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Existence and Stability of Coexistence States for a

Reaction-diffusion-advection Model

Jianhua Wu and Hailong Yuan*

Abstract. In this paper, we consider a two-species Lotka-Volterra competition model

in one-dimensional spatially inhomogeneous environments. It is assumed that two

competitors have the same movement strategy but slightly differing in their inter- and

intra-specific competition rates. By using the Lyapunov-Schmidt reduction technique

as well as some analytic skills, we find that the existence and stability of coexistence

states can be determined by some scalar functions, and hence the unique coexistence

state of the system is established in certain cases.

1. Introduction

Reaction-diffusion-advection equations have received increasing attention from ecologists

and mathematicians. The evolution of dispersal has been an important topic in population

dynamics and has been extensively studied by many scholars, see [1–7, 9–24] and the

references therein. In this paper, a two species Lotka-Volterra competition model in an

advective homogeneous environment is considered. In particular, we assume that two

species are identical in dispersal strategy and are competing for the same resources which

are evenly distributed across space, but they have different competition abilities, which

are incorporated by a perturbation approach, as measured by a perturbation parameter τ

in model (1.4) below.

We first recall the classical Lotka-Volterra competition model

(1.1)



ut = µuxx − αux + u(r − u− v), 0 < x < L, t > 0,

vt = µvxx − αvx + v(r − u− v), 0 < x < L, t > 0,

µux(0, t)− αu(0, t) = µux(L, t)− αu(L, t) = 0, t > 0,

µvx(0, t)− αv(0, t) = µvx(L, t)− αv(L, t) = 0, t > 0,

where u(x, t) and v(x, t) represent the population densities of two competing species at

location x and time t, L is the size of the habitat, α is the advection rate. The diffusion
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rate µ is a positive constant and the constant r > 0 accounts for the intrinsic growth rate

of species.

It is well-known that for any α ∈ R, the problem

(1.2)

µθxx − αθx + θ(r − θ) = 0, 0 < x < L,

µθx(0)− αθ(0) = µθx(L)− αθ(L) = 0

has a unique positive solution which we denote by θµ,α. In particular, θµ,α is non-

degenerate and linearly stable.

In system (1.1), two species are supposed to be completely identical (the same disper-

sal strategy and population dynamics), i.e., no one has more competitive advantages, then

biologically it is expected that two competitors will coexist eventually. Indeed, mathe-

matically this is easy to confirm as we can see that system (1.1) is degenerate and there

is a continuum of positive steady states (sθµ,α, (1 − s)θµ,α) for any s ∈ (0, 1), which are

globally attractive. It seems natural and interesting to inquire what will happen if two

competing species are slightly different. In [23], Lou and Zhou considered the two species

are almost identical except for their diffusion rates

ut = µ1uxx − αux + u(r − u− v), 0 < x < L, t > 0,

vt = µ2vxx − αvx + v(r − u− v), 0 < x < L, t > 0,

µ1ux(0, t)− αu(0, t) = µ1ux(L, t)− αu(L, t) = 0, t > 0,

µ2vx(0, t)− αv(0, t) = µ2vx(L, t)− αv(L, t) = 0, t > 0.

They showed that if 0 < µ1 < µ2, α, r, L > 0, then (0, θµ2,α) must be globally asymptoti-

cally stable, that is, the faster diffuser always wipes out its slower competitor in a spatial

homogeneous environment, which is a contrast to that the species with small random diffu-

sion rate is always the winner in non-advective but spatially heterogeneous environments.

Moreover, Lou, Xiao and Zhou [22] considered the two species are almost identical

except for their advection rates

(1.3)



ut = µuxx − αux + u(r − u− v), 0 < x < L, t > 0,

vt = µvxx − βvx + v(r − u− v), 0 < x < L, t > 0,

µux(0, t)− αu(0, t) = µux(L, t)− αu(L, t) = 0, t > 0,

µvx(0, t)− βv(0, t) = µvx(L, t)− βv(L, t) = 0, t > 0.

They proved that if 0 = α < |β|, then (θµ,0, 0) = (r, 0) is globally asymptotically stable.

That is, the species without directed movement will win the the competition. Moreover,

they also proved that (θµ,0, 0) = (r, 0) is globally asymptotically stable for any diffusion
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rate. Furthermore, they also showed that if 0 < α < β, then (θµ,α, 0) is globally asymp-

totically stable; if α < 0 < β, then system (1.3) has a stable coexistence state. And they

conjectured that this coexistence state should be unique, and hence it must be globally

asymptotically stable.

Furthermore, Zhou [26] also considered a more general case: two competitors differing

in both their diffusion and advection rates. In particular, they showed that if two species

drift along the same direction and one competitor takes both larger diffusion and advection

rates, then it will be completely wiped out provided its ratio of advection and diffusion

rate is also larger; while this ratio relation is reversed, either one can become the winner,

even two species could coexist under some suitable conditions; if two species drift along

the same direction and one competitor takes smaller advection rate but larger diffusion

rate, then it will always win; if two species drift along opposite directions, then two species

will coexist, regardless of the size of diffusion and advection rates. In [25], Zhao and Zhou

studied one species assumes pure random diffusion while another species undergoes mixed

movement in a one-dimensional habitat with spatial variation, and they showed that either

pure random diffusion or mixed movement wins, or both species can coexist eventually,

and system could admit two coexistence states in some special cases.

In this paper, we consider the following model

(1.4)



ut = µuxx − αux + u(r − (1 + τm)u− (1 + τg)v), 0 < x < L, t > 0,

vt = µvxx − αvx + v(r − (1 + τh)u− v), 0 < x < L, t > 0,

µux(0, t)− αu(0, t) = µux(L, t)− αu(L, t) = 0, t > 0,

µvx(0, t)− αv(0, t) = µvx(L, t)− αv(L, t) = 0, t > 0,

where τ is a positive constant and m, g and h are smooth functions. We assume that

two competing species have the same diffusion rate, advection rate and the distribution of

resources, however, they have the different intraspecific competition rates and interspecific

competition rates.

For 0 < τ � 1, we show that the existence and stability of coexistence states of

system (1.4) can be determined by the scalar functions of µ and α defined as follows:

H(µ, α) =

∫ L

0

h(x)e−
α
µxθ3µ,α, M(µ, α) =

∫ L

0

m(x)e−
α
µxθ3µ,α, G(µ, α) =

∫ L

0

g(x)e−
α
µxθ3µ,α.

However, for the sake of simplicity, we fix the parameter α in this paper, and we regard

the functions θµ,α, H(µ, α), M(µ, α) and G(µ, α) as only a function of the diffusion rate

µ. We simply denote them by θµ, H(µ), M(µ) and G(µ), respectively.

For the monotone dynamical system (see [8]), we know

(a) if there is no coexistence state, then one of the semi-trivial equilibria is unstable and

the other one is the global attractor;
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(b) if there is a unique coexistence state and it is stable, then it is the global attractor;

(c) if all coexistence states are asymptotically stable, then there is at most a coexistence

state, which is the global attractor (if it exists).

For the linearized stability of a steady state (u, v) of system (1.4), we only need to

consider the following eigenvalue problem

(1.5)

µϕxx − αϕx + [r − 2(1 + τm)u− (1 + τg)v]ϕ− u(1 + τg)ψ + λϕ = 0, 0 < x < L,

µψxx − αψx + [r − (1 + τh)u− 2v]ψ − v(1 + τh)ϕ+ λψ = 0, 0 < x < L,

µϕx(0)− αϕ(0) = µϕx(L)− αϕ(L) = 0,

µψx(0)− αψ(0) = µψx(L)− αψ(L) = 0.

It is easy to see that problem (1.5) has a principal eigenvalue λ1 ∈ R, which is simple and

has the least real part among all eigenvalues. Moreover, we may choose the corresponding

eigenfunction (ϕ,ψ) to satisfy ϕ > 0 > ψ on [0, L]. The linearized stability of (u, v) can

be expressed in terms of the principal eigenvalue: (u, v) is linearly stable if λ1 > 0; it is

unstable if λ1 < 0.

Finally, we state main results of this paper. In particular, we show how H(µ), M(µ)

and G(µ) determine the structure of coexistence states and their stability of system (1.4).

Theorem 1.1. Suppose that functions H(µ) −M(µ) and G(µ) have no common roots.

Let µ1 and µ2 be two consecutive simple roots of the function (H(µ)−M(µ))G(µ). Then

(i) if (H(µ) −M(µ))G(µ) < 0 in (µ1, µ2), then system (1.4) has no coexistence state

for 0 < τ � 1;

(ii) if (H(µ) −M(µ))G(µ) > 0 in (µ1, µ2), then for 0 < τ � 1, there exist µ = µ(τ)

nearby µ1 and µ = µ(τ) nearby µ2 such that for each µ ∈ (µ, µ), system (1.4) has a

coexistence state (u(µ, τ), v(µ, τ)). In particular, (u(µ, τ), v(µ, τ)) will reduce to the

semi-trivial equilibria when µ = µ or µ = µ.

Theorem 1.2. Assume that conditions of Theorem 1.1 hold. Then we have

(i) if H(µ) − M(µ) < 0 and G(µ) < 0 in (µ1, µ2), then system (1.4) has a unique

coexistence state (u(µ, τ), v(µ, τ)), and it is the global attractor of system (1.4);

(ii) if H(µ) −M(µ) > 0 and G(µ) > 0 in (µ1, µ2), then system (1.4) has a unstable

coexistence state (u(µ, τ), v(µ, τ)).

The rest of this paper is organized as follows. In Section 2, we study the existence

and non-existence of coexistence states of system (1.4). In Section 3, the stability of

coexistence states of system (1.4) is established.
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2. Existence and non-existence of coexistence states

In this section, we study the existence and non-existence of coexistence states of sys-

tem (1.4) by the Lyapunov-Schmidt reduction technique. In particular, Theorem 1.1 can

be established by the following Theorem 2.1.

To a large extent, the dynamics of system (1.4) are determined by the stability or

instability of steady states since system (1.4) is a monotonic dynamical system. To deal

with the existence of coexistence states of system (1.4), we only need to show that the

following system (2.1) has a positive solution under some suitable conditions.

Let ω = e
−α
µ
x
u and χ = e

−α
µ
x
v. Then the steady state of system (1.4) can be rewritten

as

(2.1)


µ
{
e
α
µ
x
ωx

}
x

+ e
α
µ
x
ω
(
r − (1 + τm)e

α
µ
x
ω − (1 + τg)e

α
µ
x
χ
)

= 0, 0 < x < L,

µ
{
e
α
µ
x
χx

}
x

+ e
α
µ
x
χ
(
r − (1 + τh)e

α
µ
x
ω − e

α
µ
x
χ
)

= 0, 0 < x < L,

ωx(0) = ωx(L) = χx(0) = χx(L) = 0.

We let θ̃µ be the unique positive solution of the following problemµ
{
e
α
µ
x
θ̃x

}
x

+ e
α
µ
x
θ̃
(
r − e

α
µ
x
θ̃
)

= 0, 0 < x < L,

θ̃x(0) = θ̃x(L) = 0

and let ω̃ be the unique positive solution of the following problemµ
{
e
α
µ
x
ωx

}
x

+ e
α
µ
x
ω
(
r − (1 + τm)e

α
µ
x
ω
)

= 0, 0 < x < L,

ωx(0) = ωx(L) = 0.

In particular, we have θ̃µ = e
−α
µ
x
θµ, where θµ is the unique positive solution of (1.2).

Similarly, we set the following scalar functions:

H̃(µ) =

∫ L

0
h(x)e

2α
µ
x
θ̃3
µ, M̃(µ) =

∫ L

0
m(x)e

2α
µ
x
θ̃3
µ, G̃(µ) =

∫ L

0
g(x)e

2α
µ
x
θ̃3
µ.

We also regard the above three functions as a function of the diffusion rate µ. In fact, we

claim that H(µ) = H̃(µ), M(µ) = M̃(µ) and G(µ) = G̃(µ) under the change of variable

θ̃µ = e
−α
µ
x
θµ, respectively.

We know that system (2.1) has a nontrivial nonnegative solution

γµ =
{(
sθ̃µ, (1− s)θ̃µ

)
: s ∈ [0, 1]

}
for τ = 0, and we construct a positive solution (ω, χ) of system (2.1) near the curve γµ for

0 < τ � 1. Moreover, we also claim that all positive solutions of system (2.1) are close to

the curve γµ when 0 < τ � 1 by the following Lemma 2.2.
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For any p > 1, the Sobolev space W 2,p(0, L) ↪→ C1[0, L]. Set

X =
{

(y, z) ∈W 2,p(0, L)×W 2,p(0, L) : ωx(0) = ωx(L) = χx(0) = χx(L) = 0
}
,

X1 = span
{(
θ̃µ,−θ̃µ

)}
, Y = Lp(0, L)× Lp(0, L),

X2 =

{
(y, z) ∈ X :

∫ L

0
(y − z)θ̃µ = 0

}
.

Theorem 2.1. Suppose that functions H̃(µ)−M̃(µ) and G̃(µ) have no common roots for

0 < τ � 1, and let µ1 and µ2 be two consecutive simple roots of function
(
H̃(µ)− M̃(µ)

)
G̃(µ). Then there exists a neighborhood U of the curve γµ, and

(i) if
(
H̃(µ)− M̃(µ)

)
G̃(µ) < 0 in (µ1, µ2), then system (2.1) has no positive solution

near γµ;

(ii) if
(
H̃(µ)− M̃(µ)

)
G̃(µ) > 0 in (µ1, µ2), then for 0 < τ � 1, the set of solutions of

system (2.1) in U consists of the semi-trivial solutions (µ, w̃, 0),
(
µ, 0, θ̃µ

)
, and the

set Ξ ∩ U , where Ξ is given by

Ξ = {(µ, ω(µ, τ), χ(µ, τ)) : µ1 − δ ≤ µ ≤ µ2 + δ} .

Here,

(2.2) ω(µ, τ) = s∗(µ, τ)
[
θ̃µ + y(µ, τ)

]
, χ(µ, τ) = [1− s∗(µ, τ)]

[
θ̃µ + z(µ, τ)

]
.

In particular, s∗(µ, 0) = s0(µ) := G̃(µ)

G̃(µ)+H̃(µ)−M̃(µ)
, y(µ, 0) = z(µ, 0) = 0. Moreover,

there exist smooth functions µ(τ) and µ(τ) for 0 ≤ τ � 1 such that µ(0) = µ1,

µ(0) = µ2.

Proof. It is easy to see that any nonnegative solution (ω, χ) of system (2.1) for 0 < τ � 1

can be written as (ω, χ) =
(
sθ̃µ, (1− s)θ̃µ

)
+ (y, z), where s ∈ [0, 1] and (y, z) ∈ X2 near

(0, 0). In particular, we find a positive solution of system (2.1) near γµ.

First, we define the map F :

F (y, z, µ, τ, s) =

 µ
{
e

α
µxyx

}
x

+ e
α
µxy(r − e

α
µxθ̃µ)− se

2α
µ xθ̃µ(y + z) + f1(y, z, µ, τ, s)

µ
{
e

α
µxzx

}
x

+ e
α
µxz(r − e

α
µxθ̃µ)− (1− s)e

2α
µ xθ̃µ(y + z) + f2(y, z, µ, τ, s)

 ,

where

f1(y, z, µ, τ, s) = −e
2α
µ
x
y(y + z)− sτge

2α
µ
x
θ̃µ

[
(1− s)θ̃µ + z

]
− τge

2α
µ
x
y
[
(1− s)θ̃µ + z

]
− sτme

2α
µ
x
θ̃µ(sθ̃µ + y)− τme

2α
µ
x
y(sθ̃µ + y),

f2(y, z, µ, τ, s) = −e
2α
µ
x
z(y + z)− (1− s)τhe

2α
µ
x
θ̃µ(sθ̃µ + y)− τhe

2α
µ
x
z(sθ̃µ + y).
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Obviously, for small δ1 > 0, the map F : X×(µ1−δ1, µ2+δ1)×(−δ1, δ1)×(−δ1, 1+δ1)→ Y .

Hence, we only need to consider the equation F (y, z, µ, τ, s) = (0, 0)T . In particular, the

map F is a smooth function and have the following properties:

(2.3) F (0, 0, µ, 0, s) = 0, F (0, 0, µ, τ, 0) = 0, F
(
ω̃ − θ̃µ, 0, µ, τ, 1

)
= 0.

In order to use the Lyapunov-Schmidt procedure, we let L(µ, s) = D(y,z)F (0, 0, µ, 0, s) ∈
L(X,Y ). Then

L(µ, s)

φ
ψ


=

µ{eα
µxφx

}
x

+ e
α
µxφ

(
r − e

α
µxθ̃µ

)
− se

2α
µ xθ̃µφ −se

2α
µ xθ̃µψ

−(1− s)e
2α
µ xθ̃µφ µ

{
e

α
µxψx

}
x

+ e
α
µxψ

(
r − e

α
µxθ̃µ

)
− (1− s)e

2α
µ xθ̃µψ

 ,

where we denote L(µ, s) by L. Moreover, L is a Fredholm operator of index zero, and 0 is

a principal eigenvalue of L since θ̃µ > 0. Hence,

ker(L) = span
{(
θ̃µ,−θ̃µ

)}
= X1.

Next, we define the projection operator P = P (µ, s) on Y by

P

ξ
η

 =
1∫ L

0 θ̃2
µ

[
(1− s)

∫ L

0
θ̃µξ − s

∫ L

0
θ̃µη

] θ̃µ

−θ̃µ

 .

It is clear that R(P ) = X1, P 2 = P , PL = 0, which result in

R(L) =

{
(ξ, η) ∈ Y : (1− s)

∫ L

0
θ̃µξ − s

∫ L

0
θ̃µη = 0

}
,

where R(L) stands for the range of L.

Now, we express the system for

P (µ, s)F (y, z, µ, τ, s) = 0,(2.4a)

[I − P (µ, s)]F (y, z, µ, τ, s) = 0,(2.4b)

where (y, z) ∈ X2. Obviously, L(µ, s) is an isomorphism from X2 to R(L(µ, s)). Hence,

we can find continuously differentiable functions (y, z) = (y1(µ, τ, s), z1(µ, τ, s)) near (0, 0)

for (2.4b) by the implicit function theorem. Moreover, there exists small δ2 > 0 with a

smooth function

(y1(µ, τ, s), z1(µ, τ, s)) : (µ1 − δ2, µ2 + δ2)× (−δ2, δ2)× (−δ2, 1 + δ2)→ X2,

by the finite covering argument. Thus, we need to consider (2.4a) for (µ, τ, s). That is,

P (µ, s)F (y1(µ, τ, s), z1(µ, τ, s), µ, τ, s) = 0.
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By (2.3), we get

y1(µ, 0, s) = 0, z1(µ, 0, s) = 0,(2.5a)

y1(µ, τ, 0) = 0, z1(µ, τ, 0) = 0,(2.5b)

y1(µ, τ, 1) = ω̃ − θ̃µ, z1(µ, τ, 1) = 0.(2.5c)

Recall the definition of the projection operator P , there exists a smooth function κ(µ, τ, s)

satisfying

(2.6) κ(µ, τ, s)

 θ̃µ

−θ̃µ

 = P (µ, s)F (y1(µ, τ, s), z1(µ, τ, s), µ, τ, s).

Thus, we only need to solve the equation κ(µ, τ, s) = 0. Moreover, κ(µ, 0, s) = κ(µ, τ, 0) =

κ(µ, τ, 1) = 0 by (2.5). Hence, we can find a smooth function κ1(µ, τ, s) such that

κ(µ, τ, s) = τs(1− s)κ1(µ, τ, s).

Therefore, it suffices to solve the equation κ1(µ, τ, s) = 0.

Differentiating with respect to τ at τ = 0 for (2.6), we have

κτ (µ, 0, s)

 θ̃µ

−θ̃µ

 = P (µ, s)L(µ, s)

y1,τ (µ, 0, s)

z1,τ (µ, 0, s)

+ P (µ, s)Fτ (0, 0, µ, 0, s)

= P (µ, s)Fτ (0, 0, µ, 0, s),

where

Fτ (0, 0, µ, 0, s) = −s

(1− s)ge
2α
µ
x
θ̃2
µ + sme

2α
µ
x
θ̃2
µ

(1− s)he
2α
µ
x
θ̃2
µ

 .

Hence,

P (µ, s)Fτ (0, 0, µ, 0, s) = s(1− s)
s
(
H̃(µ)− M̃(µ)

)
− (1− s)G̃(µ)∫ L

0 θ̃2
µ

 θ̃µ

−θ̃µ

 .

That is,

(2.7) κ1(µ, 0, s) =
s
(
H̃(µ)− M̃(µ)

)
− (1− s)G̃(µ)∫ L

0 θ̃2
µ

.

If
(
H̃(µ)− M̃(µ)

)
G̃(µ) < 0 in (µ1, µ2), for example,

(
H̃(µ̃)− M̃(µ̃)

)
G̃(µ̃) < 0 for

any µ̃ ∈ (µ1, µ2). Then there exists small δ3 > 0 and we can show that the equation

κ1(µ̃, τ, s) = 0 has no positive solution in the domain (µ̃− δ3, µ̃+ δ3)×(−δ3, δ3)×(−δ3, 1+

δ3) when µ̃ ∈ (µ1, µ2). Moreover, we can also show that the equation κ1(µ, τ, s) = 0 has
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no positive solution in the domain (µ1 − δ3, µ2 + δ3)× (−δ3, δ3)× (−δ3, 1 + δ3) by virtue

of the finite covering argument. Hence, system (2.1) has no positive solution near γµ for

0 < τ � 1.

If
(
H̃(µ)− M̃(µ)

)
G̃(µ) > 0 in (µ1, µ2), for example,

(
H̃(µ̃)− M̃(µ̃)

)
G̃(µ̃) > 0 for

any µ̃ ∈ (µ1, µ2). Then s0(µ̃) = G̃(µ̃)

G̃(µ̃)+H̃(µ̃)−M̃(µ̃)
is the unique zero of κ1(µ̃, 0, ·) by (2.7),

and κ1,s(µ̃, 0, ·) = G̃(µ̃)+H̃(µ̃)−M̃(µ̃)∫ L
0 θ̃2µ

6= 0 for any µ̃ ∈ [µ1, µ2]. By virtue of the implicit

function theorem and the finite covering argument, there exists small δ4 > 0 such that

any solution of the equation κ1(µ, τ, s) = 0 in the neighborhood (µ, τ, s) ∈ (µ1 − δ4, µ2 +

δ4)× (−δ4, δ4)× (−δ4, 1 + δ4) are given by a smooth function s = s∗(µ, τ). In particular,

s∗(µ, 0) = s0(µ). Hence, the set of solutions of the equation κ(µ, τ, s) = 0 consists exactly

of the surfaces τ = 0, s = 0, s = 1 and s = s∗(µ, τ).

It is clear that any solution of system (2.1) can be written as in (2.2) with some func-

tions y(µ, τ), z(µ, τ) since there exist some smooth functions ỹ1, z̃1 such that (y1(µ, τ, s),

z1(µ, τ, s)) = (sỹ1(µ, τ, s), (1 − s)z̃1(µ, τ, s)), where y(µ, τ) = ỹ1(µ, τ, s∗(µ, τ)), z(µ, τ) =

z̃1(µ, τ, s∗(µ, τ)).

Now, we consider s0(µi) = 0 or 1− s0(µi) = 0, i = 1, 2. Without loss of generality, we

consider the case s0(µ1) = 0, i.e., G̃(µ1) = 0. Since s∗(µ, 0) = G̃(µ)

G̃(µ)+H̃(µ)−M̃(µ)
, we have

s∗(µ1, 0) = 0 and s∗µ(µ1, 0) = G̃′(µ1)

H̃(µ1)−M̃(µ1)
6= 0. Hence, by the implicit function theorem,

there exists δ5 > 0 and a smooth function µ = µ(τ) is the unique solution of s∗(µ, τ) = 0

near µ1 such that µ(0) = µ1. Similarly, there exists a smooth function µ = µ is the unique

solution of s∗(µ, τ) = 0 near µ2 such that µ(0) = µ2. The case 1 − s0(µi) = 0, i = 1, 2,

can be treated similarly, we omit it here. The proof is complete.

The following lemma shows that all positive solutions of system (2.1) are close to the

curve γµ when 0 < τ � 1. In particular, we have

Lemma 2.2. Let (ω, χ) be any positive solution of system (2.1). Then we have

(ω, χ)→
(
sθ̃µ, (1− s)θ̃µ

)
in C2(Ω)

for some s ∈ [0, 1] as τ → 0.

Proof. It is clear that solutions (ωi, χi) of system (2.1) with µ = µi, τ = τi are uniformly

bounded in L∞ by the maximum principle, and we only need to show that solutions (ωi, χi)

of system (2.1) with µ = µi, τ = τi converges to the curve γµ if τi → 0+, µi → µ. By the

standard elliptic regularity theory, we may assume that (ωi, χi) → (ω, χ) in C1(Ω), and
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(ω, χ) satisfies
µ
{
e
α
µ
x
ωx

}
x

+ e
α
µ
x
ω
(
r − e

α
µ
x
ω − e

α
µ
x
χ
)

= 0, 0 < x < L,

µ
{
e
α
µ
x
χx

}
x

+ e
α
µ
x
χ
(
r − e

α
µ
x
ω − e

α
µ
x
χ
)

= 0, 0 < x < L,

ωx(0) = ωx(L) = χx(0) = χx(L) = 0.

Therefore, we have (ω, χ) = (0, 0) or (ω, χ) =
(
sθ̃µ, (1− s)θ̃µ

)
, where s ∈ [0, 1]. Moreover,

we claim that one can rule out the case (ω, χ) = (0, 0), and hence the case (ω, χ) =(
sθ̃µ, (1− s)θ̃µ

)
holds. The proof is complete.

3. Stability of coexistence states

In this section, we study the stability of coexistence states of system (1.4) for 0 < τ � 1.

In particular, the stability of any coexistence state (u(µ, τ), v(µ, τ)) of system (1.4) is

determined by the principal eigenvalue λ1(µ, τ) near 0 of problem (1.5) for 0 < τ � 1.

For the sake of convenience, we can write problem (1.5) as

(3.1)

µ
{
e

α
µx
(
e−

α
µxϕ

)
x

}
x

+ [r − 2(1 + τm)u− (1 + τg)v]ϕ− u(1 + τg)ψ + λϕ = 0, 0 < x < L,

µ
{
e

α
µx
(
e−

α
µxψ

)
x

}
x

+ [r − (1 + τh)u− 2v]ψ − v(1 + τh)ϕ+ λψ = 0, 0 < x < L,

µϕx(0)− αϕ(0) = µϕx(L)− αϕ(L) = 0,

µψx(0)− αψ(0) = µψx(L)− αψ(L) = 0.

For 0 < τ � 1, we set the principal eigenfunction (ϕ,ψ) as

(3.2) ϕ(µ, τ) = θµ + τϕ1(µ, τ), ψ(µ, τ) = −θµ + τψ1(µ, τ),

in (3.2) with some smooth functions ϕ1(µ, τ) and ψ1(µ, τ), and we only need to consider

the following three possibilities here: µ close to µ1, µ close to µ2 and µ bounded away

from both µ1 and µ2. First, we prove the following lemma.

Lemma 3.1. Suppose that 0 < τ � 1. Then we have

λ1(µ, τ)

τ

∫ L

0
(vϕ− uψ)e

−α
µ
x

= 2

∫ L

0
muvϕe

−α
µ
x − 2

∫ L

0
huvϕe

−α
µ
x

+ 2

∫ L

0
guvψe

−α
µ
x −

∫ L

0
hu2ψe

−α
µ
x

+

∫ L

0
mu2ψe

−α
µ
x

+

∫ L

0
gv2ϕe

−α
µ
x
.

(3.3)

Proof. Multiplying the first equation of problem (3.1) by e
−α
µ
x
v and integrating by parts,

then we obtain
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−λ1(µ, τ)

∫ L

0
vϕe

−α
µ
x

= τ

∫ L

0
huvϕe

−α
µ
x − 2τ

∫ L

0
muvϕe

−α
µ
x −

∫ L

0
uvϕe

−α
µ
x

− τ
∫ L

0
gv2ϕe

−α
µ
x −

∫ L

0
uvψe

−α
µ
x − τ

∫ L

0
guvψe

−α
µ
x
.

(3.4)

Similarly, we also have

−λ1(µ, τ)

∫ L

0
uψe

−α
µ
x

= τ

∫ L

0
mu2ψe

−α
µ
x

+ τ

∫ L

0
guvψe

−α
µ
x − τ

∫ L

0
hu2ψe

−α
µ
x

−
∫ L

0
uvψe

−α
µ
x −

∫ L

0
uvϕe

−α
µ
x − τ

∫ L

0
huvϕe

−α
µ
x
.

(3.5)

Hence, we get (3.3) from (3.4) and (3.5). The proof is complete.

Next, we study the stability of coexistence states of system (1.4) when µ bounded

away from both µ1 and µ2. In particular, we have the following result.

Lemma 3.2. For any η > 0, we have

(3.6) lim
τ→0+

λ1(µ, τ)

τ
= − (H(µ)−M(µ))G(µ)

G(µ) +H(µ)−M(µ)

1∫ L
0 e
−α
µ
x
θ2
µ

for µ ∈ [µ1 + η, µ2 − η].

Proof. It is clear that (u(µ, τ), v(µ, τ))→ (s0(µ)θµ, (1−s0(µ))θµ) and (ϕ(µ, τ), ψ(µ, τ))→
(θµ,−θµ) as τ → 0+. Then we have∫ L

0
(vϕ− uψ)e

−α
µ
x →

∫ L

0
e
−α
µ
x
θ2
µ,

2

∫ L

0
muvϕe

−α
µ
x − 2

∫ L

0
huvϕe

−α
µ
x

+ 2

∫ L

0
guvψe

−α
µ
x

−
∫ L

0
hu2ψe

−α
µ
x

+

∫ L

0
mu2ψe

−α
µ
x

+

∫ L

0
gv2ϕe

−α
µ
x

→ 2s0(1− s0)[M(µ)−H(µ)−G(µ)] + s2
0[H(µ)−M(µ)] + (1− s0)2G(µ)

= − (H(µ)−M(µ))G(µ)

G(µ) +H(µ)−M(µ)
.

Hence, we get (3.6). The proof is complete.

Now, we consider the case G(µ1) = 0, i.e., s∗(µ, τ) = 0, where µ = µ(τ). For this case,

we have
(
u(µ, τ), v(µ, τ)

)
= (0, θµ). The case H(µ1)−M(µ1) = 0 can be treated similarly.

Lemma 3.3. Suppose that G(µ1+) = 0 and it is a simple root. Then we have

(3.7) lim
(µ,τ)→(µ1+,0+)

λ1(µ, τ)

τ(µ− µ)
= − G′(µ1+)∫ L

0 e
− α
µ1+

x
θ2
µ1+

.
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Proof. It is easy to see that µ is a simple bifurcation point. Then λ1(µ, τ) = 0 and

(3.8)

µ
{
e
α
µ
x
(
e
−α
µ
x
ϕ
)
x

}
x

+
[
r − (1 + τg)θµ

]
ϕ = 0, 0 < x < L,

µϕx(0)− αϕ(0) = µϕx(L)− αϕ(L) = 0.

Multiplying (3.8) by e
−α
µ
x
v(µ, τ) and integrating by parts, we have

∫ L
0 ge

−α
µ
x
v2(µ, τ)ϕ(µ, τ)

= 0. Let I(µ, τ) be the right-hand side of (3.3). Then I(µ, τ) = 0. Hence, I(µ, τ) =

(µ− µ)I ′µ(µ∗, τ) for some µ∗ = µ∗(µ, τ) ∈ (µ, µ).

Next we differentiate I with respect to µ. Then we have

I ′µ(µ, τ) = 2

∫ L

0
m(ϕµuv + ϕuµv + ϕuvµ)e

−α
µ
x − 2

∫ L

0
h(ϕµuv + ϕuµv + ϕuvµ)e

−α
µ
x

+ 2

∫ L

0
g(ψµuv + ψuµv + ψuvµ)e

−α
µ
x −

∫ L

0
h(2uuµψ + u2ψµ)e

−α
µ
x

+

∫ L

0
m(2uuµψ + u2ψµ)e

−α
µ
x

+

∫ L

0
g(2vvµϕ+ v2ϕµ)e

−α
µ
x

+ 2
α

µ2

∫ L

0
muvϕe

−α
µ
x
x− 2

α

µ2

∫ L

0
huvϕe

−α
µ
x
x+ 2

α

µ2

∫ L

0
guvψe

−α
µ
x
x

− α

µ2

∫ L

0
hu2ψx+

α

µ2

∫ L

0
mu2ψe

−α
µ
x
x+

α

µ2

∫ L

0
gv2ϕe

−α
µ
x
x.

Clearly, u→ 0, v → θµ1+ , ϕ→ θµ1+ , ψ → −θµ1+ , uµ → s′0(µ1+)θµ1+ , vµ → −s′0(µ1+)θµ1+
+ θ′µ1+ , ϕµ → θ′µ1+ , and ψµ is uniformly bounded if τ → 0+ and µ→ µ1+. Hence,

I ′µ(µ1+, 0) = −2s′0(µ1+)(H(µ1+)−M(µ1+)) +G′(µ1+)

since G(µ1+) = 0, and s′0(µ1+) = G′(µ1+)
H(µ1+)−M(µ1+) . Therefore,

I ′µ(µ1+, 0) = −G′(µ1+).

Hence, we obtain (3.7). The proof is complete.

Suppose that G(µ2−) = 0. Then s∗(µ, τ) = 0, where µ = µ(τ). The case H(µ2−) −
M(µ2−) = 0 can be treated similarly.

Lemma 3.4. Suppose that G(µ2−) = 0 and it is a simple root. Then we have

lim
(µ,τ)→(µ2−,0+)

λ1(µ, τ)

τ(µ− µ)
= − G′(µ2−)∫ L

0 e
− α
µ2−

x
θ2
µ2−

.

Finally, the stability of coexistence states (u(µ, τ), v(µ, τ)) of system (1.4) for 0 < τ � 1

can be established in the following theorem. In particular, we have
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Theorem 3.5. Suppose that µ1, µ2 are consecutive simple zeros of function (H(µ) −
M(µ))G(µ), and (H(µ)−M(µ))G(µ) > 0 in (µ1, µ2). Then there exists τ∗ > 0 such that

for any τ ∈ (0, τ∗) and for µ ∈ (µ, µ), we have

(i) if H(µ)−M(µ) < 0 and G(µ) < 0 in (µ1, µ2), then λ1(µ, τ) > 0;

(ii) if H(µ)−M(µ) > 0 and G(µ) > 0 in (µ1, µ2), then λ1(µ, τ) < 0.

Proof. We only need to consider the case (i), the case (ii) can be treated similarly. We

argue by contradiction. Suppose that there exist τi → 0+ and µi ∈ (µ(τi), µ(τi)) such

that λ1(µi, τi) ≤ 0 for i = 1, 2, . . .. Since µ(τi) → µ1 and µi → µ2, we may assume that

µi → µ∗ ∈ [µ1, µ2].

If µ∗ ∈ (µ1, µ2), then we have

lim
(µi,τi)→(µ∗,0+)

λ1(µi, τi)

τi
= − (H(µ∗)−M(µ∗))G(µ∗)

G(µ∗) +H(µ∗)−M(µ∗)

1∫ L
0 e
− α
µ∗ xθ2

µ∗

> 0

by Lemma 3.2. Hence, λ1(µi, τi) > 0 for large i, a contradiction.

If µ∗ = µ1. Suppose that G(µ1+) = 0. We see that G′(µ1+) < 0 since G(µ) < 0 in

(µ1, µ2) and µ1 is a simple root. By Lemma 3.3, we obtain

lim
(µi,τi)→(µ1+,0+)

λ1(µi, τi)

τi(µi − µ(µi))
= − G′(µ1+)∫ L

0 e
− α
µ1+

x
θ2
µ1+

> 0.

Since µi > µ(τi), we have λ1(µi, τi) > 0 for all large i, a contradiction. The case µ∗ = µ2

can be treated similarly by Lemma 3.4, we omit it here. The proof is complete.

Now, we can establish the results of Theorem 1.2.

Proof of Theorem 1.2. By virtue of Theorem 2.1, Theorem 3.5 and Lemma 2.2, we know

that as τ → 0, all coexistence states of system (1.4) lie in the neighbourhood of the curve

γµ, and all coexistence states of system (1.4) in the neighbourhood of the curve γµ are

asymptotically stable if H(µ)−M(µ) < 0 and G(µ) < 0 in (µ1, µ2). Hence, system (1.4)

has a unique coexistence state in this case and it is the global attractor of system (1.4)

by the theory of monotone dynamical systems. And if H(µ)−M(µ) > 0 and G(µ) > 0 in

(µ1, µ2), then system (1.4) has a unstable coexistence state.
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