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Increasing Stability in an Inverse Boundary Value Problem—Bayesian

Viewpoint

Pu-Zhao Kow and Jenn-Nan Wang*

Abstract. Motivated by the recent work of Abraham and Nickl on the statistical

Calderón problem [2], we revisit the increasing stability phenomenon in the inverse

boundary value problem for the stationary wave equation with a potential using the

Bayesian approach. In this paper, rather than the Dirichlet-to-Neumann map, we

consider another type of boundary measurements called the impedance-to-Neumann

map. Its graph forms a subset of Cauchy data. We show the consistency of the

posterior mean with a contraction rate demonstrating the phenomenon of increasing

stability.

1. Introduction

In this work, we study the inverse boundary value problem for the stationary wave equation

with frequency κ in Rd (d ≥ 3), which is modeled by the Helmholtz equation with a

potential. Let D be a bounded Lipschitz domain in Rd satisfying

(1.1) x · ν ≥ c0 > 0 for all x ∈ ∂D,

where ν is the unit normal derivative on ∂D. Furthermore, assume D ⊂ BR for some

R > 0. We consider the following impedance boundary-value problem for Helmholtz

equation with a potential

(1.2)

(∆ + κ2 + q(x))u = 0 in D,

∂νu− iκu = g on ∂D

with g ∈ L2(∂D) and κ > 0 is the frequency (or wave number). Throughout the paper,

we consider κ ≥ 1. The potential function q is real-valued and satisfies

(1.3) ∥q∥L∞(D) ≤ min

{
M,

κ2

16MR2
,

κ2

4d− 6

}
Received January 15, 2024; Accepted July 8, 2024.

Communicated by Cheng-Hsiung Hsu.

2020 Mathematics Subject Classification. 35R30, 35R25, 62G05.

Key words and phrases. inverse problem, Schrödinger equation, impedance-to-Neumann map, impedance-

to-Dirichlet map, increasing stability/resolution, Bayesian approach.

*Corresponding author.

1



2 Pu-Zhao Kow and Jenn-Nan Wang

for some M > 0. It is easy to see that one can choose κ0 = κ0(D,M) > 0 such that

(1.4) for each κ ≥ κ0, (1.3) can be guaranteed by ∥q∥L∞(D) ≤M.

For the well-posedness of the boundary value problem (1.2), we show in Theorem B.5

in Appendix B that there exists a unique solution u ∈ H1(D) to (1.2) satisfying

(1.5) ∥∇u∥2L2(D) + κ2∥u∥2L2(D) + ∥∇u∥2L2(∂D) + κ2∥u∥2L2(∂D) ≤ C∥g∥2L2(∂D)

for some positive constant C = C(D, c0), see also Remark B.4 for its optimality. We

remark that the main tool used in the proof is the Rellich identities (see Lemma B.2).

Accordingly, we can define the following bounded linear operator

(1.6) Mq,κ2 : L2(∂D) → L2(∂D), Mq,κ2 [g] := ∂νu
∣∣
∂D
,

which is called the impedance-to-Neumann map.

1.1. Deterministic inverse problem

We prove the following stability estimate in the determination of the potential by the

measurement Mq,κ2 in the deterministic case.

Theorem 1.1. (see also Theorem 2.7) Let m ≥ 0 and s > m + d
2 be integers. Assume

that M > 0 and D is a bounded Cm,1-domain in Rd satisfying (1.1). Let q1, q2 ∈ H2s(D)

be real-valued functions satisfying (1.3), supp(q1− q2) ⋐ D and supj=1,2 ∥qj∥H2s(D) ≤M .

Then there exists a constant C = C(D, s,m,M, supp(q1 − q2)) > 0 such that

(1.7) ∥q1 − q2∥H−s

D

:= ∥χD(q1 − q2)∥H−s(Rd) ≤ Cκm+3E + C

(
κ+ log

1

E

)−(s− d
2
)

for all κ ≥ 1 provided E := ∥Mq1,κ2 −Mq2,κ2∥Hm(∂D)→L2(∂D) < 1/e.

Remark 1.2. The regularity assumption on ∂D is to guarantee that the boundary Sobolev

space Hm(∂D) is well-defined. One also can refer e.g., the monographs [29, 31] for more

details about the Sobolev space H−s
D

. By slightly modifying the ideas, one can also obtain

an analogue result for the impedance-to-Dirichlet map g 7→ u|∂D, where u is the unique

solution of (1.2) satisfying (1.5). The stability estimate in (1.7) consists of two terms.

The logarithmic term reflects the ill-posedness of this inverse boundary value problem

and may be shown to be optimal by carrying out Mandache’s method [30]. However,

this logarithmic term decreases as the frequency k increases, and the estimate becomes a

Hölder type. The transition from a logarithmic estimate to a Hölder estimate as κ → ∞
justifies the phenomenon of increasing stability rigorously.
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Before going further, we would like to discuss some related works in the deterministic

setting. Assuming that κ2 is not a Dirichlet eigenvalue of −∆− q(x) on D, the Dirichlet

boundary value problem of (∆ + κ2 + q(x))u = 0 in D with any suitable Dirichlet data

u|∂D = f is well-posed. Consequently, the Dirichlet-to-Neumann (DN) map

Λq,κ2 : f 7→ ∂νu
∣∣
∂D

is well-defined. The typical inverse problem is to determine q(x) from Λq,κ2 . For general

κ2, one may replace the measurement Λq,κ2 by the set of Cauchy data

Cq,κ2 :=
{(
u|∂D, ∂νu

∣∣
∂D

)
: u ∈ H1(D) satisfies (∆ + κ2 + q)u = 0 in D

}
endowed with the Hausdorff distance

dist(Cq1,κ2 , Cq2,κ2) = max

{
max

(f,g)∈Cq1
max

(f̃ ,g̃)∈Cq2

∥(f, g)− (f̃ , g̃)∥H1/2⊕H−1/2

∥(f, g)∥H1/2⊕H1/2

,

max
(f,g)∈Cq2

max
(f̃ ,g̃)∈Cq1

∥(f, g)− (f̃ , g̃)∥H1/2⊕H−1/2

∥(f, g)∥H1/2⊕H1/2

}
.

(1.8)

where

∥(f, g)∥H1/2⊕H1/2 =
(
∥f∥2

H1/2(∂D)
+ ∥g∥2

H−1/2(∂D)

)1/2
.

The global injectivity of q 7→ Λq,κ2 or q 7→ Cq,κ2 has been established under different

smoothness assumptions on q, see [6–8,11,42,49]. Logarithmic type stability estimates for

this inverse problem could be found in [3, 6, 40, 41, 43]. The optimality of the logarithmic

stability estimates (in terms of exponential instability) were proved in [20,21,30]. Taking

the frequency κ into consideration, the increasing stability estimates at the high frequency

were derived in [22–25, 44, 45]. On the other hand, following Mandache’s approach [30],

one can show that the increasing stability estimates are optimal [21,27]. In this paper, we

prove the stability estimate of the inverse boundary value problem (see Theorem 1.1) in

terms of an alternative measurement (the impedance-to-Neumann map (1.6)), which has

the following two advantages:

� can be easily quantified in terms of the operator norm (compare with the Cauchy

data set Cq,κ2 with Hausdorff distance (1.8)); and

� there is no eigenvalue issue in this formulation (compare with the DN map Λq,κ2).

1.2. Statistical models

From now on, we additionally assume that D has smooth boundary ∂D. In a recent pa-

per [2], Abraham and Nickl study the Calderón problem on determination of the conduc-

tivity parameter by the corresponding DN map, based on statistical noise models. Their
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paper gives rigorous statistical guarantees for the performance of the Bayesian approach

to such statistical Calderón problem, a typical nonlinear inverse problem. Their results

also provide us some interpretations of Alessandrini’s stability estimate [3] and Manache’s

exponential instability [30] from the viewpoint of the Bayesian de-noise methodology. In

this work, we would like to extend Abraham and Nickl’s results to the stationary wave

equation with a potential (1.2), especially, to verify the increasing stability in the perspec-

tive of statistical Bayesian methodology in the non-linear settings. The study of inverse

problems in the Bayesian inversion framework has recently attracted much attention since

Stuart’s seminal article [48] (see also [10]). In addition, the monographs [17, 35] provide

mathematical foundations of statistical inverse problems in great detail. On the other

hand, some computational aspects of the inversion theory can be found in [26]. For fur-

ther results on the Bayesian inverse problems in the non-linear settings, we refer the reader

to other interesting papers [1, 14,18,32–34,36–39,51].

Before stating the main results of this paper, we would like to briefly describe three

noise models mentioned in [2]. Let us define the map

M̃q,κ2 := Mq,κ2 −M0,κ2 ,

where M0,κ2 is the impedance-to-Neumann map (1.6) corresponding to q = 0. Let 1Ip
be the indicator of Ip, where {Ip}p≤P is a collection of disjoint measurable subsets of ∂D.

Denote ψj = cj1Ij , where cj is the normalization constant so that ∥ψj∥L2(∂D) = 1. We

modify the electrode model [2, (1.2)] by considering the following model:

(1.9) Ỹjℓ = ⟨M̃q,κ2 [ψj ], ψℓ⟩L2(∂D) + εg̃jℓ, g̃jℓ
iid∼ CN (0, 1), j, ℓ ≤ P.

Hereafter, CN (0, 1) denotes the complex normal defined by ζ ∼ CN (0, 1) if and only if

ζ = ℜζ+ iℑζ, where ℜζ, ℑζ are iid standard normals, denoted by N (0, 1). For simplicity,

we assume that the noise level ε > 0 is uniform for all j, ℓ ≤ P .

We now introduce another measurement model based on the Laplace–Beltrami oper-

ator on ∂D. Let {ϕj} = {ϕj}∞j=1 be the set of real-valued eigenfunctions of the Laplace–

Beltrami operator on ∂D, which forms an orthonormal basis of L2(∂D). Scaling {ϕj}
appropriately, {ϕ(p)j } also forms an orthonormal basis of Hp(∂D) with p ∈ R, where

Hp(∂D) is the L2(∂D)-based Sobolev space defined on ∂D, provided that ∂D is suffi-

ciently smooth, with the convention H0(∂D) = L2(∂D). The data in the spectral noise

model is given by

(1.10) Ỹjℓ = ⟨M̃q,κ2 [ϕ
(p)
j ], ϕ

(0)
j ⟩L2(∂D) + εg̃jℓ, g̃jℓ

iid∼ CN (0, 1), j, ℓ ≤ P

with p ∈ R. According to [2], the parameter p is chosen by the experimenter and it reflects

how the signal-to-error ratio varies with the frequency j of ϕ
(p)
j , as p increases, the signal

at high frequencies (p is large) decreases compared to the signal at low frequencies.
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We want to make further remarks about (1.10). Note that we can identify the Hilbert

space Hp(∂D) over the complex field with the Hilbert space Hp
R(∂D) over the real field

R. Now the model (1.10) can be written as

ℜỸjℓ = ⟨ℜM̃q,κ2 [ϕ
(p)
j ], ϕ

(0)
ℓ ⟩L2(∂D) + εℜg̃jℓ,

ℑỸjℓ = ⟨ℑM̃q,κ2 [ϕ
(p)
j ], ϕ

(0)
ℓ ⟩L2(∂D) + εℑg̃jℓ.

Note that M̃q,κ2 is a complex linear map on Hp(∂D). It is not difficult to see that ℜM̃q,κ2

is a real linear map on Hp
R(∂D) and

ℜM̃q,κ2 [iϕ
(p)
j ] = ℜ

(
iM̃q,κ2 [ϕ

(p)
j ]
)
= −ℑM̃q,κ2 [ϕ

(p)
j ].

By writing gjℓ = ℜg̃jℓ, g′jℓ = −ℑg̃jℓ and Yjℓ = (ℜỸjℓ,−ℑỸjℓ)⊺, we see that the model (1.10)

is equivalent to

Yjℓ =

⟨ℜM̃q,κ2 [ϕ
(p)
j ], ϕ

(0)
ℓ ⟩L2(∂D) + εgjℓ,

⟨ℜM̃q,κ2 [iϕ
(p)
j ], ϕ

(0)
ℓ ⟩L2(∂D) + εg′jℓ

for gjℓ, g
′
jℓ

iid∼ N (0, 1). In other words, M̃q,κ2 acting on Hr(∂D) is completely determined

by ℜM̃q,κ2 acting on Hp
R(∂D) and vice versa.

The third model studied here is a continuous model, which can be formally considered

as the limit model of the discrete one (1.2) as j, ℓ → ∞. To be precise, we consider a

Gaussian white noise model on a space of Hilbert–Schmidt operators (a separable Hilbert

space). Each real linear operator T : Hp
R(∂D) → L2(∂D) can be represented as follows:

for any real f ∈ Hp(∂D),

T (f) :=
∞∑

j,ℓ=1

tjℓ⟨f, ϕ
(p)
j ⟩Hp(∂D)ϕ

(0)
ℓ =

∞∑
j,ℓ=1

tjℓb
(p)
jℓ (f),

T (if) := −
∞∑

j,ℓ=1

t′jℓ⟨f, ϕ
(p)
j ⟩Hp(∂D)ϕ

(0)
ℓ =

∞∑
j,ℓ=1

t′jℓb̃
(p)
jℓ (if),

(1.11)

where

b
(p)
jℓ (f) = ϕ

(p)
j ⊗ ϕ

(0)
ℓ (f) = ⟨f, ϕ(p)j ⟩Hp(∂D)ϕ

(0)
ℓ ,

b̃
(p)
jℓ (if) = iϕ

(p)
j ⊗ ϕ

(0)
ℓ (if) = −⟨f, ϕ(p)j ⟩Hp(∂D)ϕ

(0)
ℓ and

∞∑
j,ℓ=1

(
t2j,ℓ + (t′jℓ)

2
)
<∞.

Denote Hp the space of all real-valued Hilbert–Schmidt operators Hp
R(∂D) → L2(∂D) and
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Hp itself a Hilbert space with the inner product

⟨S, T ⟩Hp =

∞∑
j,ℓ=1

(sjℓtjℓ + s′jℓt
′
jℓ)

=

∞∑
j,ℓ=1

(
⟨Sϕ(p)j , ϕ

(0)
ℓ ⟩L2(∂D)⟨Tϕ

(p)
j , ϕ

(0)
ℓ ⟩L2(∂D)

+ ⟨S(iϕ(p)j ), ϕ
(0)
ℓ ⟩L2(∂D)⟨T (iϕ

(p)
j ), ϕ

(0)
ℓ ⟩L2(∂D)

)
,

where sjℓ, s
′
jℓ, tjℓ, t

′
jℓ are defined as in (1.11).

The continuous model with the Gaussian white noise defined on the space of Hilbert–

Schmidt operators Hp is given by

(1.12a) Y = ℜM̃q,κ2 + εW

which is realized as a Gaussian process indexed by Hp, namely,

(1.12b) ⟨Y, T ⟩Hp = ⟨ℜM̃q,κ2 , T ⟩Hp + ε⟨W, T ⟩Hp for all T ∈ Hp,

where

⟨W, T ⟩Hp =

∞∑
j,ℓ=1

gjℓ⟨Tϕ
(p)
j , ϕ

(0)
ℓ ⟩L2(∂D) +

∞∑
j,ℓ=1

g′jℓ⟨T (iϕ
(p)
j ), ϕ

(0)
ℓ ⟩L2(∂D)

for gj,ℓ, g
′
j,ℓ

iid∼ N (0, 1). In other words, the process W is an isonormal Gaussian process

indexed by the Hilbert space Hp, see e.g., the monographs [17,35]. Note that

E[W(T )W(S)] = ⟨T, S⟩Hp for all T, S ∈ Hp.

Let Pq,κ2

ε (also depends on p) denote the probability law of Y in (1.12a) and Eq,κ2

ε be the

corresponding expectation. One sees that P0,κ2

ε is the probability law of εW. We mainly

focus on the model (1.12a), see Theorems 1.3 and 1.7 below. By following the ideas

in [2, Appendix D], one can also obtain similar results for the model (1.9) and (1.10).

The work [2] establishes the “equivalence” of three models described above for Calderón’s

problem. Likewise, the same proofs work for the measurement Mq,κ2 here.

1.3. Statistical inverse problem

Let D0 ⋐ D be an open domain1, α > 0 and M > 0. We define

VD0 =
{
q ∈ C0(D,R) : q(x) = 0 in D \D0

}
,

Vα
D0

(M) =
{
q ∈ VD0 : ∥q∥Hα(D) ≤M

}
.

We will prove a contraction result for the continuous model (1.12a) in the next theorem.

1This means that D0 ⊂ D.
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Theorem 1.3. Let M > 0 and 0 < c0 < 1 be real parameters. Let D be a bounded

smooth domain in Rd satisfying (1.1) and D0 ⋐ D. Let p ≥ 2d−1 and let α, β be integers

satisfying α > β ≥ 7d/2. Then there exist positive constants C = C(D, c0, p, β,M,D0) and

κ0 = κ0(α,D,M), and for each κ ≥ κ0 there exists a measurable function qε,κ2 = qε,κ2(Y )

of the observations Y ∼ Pq,κ2

ε such that

sup
κ≥κ0, q∈Vα

D0
(M)

Pq,κ2

ε

(
∥qε,κ2 − q∥∞ > Cξκ(ε)

)
→ 0 as ε→ 0,

where the factor ξκ(ε) is explicitly defined by

(1.13) ξκ(ε) := κd/2+1ε
α

2(α+d)(p−d+1) +

(
κ+ log

1

ε

)−d/2

for all sufficiently small ε > 0.

It is important to point out that the contraction rate ξk(ε) consists of two parts: a

logarithmic rate and a Hölder rate. The logarithmic rate decreases as κ increases. In

other words, the rate becomes Hölder-type dominated at high frequencies. Theorem 1.3

reflects the phenomenon of increasing stability in the determination of the potential by

the impedance-to-Neumann map as explained in Theorem 1.1.

In accordance with (1.13), even though the statistical rate is dominated by the term

κd/2+1ε
α

2(α+d)(p−d+1) at large κ, the constant κd/2+1 there suggests the decline in experi-

mental quality if κ is “too large”. Since the limit in Theorem 1.3 is uniform with respect

to κ, we could choose κ as a function of the noise level ε of the statistical model described

in (1.12a) and (1.12b), for example, we can take

(1.14) κ(ε) =
1

εθ
with

(
d

2
+ 1

)
θ ≤ α

2(α+ d)(p− d+ 1)
,

which gives

ξ(ε) = ξκ(ε)(ε) = ε
α

2(α+d)(p−d+1)
−
(

d
2
+1
)
θ
+

(
1

εθ
+ log

1

ε

)−d/2

≤ ε
α

2(α+d)(p−d+1)
−
(

d
2
+1
)
θ
+ εdθ/2 ≤ 2εθ0 ,

where θ0 := min
{

α
2(α+d)(p−d+1) −

(
d
2 + 1

)
θ, dθ2

}
. Note that θ0 ∈ (0, 1). We now obtain a

corollary from Theorem 1.3.

Corollary 1.4. Assume that the assumptions of Theorem 1.3 hold. Let κ be chosen

as in (1.14), and write Pq
ε = Pq,κ2

ε and qε = qε,κ2. Then there exist positive constants

C = C(D, c0, p, β,M,D0) such that

(1.15) sup
q∈Vα

D0
(M)

Pq
ε

(
∥qε − q∥∞ > Cεθ0

)
→ 0 as ε→ 0,

where θ0 = min
{

α
2(α+d)(p−d+1) −

(
d
2 + 1

)
θ, dθ2

}
.
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A Hölder contraction rate in (1.15) indicates that this inverse boundary value prob-

lem is “mildly” ill-posed by aligning the wave number κ wisely with the noise level ε.

The Hölder contraction rate corresponds to the Hölder stability estimate in the inverse

boundary problem for the wave equation [4].

The construction of the estimator qε,κ2 in Theorem 1.3 follows from the Bayesian

approach to inverse problems explained in great details in [10,17,35,48]. Roughly speaking,

this estimator is constructed by the posterior mean arising from some given Gaussian

process prior. To this end, we would like to discuss the existence of a posterior distribution

in the Gaussian white noise model. As above, W is a centered Gaussian white noise indexed

by T ∈ Hp, which we also denote as (W(T ) : T ∈ Hp), with covariance E(W(T )W(S)) =

⟨T, S⟩Hp . Since the covariance operator of W is not of trace class, W cannot be realized as

a random element in Hp. To overcome this inconvenience, we can expand the space of Hp

to a weighed Hilbert space as described in [34, Section 7.4, (110)]. Similar to [2, (13)], by

the Cameron–Martin theorem, one can show that the law Pq,κ2

ε is dominated by the law

P0,κ2

ε (i.e., the law εW) with the log-likehood function

(1.16) ℓ(q) ≡ log pq,κ
2

ε (Y ) := log
dPq,κ2

ε

dP0,κ2

ε

(Y ) =
1

ε2
⟨ℜM̃q,κ2 , Y ⟩Hp −

1

2ε2
∥ℜM̃q,κ2∥2Hp

for q ∈ VD′ with D′ ⋐ D, see also [34, Section 7.4, (110)]. The derivation of (1.16) requires

the Borel measurability of the mapping q 7→ ℜM̃q,κ2 from the (Polish) space VD′ equipped

with the ∥·∥∞-topology into the Hilbert space Hp, which can be guaranteed by Lemma 2.6

below.

Assume that Π is a prior probability distribution on (VD′ ,BVD′ ), where BVD′ is the

Borel σ-field of the (Polish) space VD′ . The Bayes theorem implies

(1.17) Π(B|Y ) =

∫
B pq,κ

2

ε (Y ) dΠ(q)∫
VD′

pq,κ
2

ε (Y ) dΠ(q)
for all B ∈ BVD′ ,

see e.g., [34, Section 7.4, (111)]. In what follows, we denote EΠ(·) the expectation oper-

ator with respect to the prior and EΠ( · |Y ) the expectation operator with respect to the

posterior.

Inspire by the prior construction introduced in [2], here we consider the priors that

are given by appropriate scalings of a Gaussian process prior. For this end, a base prior

Π′ satisfying the following assumption is chosen (we consider priors which are slightly

smooter than [2, Assumption 1] in view of the stability estimate proved in Theorem 2.7

below, see also [35, Condition 2.2.1]):

Assumption 1.5. Let Π′ be a centered Gaussian Borel probability measure on the Ba-

nach space C0(D), and let α, β be integers satisfying α > β ≥ 7d/2. Assume that
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Π′(Hβ(D)) = 1 and the reproducing kernel Hilbert space (RKHS) (H, ∥ · ∥H) of Π′ is

continuously embedded into the Sobolev space Hα(D).

Example 1.6. As explained in [2], the restrictions of Gaussian processes with covariance

given by Whittle–Matérn kernels satisfy Assumption 1.5 for any α, β satisfying 2 + d
2 <

β < α− d
2 and H = Hα(D).

Now let ζ : D → [0, 1] be a smooth cutoff function satisfying that ζ = 1 on D0 and

supp(ζ) ⊂ D1 where D0 ⋐ D1 ⋐ D. The induced prior on q is given by

(1.18) q = ε
d

α+d ζθ′ where θ′ ∼ Π′.

The key parameter ε can be interpreted as a penalized parameter. The law on q is denoted

by Πε. We also assume that the “true” potential q0 lies inside the induced priors on q,

i.e.,

q0 = ε
d

α+d ζθ0 for some θ0 ∈ Hα(D) with supp(θ0) ⊂ D0.

We now state a key contraction result for the posterior distribution. Theorem 1.3 then fol-

lows from this contraction result. Let Π( · |Y ) be the posterior distribution of q conditioned

on the observations Y in the model (1.12a).

Theorem 1.7. Let M > 0, 0 < c0 < 1 and p > 2d − 2 be given parameters. Assume

that D is a bounded smooth domain in Rd satisfying (1.1) and D0 ⋐ D1 ⋐ D. Let α, β

be integers satisfying α > β ≥ 7d/2. The base prior Π′ satisfies Assumption 1.5 and the

rescaled prior Πε is given in (1.18). Assume that the “ground truth” q0 belongs to the set

Q := VD0 ∩
{
q ∈ H : ∥q∥H ≤M

}
,

where H is the RKHS given in Assumption 1.5. Then there exists a positive constant

C = C(D, c0, p, α, β,M,D1, D0) such that

(1.19) Πε

(
∥q − q0∥L∞(D) > Cξκ(ε)|Y

) Pq0,κ
2

ε−−−−→ 0 as ε→ 0,

where ξκ(ε) is given in (1.13). In addition, there exists a constant κ0 = κ0(α,D,M) such

that for each K > C, it holds that

(1.20) sup
κ≥κ0, q0∈Q

Pq0,κ2

ε

(
∥EΠε(q|Y )− q0∥L∞(D) > Kξκ(ε)

)
→ 0 as ε→ 0.

By setting qε,κ2 = EΠε(q|Y ), it is clear that Theorem 1.3 is an easy consequence of

(1.20). Indeed, since α > 7d/2, we can choose an integer β ≥ 7d/2, and, therefore,

Assumption 1.5 holds.
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1.4. Organization of the paper

We postpone the proof of Theorem 1.1 to Appendix A. In order to explain the ideas

clearly, we split the proof of Theorem 1.7 in Sections 2–4. In order to make the paper self-

contained, we also provide a proof of the well-posedness for the impedance boundary-value

problem (1.2) in Appendix B.

2. Stability estimate in terms of Hilbert—Schmidt norm

In order to prove Theorem 1.7, we need to measure ℜMq1,κ2−ℜMq2,κ2 (as well asMq1,κ2−
Mq2,κ2 , see Lemma 2.5 below) in terms of Hilbert–Schmidt norm rather than the operator

norm used in Theorem 1.1. In order to do so, we will consider the low rank approximation

by projecting ℜM̃q,κ2 onto a finite-dimensional subspace by employing the idea in [2].

Our focus here is to keep track of the dependence of the key parameter κ. Recall that the

collection {(b(r)jℓ , b̃
(r)
jℓ )}j,ℓ∈N forms an orthonormal basis of the space of Hilbert–Schmidt

operators mapping from Hr
R(∂D) into L2(∂D), where

b
(r)
jℓ (f) = ϕ

(r)
j ⊗ ϕ

(0)
ℓ (f) = ⟨f, ϕ(r)j ⟩Hr(∂D)ϕ

(0)
ℓ ,

b̃
(r)
jℓ (if) = iϕ

(r)
j ⊗ ϕ

(0)
ℓ (if) = −⟨f, ϕ(r)j ⟩Hr(∂D)ϕ

(0)
ℓ

for all real-valued f ∈ Hr(∂D). For separable Hilbert spaces A and B, let L(A,B) be

the space of bounded linear operators mapping from A into B endowed with the operator

norm ∥ · ∥L(A,B), and let L2(A,B) be the space of Hilbert–Schmidt operators mapping

from A into B equipped with the inner product ⟨ · , · ⟩L2(A,B). Moreover, similar as above,

define the orthonormal basis {(b(p,r)jℓ , b̃
(p,r)
jℓ )}j,ℓ∈N of L2(H

p
R, H

r) = L2(H
p
R(∂D), Hr(∂D))

by

b
(p,r)
jℓ (f) = ϕ

(p)
j ⊗ ϕ

(r)
ℓ (f) = ⟨f, ϕ(p)j ⟩Hr(∂D)ϕ

(r)
ℓ ,

b̃
(p,r)
jℓ (if) = iϕ

(p)
j ⊗ ϕ

(r)
ℓ (if) = −⟨f, ϕ(p)j ⟩Hr(∂D)ϕ

(r)
ℓ

for all real-valued f ∈ Hr(∂D). Using this convention, one sees that Hq = L2(H
q
R, H

0).

We first recall two lemmas controlling Hilbert–Schmidt norms for different domains and

codomains in terms of each other, and in terms of operator norms.

Lemma 2.1. [2, Lemma 17] For p, r, s, t ∈ R, let

T ∈ span
{
(b

(p,r)
jℓ , b̃

(p,r)
jℓ ) : 1 ≤ j ≤ J, 1 ≤ ℓ ≤ K

}
.

Then there is a constant C, depending on D and the differences r− p and s− t, such that

∥T∥L2(Hr
R,H

s) ≤ C
(
1 + J

1
d−1
)(p−r)+(1 +K

1
d−1
)(s−t)+∥T∥L2(H

p
R,H

t),

where x+ = max{x, 0} for x ∈ R.
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Lemma 2.2. [2, Lemma 18] For p, r, s, t ∈ R with p ≤ r and s ≤ t, let T ∈ L(Hp−(d−1)
R ,

Ht). Then T ∈ L2(H
r
R, H

s) and there exists a constant C, depending on D and r − p,

s− t, such that

(2.1) ∥T∥L2(Hr
R,H

s) ≤ C∥T∥L(Hp−(d−1)
R ,Ht)

and the following low-rank approximation holds:

(2.2) ∥T − πJKT∥L2(Hr
R,H

s) ≤ C∥T∥L(Hp−(d−1)
R ,Ht)

max
{
(1 + J

1
d−1 )p−r(1 +K

1
d−1 )s−t

}
,

where the projection map πJK is given by

πJKT =

 ∑
j≤J,ℓ≤K

⟨T, b(r)jℓ ⟩Hrb
(r)
jℓ ,

∑
j≤J,ℓ≤K

⟨T, b̃(r)jℓ ⟩Hr b̃
(r)
jℓ


=

 ∑
j≤J,ℓ≤K

⟨Tϕ(r)j , ϕ
(0)
ℓ ⟩L2(∂D)b

(r)
jℓ ,

∑
j≤J,ℓ≤K

⟨T (iϕ(r)j ), ϕ
(0)
ℓ ⟩L2(∂D)b̃

(r)
jℓ

 .

We now show the following lemma.

Lemma 2.3. Assume that D is a bounded smooth domain in Rd satisfying (1.1). Let q1, q2

be real-valued functions satisfying (1.3). Suppose further that ∥ℜMq1,κ2 −ℜMq2,κ2∥Hp <

1. Then for parameters satisfying d − 1 < m ≤ p, there exists a positive constant C0 =

C0(D, c0, p,m), which is independent of κ, such that

(2.3) ∥ℜMq1,κ2 −ℜMq2,κ2∥L(Hm
R ,L2) ≤ C0∥ℜMq1,κ2 −ℜMq2,κ2∥

d−1−m
d−1−p

Hp
.

Note that it suffices to take C0(D, c0, p,m) > 1.

Remark 2.4. Note that by (2.1), for each m+ d− 1 ≤ p, we have

(2.4) ∥ℜMq1,κ2 −ℜMq2,κ2∥Hp ≤ C∥ℜMq1,κ2 −ℜMq2,κ2∥L(Hm
R ,L2)

for some C = C(D,m, p).

Proof of Lemma 2.3. It is not difficult to check that the operator norm of a linear operator

between separable Hilbert spaces is bounded by its Hilbert norm: For each m ∈ R, one
has

∥ℜMq1,κ2 −ℜMq2,κ2∥L(Hm
R ,L2)

≤ ∥ℜMq1,κ2 −ℜMq2,κ2∥Hm

≤ ∥ℜMq1,κ2 − πJJℜMq1,κ2∥Hm + ∥ℜMq2,κ2 − πJJℜMq2,κ2∥Hm

+ ∥πJJℜMq1,κ2 − πJJℜMq2,κ2∥Hm .
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Using (2.2)2 in Lemma 2.2, together with the fact ∥ℜMqj ,κ2∥L(L2
R,L

2) ≤ ∥Mqj ,κ2∥L(L2,L2) ≤
C(D, c0) (which is a consequence of the energy estimate (1.5)), for each j = 1, 2, we know

that there exists a positive constant C = C(D, c0,m) such that

(2.5) ∥ℜMqj ,κ2 − πJJℜMqj ,κ2∥Hm ≤ C(1 + J
1

d−1 )d−1−m for all m ≥ d− 1.

On the other hand, by Lemma 2.13, we see that there exists a positive constant C =

C(D, p,m) such that

∥πJJℜMq1,κ2 − πJJℜMq2,κ2∥Hm

≤ C(1 + J
1

d−1 )p−m∥πJJℜMq1,κ2 − πJJℜMq2,κ2∥Hp

≤ C(1 + J
1

d−1 )p−m∥ℜMq1,κ2 −ℜMq2,κ2∥Hp for all p ≥ m.

From three estimates above, it follows easily that there exists a positive constant C =

C(D, c0, p,m) such that

∥ℜMq1,κ2 −ℜMq2,κ2∥L(Hm
R ,L2)

≤ C
(
(1 + J

1
d−1 )d−1−m + (1 + J

1
d−1 )p−m∥ℜMq1,κ2 −ℜMq2,κ2∥Hp

)
≤ C

(
J

d−1−m
d−1 + J

p−m
d−1 ∥ℜMq1,κ2 −ℜMq2,κ2∥Hp

)
for all d− 1 ≤ m ≤ p and integers J ≥ 1. We now restrict the parameters d− 1 < m ≤ p.

Since ∥ℜMq1,κ2 −ℜMq2,κ2∥Hp < 1, choosing

J =
⌊
∥ℜMq1,κ2 −ℜMq2,κ2∥

d−1
d−1−p

Hp

⌋
in the estimate above, (2.3) follows immediately.

We next show that measurements ℜMq1,κ2 −ℜMq2,κ2 and Mq1,κ2 −Mq2,κ2 are equiv-

alent.

Lemma 2.5. Suppose that all assumptions in Lemma 2.3 are satisfied. Then for each

d− 1 < m ≤ p− d+ 1, we have

∥Mq1,κ2 −Mq2,κ2∥Hp = ∥ℜMq1,κ2 −ℜMq2,κ2∥Hp

and

∥ℜMq1,κ2 −ℜMq1,κ2∥L(Hm
R ,L2) ≤ ∥Mq1,κ2 −Mq1,κ2∥L(Hm,L2)

≤ 2∥ℜMq1,κ2 −ℜMq1,κ2∥L(Hm
R ,L2).

Here ∥Mq1,κ2 −Mq2,κ2∥Hp is defined in terms of the basis {b(p)jℓ }.
2We choose s = t = 0, r = m ≥ d− 1, p = d− 1, K = J and T = ℜMqj ,κ2 (for j = 0, 1).
3We choose s = t = 0, r = m, K = J and T = πJJℜMq1,κ2 − πJJℜMq1,κ2 .
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Proof. The first estimate is obvious since

(ℑMq1,κ2 −ℑMq2,κ2)(ϕ
(p)
j ) = (ℜMq1,κ2 −ℜMq2,κ2)(iϕ

(p)
j ) for all j.

The first inequality in the second estimate is clear. On the other hand, we can derive

∥Mq1,κ2 −Mq2,κ2∥L(Hm,L2)

= sup
f ̸=0

∥(Mq1,κ2 −Mq2,κ2)(f)∥L2(∂D)

∥f∥Hm(∂D)

≤ sup
f ̸=0

(∥(ℜMq1,κ2 −ℜMq2,κ2)(f)∥L2(∂D)

∥f∥Hm(∂D)
+

∥(ℜMq1,κ2 −ℜMq2,κ2)(if)∥L2(∂D)

∥if∥Hm(∂D)

)
≤ 2∥ℜMq1,κ2 −ℜMq1,κ2∥L(Hm

R ,L2),

which implies the second inequality of the second estimate.

We now prove the continuity of the mapping q 7→ ℜMq,κ2 in terms of Hilbert–Schmidt

norm.

Lemma 2.6. For each p > 2d− 2, we have

∥ℜMq1,κ2 −ℜMq2,κ2∥Hp ≤ C∥q1 − q2∥L∞(D)

for some positive constant C = C(D, c0, p), which is independent of κ.

Proof. For p > 2d−2, we can choose m satisfying d−1 < m ≤ p−d+1. For each j = 1, 2,

let uj be the solution of (1.2) with q = qj , then(∆ + κ2 + q1)(u1 − u2) = (q2 − q1)u2 in D,

∂ν(u1 − u2)− iκ(u1 − u2) = 0 on ∂D.

By Theorem B.3, we can obtain

∥∇(u1 − u2)∥L2(∂D) ≤ C∥(q1 − q2)u2∥L2(D) ≤ C∥u2∥L2(D)∥q1 − q2∥L∞(D)

≤ Cκ−1∥g∥L2(∂D)∥q1 − q2∥L∞(D) ≤ Cκ−1∥g∥Hm(∂D)∥q1 − q2∥L∞(D),

which implies

∥Mq1,κ2 −Mq2,κ2∥L(Hm,L2) ≤ C∥q1 − q2∥L∞(D)

for some positive constant C = C(D, c0). Our lemma then follows from (2.4) and

Lemma 2.5.

We end this section by proving a result analogue to Theorem 1.1, but in terms of

Hilbert–Schmidt norms.
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Theorem 2.7. Let D be a bounded smooth domain in Rd satisfying (1.1). Assume that q1,

q2 are real-valued functions satisfying (1.3), supp(q1 − q2) ⊂ D and supj=1,2 ∥qj∥Hβ(D) ≤
M for some integer β ≥ 7d/2, and fix p ≥ 2d − 1. Then there exist a positive constant

C = C(D, c0, p, β,M, supp(q1 − q2)), independent of κ, such that

∥q1 − q2∥L∞(D) ≤ Cξ̃κ
(
∥ℜMq1,κ2 −ℜMq2,κ2∥Hp

)
,

where ξ̃κ is given by

(2.6) ξ̃κ(ζ) =


0 if ζ = 0,

κd/2+1ζ
1

2(p−d+1) +
(
κ+ 1

p−d+1 log
1
ζ

)−d/2
if 0 < ζ < 1

(2C0e)p−d+1 ,

1 otherwise.

Here C0 is the constant obtained in Lemma 2.3.

Proof. We write β = 3s − d and s is an integer satisfying s ≥ 3d
2 , and so ∥qj∥H2s(D) ≤

∥qj∥Hβ(D) ≤M . By the Sobolev embedding and Theorem 1.1 (with m = d), one sees that

there exists a positive constant C = C(D,β,M, supp(q1 − q2)) such that

∥q1 − q2∥L∞(D)

≤ C∥(q1 − q2)χD∥Hs−d(Rd) ≤ C∥(q1 − q2)χD∥1/2H−s(Rd)
∥q1 − q2∥1/2H3s−d(D)

≤ Cκd/2+3/2E1/2 + C

(
κ+ log

1

E

)− 1
2
(s− d

2
)

≤ Cκd/2+3/2E1/2 + C

(
κ+ log

1

E

)−d/2

(2.7)

provided E = ∥Mq1,κ2 − Mq2,κ2∥L(Hd,L2) < 1/e. Combining Lemmas 2.3 and 2.5 (with

m = d) yields that

E ≤ ∥ℜMq1,κ2 −ℜMq2,κ2∥L(Hd
R,L

2) ≤ 2C0∥ℜMq1,κ2 −ℜMq2,κ2∥
1

p−d+1

Hp

with C0 = C0(D, c0, p) given in Lemma 2.3, provided ∥ℜMq1,κ2−ℜMq2,κ2∥Hp < 1. There-

fore the condition E < 1/e can be guaranteed as long as

(2.8) ζ := ∥ℜMq1,κ2 −ℜMq2,κ2∥Hp <
1

(2C0e)p−d+1
.

Hence, whenever (2.8) holds, we obtain from (2.7) there exists a positive constant C =

C(D, c0, p, β,M, supp(q1 − q2)) such that

∥q1 − q2∥L∞(D) ≤ Cκd/2+1ζ
1

2(p−d+1) + C

(
κ+

1

p− d+ 1
log

1

ζ

)−d/2

.

On the other hand, if ζ ≥ 1/(2C0e)
p−d+1, we simply consider the trivial bound ∥q1 −

q2∥L∞(D) ≤ 2M and the proof is completed.
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3. Tests and priors’ properties

To prove Theorem 1.7, motivated by [15], we would like to prove the existence of certain

test functions, i.e., {0, 1}-valued measurable functions, by showing the existence of appro-

priate estimators having good concentration properties. Recall that Pq,κ2

ε is the probability

law of Y arising from (1.12a) and Eq,κ2

ε is the corresponding expectation. Using (2.5), we

can prove the following lemma by following the argument in [2, Lemma 8].

Lemma 3.1. Assume that D satisfies (1.1). Let q0 ∈ L∞(D) be the “ground truth” with

∥q0∥L∞(D) ≤ M0 for some M0 > 0. Let M1 > 0 and denote κ0 = κ0(D,max{M0,M1})
the positive constant given in (1.4). Fix any wave number κ ≥ κ0 and real parameters

0 < δ < 1 as well as p ≥ (d− 1)/δ. Let ηε > 0 satisfy

ηεε
−(1−δ) → ∞ as ε→ 0.

For any τ > 0, we write Cτ =
√
2(1 + 2τ + 2τ2). Then there exist a test ψ = ψ(Y ) with

Y ∼ Pq0,κ2

ε such that for all sufficiently small ε > 0, one has

(3.1a) Eq0,κ2

ε ψ ≤ 2 exp
(
− τ(ηε/ε)

2
)

and for each q ∈ L∞(D) with ∥q∥L∞(D) ≤ M1 and ∥ℜM̃q,κ2 − ℜM̃q0,κ2∥Hp ≥ 2Cτηε, we

have

(3.1b) Eq,κ2

ε [1− ψ] ≤ 2 exp
(
− τ(ηε/ε)

2
)
.

Proof. For any measurable set A, we denote 1A the characteristic function of A. We

define the random element M̂ by

M̂ =

 ∑
j,ℓ≤Jε

M̂jℓb
(p)
jℓ ,

∑
j,ℓ≤Jε

M̂′
jℓb̃

(p)
jℓ


where Jε = ⌊ηε/ε⌋ and

M̂jℓ = ⟨Y, (b(p)jℓ , 0)⟩Hp = ⟨ℜM̃q0,κ2(ϕ
(p)
j ), ϕ

(0)
ℓ ⟩L2(∂D) + εgjℓ,

M̂′
jℓ = ⟨Y, (0, b̃(p)jℓ )⟩Hp = ⟨ℜM̃q0,κ2(iϕ

(p)
j ), ϕ

(0)
ℓ ⟩L2(∂D) + εg′jℓ

where from (1.12b) we see that gjℓ = ⟨W, (b
(p)
jℓ , 0)⟩Hp

iid∼ N (0, 1) and g′jℓ = ⟨W, (0, b̃
(p)
jℓ )⟩Hp

iid∼
N (0, 1).

We want to show that M̂ is a legitimate estimator of M̃q,κ2 . Let C > 0 be a positive

constant to be chosen later. It is easy to see that

Pq,κ2

ε

(
∥M̂ − ℜM̃q,κ2∥Hp > Cηε

)
≤ 1

{
∥ℜM̃q,κ2 − πJεJεℜM̃q,κ2∥Hp >

1

2
Cηε

}
+ Pq,κ2

ε

(
∥M̂ − πJεJεℜM̃q,κ2∥Hp >

1

2
Cηε

)
,

(3.2)
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which is known as a bias-variance trade-off inequality.

We first estimate the bias term. Similar to (2.5) (with m = p), we obtain that

∥ℜM̃q,κ2 − πJεJεℜM̃q,κ2∥Hp ≤ C1J
d−1−p
d−1

ε

for some positive constant C1 = C1(D, c0, p). Hence we can estimate the bias term as

1

{
∥ℜM̃q,κ2 − πJεJεℜM̃q,κ2∥Hp >

1

2
Cηε

}
≤ 1

{
C1J

1− p
d−1

ε >
1

2
Cηε

}
≤ 1

{
C1

(ηε
2ε

)1− p
d−1

>
1

2
Cηε

}
= 1

{
C12

p
d−1 ε

p
d−1

−1ε−(1−δ) p
d−1 > C(ηεε

−(1−δ))
p

d−1

}
= 1

{
C12

p
d−1 ε

pδ
d−1

−1 > C(ηεε
−(1−δ))

p
d−1

}
.

Since pδ ≥ d− 1 and ηεε
−(1−δ) → ∞, we conclude that

1

{
∥ℜM̃q,κ2 − πJεJεℜM̃q,κ2∥Hp >

1

2
Cηε

}
≤ 1

{
C1J

1− p
d−1

ε >
1

2
Cηε

}
= 0

for all sufficiently small ε > 0.

Next, we estimate the variance term. Applying Parseval’s identity yields

∥M̂ − πJεJεℜM̃q,κ2∥2Hp
=
∑

j,ℓ≤Jε

|M̂jℓ − ⟨ℜM̃q,κ2(ϕ
(p)
j ), ϕ

(0)
ℓ ⟩L2(∂D)|2

+
∑

j,ℓ≤Jε

|M̂′
jℓ − ⟨ℜM̃q,κ2(iϕ

(p)
j ), ϕ

(0)
ℓ ⟩L2(∂D)|2

= ε2
∑

j,ℓ≤Jε

(
|gjℓ|2 + |g′jℓ|2

)
.

Using the tail inequality in [2, (36)] or [17, Theorem 3.1.9], we have

Pr

 ∑
j,ℓ≤Jε

(
|gjℓ|2 + |g′jℓ|2

)
≥ 2
(
J2
ε + 2Jε

√
x+ 2x

)
≤ Pr

 ∑
j,ℓ≤Jε

|gjℓ|2 ≥ J2
ε + 2Jε

√
x+ 2x

+ Pr

 ∑
j,ℓ≤Jε

|g′jℓ|2 ≥ J2
ε + 2Jε

√
x+ 2x


≤ 2e−x.

We now choose x = τ(ηε/ε)
2 in the above inequality and see that

2e−τ(ηε/ε)2 ≥ Pr

 ∑
j,ℓ≤Jε

(
|gjℓ|2 + |g′jℓ|2

)
≥ 2(1 + 2τ + 2τ2)

(ηε
ε

)2
= Pr

(
∥M̂ − πJεJεℜM̃q,κ2∥Hp ≥

√
2(1 + 2τ + 2τ2)ηε

)
.
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It follows from above that M̂ is indeed a valid estimator. This can be seen by choosing

C = Cτ =
√

2(1 + 2τ + 2τ2) in (3.2) we reach

(3.3) Pq,κ2

ε

(
∥M̂ − ℜM̃q,κ2∥Hp > Cτηε

)
≤ 2e−τ(ηε/ε)2

which is valid for all κ ≥ κ0 and for all q ∈ L∞(D) with ∥q∥∞ ≤ max{M0,M1}.
Finally, we want to verify that ψε(Y ) := 1

{
∥M̂−ℜM̃q0,κ2∥Hp > Cτηε

}
satisfies (3.1a)

and (3.1b). One can choose q = q0 in (3.3) and see that

Eq0,κ2

ε ψ = Pq0,κ2

ε

(
∥M̂ − ℜM̃q0,κ2∥Hp > Cτηε

)
≤ 2e−τ(ηε/ε)2 ,

which verifies (3.1a). On the other hand, for each q ∈ L∞(D) with ∥q∥L∞(D) ≤ M1 and

∥ℜM̃q,κ2 −ℜM̃q0,κ2∥Hp ≥ 2Cτηε, we have

Eq,κ2

ε [1− ψ] = Pq,κ2

ε

(
∥M̂ − ℜM̃q0,κ2∥Hp ≤ Cτηε

)
≤ Pq,κ2

ε

(
∥ℜM̃q,κ2 −ℜM̃q0,κ2∥Hp − ∥M̂ − ℜM̃q,κ2∥Hp ≤ Cτηε

)
= Pq,κ2

ε

(
∥ℜM̃q,κ2 −ℜM̃q0,κ2∥Hp − Cτηε ≤ ∥M̂ − ℜM̃q,κ2∥Hp

)
≤ Pq,κ2

ε

(
Cτηε ≤ ∥M̂ − ℜM̃q,κ2∥Hp

)
.

Finally, combining the above inequality with (3.3) yields (3.1b).

Let K(p, q) = Ep log
p
q ≡ EX∼p log

p
q(X) be the Kullback–Leibler divergence between

distributions with densities p and q. Let pq,κ
2

ε be the probability density given in (1.16).

We also denote Varq the variance operator associated to the probability measure Pq,κ2

ε .

Following the same argument as in [2, Lemma 9], one can easily derive

(3.4a) K(pq0,κ
2

ε , pq1,κ
2

ε ) =
1

2
ε−2∥ℜMq0,κ2 −ℜMq1,κ2∥2Hp

and

(3.4b) Varq0

(
log

pq0,κ
2

ε

pq1,κ
2

ε

)
= ε−2∥ℜMq0,κ2 −ℜMq1,κ2∥2Hp

for all q0, q1 ∈ L∞(D) with ∥q0∥L∞(D) ≤M0, ∥q1∥L∞(D) ≤M1 and κ ≥ κ0(D, max{M0,

M1}). We now define the Kullback–Leibler ball Bε
KL(η) with radius η centered at q0 by

Bε
KL(η) :=

{
q ∈ L∞(D) : K(pq0,κ

2

ε , pq,κ
2

ε ) ≤ (η/ε)2,Varq0

(
log

pq0,κ
2

ε

pq,κ
2

ε

)
≤ (η/ε)2

}
,

see also [18, (A4)]. From (3.4a), (3.4b) and Lemma 2.6, for each p > 2d− 2 there exists a

positive constant c = c(D, c0, p) such that{
q ∈ C0(D) : ∥q − q0∥L∞(D) ≤ cη

}
⊂
{
q ∈ L∞(D) : ∥ℜMq,κ2 −ℜMq0,κ2∥Hp ≤ η

}
⊂ Bε

KL(η) for all η > 0,
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hence

(3.5)
{
q ∈ C0(D) : ∥q − q0∥L∞(D) ≤ cη2

}
⊂ Bε

KL(η)

for all sufficiently small η > 0. With the preceding preparations, we now prove the

following support result for the prior Πε along the lines of [2, Lemma 11], roughly indicating

that the prior puts a sufficient amount of “mass” near the true parameter.

Lemma 3.2. Let M > 0, 0 < c0 < 1 and p > 2d − 2 be real parameters. Let D be

a bounded smooth domain in Rd satisfying (1.1) and let D0 ⋐ D. Assume that α, β

are integers satisfying α > β ≥ 7d/2, the base prior Π′ satisfies Assumption 1.5 and

Πε is the prior arising from (1.18). Suppose that q0 ∈ Q, where Q is the set given in

Theorem 1.7. Let ηε = ε1−
d

α+d , then there exist positive constants κ0 = κ0(α,D,M) and

γ = γ(α,D, c0, p,M), which is independent of D0, q0, such that

Πε

(
Bε

KL(ηε)
)
≥ e−γ(ηε/ε)2

for all κ ≥ κ0 and for all sufficiently small ε > 0.

Proof. Note that Πε’s RKHS is Hε = {ζθ′ : θ′ ∈ H} with norm ∥·∥Hε satisfying the bound

∥ζθ′∥Hε ≤ ε−
d

α+d ∥θ′∥H =
ηε
ε
∥θ′∥H.

Since q0 = ζq0 (recall that supp(q0) ⊂ D0 and ζ ≡ 1 on D0), q0 ∈ H and ∥q0∥H ≤ M , by

choosing θ′ = q0 in the above equation, we see that

∥q0∥Hε ≤
ηε
ε
∥q0∥H ≤ Mηε

ε
.

Hence from [17, Corollary 2.6.18], one has

Πε

(
∥q − q0∥L∞(D) ≤ cη2ε

)
≥ exp

(
−1

2
∥q0∥2Hε

)
Πε

(
∥q∥L∞(D) ≤ cη2ε

)
≥ e−

1
2
M2(ηε/ε)2Π′

(
∥θ′∥L∞(D) ≤ c

η3ε
ε

)
,

(3.6)

where the last inequality follows from (1.18).

We denote N(BH, ∥ · ∥L∞(D), δ) the smallest number of ∥ · ∥L∞(D)-balls of radius δ

needed to cover the unit ball BH in H. Since H embeds continuously into Hα(Id) for

some sufficiently large cube Id, then

logN(BH, ∥ · ∥L∞(D), δ) ≤ Kδ−d/α

for some positive constant K = K(α,D), see [17, after Corollary 4.3.38]. It then follows

from [28, Theorem 1.2] that

(3.7) Π′
(
∥θ′∥L∞(D) ≤ c

η3ε
ε

)
≥ e−c′(η3ε/ε)

−s
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for some constant c′ = c′(c,K), where s is such that d
α = 2s

2+s , i.e., s =
2d

2α−d .

By Assumption 1.5 and Sobolev embedding, one has H ⊂ Hα(D) ⊂ C0(D), and hence

there exists a positive constant M0 =M0(α,D,M) such that

∥q0∥L∞(D) ≤M0,

therefore (3.5) is valid for all κ ≥ κ0(D,M0). We now combine (3.5), (3.6) and (3.7) to

obtain that

Πε

(
Bε

KL(ηε)
)
≥ e−

1
2
M2(ηε/ε)2e−c′(η3ε/ε)

−2d/(2α−d)

for all sufficiently small ε > 0, and together with the fact (η3ε/ε)
−2d/(2α−d) = (ηε/ε)

2, the

lemma is proved.

4. Posterior contraction

This section is devoted to the proof of Theorem 1.7. Following the ideas in [2], we first

establish two results about posterior asymptotic. Recall that D1 satisfies D0 ⋐ D1 ⋐ D.

Choosing Π = Πε in (1.17) yields

(4.1) Πε(B|Y ) =

∫
B pq,κ

2

ε (Y )/pq0,κ
2

ε (Y ) dΠε(q)∫
VD1

pq,κ
2

ε (Y )/pq0,κ
2

ε (Y ) dΠε(q)
for all B ∈ BVD1

.

We first estimate the size of the denominator in (4.1), which is similar to [2, Lemma 14].

The proof modifies the ideas in [17, Lemma 7.3.4].

Lemma 4.1. Suppose all assumptions in Lemma 3.2 hold. Then

sup
κ≥κ0, q0∈Q

Pq0,κ2

ε (L∁
q0) → 0 as ε→ 0,

where L∁
q0 is the complement of the event

Lq0 =

{∫
VD1

(pq,κ
2

ε /pq0,κ
2

ε ) dΠε(q) ≥ e−(γ+2)(ηε/ε)2

}
.

Proof. We follow the argument used in the proof of [1, Lemma 21]. From Jensen’s in-

equality, we have∫
VD1

(pq,κ
2

ε /pq0,κ
2

ε ) dΠε(q) ≥ Πε

(
Bε

KL(ηε)
)
exp

(∫
Bε

KL(ηε)
log(pq,κ

2

ε /pq0,κ
2

ε ) dΠ̃ε(q)

)
,

where Π̃ε = Πε/Πε

(
Bε

KL(ηε)
)
. Combining the above equation with Lemma 3.2 implies

Pq0,κ2

ε (L∁
q0) = Pq0,κ2

ε

(∫
VD1

(pq,κ
2

ε /pq0,κ
2

ε ) dΠε(q) < e−(γ+2)(ηε/ε)2

)
≤ Pq0,κ2

ε

(
Πε

(
Bε

KL(ηε)
)
eX ≤ e−(γ+2)(ηε/ε)2

)
≤ Pq0,κ2

ε

(
e−γ(ηε/ε)2eX ≤ e−(γ+2)(ηε/ε)2

)
= Pq0,κ2

ε

(
X ≤ −2(ηε/ε)

2
)
,

(4.2)
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where

X :=

∫
Bε

KL(ηε)
log(pq,κ

2

ε /pq0,κ
2

ε ) dΠ̃ε(q) = −
∫
Bε

KL(ηε)
log(pq0,κ

2

ε /pq,κ
2

ε ) dΠ̃ε(q).

Thus, applying Fubini’s theorem and the definition of Bε
KL(ηε) gives

Eq0,κ2

ε X ≥ − sup
q∈Bε

KL(ηε)
Eq0,κ2

ε log(pq0,κ
2

ε /pq,κ
2

ε ) ≥ −(ηε/ε)
2.

From (4.2) and Chebyshev’s inequality, we now have

Pq0,κ2

ε (L∁
q0) ≤ Pq0,κ2

ε

(
X − Eq0,κ2

ε X ≤ −(ηε/ε)
2
)
≤ Pq0,κ2

ε

(
|X − Eq0,κ2

ε X| ≥ (ηε/ε)
2
)

≤ (ηε/ε)
−4Varq0,κ

2

ε X.
(4.3)

Finally, by Jensen’s inequality, Fubini’s theorem and the definition of Bε
KL(ηε) again, we

can estimate

Varq0,κ
2

ε X = Eq0,κ2

ε

(∫
Bε

KL(ηε)
log(pq,κ

2

ε /pq0,κ
2

ε ) dΠ̃ε(q)− Eq0,κ2

ε X

)2

≤ Eq0,κ2

ε

∫
Bε

KL(ηε)

(
log(pq,κ

2

ε /pq0,κ
2

ε )− Eq0,κ2

ε log(pq,κ
2

ε /pq0,κ
2

ε )
)2

dΠ̃ε(q)

=

∫
Bε

KL(ηε)
Varq0,κ

2

ε log(pq,κ
2

ε /pq0,κ
2

ε ) dΠ̃ε(q) ≤ (ηε/ε)
2,

and then combine this with (4.3) to obtain

(4.4) Pq0,κ2

ε (L∁
q0) ≤ (ηε/ε)

−2.

Observe that the right-hand side of (4.4) is independent of both κ and q0. Thus, our

lemma follows.

We now prove the following two results (see Lemmas 4.2 and 4.4 below) using the

method in [2, Lemmas 12 and 13] whose the ideas are taken from Bayesian nonparametric

statistics [16,50].

Lemma 4.2. Suppose all assumptions in Lemma 3.2 hold. Then there exists a positive

constant M ′ > 0, independent of κ, such that

sup
κ≥κ0, q0∈Q

Pq0,κ2

ε

(
Πε(∥q∥Hβ(D) > M ′|Y ) > e−(γ+4)(ηε/ε)2

)
→ 0 as ε→ 0.

Remark 4.3. By Sobolev embedding theorem and adjusting the constant M ′, Lemma 4.2

remains valid if ∥q∥Hβ(D) is replaced by ∥q∥L∞(D).
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Proof of Lemma 4.2. Let Lq0 be the event as in Lemma 4.1. In view of the posterior

distribution (4.1), by Fubini’s theorem and the identity Eq0,κ2

ε

(
pq,κ

2

ε /pq0,κ
2

ε

)
(Y ) = 1, we

have

Eq0,κ2

ε

(
1Lq0

Πε(B|Y )
)
= Eq0,κ2

ε

1Lq0

∫
B pq,κ

2

ε (Y )/pq0,κ
2

ε (Y ) dΠε(q)∫
VD1

pq,κ
2

ε (Y )/pq0,κ
2

ε (Y ) dΠε(q)


≤ e(γ+2)(ηε/ε)2Eq0,κ2

ε

(∫
B
pq,κ

2

ε (Y )/pq0,κ
2

ε (Y ) dΠε(q)

)
≤ e(γ+2)(ηε/ε)2

∫
B
Eq0,κ2

ε (pq,κ
2

ε /pq0,κ
2

ε )(Y ) dΠε(q)

= e(γ+2)(ηε/ε)2Πε(B)

(4.5)

for all B ∈ BVD1
. Let M ′ be a positive parameter to be chosen later. By Markov’s

inequality (see e.g., [12]) and choosing B =
{
∥q∥Hβ(D) > M ′} in the above inequality, we

see that

Pq0,κ2

ε

(
Πε(∥q∥Hβ(D) > M ′|Y ) > e−(γ+4)(ηε/ε)2

)
≤ Pq0,κ2

ε (L∁
q0) + Pq0,κ2

ε

(
1Lq0

Πε(∥q∥Hβ(D) > M ′|Y ) > e−(γ+4)(ηε/ε)2
)

≤ Pq0,κ2

ε (L∁
q0) + e(γ+4)(ηε/ε)2Eq0,κ2

ε

(
1Lq0

Πε(∥q∥Hβ(D) > M ′|Y )
)

≤ Pq0,κ2

ε (L∁
q0) + e(2γ+6)(ηε/ε)2Πε(∥q∥Hβ(D) > M ′).

(4.6)

In conjunction with the facts that ε−d/(α+d) = ηε/ε and that ∥ζθ′∥Hβ(D) ≤ C∥ζ∥Hβ(D) ×
∥θ′∥Hβ(D) for some positive constant C = C(D,β), one can deduce that

Πε

(
∥q∥Hβ(D) > M ′) = Πε

(
∥εd/(α+d)ζθ′∥Hβ(D) > M ′)

≤ Π′(∥θ′∥Hβ(D) > (ηε/ε)∥ζ∥−1
Hβ(D)

C−1M ′).(4.7)

We now want to apply Fernique’s theorem following the ideas in [35, Step 1 in The-

orem 2.2.2]. In view of the separability Hβ(D), the Hahn–Banach theorem, and the

hypothesis Π′(Hβ(D)) = 1, we obtain that

Pr

(
sup
T∈T

|T (θ′)| = ∥θ′∥Hβ(D) <∞
)

= 1,

where T is a countable family of (Hβ(D))′. Fernique’s theorem [17, Theorem 2.1.20]

implies initially that E′∥θ′∥Hβ(D) ≤ C ′ for some positive constant C ′ depending only on

the base prior Π′, and similar to [35, (2.21)] one has

Π′(∥θ′∥Hβ(D) > (ηε/ε)∥ζ∥−1
Hβ(D)

C−1M ′)
≤ Π′(∥θ′∥Hβ(D) − E′∥θ′∥Hβ(D) > (ηε/ε)∥ζ∥−1

Hβ(D)
(2C)−1M ′)

≤ exp
(
− c′(ηε/ε)

2∥ζ∥−1
Hβ(D)

M ′).
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Hence, given any c > 0, one can choose M ′ > 0 such that

(4.8) Π′(∥θ′∥Hβ(D) > (ηε/ε)∥ζ∥−1
Hβ(D)

C−1M ′) ≤ e−c(ηε/ε)2 .

We combine (4.6), (4.7) and (4.8) to obtain

Pq0,κ2

ε

(
Πε(∥q∥Hβ(D) > M ′|Y ) > e−(γ+4)(ηε/ε)2

)
≤ Pq0,κ2

ε (L∁
q0) + e(2γ+6−c)(ηε/ε)2

Finally, choosing c > 2γ + 6, our lemma immediately follows from Lemma 4.1.

Lemma 4.4. Under the assumptions of Lemma 3.2, there exists a positive constant C1 >

0, which is independent of κ, such that

sup
κ≥κ0, q0∈Q

Pq0,κ2

ε

(
Πε

(
∥ℜMq,κ2 −ℜMq0,κ2∥Hp > C1ηε|Y

)
> 2e−(γ+4)(ηε/ε)2

)
→ 0

as ε→ 0.

Proof. Let M ′ > 0 be the positive constant obtained in Lemma 4.2 and C > 0 be a

positive constant to be determined later. Define the set

S =
{
q ∈ BVD1

: ∥ℜMq,κ2 −ℜMq0,κ2∥Hp > Cηε, ∥q∥L∞(D) ≤M ′},
then it is readily seen that

Πε

(
∥ℜMq,κ2 −ℜMq0,κ2∥Hp > Cηε|Y

)
≤ Πε(S|Y ) + Πε

(
∥q∥L∞(D) > M ′|Y

)
= Πε(S|Y )1L∁

q0
+Πε(S|Y )ψ1Lq0

+Πε(S|Y )(1− ψ)1Lq0
+Πε

(
∥q∥L∞(D) > M ′|Y

)
≤ 1L∁

q0
+ ψ +Πε(S|Y )(1− ψ)1Lq0

+Πε

(
∥q∥L∞(D) > M ′|Y

)
where ψ is the test given in Lemma 3.1 and Lq0 is the event defined in Lemma 4.1.

Accordingly, we can upper bound the probability of the event

B :=
{
Πε

(
∥ℜMq,κ2 −ℜMq0,κ2∥Hp > Cηε|Y

)
> 2e−(γ+4)(ηε/ε)2

}
by

(4.9) Pq0,κ2

ε (L∁
q0) + Eq0,κ2

ε ψ + Pq0,κ2

ε

(
Πε(S|Y )(1− ψ)1Lq0

> e−(γ+4)(ηε/ε)2
)
.

Similar to (4.5), using the posterior distribution (4.1), the definition of Lq0 , Fubini’s

theorem and Lemma 3.1, for each τ > 0, one can estimate

Eq0,κ2

ε

(
Πε(S|Y )(1− ψ)1Lq0

)
= Eq0,κ2

ε

1Lq0

∫
S pq,κ

2

ε (Y )/pq0,κ
2

ε (Y ) dΠε(q)∫
VD1

pq,κ
2

ε (Y )/pq0,κ
2

ε (Y ) dΠε(q)


≤ e(γ+2)(ηε/ε)2Eq0,κ2

ε

∫
S
(1− ψ)(Y )(pq,κ

2

ε /pq0,κ
2

ε )(Y ) dΠε(q)

≤ e(γ+2)(ηε/ε)2
∫
S
Eq,κ2

ε ((1− ψ)(Y )) dΠε(q) ≤ 2e(γ+2−τ)(ηε/ε)2 .

(4.10)
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Hence, by Markov’s inequality and (4.10), we have that

Pq0,κ2

ε

(
Πε(S|Y )(1− ψ)1Lq0

> e−(γ+4)(ηε/ε)2
)
≤ e(γ+4)(ηε/ε)2Eq0,κ2

ε

(
Πε(S|Y )(1− ψ)1Lq0

)
≤ e(2γ+6−τ)(ηε/ε)2 ,

and thus from (4.9) we reach

Pq0,κ2

ε (B) ≤ Pq0,κ2

ε (L∁
q0) + Eq0,κ2

ε ψ + e(2γ+6−τ)(ηε/ε)2 .

We choose τ > 2γ + 6 and the corresponding Cτ given in Lemma 3.1 (and set C1 := Cτ ),

this lemma is proved in view of Lemmas 3.1 and 4.1.

Now we are ready to prove the theorem of contraction result.

Proof of Theorem 1.7. Let M ′ and C1 be positive constants defined in Lemmas 4.2 and

4.4, respectively. By Theorem 2.7, for each sufficiently small ε > 0, one observes the

implication

∥qj∥Hβ(D) ≤M ′, j = 1, 2, and ∥ℜMq1,κ2 −ℜMq2,κ2∥Hp ≤ C1ηε

together imply ∥q1 − q2∥L∞(D) ≤ Cξ̃κ(C1ηε),

where ξ̃κ is given by (2.6). It is not difficult to compute that

ξ̃κ(C1ηε) ≤ C2ξκ(ε) with ξκ(ε) := κd/2+1ε
α

2(α+d)(p−d+1) +

(
κ+ log

1

ε

)−d/2

for all sufficiently small ε > 0. Therefore, we reach

Πε

(
∥q − q0∥L∞(D) > C2ξκ(ε)|Y

)
≤ Πε

(
∥q∥Hβ(D) > M ′|Y

)
+Πε

(
∥ℜMq1,κ2 −ℜMq2,κ2∥Hp > C1ηε|Y

)
.

(4.11)

Combining (4.11) with Lemmas 4.2 and 4.4 gives the contraction rate (1.19).

Next we would like to prove the consistency of the posterior mean EΠε(q|Y ). To begin,

let γ be the constant given in Lemma 3.2. Recall the event Lq0 defined in Lemma 4.1.

Define the event

A := Lq0 ∩
{
Πε

(
∥q − q0∥L∞(D) > C2ξκ(ε)|Y

)
≤ 3e−(γ+4)(ηε/ε)2

}
,

and it is readily seen that, for each constant K > 0 (to be determined later) and for any

sufficiently small ε,

Pq0,κ2

ε

(
∥EΠε(q|Y )− q0∥L∞(D) > Kξκ(ε)

)
≤ Pq0,κ2

ε (A∁) + Pq0,κ2

ε

(
∥EΠε(q − q0|Y )∥L∞(D)1A > Kξκ(ε)

)
.

(4.12)
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In view of (4.11), we can see that

A∁ = L∁
q0 ∪

{
Πε

(
∥q − q0∥L∞(D) > C2ξκ(ε)|Y

)
> 3e−(γ+4)(ηε/ε)2

}
⊂ L∁

q0 ∪
{
Πε

(
∥ℜMq,κ2 −ℜMq0,κ2∥Hp > C1ηε

)
> 2e−(γ+4)(ηε/ε)2

}
∪
{
Πε

(
∥q∥Hβ(D) > M ′|Y

)
> e−(γ+4)(ηε/ε)2

}
,

and then from Lemmas 4.1, 4.2 and 4.4, it follows that

(4.13) sup
κ≥κ0, q0∈Q

Pq0,κ2

ε (A∁) → 0 as ε→ 0.

On the other hand, by Jensen’s and Cauchy–Schwartz’s inequalities, one can estimate

∥EΠε(q − q0|Y )∥L∞(D)1A

≤ C2ξκ(ε) + EΠε
(
∥q − q0∥L∞(D)1

{
∥q − q0∥L∞(D) > C2ξκ(ε)

}
|Y
)
1A

≤ C2ξκ(ε) +
(
EΠε(∥q − q0∥2L∞(D)|Y )

)1/2
Πε

(
∥q − q0∥L∞(D) > C2ξκ(ε)|Y

)1/2
1A.

Choosing K > C2 implies{
∥EΠε(q − q0|Y )∥L∞(D)1A ≥ Kξκ(ε)

}
⊂
{(

EΠε(∥q − q0∥2L∞(D)|Y )
)1/2

Πε

(
∥q − q0∥L∞(D) > C2ξκ(ε)|Y

)1/2
1A ≥ (K − C2)ξκ(ε)

}
.

From Markov’s and Cauchy–Schwartz’s inequalities, it yields

Pq0,κ2

ε

(
∥EΠε(q − q0|Y )∥L∞(D)1A ≥ Kξκ(ε)

)
≤ 1

(K − C2)ξκ(ε)
Eq0,κ2

ε

((
EΠε(∥q − q0∥2L∞(D)|Y )

)1/2
×Πε

(
∥q − q0∥L∞(D) > C2ξκ(ε)|Y

)1/2
1A
)

≤ 1

(K − C2)ξκ(ε)
Eq0,κ2

ε

(
EΠε(∥q − q0∥2L∞(D)|Y )1A

)1/2
× Eq0,κ2

ε

(
Πε(∥q − q0∥L∞(D) > C2ξκ(ε)|Y )1A

)1/2
≤

√
3e−

1
2
(γ+4)(ηε/ε)2

(K − C2)ξκ(ε)
Eq0,κ2

ε

(
EΠε(∥q − q0∥2L∞(D)|Y )1A

)1/2
.

(4.14)

By Fubini’s theorem and the definition of A, one can compute that

Eq0,κ2

ε

(
EΠε(∥q − q0∥2L∞(D)|Y )1A

)
≤ e(γ+2)(ηε/ε)2Eq0,κ2

ε

(∫
∥q − q0∥2L∞(D)

pq,κ
2

ε

pq0,κ
2

ε

(Y ) dΠε(q)

)
≤ e(γ+2)(ηε/ε)2EΠε

(
∥q − q0∥2L∞(D)

)
.
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Putting together the inequality above and (4.14) yields

(4.15) Pq0,κ2

ε

(
∥EΠε(q − q0|Y )∥L∞(D)1A ≥ Kξκ(ε)

)
≤

√
3e−(ηε/ε)2

(K − C)ξκ(ε)
EΠε

(
∥q − q0∥2L∞(D)

)
.

Since

EΠε
(
∥q − q0∥2L∞(D)

)
≤ 2
(
∥q0∥2L∞(D) + EΠε∥q∥2L∞(D)

)
,

q = εα/(α+d)ζθ′, and EΠ′∥θ′∥2L∞(D) is finite, by Sobolev embedding theorem, we see that

EΠε
(
∥q− q0∥2L∞(D)

)
is uniformly bounded for κ ≥ κ0 and q0 ∈ Q. Finally, the limit (1.20)

follows from (4.12), (4.13) and (4.15), as well as the fact e−(ηε/ε)2/ξκ(ε) → 0 as ε→ 0.

A. Stability estimate of the inverse problem

In this section, we are devoted to the proof of the stability estimate in Theorem 1.1. We

first observe the symmetry property of the impedance-to-Dirichlet operator.

Lemma A.1. Let q ∈ L∞(D) be real-valued functions satisfying (1.3). Then∫
∂D

(
Mq,κ2 [g1]

)
g2 dS =

∫
∂D

g1Mq,κ2 [g2] dS for all g1, g2 ∈ L2(∂D).

Proof. Let u1, u2 ∈ H1(D) satisfy (1.2) and (1.5) with g = g1, g2, respectively. By direct

computations, we obtain

0 = −iκ

(∫
∂D

(∂νu1)u2 dS −
∫
∂D

u1∂νu2 dS

)
=

∫
∂D

∂νu1(∂νu2 − iκu2) dS −
∫
∂D

(∂νu1 − iκu1)∂νu2 dS

=

∫
∂D

(
Mq,κ2 [g1]

)
g2 dS −

∫
∂D

g1
(
Mq,κ2 [g2]

)
dS

and hence the lemma.

With the above symmetry property at hand, we are now able to prove the following

crucial integral identity.

Lemma A.2. Let m ≥ 0 and q1, q2 ∈ L∞(D) be real-valued functions satisfying (1.3).

Given any g1, g2 ∈ L2(∂D), let u1, u2 ∈ H1(D) satisfy (1.2) and (1.5) corresponding to

q = qj and g = gj, j = 1, 2. Then∣∣∣∣∫
D
(q1 − q2)u1u2 dx

∣∣∣∣
≤ κ−1∥Mq1,κ2 −Mq2,κ2∥Hm(∂D)→L2(∂D)

(
∥∂νu1∥Hm(∂D) + κ∥u1∥Hm(∂D)

)
×
(
∥∂νu2∥L2(∂D) + κ∥u2∥L2(∂D)

)
.
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Proof. Straightforward computations show that

−iκ

∫
D
(q1 − q2)u1u2 dx = −iκ

(∫
∂D

(∂νu1)u2 dS −
∫
∂D

u1∂νu2 dS

)
=

∫
∂D

∂νu1(∂νu2 − iκu2) dS −
∫
∂D

(∂νu1 − iκu1)∂νu2 dS

=

∫
∂D

(
Mq1,κ2 [g1]

)
g2 dS −

∫
∂D

g1Mq2,κ[g2] dS.

Combining the above equation with Lemma A.1, we have

−iκ

∫
D
(q1 − q2)u1u2 dx =

∫
∂D

(
(Mq1,κ2 −Mq2,κ2)[g1]

)
g2 dS.

Application of Hölder’s inequality gives

κ

∣∣∣∣∫
D
(q1 − q2)u1u2 dx

∣∣∣∣ ≤ ∥g1∥Hm(∂D)∥g2∥L2(∂D)∥Mq1,κ2 −Mq2,κ2∥Hm(∂D)→L2(∂D)

and notice

∥gj∥Hm(∂D) ≤ ∥∂νuj∥Hm(∂D) + κ∥uj∥Hm(∂D),

the lemma is obvious.

In order to make the paper self-contained, we recall the complex geometric optics

(CGO) solutions described in [25, Lemma 2.1] or [24, Proposition 3.2], see also [19,49].

Lemma A.3. Let d ≥ 3 and σ > d/2 be integers. Assume that ζ = η + iξ (η, ξ ∈ Rd)

satisfies

|η|2 = κ2 + |ξ|2 and η · ξ = 0 (⇐⇒ ζ · ζ = κ2).

Then there exist constants C∗ > 0 and C > 0, independent of κ, such that if |ξ| >
C∗∥q∥Hσ(D) then there exists a solution u to the equation (∆ + κ2 + q(x))u = 0 in D of

the form

u(x) = eiζ·x(1 + ψ(x)), ∥ψ∥Hσ(D) ≤
C

|ξ|
∥q∥Hσ(D).

For our purpose, we will choose σ = 2s for integer s > d/2. For later convenience, we

denote Sd−1 := {x ∈ Rd : |x| = 1}. By the trace theorem, e.g., [29, Theorem 9.4], we have

∥uj∥Hm(∂D) ≤ C
(
∥uj∥L2(D) + ∥∇⊗(m+1)uj∥L2(D)

)
,

∥∂νuj∥L2(∂D) ≤ C
(
∥uj∥L2(D) + ∥∇⊗(m+2)uj∥L2(D)

)(A.1)

for some constant C = C(D,m) > 0, where (∇⊗ℓ)i1···iℓ = ∂i1 · · · ∂iℓ . Thus, we can sub-

stitute the CGO solutions into the identity in Lemma A.2. We now able to prove the

following lemma.
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Lemma A.4. Suppose that all assumptions in Theorem 1.1 hold. Let C∗ be the constant

given in Lemma A.3. Then there exists a constant C = C(s,m,D,M, supp(q1 − q2)) > 0

such that ∣∣((q1 − q2)χD )̂ (rω)
∣∣

≡
∣∣∣∣∫

Rd

χD(q1 − q2)e
−irω·xdx

∣∣∣∣
≤ Cκm+3eCa∥Mq1,κ2 −Mq2,κ2∥Hm(∂D)→L2(∂D)

+
C

a

(∫
Rd

⟨y⟩−2s

(∫
Rd

⟨−x+ rω − y⟩−2s|((q1 − q2)χD )̂ (x)|2 dx
)

dy

)1/2

for all r ≥ 0, ω ∈ Sd−1, a > C∗M with κ2 + a2 > r2

4 and κ ≥ 1, where ⟨y⟩ = (1 + |y|2)1/2.
Hereafter, x and y denote the phase variables in the Fourier transform.

Proof. Fix any ω ∈ Sd−1, since d ≥ 3, one can choose ω⊥, ω̃⊥ ∈ Sd−1 satisfying ω · ω⊥ =

ω · ω̃⊥ = ω⊥ · ω̃⊥ = 0. Like in [25, Lemma 3.1], we set

ξ1 = aω⊥, η1 = −r
2
ω +

(
κ2 + a2 − r2

4

)1/2

ω̃⊥, ξ2 = −ξ1, η2 = −rω − η1,

and thus for each j = 1, 2 we see that

ξj · ηj = 0, |ηj |2 = κ2 + |ξj |2, |ξj | = a ≥ C∗M ≥ C∗∥qj∥H2s(D).

For each j = 1, 2, consider the CGO solutions with q = qj described in Lemma A.3:

uj(x) = eiζj ·x(1 + ψj(x)), ∥ψj∥H2s(D) ≤
C

|ξj |
∥qj∥H2s(D) ≤

CM

a
<

CM

C∗M
=

C

C∗
.

We now plug those uj into the inequality in Lemma A.2 to obtain∣∣∣∣∫
Rd

χD(q1 − q2)(1 + ψ1)(1 + ψ2)e
−irω·x dx

∣∣∣∣
=

∣∣∣∣∫
D
(q1 − q2)u1u2 dx

∣∣∣∣
≤ κ−1∥Mq1,κ2 −Mq2,κ2∥Hm(∂D)→L2(∂D)

(
∥∂νu1∥Hm(∂D) + κ∥u1∥Hm(∂D)

)
×
(
∥∂νu2∥L2(∂D) + κ∥u2∥L2(∂D)

)
,

which implies∣∣F [χD(q1 − q2)](rω)
∣∣

≡
∣∣∣∣∫

Rd

χD(q1 − q2)e
−irω·x dx

∣∣∣∣
≤ κ−1∥Mq1,κ2 −Mq2,κ2∥Hm(∂D)→L2(∂D)

(
∥∂νu1∥Hm(∂D) + κ∥u1∥Hm(∂D)

)
×
(
∥∂νu2∥L2(∂D) + κ∥u2∥L2(∂D)

)
+

∣∣∣∣∫
D
(q1 − q2)e

−irω·x(ψ1 + ψ2 + ψ1ψ2) dx

∣∣∣∣ .
(A.2)
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We pick R0 = R0(D) > 0 such that D ⊂ BR0(0). For each j = 1, 2, since

∥ψj∥L∞(D) ≤ C∥ψj∥H2s(D) ≤ C (since s > d/2),

we have |uj(x)| ≤ Ce|ξj |R0 = CeaR0 for all x ∈ D, which gives

∥uj∥L2(D) ≤ CeaR0 .

We can estimate

∥∇uj∥L2(D) = ∥iujζj + ei⟨ζj ,· ⟩∇ψj∥L2(D) ≤ |ζj |∥uj∥L2(D) + e|ξj |R0∥∇ψj∥L2(D)

≤ C(a+ κ)eaR0 + CeaR0 ≤ CκeCa,

and, inductively,

∥∇⊗ℓuj∥L2(D) ≤ CκℓeCa for all ℓ ∈ N.

Therefore, by (A.1), we have

(A.3) ∥∂νuj∥Hℓ(∂D) + κ∥uj∥Hℓ(∂D) ≤ Cκℓ+2eCa for all ℓ ∈ N ∪ {0}.

We now choose χ ∈ C∞
c (D) with 0 ≤ χ ≤ 1 in Rd satisfying χ = 1 near supp(q1 − q2),

and aim to estimate∣∣∣∣∫
D
(q1 − q2)e

−irω·x(ψ1 + ψ2 + ψ1ψ2) dx

∣∣∣∣ ≡ ∣∣∣∣∫
Rd

((q1 − q2)χD)(x)e
−irω·xΨ(x)χ(x) dx

∣∣∣∣
with Ψ(x) = ψ1(x) + ψ2(x) + ψ1(x)ψ2(x) by modifying some ideas in [24, Lemma 3.4]. It

is not difficult to see that

∥Ψ∥H2s(D) ≤
C

a
.

Since D is an extension domain, one can find an extension Ψext ∈ H2s(Rd) with Ψext|D =

Ψ. Using the Parseval’s identity and the convolution identity for Fourier transform, one

has ∫
Rd

((q1 − q2)χD)(x)e
−irω·xΨext(x)χ(x) dx

= (2π)−d

∫
Rd

((q1 − q2)χD )̂ (x)(e
−i⟨rω,· ⟩Ψextχ)̂ (−x) dx

= (2π)−2d

∫
Rd

((q1 − q2)χD )̂ (x)((e
−i⟨rω,· ⟩χ)̂ ∗ (Ψext)̂ )(−x) dx.

By Fubini’s theorem and Hölder’s inequality, we have∣∣∣∣∫
Rd

((q1 − q2)χD )̂ (x)((e
−i⟨rω,· ⟩χ)̂ ∗ (Ψext)̂ )(−x) dx

∣∣∣∣
≤
∫
Rd

|((q1 − q2)χD )̂ (x)|
∣∣((e−i⟨rω,· ⟩χ)̂ ∗ (Ψext)̂ )(−x)

∣∣dx
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=

∫
Rd

|((q1 − q2)χD )̂ (x)|
∣∣∣∣∫

Rd

(e−i⟨rω,· ⟩χ)̂ (−x− y)(Ψext)̂ (y) dy

∣∣∣∣ dx
≤
∫
Rd

(∫
Rd

|((q1 − q2)χD )̂ (x)||(e−i⟨rω,· ⟩χ)̂ (−x− y)|dx
)
|(Ψext)̂ (y)|dy

≤

(∫
Rd

⟨y⟩−4s

(∫
Rd

|((q1 − q2)χD )̂ (x)||(e−i⟨rω,· ⟩χ)̂ (−x− y)| dx
)2

dy

)1/2

∥Ψext∥H2s(Rd)

=

(∫
Rd

⟨y⟩−4s
(
|((q1 − q2)χD )̂ (x)||χ̂(−x+ rω − y)|dx

)2
dy

)1/2

∥Ψext∥H2s(Rd)

≤
(∫

Rd

⟨y⟩−4s

(∫
Rd

⟨−x+ rω − y⟩−2s|((q1 − q2)χD )̂ (x)|2 dx
)

dy

)1/2

× ∥χ∥Hs(Rd)∥Ψext∥H2s(Rd).

It is easy to see that ∥χ∥Hs(Rd) ≤ C(s,D), and thus∣∣∣∣∫
D
(q1 − q2)e

−irω·x(ψ1 + ψ2 + ψ1ψ2) dx

∣∣∣∣
≤ C

(∫
Rd

⟨y⟩−4s

(∫
Rd

⟨−x+ rω − y⟩−2s|((q1 − q2)χD )̂ (x)|2 dx
)

dy

)1/2

∥Ψext∥H2s(Rd).

Note that the above inequality does not depend on which extension Ψext of Ψ is chosen.

In view of the equivalence (see e.g., [31, Chapter 3])

inf
Ψext∈H2s(Rd)
Ψext|D=Ψ

∥Ψext∥H2s(Rd)
∼= ∥Ψ∥H2s(D) ≤

C

a
,

we obtain ∣∣∣∣∫
D
(q1 − q2)e

−irω·x(ψ1 + ψ2 + ψ1ψ2) dx

∣∣∣∣
≤ C

a

(∫
Rd

⟨y⟩−4s

(∫
Rd

⟨−x+ rω − y⟩−2s|((q1 − q2)χD )̂ (x)|2 dx
)

dy

)1/2

.

(A.4)

The lemma is proved by combining (A.2), (A.3) and (A.4).

Similar to [25, Lemma 3.2] or [24, Lemma 3.5], we can easily prove the following

corollary by choosing a suitable parameter a.

Corollary A.5. Suppose that all assumptions in Theorem 1.1 hold. Let C∗ be the constant

given in Lemma A.3 and R∗ > C∗M . Denote E := ∥Mq1,κ2 − Mq2,κ2∥Hm(∂D)→L2(∂D).

Then there exists a constant C = C(s,m,D,M, supp(q1− q2)) > 0 such that the following

statement holds for all r ≥ 0, ω ∈ Sd−1 and κ ≥ 1: If 0 ≤ r ≤ κ+R∗ then∣∣((q1 − q2)χD )̂ (rω)
∣∣

≤ Cκm+3eCR∗E +
C

R∗

(∫
Rd

⟨y⟩−4s

(∫
Rd

⟨−x+ rω − y⟩−2s|((q1 − q2)χD )̂ (x)|2 dx
)

dy

)1/2

;
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otherwise if r > k +R∗ then∣∣((q1 − q2)χD )̂ (rω)
∣∣

≤ Cκm+3eCrE +
C

r

(∫
Rd

⟨y⟩−4s

(∫
Rd

⟨−x+ rω − y⟩−2s|((q1 − q2)χD )̂ (x)|2 dx
)

dy

)1/2

.

Proof. If 0 ≤ r ≤ k +R∗, we take a = R∗; otherwise, we set a = r.

We now estimate the H−s-norm of q1 − q2 following the argument in [24, Lemma 3.6].

Lemma A.6. As in Corollary A.5, there exists a constant C, depending on s, m, D, M ,

supp(q1 − q2), such that

∥(q1 − q2)χD∥H−s(Rd) ≤ Cκm+3(eCR∗ + χ(T )eCT )E

+
C

R∗
∥(q1 − q2)χD∥H−s(Rd) + CT−(s− d

2
)

for all T ≥ κ+R∗, where 0 ≤ χ(T ) ≤ 1 is a continuous function with χ(κ+R∗) = 0.

Proof. Using the polar coordinates x = rω, we write

∥(q1 − q2)χD∥2H−s(Rd) = I1 + I2 + I3,

where

I1 :=

∫ κ+R∗

0

∫
Sd−1

|((q1 − q2)χD )̂ (rω)|2(1 + r2)−srd−1 dω dr,

I2 :=

∫ T

κ+R∗

∫
Sd−1

|((q1 − q2)χD )̂ (rω)|2(1 + r2)−srd−1 dω dr,

I3 :=

∫ ∞

T

∫
Sd−1

|((q1 − q2)χD )̂ (rω)|2(1 + r2)−srd−1 dω dr.

It is not difficult to estimate I3. Indeed, since supp(q1 − q2) ⊂ D, Hölder’s inequality

implies |((q1 − q2)χD )̂ (rω)| ≤ C∥q1 − q2∥L2(D) ≤ C, and

I3 ≤ C

∫ ∞

T

∫
Sd−1

(1 + r2)−srd−1 dω dr ≤ CT−(2s−d).

On the other hand, the following inequality can be proved as in [24, (3.18)]:∫
Rd

⟨z⟩−2s

∫
Rd

⟨y⟩−4s

∫
Rd

⟨−x+ z− y⟩−2s|((q1 − q2)χD )̂ (x)|2 dxdy dz

≤ C∥(q1 − q2)χD∥2H−s(D).

(A.5)

Recalling that ∫ ∞

0
(1 + r2)−srd−1 dr <∞,
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and using Corollary A.5 and (A.5), we can derive

I1 ≤ Cκ2(m+3)eCR∗E2

+
C

R2
∗

∫
|z|<κ+R∗

⟨z⟩−2s

∫
Rd

⟨y⟩−4s

∫
Rd

⟨−x+ z− y⟩−2s|((q1 − q2)χD )̂ (x)|2 dx dy dz

≤ Cκ2(m+3)eCR∗E2 +
C

R2
∗
∥(q1 − q2)χD∥2H−s(D)

and

I2 ≤ Cκ2(m+3)eCTE2

+
C

R2
∗

∫
κ+R∗<|z|<T

⟨z⟩−2s

∫
Rd

⟨y⟩−4s

∫
Rd

⟨−x+ z− y⟩−2s|((q1 − q2)χD )̂ (x)|2 dxdy dz

≤ Cκ2(m+3)eCTE2 +
C

R2
∗
∥(q1 − q2)χD∥2H−s(D).

By the definition of I2, we can define I2 = 0 if T = κ+R∗. Finally, the proof of the lemma

is completed by combining all the above inequalities.

With Lemma A.4 at hand, we are now ready to prove Theorem 1.1 using similar

arguments as in [24, Theorem 2.1].

Proof of Theorem 1.1. One can fix a sufficiently large

R∗ = R∗(s,m,D,M, supp(q1 − q2))

in Lemma A.6 to obtain

(A.6) ∥(q1 − q2)χD∥H−s(Rd) ≤ Cκm+3(eCR∗ + χ(T )eCT )E + CT−(s− d
2
).

We now restrict E < 1/e so that log 1
E > 1. We consider the following two cases:

(i) κ+R∗ ≤ p log
1

E
, (ii) κ+R∗ > p log

1

E
,

where p > 0 will be determined later.

Case (i). For κ+R∗ ≤ p log 1
E , we choose T = p log 1

E . Then it is easy to see that

κ+ log
1

E
≤ κ+R∗ + log

1

E
≤ (1 + p) log

1

E
=

1 + p

p
T,

and, since s > d/2, the following inequality

T−(s− d
2
) ≤ C1

(
κ+ log

1

E

)−(s− d
2
)
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holds for all C1 ≥
(1+p

p

)s− d
2 . We want to choose C1 and p so that

κm+3E1−Cp = κm+3eCTE ≤ C1

(
κ+ log

1

E

)−(s− d
2
)

,

equivalently,

(A.7) (m+ 3) log κ+ (Cp− 1) log
1

E
+

(
s− d

2

)
log

(
κ+ log

1

E

)
≤ logC1.

Note that κ ≤ κ+R∗ ≤ p log 1
E and hence

(LHS of (A.7))

≤ (m+ 3) log

(
p log

1

E

)
+ (Cp− 1) log

1

E
+

(
s− d

2

)
log

(
(1 + p) log

1

E

)
≤
(
m+ 3 + s− d

2

)
log(1 + p) + (Cp− 1) log

1

E
+

(
m+ 3s− d

2

)
log log

1

E
.

We now set p = 1
2C to obtain

(LHS of (A.7)) ≤
(
m+ 3 + s− d

2

)
log

(
2C + 1

2C

)
− 1

2
log

1

E
+

(
m+ 3s− d

2

)
log log

1

E
,

and (A.7) holds if

logC1 ≥ sup
0<ϵ<1/e

(
m+ 3 + s− d

2

)
log

(
2C + 1

2C

)
− 1

2
log

1

ϵ
+

(
m+ 3s− d

2

)
log log

1

ϵ
.

Finally, from (A.6) with T = p log 1
E = 1

2C log 1
E , it follows

∥(q1 − q2)χD∥H−s(Rd) ≤ C

(
κ+ log

1

E

)−(s− d
2
)

.

Case (ii). When κ+R∗ > p log 1
E = 1

2C log 1
E , choosing T = κ+R∗ and using the fact

χ(κ+R∗) = 0, we have

∥(q1 − q2)χD∥H−s(Rd)

≤ Cκm+3eCR∗E + C(κ+R∗)
−(s− d

2
) ≤ Cκm+3E + C

(
κ+

1

2
R∗

)−(s− d
2
)

≤ Cκm+3E + C

(
1

2
κ+

1

4C
log

1

E

)−(s− d
2
)

≤ Cκm+3E + C

(
κ+ log

1

E

)−(s− d
2
)

,

where we recall that R∗ = R∗(s,m,D,M, supp(q1 − q2)).
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B. Well-posedness of the impedance-boundary value problem

Let κ > 0, q ∈ L∞(D), F ∈ L2(D) and g ∈ L2(∂D). A function u ∈ H1(D) is called a

(weak) solution of

(B.1)

(∆ + κ2 + q(x))u = −F in D,

∂νu− iκu = g on ∂D

if

(B.2) a(u, v) = (F, v)L2(D) + ⟨g, v⟩∂D for all v ∈ H1(D),

where

a(w, v) := (∇w,∇v)L2(D) − ((κ2 + q)w, v)L2(D) − iκ⟨w, v⟩∂D

and ⟨ · , · ⟩∂D is the duality pair on ∂D.

We first prove the following lemma similar to [13, Lemma 2.2].

Lemma B.1. Let u ∈ H1(D) be a solution of (B.1). For each δ1, δ2 > 0, there hold

∥∇u∥2L2(D) ≤ (κ2 + ∥q∥L∞(D) + δ1)∥u∥2L2(D)

+

(
δ1
2κ2

+
1

2δ1

)(
∥F∥2L2(D) + ∥g∥2L2(∂D)

)(B.3a)

and

(B.3b) ∥u∥2L2(∂D) ≤
δ2
κ
∥u∥2L2(D) +

1

δ2κ
∥F∥2L2(D) +

1

κ2
∥g∥2L2(∂D).

Proof. We choose v = u in (B.2), and take the real and imaginary parts, we get

∥∇u∥2L2(D) −
∫
D
(κ2 + q(x))|u(x)|2 dx = ℜ

(
(F, u)L2(D) + ⟨g, u⟩∂D

)
,(B.4a)

−iκ∥u∥2L2(∂D) = ℑ
(
(F, u)L2(D) + ⟨g, u⟩∂D

)
.(B.4b)

It is straightforward to derive (B.3b) from (B.4b). Similarly, from (B.4a), we have

∥∇u∥2L2(D) ≤
(
κ2 + ∥q∥L∞(D) +

δ1
2

)
∥u∥2L2(D) +

1

2δ1
∥F∥2L2(D)

+
δ1
2
∥u∥2L2(∂D) +

1

2δ1
∥g∥2L2(∂D).

(B.5)

Substituting δ2 = κ into (B.3b) and combining the resulting equation with (B.5) easily

imply (B.3a).

We also need the following lemma, which can be proved using the same argument as

in [13, Lemma 2.3]. So we omit the details here.
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Lemma B.2 (Rellich). For each u ∈ H2(D), the following identities hold

ℜ(u, x · ∇u)L2(D) = −d
2
∥u∥2L2(D) +

1

2
⟨x · ν, |u|2⟩∂D,

ℜ(∇u,∇(x · ∇u))L2(D) =
2− d

2
∥∇u∥2L2(D) +

1

2
⟨x · ν, |∇u|2⟩∂D.

We now prove the following wave-number explicit estimate for the solution of the

boundary value problem (B.1) similar to [13, Theorem 2.4].

Theorem B.3. Let D be a bounded Lipschitz domain in Rd, which is star-shaped with

respect to a ball, that is,

(B.6) x · ν ≥ c0 > 0 for all x ∈ ∂D.

Let M > 0 and the potential function q satisfies ∥q∥L∞(D) ≤ min
{
M, κ2

16MR2 ,
κ2

4d−6

}
, where

R > 0 be any number such that D ⊂ BR. Then there exists a positive constant C =

C(D, c0) such that

∥∇u∥2L2(D) + κ2∥u∥2L2(D) + ∥∇u∥2L2(∂D) + κ2∥u∥2L2(∂D)

≤ C(1 + κ−2)
(
∥F∥2L2(D) + ∥g∥2L2(∂D)

)
,

(B.7)

which holds true for all κ > 0 and for all solution u ∈ H1(D) of (B.1).

Remark B.4. The estimate (B.7) is almost optimal for large κ > 1 in the following per-

spectives.

� In [5, Lemma 5.5], the authors showed that, if D is a ball then there exist a g ∈
L2(∂D) and a solution u ∈ H1(D) of (B.1) with q ≡ 0 and F ≡ 0 such that

κ∥u∥L2(D) ≳ ∥g∥L2(∂D).

� In [47, Lemma 4.12], the author proved that given any bounded Lipschitz domain

D, there exist F ∈ L2(D) and a solution u ∈ H1(D) of (B.1) with q ≡ 0 and g ≡ 0

such that κ∥u∥L2(D) ≳ ∥F∥L2(D).

We also refer to, e.g., [9,46] and the references therein for related results about this topic.

Proof of Theorem B.3. Using mollifiers, it suffices to show the theorem for u ∈ H2(D)

(also see the proof of [13, Theorem 2.4]). Choosing v = x · ∇u in the real part of (B.2)

and using Lemma B.2, we have

ℜ
(
(F, v)L2(D) + ⟨g, v⟩∂D

)
=

2− d

2
∥∇u∥2L2(D) +

1

2
⟨x · ν, |∇u|2⟩∂D +

dκ2

2
∥u∥2L2(D)

− κ2

2
⟨x · ν, |u|2⟩∂D −ℜ(qu, v)L2(D) + κℑ⟨u, v⟩∂D,
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and hence from (B.6)

dκ2

2
∥u∥2L2(D) =

d− 2

2
∥∇u∥2L2(D) + ℜ(qu, v)L2(D) − κℑ⟨u, v⟩∂D

− 1

2
⟨x · ν, |∇u|2⟩∂D +

κ2

2
⟨x · ν, |u|2⟩∂D + ℜ

(
(F, v)L2(D) + ⟨g, v⟩∂D

)
≤ d− 2

2
∥∇u∥2L2(D) +R∥q∥L∞(D)

(
1

2δ1
∥u∥2L2(D) +

δ1
2
∥∇u∥2L2(D)

)
+

R

2δ2
∥F∥2L2(D) +

Rδ2
2

∥∇u∥2L2(D) +
R

2δ3
∥g∥2L2(∂D) +

Rδ3
2

∥∇u∥2L2(∂D)

+
κR

δ4
∥u∥2L2(∂D) + κRδ4∥∇u∥2L2(∂D) −

c0
2
∥∇u∥2L2(∂D) +

κ2R

2
∥u∥2L2(∂D).

Setting δ3 =
c0
4R and δ4 =

c0
8κR in the above equation yields

dκ2

2
∥u∥2L2(D) ≤

(
d− 2

2
+
Rδ2
2

+
R∥q∥L∞(D)δ1

2

)
∥∇u∥2L2(D)

+
R∥q∥L∞(D)

2δ1
∥u∥2L2(D) +

(
8κ2R2

c0
+
κ2R

2

)
∥u∥2L2(∂D)

− c0
4
∥∇u∥2L2(∂D) +

R

2δ2
∥F∥2L2(D) +

2R2

c0
∥g∥2L2(∂D).

(B.8)

Combining (B.3a), (B.3b) and (B.8), we obtain

dκ2∥u∥2L2(D) +
c0
2
∥∇u∥2L2(∂D)

≤
((
d− 2 +Rδ2 +R∥q∥L∞(D)δ1

)(
κ2 + ∥q∥L∞(D) + δ5

)
+
R∥q∥L∞(D)

δ1

)
∥u∥2L2(D)

+
(
d− 2 +Rδ2 +R∥q∥L∞(D)δ1

)( δ5
2κ2

+
1

2δ5

)(
∥F∥2L2(D) + ∥g∥2L2(∂D)

)
+ κ2

(
16R2

c0
+R

)(
δ6
κ
∥u∥2L2(D) +

1

δ6κ
∥F∥2L2(D) +

1

κ2
∥g∥2L2(∂D)

)
+
R

δ2
∥F∥2L2(D) +

2R2

c0
∥g∥2L2(∂D).

(B.9)

Since ∥q∥L∞(D) ≤M , we choose δ1 =
1

4MR , δ2 =
1
4R and compute that

c1 := dκ2 −
(
d− 2 +Rδ2 +R∥q∥L∞(D)δ1

)(
κ2 + ∥q∥L∞(D) + δ5

)
−
R∥q∥L∞(D)

δ1

− κ2
(
16R2

c0
+R

)
δ6
κ

= 2κ2 −
(
1

4
+

∥q∥L∞(D)

4M

)
κ2 −

(
4d− 7

4
+

∥q∥L∞(D)

4M

)
(∥q∥L∞(D) + δ5)

− 4MR2∥q∥L∞(D) − κ2
(
16R2

c0
+R

)
δ6
κ

≥ 3

2
κ2 − 2d− 3

2
(∥q∥L∞(D) + δ5)− 4MR2∥q∥L∞(D) − κ2

(
16R2

c0
+R

)
δ6
κ
.
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Next, from 4MR2∥q∥L∞(D) ≤ κ2/4 and 2d−3
2 ∥q∥L∞(D) ≤ κ2/4 (see (1.3)), it follows that

c1 ≥ κ2 − 2d− 3

2
δ5 − κ2

(
16R2

c0
+R

)
δ6
κ
.

Now choosing δ5 = κ2

4d−6 and δ6 = κ
4

(
16R2

c0
+ R

)−1
implies c1 ≥ κ2

2 . Thus, by (B.9), we

have

κ2

2
∥u∥2L2(D) +

c0
2
∥∇u∥2L2(∂D) ≤ c1∥u∥2L2(D) +

c0
2
∥∇u∥2L2(∂D)

≤

(
1

8
+

(2d− 3)2

2κ2
+ 4

(
16R2

c0
+R

)2

+ 16R2

)
∥F∥2L2(D)

+

(
1

8
+

(2d− 3)2

2κ2
+

16R2

c0
+R+

2R2

c0

)
∥g∥2L2(∂D).

Combining the above inequality with Lemma B.1 (with δ1 = κ2 and δ2 = κ) immediately

yields (B.7).

By the Fredholm alternative principle as in [13, Theorem 2.5], we finally conclude that

Theorem B.5. Suppose that all assumptions in Theorem B.3 hold. Then there exists a

unique solution u ∈ H1(D) to (B.1) and the estimate (B.7) is satisfied.
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