1, \mu_1)$ and $(X_2, \mathscr{B}_2, \mu_2)$ be two probability spaces. Let f_0, \ldots, f_{m-1} be measure-preserving transformations on $(X_1, \mathscr{B}_1, \mu_1)$ and g_0, \ldots, g_{m-1} measure-preserving transformations on $(X_2, \mathscr{B}_2, \mu_2)$.

Since $(X_1, \mathscr{B}_1, \mu_1)$ is conjugate to $(X_2, \mathscr{B}_2, \mu_2)$, then there is an isomorphism of measure algebras $\Phi: (\widetilde{\mathscr{B}}_2, \widetilde{\mu_2}) \to (\widetilde{\mathscr{B}}_1, \widetilde{\mu_1})$ such that $\Phi \widetilde{g_i}^{-1} = \widetilde{f_i}^{-1} \Phi$ ($\forall i = 0, 1, \ldots, m-1$). Let $\xi = \{A_1, \ldots, A_r\}$ be any finite partition of X_2 . Choose $B_i \in \mathscr{B}_1$, such that $\widetilde{B_i} = \Phi(\widetilde{A_i})$ and so that $\eta = \{B_1, \ldots, B_r\}$ forms a partition of $(X_1, \mathscr{B}_1, \mu_1)$.

For any $w \in F_m^+$, |w| = n, $\bigcap_{w' \leq w} f_{w'}^{-1} B_{w'}$ has the same measure as $\bigcap_{w' \leq w} g_{w'}^{-1} A_{w'}$, where $B_{w'} \in \eta$, $A_{w'} \in \xi$, since

$$\Phi\left(\bigcap_{w'\leq w} (g_{w'}^{-1}A_{w'})^{\sim}\right) = \Phi\left(\bigcap_{w'\leq w} \widetilde{g_{w'}}^{-1}\widetilde{A_{w'}}\right) = \bigcap_{w'\leq w} \Phi\widetilde{g_{w'}}^{-1}(\widetilde{A_{w'}})$$
$$= \bigcap_{w'\leq w} \widetilde{f_{w'}}^{-1}\Phi(\widetilde{A_{w'}}) = \bigcap_{w'\leq w} \widetilde{f_{w'}}^{-1}\widetilde{B_{w'}} = \bigcap_{w'\leq w} (f_{w'}^{-1}B_{w'})^{\sim}$$

Thus, $H_{\mu_1}\left(\bigvee_{w'\leq w} f_{w'}^{-1}\eta\right) = H_{\mu_2}\left(\bigvee_{w'\leq w} g_{w'}^{-1}\xi\right)$ which implies that $h_{\mu_1}(f_0, \dots, f_{m-1}, \eta) = h_{\mu_2}(g_0, \dots, g_{m-1}, \xi).$

And then

$$\sup_{\xi} h_{\mu_2}(g_0, \dots, g_{m-1}, \xi) \le \sup_{\eta} h_{\mu_1}(f_0, \dots, f_{m-1}, \eta).$$

That is

$$h_{\mu_1}(f_0,\ldots,f_{m-1}) \ge h_{\mu_2}(g_0,\ldots,g_{m-1}).$$

By symmetry we then get that

$$h_{\mu_1}(f_0, \dots, f_{m-1}) = h_{\mu_2}(g_0, \dots, g_{m-1}).$$

Remark 3.2. If m = 1, the above result coincides with the result that the classical measuretheoretic entropy (see, [17, Theorem 4.11]).

It is well known that there is a power rule for the measure-theoretic entropy of the classical measure-preserving system, that is, for any transformation f which preserves μ we have $h_{\mu}(f^k) = kh_{\mu}(f)$, where $k \in \mathbb{N}$ [17]. For the measure-theoretic entropy for a free semigroup action, we can get the following result.

Theorem 3.3. Let (X, \mathscr{B}, μ) be a probability space and f_0, \ldots, f_{m-1} preserve μ . Let $\mathscr{F} := \{f_0, \ldots, f_{m-1}\}$ and $\mathscr{F}^k := \{g_0, \ldots, g_{m^k-1}\}$ $(k \in \mathbb{N})$, where $g_i \in \{f_w \mid f_w = f_{w_0} \circ f_{w_1} \circ \cdots \circ f_{w_{k-1}}, w \in F_m^+, |w| = k, w_j = 0, \ldots, m-1, \forall j = 0, \ldots, k-1\}$, then $h_{\mu}(\mathscr{F}^k) \leq kh_{\mu}(\mathscr{F})$.

Proof. Let ξ be any finite partition of X. For any $w \in F_m^+$, |w| = nk, $w = w_0 w_1 \cdots w_{k-1} w_k$ $\cdots w_{nk-1}$, denote $w^0 = w_0^0 w_1^0 \cdots w_{n-1}^0$, where $w_i^0 = w_{ik} w_{ik+1} \cdots w_{ik+k-1}$, then $g_{w^0} = w_{ik} w_{ik+1} \cdots w_{ik+k-1}$. $g_{w_0^0} \circ g_{w_1^0} \circ \cdots \circ g_{w_{n-1}^0} = f_w$. We have

$$\begin{aligned} h_{\mu}(\mathscr{F}^{k},\xi) &= \lim_{n \to \infty} \frac{1}{n} \left[\frac{1}{(m^{k})^{n}} \sum_{|w^{0}|=n} H_{\mu} \left(\bigvee_{w' \leq w^{0}} g_{w'}^{-1} \xi \right) \right] \\ &= k \lim_{n \to \infty} \frac{1}{nk} \left[\frac{1}{m^{nk}} \sum_{|w^{0}|=n} H_{\mu} \left(\bigvee_{w' \leq w^{0}} g_{w'}^{-1} \xi \right) \right] \\ &\leq k \lim_{n \to \infty} \frac{1}{nk} \left[\frac{1}{m^{nk}} \sum_{|w|=nk} H_{\mu} \left(\bigvee_{w' \leq w} f_{w'}^{-1} \xi \right) \right] \\ &= kh_{\mu}(\mathscr{F},\xi) \\ &\leq kh_{\mu}(\mathscr{F}). \end{aligned}$$

It is natural to ask if we can get the opposite inequality, i.e., $h_{\mu}(\mathscr{F}^k) \geq kh_{\mu}(\mathscr{F})$? And then $h_{\mu}(\mathscr{F}^k) = kh_{\mu}(\mathscr{F})$ holds. But up to now we haven't solved it.

Lemma 3.4. Let (X, \mathcal{B}, μ) be a probability space and f_0, \ldots, f_{m-1} transformations preserve μ . If ξ is a finite partition of X, for any $w \in F_m^+$, |w| = n - 1, $n \in \mathbb{N}$, we have

$$H_{\mu}\left(\bigvee_{w' \le w} f_{w'}^{-1}\xi\right) = H_{\mu}(\xi) + \sum_{|w^*|=1}^{n-1} H_{\mu}\left(\xi \mid \bigvee_{\substack{w' \le w^* \\ |w'| \ge 1}} f_{w'}^{-1}\xi\right),$$

where w^* satisfies that there is a w^{**} such that $w = w^* w^{**}$.

Proof. We show by induction that the formula holds for all n.

For n = 1 it is clear, and if we assume it true for n = p then it also holds for n = p + 1because for any $w, w^0 \in F_m^+$, $w = i_{p-1} \cdots i_1 i_0$, $w^0 = i_{p-1} \cdots i_1$, we have

$$\begin{split} H_{\mu}\left(\bigvee_{w'\leq w} f_{w'}^{-1}\xi\right) &= H_{\mu}\left(\left(f_{i_{0}}^{-1}\bigvee_{w'\leq w^{0}} f_{w'}^{-1}\xi\right)\bigvee \xi\right) \\ &= H_{\mu}\left(f_{i_{0}}^{-1}\bigvee_{w'\leq w^{0}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) \\ &= H_{\mu}\left(\bigvee_{w'\leq w^{0}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) \\ &= H_{\mu}(\xi) + \sum_{\substack{|w^{*}|=1}}^{p-1} H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) \\ &= H_{\mu}(\xi) + \sum_{\substack{|w^{*}|=1}}^{p-1} H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) \\ &= H_{\mu}(\xi) + \sum_{\substack{|w^{*}|=1}}^{p-1} H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) \\ &= H_{\mu}(\xi) + \sum_{\substack{|w^{*}|=1}}^{p-1} H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) \\ &= H_{\mu}(\xi) + \sum_{\substack{|w^{*}|=1}}^{p-1} H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) \\ &= H_{\mu}(\xi) + \sum_{\substack{w'\leq w\\|w'|\geq 1}} H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) \\ &= H_{\mu}(\xi) + \sum_{\substack{w'\leq w\\|w'|\geq 1}} H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) \\ &= H_{\mu}(\xi) + \sum_{\substack{w'\leq w\\|w'|\geq 1}} H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}\xi\right) + H_{\mu}\left(\xi \Big|\bigvee_{\substack{w'\leq w\\|w'|\geq 1}} f_{w'}^{-1}$$

$$= H_{\mu}(\xi) + \sum_{|w^*|=1}^{p} H_{\mu} \left(\xi \left| \bigvee_{\substack{w' \leq w^* \\ |w'| \geq 1}} f_{w'}^{-1} \xi \right| \right),$$

where w^* satisfies that there is a w^{**} such that $w = w^* w^{**}$. That is, it also holds for n = p + 1, thus the formula holds for any $n \in \mathbb{N}$.

Theorem 3.5. Let (X, \mathcal{B}, μ) be a probability space and f_0, \ldots, f_{m-1} transformations preserve μ . If ξ is a finite partition of X, we have

$$h_{\mu}(f_0,\ldots,f_{m-1},\xi) = \lim_{n \to \infty} \frac{1}{n} \left[\frac{1}{m^n} \sum_{|w|=n} \sum_{|w^*|=1}^n H_{\mu} \left(\xi \left| \bigvee_{\substack{w' \le w^* \\ |w'| \ge 1}} f_{w'}^{-1} \xi \right) \right],$$

where $w \in F_m^+$, $w = i_{n-1} \cdots i_0$ and w^* satisfies that there is a w^{**} such that $w = w^* w^{**}$. *Proof.* By Lemma 3.4, for any $w \in F_m^+$, |w| = n, w^* satisfies that there is a $w^{**} \in F_m^+$ such that $w = w^* w^{**}$, we have

$$H_{\mu}\left(\bigvee_{w' \le w} f_{w'}^{-1}\xi\right) = H_{\mu}(\xi) + \sum_{|w^*|=1}^n H_{\mu}\left(\xi \mid \bigvee_{\substack{w' \le w^* \\ |w'| \ge 1}} f_{w'}^{-1}\xi\right).$$

Thus

$$\lim_{n \to \infty} \frac{1}{n} \left[\frac{1}{m^n} \sum_{|w|=n} H_\mu \left(\bigvee_{w' \le w} f_{w'}^{-1} \xi \right) \right] = \lim_{n \to \infty} \frac{1}{n} \left[\frac{1}{m^n} \sum_{|w|=n} \sum_{|w^*|=1}^n H_\mu \left(\xi \left| \bigvee_{\substack{w' \le w^* \\ |w'| \ge 1}} f_{w'}^{-1} \xi \right) \right] \right].$$

That is,

$$h_{\mu}(f_0, \dots, f_{m-1}, \xi) = \lim_{n \to \infty} \frac{1}{n} \left[\frac{1}{m^n} \sum_{|w|=n} \sum_{|w^*|=1}^n H_{\mu} \left(\xi \left| \bigvee_{\substack{w' \le w^* \\ |w'| \ge 1}} f_{w'}^{-1} \xi \right) \right],$$

where $w \in F_m^+$, $w = i_{n-1} \cdots i_0$ and w^* satisfies that there is a w^{**} such that $w = w^* w^{**}$. \Box

Similar to the classical measure-preserving systems, we can show that the measuretheoretic entropy map for a free semigroup action is affine.

Theorem 3.6. Let (X, \mathscr{B}) be a measurable space and f_0, \ldots, f_{m-1} measurable transformations of X. Then for any f_i -invariant probability measure μ_1, μ_2 and $p \in [0, 1]$, where $i = 0, \ldots, m-1$, we have

$$h_{p\mu_1+(1-p)\mu_2}(f_0,\ldots,f_{m-1}) = ph_{\mu_1}(f_0,\ldots,f_{m-1}) + (1-p)h_{\mu_2}(f_0,\ldots,f_{m-1}).$$

Proof. Without loss of generality, assume $0 . As in the proof of Theorem 8.1 of [17], for any finite partition <math>\xi$ of X we have

$$0 \le H_{p\mu_1 + (1-p)\mu_2}(\xi) - pH_{\mu_1}(\xi) - (1-p)H_{\mu_2}(\xi) \le \log 2.$$

If η is any finite partition of X, then for any $w \in F_m^+$, |w| = n, by putting $\xi = \bigvee_{w' \leq w} f_{w'}^{-1} \eta$ in the above formula, we have

$$0 \leq \frac{1}{m^{n}} \sum_{|w|=n} H_{p\mu_{1}+(1-p)\mu_{2}} \left(\bigvee_{w' \leq w} f_{w'}^{-1} \eta \right) - p \left[\frac{1}{m^{n}} \sum_{|w|=n} H_{\mu_{1}} \left(\bigvee_{w' \leq w} f_{w'}^{-1} \eta \right) \right] - (1-p) \left[\frac{1}{m^{n}} \sum_{|w|=n} H_{\mu_{2}} \left(\bigvee_{w' \leq w} f_{w'}^{-1} \eta \right) \right] \\ \leq \frac{1}{m^{n}} \sum_{|w|=n} \log 2 \\ = \log 2.$$

Thus

$$0 \le h_{p\mu_1 + (1-p)\mu_2}(f_0, \dots, f_{m-1}, \eta) - ph_{\mu_1}(f_0, \dots, f_{m-1}, \eta) - (1-p)h_{\mu_2}(f_0, \dots, f_{m-1}, \eta)$$

$$\le \lim_{n \to \infty} \frac{1}{n} \log 2 = 0.$$

That is,

(3.1) $h_{p\mu_1+(1-p)\mu_2}(f_0,\ldots,f_{m-1},\eta) = ph_{\mu_1}(f_0,\ldots,f_{m-1},\eta) + (1-p)h_{\mu_2}(f_0,\ldots,f_{m-1},\eta).$ Clearly,

(3.2)
$$h_{p\mu_1+(1-p)\mu_2}(f_0,\ldots,f_{m-1}) \le ph_{\mu_1}(f_0,\ldots,f_{m-1}) + (1-p)h_{\mu_2}(f_0,\ldots,f_{m-1}).$$

We now show the opposite inequality. Let $\varepsilon > 0$, choose $\eta_1, \eta_2 > 0$ such that

$$h_{\mu_1}(f_0, \dots, f_{m-1}, \eta_1) > \begin{cases} h_{\mu_1}(f_0, \dots, f_{m-1}) - \varepsilon & h_{\mu_1}(f_0, \dots, f_{m-1}) < \infty, \\ \frac{1}{\varepsilon} & h_{\mu_1}(f_0, \dots, f_{m-1}) = \infty, \end{cases}$$
$$h_{\mu_2}(f_0, \dots, f_{m-1}, \eta_2) > \begin{cases} h_{\mu_2}(f_0, \dots, f_{m-1}) - \varepsilon & h_{\mu_2}(f_0, \dots, f_{m-1}) < \infty, \\ \frac{1}{\varepsilon} & h_{\mu_2}(f_0, \dots, f_{m-1}) = \infty. \end{cases}$$

Putting $\eta = \eta_1 \vee \eta_2$ in (3.1) gives

$$h_{p\mu_1+(1-p)\mu_2}(f_0,\ldots,f_{m-1},\eta) = ph_{\mu_1}(f_0,\ldots,f_{m-1},\eta) + (1-p)h_{\mu_2}(f_0,\ldots,f_{m-1},\eta)$$

$$\geq ph_{\mu_1}(f_0,\ldots,f_{m-1},\eta_1) + (1-p)h_{\mu_2}(f_0,\ldots,f_{m-1},\eta_2).$$

If $h_{\mu_1}(f_0, \ldots, f_{m-1}), h_{\mu_2}(f_0, \ldots, f_{m-1}) < \infty$, then

$$h_{p\mu_1+(1-p)\mu_2}(f_0,\ldots,f_{m-1},\eta) > ph_{\mu_1}(f_0,\ldots,f_{m-1}) + (1-p)h_{\mu_2}(f_0,\ldots,f_{m-1}) - \varepsilon.$$

If $h_{\mu_1}(f_0, \dots, f_{m-1}) = \infty$ or $h_{\mu_2}(f_0, \dots, f_{m-1}) = \infty$, then

$$h_{p\mu_1+(1-p)\mu_2}(f_0,\ldots,f_{m-1},\eta) > \frac{1}{\varepsilon} \cdot \min\{p,1-p\}.$$

Therefore

$$(3.3) h_{p\mu_1+(1-p)\mu_2}(f_0,\ldots,f_{m-1}) \ge ph_{\mu_1}(f_0,\ldots,f_{m-1}) + (1-p)h_{\mu_2}(f_0,\ldots,f_{m-1}).$$

From (3.2) and (3.3), the desired equality holds.

Example 3.7. Let K be a unit circle, $f_1: x \mapsto x + a_1 \pmod{1}$, $f_2: x \mapsto x + a_2 \pmod{1}$, where $a_1, a_2 \in K$. Let G be a free semigroup generated by f_1 and f_2 . Then G is equicontinuous and preserves Haar measure μ . We can get $h(f_1, f_2) = 0$, and then by the Partial Variational Principle we have $h_{\mu}(f_1, f_2) = 0$.

Proof. By the definition of equicontinuity, $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x, y \in K$, if $d(x, y) < \delta$, then $d(f(x), f(y)) < \varepsilon$. For any $f \in G$, since K is a compact space, $\exists M > 0$ such that for any $w \in F_2^+$, $B(w, \varepsilon, f_1, f_2) \leq M$, we have $B(n, \varepsilon, f_1, f_2) \leq M$. And then $\limsup_{n \to \infty} \frac{1}{n} \log B(n, \varepsilon, f_1, f_2) = 0$, therefore $h(f_1, f_2) = 0$.

By the Partial Variational Principle of [13], we have $\sup_{\mu \in M(f_1, f_2)} h_{\mu}(f_1, f_2) \leq h(f_1, f_2)$. Thus $h_{\mu}(f_1, f_2) = 0$.

For convenience, we give the following lemma.

Lemma 3.8. [19, Theorem 5.9] Let A_0, \ldots, A_{m-1} be surjective endomorphisms of \mathbb{T}^p . If for each $0 \leq i \leq m-1$ all eigenvalues of the matrix $[A_i]$ which represents A_i are of modulus greater than or equal to 1, then

$$\log \frac{1}{m} \left(\sum_{i=0}^{m-1} \prod_{j=1}^{p} \left| \lambda_j^{(i)} \right| \right) \le h(A_0, \dots, A_{m-1}) \le \log \frac{1}{m} \left(\sum_{i=0}^{m-1} \Lambda_i^p \right)$$

where $\lambda_1^{(i)}, \lambda_2^{(i)}, \ldots, \lambda_p^{(i)}$ are the eigenvalues of $[A_i], 0 \leq i \leq m-1$, counted with their multiplicities, and Λ_i is the biggest eigenvalues of $\sqrt{[A_i][A_i]^T}, 0 \leq i \leq m-1$. In particular for the case p = 1, we have

$$h(A_0, \dots, A_{m-1}) = \log \frac{1}{m} \left(\sum_{i=0}^{m-1} |\lambda_1^{(i)}| \right),$$

where $\lambda_1^{(i)}$ is the degree of the endomorphism A_i of S^1 , for every $0 \le i \le m-1$, where S^1 denotes the unite circle.

Example 3.9. Let S^1 be the unit circle, $f_i: x \mapsto \lambda_i x \pmod{1}$, $\lambda_i \in \mathbb{N}$, $i = 0, 1, \ldots, m-1$. By Lemma 3.8, we have $h(f_0, \ldots, f_{m-1}) = \log \frac{1}{m} \sum_{i=0}^{m-1} \lambda_i$. And then by the Partial Variational Principle of [13], we have

$$h_{\mu}(f_0, \dots, f_{m-1}) \le h(f_0, \dots, f_{m-1}) = \log \frac{1}{m} \sum_{i=0}^{m-1} \lambda_i,$$

where μ is the Haar measure.

Acknowledgments

The authors really appreciate the referees' valuable remarks and suggestions that helped a lot. The work was supported by National Natural Science Foundation of China (grant no. 11671149).

References

- R. L. Adler, A. G. Konheim and M. H. McAndrew, *Topological entropy*, Trans. Amer. Math. Soc. **114** (1965), no. 2, 309–319. https://doi.org/10.2307/1994177
- [2] A. Biś, Entropies of a semigroup of maps, Discrete Contin. Dyn. Systs. 11 (2004), no. 2-3, 639-648. https://doi.org/10.3934/dcds.2004.11.639
- [3] A. Biś and M. Urbański, Some remarks on topological entropy of a semigroup of continuous maps, Cubo 8 (2006), no. 2, 63–71.
- [4] L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217-245. https://doi.org/10.1090/s0894-0347-09-00637-7
- [5] _____, A measure-conjugacy invariant for free group actions, Ann. of Math. (2) 171 (2010), no. 2, 1387–1400. https://doi.org/10.4007/annals.2010.171.1387
- [6] A. Bufetov, Topological entropy of free semigroup actions and skew-product transformations, J. Dynam. Control Systems 5 (1999), no. 1, 137-143. https://doi.org/10.1023/A:1021796818247
- [7] N.-P. Chung and G. Zhang, Weak expansiveness for actions of sofic groups, J. Funct. Anal. 268 (2015), no. 11, 3534–3565. https://doi.org/10.1016/j.jfa.2014.12.013
- [8] J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 25 (1972), no. 1, 11–30. https://doi.org/10.1007/bf00533332

- [9] A. H. Dooley and G. Zhang, Local entropy theory of a random dynamical system, Mem. Amer. Math. Soc. 233 (2015), no. 1099, vi+106 pp. https://doi.org/10.1090/memo/1099
- Y. Katznelson and B. Weiss, Commuting measure-preserving transformations, Israel J. Math. 12 (1972), no. 2, 161–173. https://doi.org/10.1007/bf02764660
- [11] D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501–558. https://doi.org/10.1007/s00222-011-0324-9
- [12] A. A. Kirillov, Dynamical systems, factors and group representations, Uspehi Mat. Nauk. 22 (1967), no. 5, 67–80.
- [13] X. Lin, D. Ma and Y. Wang, On the measure-theoretic entropy and topological pressure of free semigroup actions, to appear in Ergodic Theory Dynam. Systems. https://doi.org/10.1017/etds.2016.41
- [14] D. Ma and M. Wu, Topological pressure and topological entropy of a semigroup of maps, Discrete Contin. Dyn. Systs. **31** (2011), no. 2, 545-557.
 https://doi.org/10.3934/dcds.2011.31.545
- [15] D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), no. 1, 1-141. https://doi.org/10.1007/bf02790325
- [16] D. J. Rudolph and B. Weiss, Entropy and mixing for amenable group actions, Ann. of Math. (2) 151 (2000), no. 3, 1119–1150. https://doi.org/10.2307/121130
- P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer-Verlag, New York, 1982. https://doi.org/10.1007/978-1-4612-5775-2
- [18] Y. Wang and D. Ma, On the topological entropy of a semigroup of continuous maps, J. Math. Anal. Appl. 427 (2015), no. 2, 1084–1100. https://doi.org/10.1016/j.jmaa.2015.02.082
- Y. Wang, D. Ma and X. Lin, On the topological entropy of free semigroup actions, J. Math. Anal. Appl. 435 (2016), no. 2, 1573–1590. https://doi.org/10.1016/j.jmaa.2015.11.038
- Y. Zhu, Z. Liu, X. Xu and W. Zhang, Entropy of nonautonomous dynamical systems, J. Korean Math. Soc. 49 (2012), no. 1, 165–185. https://doi.org/10.4134/jkms.2012.49.1.165

Huihui Hui and Dongkui Ma

School of Mathematics, South China University of Technology, Guangzhou 510641,

P. R. China

E-mail address: Hh1453823833@126.com, dkma@scut.edu.cn