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Seshadri Constants of Curve Configurations on Surfaces

Krishna Hanumanthu, Praveen Kumar Roy* and Aditya Subramaniam

Abstract. Let X be a complex nonsingular projective surface and let L be an ample

line bundle on X. We study multi-point Seshadri constants of L at singular points of

certain connected arrangements of curves on X. We pose some questions about such

Seshadri constants and prove results in many cases, including star arrangements of

curves. We also study the configurational Seshadri constants for curve arrangements

on surfaces and compare them with the usual Seshadri constants. We give several

examples illustrating the properties that we study.

1. Introduction

In this note, we study multi-point Seshadri constants of ample line bundles centered at the

singular loci of certain curve arrangements on surfaces. We recall the notion of multi-point

Seshadri constants briefly below.

Let X be a smooth complex projective variety and let L be a nef line bundle on X.

Let r ≥ 1 be an integer and let x1, . . . , xr be distinct points of X. The Seshadri constant

of L at x1, . . . , xr ∈ X is defined as

ε(X,L, x1, . . . , xr) := inf
C⊂X a curve with
C∩{x1,...,xr}≠∅

L · C∑r
i=1multxi C

.

It is easy to see that the infimum above is the same as the infimum taken over irre-

ducible, reduced curves C such that C ∩ {x1, . . . , xr} ≠ ∅.
The following is a well-known upper bound for Seshadri constants. Let n be the

dimension of X. Then for any x1, . . . , xr ∈ X,

ε(X,L, x1, . . . , xr) ≤
n

√
Ln

r
.

The study of multi-point Seshadri constants is interesting even in the case of the projective

plane P2. A famous conjecture of Nagata asserts that if r ≥ 10 and x1, . . . , xr ∈ P2 are

very general, then

ε(P2,OP2(1), x1, . . . , xr) =
1√
r
.
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Nagata [11] proved this when r = s2 for an integer s, but it is open in all other cases.

On the other hand, when the points x1, . . . , xr lie in special position, the corresponding

Seshadri constant is frequently rational, and it is a very interesting problem to compute

it. For example, if the points are collinear then ε(P2,OP2(1), x1, . . . , xr) = 1/r.

In this direction, the author in [13] considers behaviour of multi-point Seshadri con-

stants of OP2(1) at the set of singular points of a line configuration in the plane P2. The

following question was posed in [13].

Question 1.1. Let x1, . . . , xr ∈ P2 be the set of singular points in a configuration of lines

which is not a pencil of lines. Let k denote the maximum number of points which lie on

a line. Is it true that

ε(P2,OP2(1), x1, . . . , xr) =
1

k
?

In [13], the author gives specific examples like line arrangements satisfying Hirzebruch’s

property and star arrangement of d lines in P2 where there is an affirmative answer to the

above question. In [9], the authors extend the above study to the case of arrangements

of plane curves of a fixed degree. These arrangements were introduced in the context of

Harbourne constants in [14] and the bounded negativity conjecture. In order to study

the local negativity phenomenon for algebraic surfaces, it was more reasonable to consider

curve arrangements instead of irreducible curves as they are more difficult to construct.

In [9], the authors also study the multi-point Seshadri constants of OP2(1) centered at

singular loci of certain curve arrangements C in P2 using a combinatorial invariant called

the configurational Seshadri constant of C. They give lower bounds for the configura-

tional Seshadri constants of OP2(1) and also provide some actual values of the multi-point

Seshadri constants for some classes of curve arrangements, comparing them with their

associated configurational Seshadri constants.

In this paper, we continue this study by looking at connected curve arrangements on

arbitrary surfaces. We prove some analogues of the results in [9] for arbitrary surfaces.

We work over the field of complex numbers.

We recall below the basic definitions that we require in this paper.

Definition 1.2 (Transversal arrangement). Let C = {C1, C2, . . . , Cd} be an arrangement

of curves on a smooth projective surface X such that their union C1 ∪ C2 · · · ∪ Cd is a

connected curve in X. We say that C is a transversal arrangement if d ≥ 2, all curves Ci

are smooth, irreducible and they intersect pairwise transversally.

Let Sing(C) be the set of all intersection points of the curves in a transversal arrange-

ment C. Let s denote the number of points in Sing(C).

Definition 1.3 (Combinatorial invariants of transversal arrangements). Let C be a trans-

versal arrangement on a smooth surface X. For a point p ∈ X, let rp denote the number
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of elements of C that pass through p. We call rp the multiplicity of p in C. We say p is

a k-fold point of C if there are exactly k curves in C passing through p. For a positive

integer k ≥ 2, tk denotes the number of k-fold points in C.

These numbers satisfy the following standard equality, which follows by counting inci-

dences in a transversal arrangement in two ways:∑
i<j

(Ci · Cj) =
∑
k≥2

(
k

2

)
tk.

Also, let

fi = fi(C) :=
∑
k≥2

kitk.

In particular, f0 = s is the number of points in Sing(C).

Definition 1.4. Let C = {C1, C2, . . . , Cd} be a connected arrangement of irreducible

curves on a smooth projective surface X and let Sing(C) denote the singular locus. Let L

be an ample line bundle on X. We define the configurational Seshadri constant of C as

εC(L) :=

∑d
i=1 L · Ci∑

p∈Sing(C)multp(C)
.

One class of arrangements studied in this paper are natural analogues of the classical

star arrangements of lines on P2. We make the following definition.

Definition 1.5. Let X be a nonsingular projective surface. A transversal arrangement

of curves C on X is called a star configuration if the only intersection points are double

points.

If C = {C1, C2, . . . , Cd} is a star arrangement and Ci are linearly equivalent to each

other then

t2 =
C2
1d(d− 1)

2
and tk = 0 for k > 2.

Star configurations of lines in P2, and more generally of hyperplanes in Pn, are exten-

sively studied; see [2, 4, 9], for some results.

In Section 2, we prove one of our main results (see Theorem 2.2) for a transversal

arrangement C of curves on a smooth projective surface under a nefness condition. We

will then assume that all curves in C are linearly equivalent to a fixed divisor and prove

some results for such configurations using Theorem 2.2. The main result in this set-up is

Corollary 2.7.

In Section 2.1, we consider some examples on ruled surfaces. In Section 2.2, we compare

the usual Seshadri constants with configurational Seshadri constants. In Section 2.3,
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we give lower bounds for configurational Seshadri constants for curve arrangements on

surfaces.

Finally, we give an example (see Example 2.22) of a computation of the multi-point

Seshadri constant at the singular locus of an arrangement of curves on a K3 surface. In

this example, the nefness hypothesis of Theorem 2.2 is not true but the conclusion about

the Seshadri constant still holds.

2. Seshadri constants for certain transversal curve arrangements

In this section, we will first prove a result computing Seshadri constants for arbitrary

transversal arrangements under a nefness condition. We will then study special cases of

this theorem.

We first introduce some notations. Let C be a transversal arrangement of curves on a

smooth projective surface X.

For each 1 ≤ i ≤ d, let bi = #Ci ∩ Sing(C). Since C is connected, bi > 0 for all i. We

define the base constant of C as

bs(C) = max{b1, . . . , bd},

i.e., bs(C) is equal to the maximum number of singular points of C that are contained in

a single curve Ci ∈ C.
The following question is a generalization of Question 1.1 to curve arrangements on

arbitrary surfaces.

Question 2.1. Let C = {C1, C2, . . . , Cd} be a transversal arrangement of curves on a

smooth projective surface X. Let L be an ample line bundle on X. Is it true that

ε(X,L,Sing(C)) = min
1≤i≤d

{
L · Ci

bi

}
?

By [9, Example 3.5], the above question has a negative answer for the Hesse arrange-

ment of conics in P2; see Example 2.10. However it is open for line arrangements in P2. It

is interesting to study the situations in which it is true on arbitrary surfaces. Our main

theorem below answers this question positively under an additional nefness condition.

Theorem 2.2. Let X be a nonsingular projective surface and let C = {C1, . . . , Cd} be a

transversal configuration of curves on X with d ≥ 4. Let L be an ample line bundle on X

such that d
∑

bi
(d−1)2(

∑
L·Ci)

L− Ci is nef for each i. Then

ε(X,L, Sing(C)) = min
1≤i≤d

{
L · Ci

bi

}
.
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Proof. Let P = {p1, . . . , ps} be the singular locus of C. For each i, exactly bi points in P
lie on Ci. Since each Ci is smooth, the Seshadri ratio computed by Ci is precisely

L·Ci
bi

.

We will now show that the Seshadri ratio given by any curve D not in C is at least

min1≤i≤d

{
L·Ci
bi

}
.

Suppose that there exists an irreducible and reduced curve D /∈ C having multiplicity

mp(D) at each point p ∈ P such that D ∩ P ̸= ∅ and

L ·D∑
p∈P mp(D)

< min
1≤i≤d

{
L · Ci

bi

}
.

So for each 1 ≤ i ≤ d, we have

bi(L ·D) < (L · Ci)
∑
p∈P

mp(D).

Adding over all i, we have

(2.1) (L ·D)
d∑

i=1

bi <

∑
p∈P

mp(D)

 d∑
i=1

L · Ci.

By Bézout’s theorem applied to D and C1 + · · ·+ Cd, we obtain

D · (C1 + · · ·+ Cd) ≥
∑
p∈P

mp(D) ·mp(C1 + · · ·+ Cd)

(∗)
≥ 2

∑
p∈P

mp(D)

(2.1)
>

2(L ·D)
∑

bi∑
L · Ci

,

where (∗) comes from the fact that all the singular points of C1 + · · · + Cd are at least

double points. Now we use the nefness of d
∑

bi
(d−1)2(

∑
L·Ci)

L − Ci and note the following

inequality
d
∑

bi
(d− 1)2(

∑
L · Ci)

L ·D ≥ D · Ci.

After adding over all i = 1, . . . , d, this leads to

d2
∑

bi
(d− 1)2(

∑
L · Ci)

L ·D ≥ D · (C1 + · · ·+ Cd) >
2(L ·D)

∑
bi∑

L · Ci

=⇒
(

d

d− 1

)2

> 2 (since
∑

bi > 0 and L is ample).

This is a contradiction, since d ≥ 4.
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Remark 2.3. Several authors have studied multi-point Seshadri constants on surfaces; for

a sample of results, see [1, 5, 7, 15–17]. Many of these results consider general points.

Theorem 2.2 gives a computation of Seshadri constants at special points.

Now we will work with configurations satisfying some additional assumptions. Specif-

ically, we will make the following assumption.

Assumption 2.4. Let C = {C1, C2, . . . , Cd} (d ≥ 4) be a (connected) transversal arrange-

ment of curves on a complex smooth projective surface X such that all the curves Ci in C
are linearly equivalent to a fixed divisor A on X.

Remark 2.5. Recall that the arrangements we study in this paper are all connected. Since

each curve in C is assumed to be linearly equivalent to a fixed divisor A, Assumption 2.4

implies in particular that Ci · Cj > 0 for all 1 ≤ i, j ≤ d.

For an arbitrary curve arrangement C satisfying Assumption 2.4, the base constant is

at most C2
1 (d− 1). So the following question arises naturally from Question 2.1.

Question 2.6. Let C = {C1, C2, . . . , Cd} be a transversal arrangement of curves on a

smooth projective surface X satisfying Assumption 2.4. Let Sing(C) denote the singular

locus of C and let L be an ample line bundle on X. Is it true that

(2.2) ε(X,L, Sing(C)) ≥ L · C1

C2
1 (d− 1)

?

For star arrangements, the base constant is exactly equal to C2
1 (d− 1). We answer the

above question positively for some arrangements below.

Corollary 2.7. Let X be a nonsingular projective surface and let C = {C1, . . . , Cd} be a

star configuration of curves on X with d ≥ 4 such that each Ci is linearly equivalent to a

fixed divisor A on X. Let L be an ample line bundle on X such that
dC2

1
(d−1)(L·C1)

L− C1 is

nef. Then

ε(X,L, Sing(C)) = L · C1

C2
1 (d− 1)

.

Proof. Under the given hypotheses, we have bi = C2
1 (d − 1) and L · Ci = L · C1 for all i.

The proof is now immediate from Theorem 2.2.

This immediately gives the following corollary.

Corollary 2.8. If C = {C1, . . . , Cd} is a star configuration on a nonsingular projective

surface X with d ≥ 4 and L is an ample line bundle on X such that Ci ∈ |mL| for all i

and a positive integer m > 0, then

ε(X,L, Sing(C)) = 1

m(d− 1)
.
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The proof of Theorem 2.2 can be modified to show that for arrangements satisfying

Assumption 2.4, which are not necessarily star arrangements, we still have the following

lower and upper bounds for the Seshadri constants.

Corollary 2.9. Let X be a nonsingular projective surface and let C = {C1, . . . , Cd} be a

configuration of curves on X satisfying Assumption 2.4. Let L be an ample line bundle

on X such that
dC2

1
(d−1)(L·C1)

L− C1 is nef. Then

L · C1

C2
1 (d− 1)

≤ ε(X,L,Sing(C)) ≤ L · C1

bs(C)
.

Proof. Let D /∈ C be a reduced and irreducible curve which contains some points of the

singular locus P of C. Essentially following the proof of Theorem 2.2, we can show that

L · C1

C2
1 (d− 1)

≤ L ·D∑
p∈P mp(D)

.

Indeed, suppose that the above inequality does not hold. As in the proof of Theo-

rem 2.2, Bézout’s theorem applied to D and C1 + · · ·+ Cd gives

D · (C1 + · · ·+ Cd) ≥
2(d− 1)(L ·D)C2

1

L · C1
.

Now we use the nefness of
dC2

1
(d−1)(L·C1)

L − C1 and obtain a contradiction exactly as in

the proof of Theorem 2.2. We omit the details since the argument is identical.

For curves in C, the least Seshadri ratio is L·C1
bs(C) . Since we always have bs(C) ≤ C2

1 (d−1),

the proof is complete.

Example 2.10. Consider the Hesse arrangement C = {C1, . . . , C12} of conics in P2 which

has 21 singular points. The base constant of C is 8. The Seshadri constant of L = OP2(1)

at these 21 points is known to be 1/5; see [9, Example 3.5].

We note that the nefness assumption of Theorem 2.2 does not hold here. Indeed,

bi = 8 for each 1 ≤ i ≤ 12. So the divisor
(12(b1+···+b12)

11×11×24

)
L − C1 is not nef because

b1 + · · ·+ b12 < 4× 112.

However, Corollary 2.9 does apply in this case. It is easy to see that 24
11L− C1 is nef.

Then Corollary 2.9 implies

1

22
< ε(P2, L,Sing(C)) = 1

5
<

1

4
.

This shows that the inequalities in Corollary 2.9 are strict, in general. In particular,

Corollary 2.7 does not hold in this case. Note that C is not a star arrangement.
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Example 2.11. Let Ln ⊂ P2 denote the n-th Fermat arrangement of 3n lines li with

n ≥ 3 given by the linear factors of the polynomial

Q(x, y, z) = (xn − yn)(yn − zn)(zn − xn).

It is well known that it has n2 (say {p1, . . . , pn2}) triple points and 3 points of multiplicity

n (say {q1, q2, q3}); see [18, Example II.6]. We now consider a curve C of degree 6 not

passing through either pi or qj and take the double cover π : X → P2 branched along C.

Then X is a K3 surface and L := π∗(O(1)) is ample.

For each i, let Ci denote the inverse image of li and let Cn := {C1, . . . , C3n} be an

arrangement of curves on X. Note that C2
i = 2 for every i and Ci is linearly equivalent

to Cj for all i, j. One can check that the base constant of the arrangement Cn is 2n+ 2.

It is easy to see that this arrangement satisfies the hypotheses of Corollary 2.9. So we

have the following inequalities

1

3n− 1
≤ ε(X,L, Sing(Cn)) ≤

1

n+ 1
.

We now construct examples such that the conclusion of Corollary 2.7 holds, even

without the nefness condition in the hypothesis. We construct these examples by obtaining

transversal arrangement of curves on rational ruled surfaces coming from line arrangements

in P2.

2.1. Examples on ruled surfaces

We first recall some basic facts about ruled surfaces. We follow the notation of [8, Chap-

ter V, Section 2].

Let C be a smooth complex curve of genus g and let π : X → C be a ruled surface

over C. We choose a normalized vector bundle E of rank 2 on C such that X = PC(E).

Let e := −deg(E). Let C0 be the image of a section of π such that C2
0 = −e and let f be

a fiber of π. Then the Picard group of X modulo numerical equivalence is a free abelian

group of rank 2 generated by C0 and f . We have C0 · f = 1 and f2 = 0.

A complete characterization of ample line bundles and irreducible curves on X is

known. For this, and other details on ruled surfaces, we refer to [8, Chapter V, Section 2].

Let X = Xe → P1 be a rational ruled surface with invariant e ≥ 1. Given a line

arrangement in P2, one can obtain an arrangement of curves on Xe, following a construc-

tion outlined in [3, Example 15], where a specific finite morphism Xe → X1 of degree e is

described. Note that X1 is isomorphic to a blow up of P2 at a point. So we can pull-back

lines in P2 to Xe which are in the class (1, e). If L is a line arrangement of d lines in the

plane, its pull-back gives a curve arrangement C of d curves in Xe.



Seshadri Constants of Curve Configurations on Surfaces 1061

To be more precise, suppose that L has s singularities and tk denotes the number of

singular points of L of multiplicity k. Then the singular points of C are precisely the

pre-images of singularities of L. So C has es singular points and the number of singular

points of multiplicity k is etk. Note that each curve in C is in the class (1, e) and has

self-intersection e.

In the next example, the conclusion of Corollary 2.7 holds, even without the nefness

condition in the hypothesis.

Example 2.12. Consider a transversal arrangement C = {C1, . . . , C5} of curves on a

rational ruled surface X = Xe with invariant e = 2 such that Ci ∈ |C0 + 2f | and such

that the only intersection points are ordinary double points. This configuration can be

obtained as pullback of a star configuration of lines from P2, using the above construction.

Note that each Ci contains exactly (5− 1)e = 8 double points from the arrangement.

Let L = C0 + 3f be an ample line bundle on X. Then we have

(5C2
1/(4L · C1))L− C1 =

1

6
(−C0 + 3f),

which is not nef as (−C0+3f) ·f = −1 < 0. Hence the nefness hypothesis in Corollary 2.7

fails.

We now verify that

ε(X,L, Sing(C)) = L · C1

4C2
1

=
3

8
.

Let P = {p1, . . . , p20} denote the set of all the singular points of C. Suppose that there

exists an irreducible and reduced curve D, different from each Ci for i ∈ {1, . . . , 5}, having
multiplicity mp(D) at each point p ∈ P such that

L ·D∑
p∈P mp(D)

<
3

8
.

Using Bézout’s theorem, we have

D · (C1 + · · ·+ C5) = 5(D · C1) ≥
∑
p∈P

mp(D) ·mp(C1 + · · ·+ C5)

= 2
∑
p∈P

mp(D) >
16(L ·D)

3
.

Since C1 is linearly equivalent to L− f and f is nef, we have

5(D · L) ≥ 5(D · C1) >
16(L ·D)

3
,

which is absurd since L is ample.
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Example 2.13. We now construct examples where the inequality in (2.2) is a strict

inequality. Consider a transversal arrangement Cn = {C1, . . . , C3n} of curves on a rational

ruled surface X = Xe with invariant e ≥ n > 1 such that Ci ∈ |C0 + ef | and such that

the curves Ci come as a pullback of a line arrangement L ⊂ P2 satisfying Hirzebruch’s

property and having singular points with multiplicity greater than two, using the above

construction, for more details, see [13]. Recall that a line arrangement L ⊂ P2 satisfies

Hirzebruch’s property if the number of lines is equal to 3n for some n ∈ Z>0 and each line

from L intersects any other line at exactly n+ 1 points.

Let L = C0 + (e+ 1)f be an ample line bundle on X. We now verify that

ε(X,L, Sing(Cn)) =
L · C1

e(n+ 1)
=

e+ 1

e(n+ 1)
.

Note that e+1
e(n+1) >

e+1
e(3n−1) , which shows that the inequality in (2.2) is strict.

Let P denote the set of all intersection points of Cn. The Seshadri ratio computed

by C1 is precisely e+1
e(n+1) . Suppose that there exists an irreducible and reduced curve D,

different from each Ci for i ∈ {1, . . . , 3n}, having multiplicity mp(D) at each point p ∈ P
such that

L ·D∑
p∈P mp(D)

<
e+ 1

e(n+ 1)
.

Using Bézout’s theorem, we have

D · (C1 + · · ·+ C3n) = 3n(D · C1) ≥
∑
p∈P

mp(D) ·mp(C1 + · · ·+ C3n)

≥ 3
∑
p∈P

mp(D) >
3(L ·D)e(n+ 1)

e+ 1
.

Since C1 is linearly equivalent to L− f and f is nef, we have

3n(D · L) ≥ 3n(D · C1) >
3(L ·D)e(n+ 1)

e+ 1
,

which is not possible since e ≥ n by the choice of e.

Example 2.14. There are examples of line arrangements in P2 satisfying Hirzebruch’s

property and such that all the singular points have multiplicity greater than two; for more

details, see [13].

First, we consider the n-th Fermat arrangement Ln of lines in P2 with n ≥ 3. As

noted above, this arrangement consists of 3n lines with tn = 3 and t3 = n2. Note that

Ln satisfies Hirzebruch property. Using the above construction, we can pullback Ln to a

curve arrangement C′
n on Xe with e > n. Then for the ample line bundle L = C0+(e+1)f

on Xe as in Example 2.13, we get

ε(Xe, L,Sing(C′
n)) =

L · C1

e(n+ 1)
=

e+ 1

e(n+ 1)
.
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Next, let K denote the Klein arrangement of lines consisting of 21 lines in P2 with

t4 = 21 and t3 = 28. Note that K satisfies Hirzebruch property. Using the above con-

struction, we can pullback K to a curve arrangement K′ on Xe with e > n as in the above

construction. Then for the ample line bundle L on Xe as in Example 2.13, we get

ε(Xe, L,Sing(K′)) =
L · C1

e(n+ 1)
=

e+ 1

8e
.

We now consider another arrangement satisfying Hirzebruch property, namely the

Wiman arrangement of lines W in P2 consisting of 45 lines with t3 = 120, t4 = 45 and

t5 = 36. Using the above construction, we can pullback W to a curve arrangement W ′ on

Xe with e > n as in the above construction. Then for the ample line bundle L on Xe as

in Example 2.13, we get

ε(Xe, L,Sing(W ′)) =
L · C1

e(n+ 1)
=

e+ 1

16e
.

2.2. Comparing the Seshadri constant and the configurational Seshadri constant

We now study possible discrepancies between the configurational and the multi-point

Seshadri constants with some examples. It is clear that for an arrangement C on a smooth

projective surface X and an ample line bundle L, we always have the following inequality

εC(L) ≥ ε(X,L, Sing(C)).

In general, this inequality is strict.

Example 2.15. In Corollary 2.7, we considered a star configuration C = {C1, . . . , Cd}
with d ≥ 4 such that Ci ∈ |A| for all i, where A was a fixed divisor on X. We saw that for

an ample line bundle L on X, if
dC2

1
(d−1)(L·C1)

L−C1 is nef, the Seshadri constant is given by

ε(X,L, Sing(C)) = L · C1

C2
1 (d− 1)

.

On the other hand, the configurational Seshadri constant is given by

εC(L) =
d(L · C1)

2t2
=

L · C1

C2
1 (d− 1)

.

Thus in this case, both these constants agree.

Example 2.16. In Example 2.14, we first considered a curve arrangement C′
n on Xe with

e > n obtained as a pullback of the n-th Fermat arrangement of lines Ln ⊂ P2 with n ≥ 3.

This arrangement C′
n consists of 3n curves with tn = 3e and t3 = en2. Then for the ample

line bundle L = C0+(e+1)f on Xe, we obtained the following value of Seshadri constant

ε(Xe, L,Sing(C′
n)) =

L · C1

e(n+ 1)
=

e+ 1

e(n+ 1)
.
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On the other hand, the configurational Seshadri constant is given by

εC′
n
(L) =

3n(L · C1)

f1
=

e+ 1

e(n+ 1)
.

Thus, in this case, both these constants agree.

Next, we considered a curve arrangement K′ on Xe with e > n which is a pullback of

the Klein arrangement of lines K ⊂ P2. The curve arrangement K′ consists of 21 curves

with t4 = 21e and t3 = 28e. Then by the choice of an ample line bundle L on Xe as in

Example 2.13, we obtained the following value of Seshadri constant

ε(Xe, L,Sing(K′)) =
e+ 1

8e
.

On the other hand, the configurational Seshadri constant is given by

εK′(L) =
21(L · C1)

f1
=

e+ 1

8e
.

Thus, in this case too, both the constants agree.

We then considered the curve arrangementW ′ on Xe with e > n obtained as a pullback

of the Wiman arrangement of lines W ⊂ P2. The curve arrangement W ′ consists of 45

curves with t3 = 120e, t4 = 45e and t5 = 36e. Then by the choice of an ample line bundle

L on Xe as in Example 2.13, we get

ε(Xe, L,Sing(W ′)) =
L · C1

e(n+ 1)
=

e+ 1

16e
.

On the other hand, the configurational Seshadri constant is given by

εW ′(L) =
45(L · C1)

f1
=

e+ 1

16e
.

Thus, in this case too, both the constants agree.

We give an example below where the Seshadri constant is strictly smaller than the

configurational Seshadri constant.

Example 2.17. In [9, Example 3.1], it was shown that for a Hirzebruch quasi-pencil H
of k ≥ 4 lines in P2 with tk−1 = 1 and t2 = k − 1, the multi-point Seshadri constant

ε(P2,OP2(1), Sing(H)) is strictly smaller than its configurational value εH(OP2(1)). We

can obtain a configuration H′ on a rational ruled surface Xe with e = k+1, as a pullback of

the Hirzebruch quasi-pencilH, using the construction mentioned above. The configuration

H′ consists of k ≥ 4 curves say C1, . . . , Ck, with tk−1 = e, t2 = (k−1)e and Ci ∈ |C0+ ef |
for all i. Let L = C0 + (e + 1)f be an ample line bundle on Xe. In this case, the

configurational Seshadri constant is

εH′(L) =
k(L · C1)

2e(k − 1) + (k − 1)e
=

k(e+ 1)

3e(k − 1)
=

k(k + 2)

3(k2 − 1)
.
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We now claim that

ε(Xe, L,Sing(H′)) =
e+ 1

e(k − 1)
=

k + 2

k2 − 1
.

Indeed, we can assume that the points of multiplicity k − 1 are defined by intersections

of C1, . . . , Ck−1. Then the curve Ck gives the Seshadri ratio e+1
e(k−1) =

k+2
k2−1

. Suppose that

there exists an irreducible and reduced curve D, different from each Ci for each i, having

multiplicity mp(D) at each point p ∈ P = Sing(H′) such that

L ·D∑
p∈P mp(D)

<
e+ 1

e(k − 1)
.

Then

D · (C1 + Ck) = 2(D · C1) ≥
∑
p∈P

mp(D) >
e(k − 1)(L ·D)

e+ 1
.

Since C1 is linearly equivalent to L− f , we have

2(D · L) ≥ 2(D · C1) >
e(k − 1)(L ·D)

e+ 1
,

i.e., 2(k + 2) > k2 − 1. But this is not possible by the choice of k. This shows that

εH′(L) > ε(Xe, L,Sing(H′)).

2.3. Lower bounds on configurational Seshadri constants

We now give some lower bounds on configurational Seshadri constants on ruled surfaces

and on surfaces of non-negative Kodaira dimension. We will work with arrangements of

curves satisfying Assumption 2.4.

Theorem 2.18. [6, Equation 4.9] Let X be a ruled surface over a smooth curve of

genus g ≥ 0 with invariant e ≥ 4. Let C = {C1, . . . , Cd} be a transversal arrangement of

curves satisfying Assumption 2.4 such that each curve in C is numerically equivalent to

A = aC0 + bf with a > 0 and b ≥ ae. Assume further that all the curves in C do not

meet in a point and that either a ≥ 2 or if a = 1, there exists a subset of four curves in

C such that there is no point common to all the four curves. Then we have the following

Hirzebruch-type inequality for C:

t2 +
3

4
t3 ≥ −16 + 16g +

∑
k≥5

(2k − 9)tk + d(e(5a2 − 2a)− 10ab− 4ag + 4a+ 4b).

Using the above result, we give a lower bound on configurational Seshadri constants.



1066 Krishna Hanumanthu, Praveen Kumar Roy and Aditya Subramaniam

Theorem 2.19. Let X be a ruled surface over a smooth curve of genus g ≥ 0 with

invariant e ≥ 4. Let C = {C1, . . . , Cd} be a transversal arrangement of curves satisfying

hypothesis of Theorem 2.18 and let L an ample line bundle on X. Then

εC(L) ≥
d(L · C1)

8− 8g + 9(2ab−a2e)d2

4 +
d(2ae−a2e

2
+ab+4ag−4a−4b)

2

.

Proof. Our strategy is based on the combinatorial features of C. Let us denote C =

C1 + · · ·+ Cd. Then we can write

εC(L) =

∑d
i=1 L · Ci∑

P∈Sing(C)multP (C)
=

d(L · C1)

f1
.

Our goal here is to find a reasonable upper-bound on the number f1 =
∑

r≥2 rtr. In

order to do so, we are going to use Theorem 2.18 and Hirzebruch’s inequality, namely

t2 +
3

4
t3 ≥ −16 + 16g +

∑
k≥5

(2k − 9)tk + d(e(5a2 − 2a)− 10ab− 4ag + 4a+ 4b).

Simplifying this, we get

16− 16g + d(2ae− 5a2e+ 10ab+ 4ag − 4a− 4b) + 9f0 ≥ 2f1 + 4t2 + t4 +
9

4
t3.

Since t2, t4, t3 ≥ 0 we have

16− 16g + d(2ae− 5a2e+ 10ab+ 4ag − 4a− 4b) + 9f0 ≥ 2f1,

and hence

8− 8g +
d

2
(2ae− 5a2e+ 10ab+ 4ag − 4a− 4b) +

9

2
f0 ≥ f1.

Obviously one always has

d ≤ f0 ≤ (2ab− a2e)

(
d

2

)
which leads to

f1 ≤ 8− 8g +
9(2ab− a2e)d2

4
+

d(2ae− a2e
2 + ab+ 4ag − 4a− 4b)

2
,

so finally we get

εC(L) =
d(L · C1)

f1
≥ d(L · C1)

8− 8g + 9(2ab−a2e)d2

4 +
d(2ae−a2e

2
+ab+4ag−4a−4b)

2

.

We will now consider transversal configurations on surfaces of non-negative Kodaira

dimension. We will use the following theorem.
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Theorem 2.20. [10, Theorem 2.1] Let X be a smooth complex projective surface with

non-negative Kodaira dimension and let C = C1 + · · ·+ Cd be a transversal configuration

of smooth curves having d ≥ 2 irreducible components C1, . . . , Cd. Then

KX · C + 4

d∑
i=1

(1− g(Ci))− t2 +
∑
r≥3

(r − 4)tr ≤ 3c2(X)−K2
X .

We now give a lower bound on configurational Seshadri constants on surfaces of non-

negative Kodaira dimension.

Theorem 2.21. Let X be a smooth complex projective surface with non-negative Kodaira

dimension and let C = C1 + · · · + Cd be a transversal configuration of smooth curves

satisfying Assumption 2.4. Assume further that all the curves in C do not meet in a point.

Let L be an ample line bundle on X. Then

εC(L) ≥
d(L · C1)

3c2(X)−K2
X + 4C2

1

(
d
2

)
−KX · C − 4

∑d
i=1(1− g(Ci))

.

Proof. As before, we find an upper-bound on the number f1 =
∑

r≥2 rtr. In order to do

so, we are going to use Theorem 2.20 and Hirzebruch’s inequality, namely

KX · C + 4
d∑

i=1

(1− g(Ci))− t2 +
∑
r≥3

(r − 4)tr ≤ 3c2(X)−K2
X .

Simplifying, we get

KX · C + 4

d∑
i=1

(1− g(Ci)) + t2 + f1 − 4f0 ≤ 3c2(X)−K2
X .

Since t2 ≥ 0, we have

KX · C + 4

d∑
i=1

(1− g(Ci)) + f1 − 4f0 ≤ 3c2(X)−K2
X ,

and hence

f1 ≤ 3c2(X)−K2
X + 4f0 −KX · C − 4

d∑
i=1

(1− g(Ci)).

We know that d ≤ f0 ≤ C2
1

(
d
2

)
. So

f1 ≤ 3c2(X)−K2
X + 4C2

1

(
d

2

)
−KX · C − 4

d∑
i=1

(1− g(Ci)).

Finally we obtain

εC(L) =
d(L · C1)

f1
≥ d(L · C1)

3c2(X)−K2
X + 4C2

1

(
d
2

)
−KX · C − 4

∑d
i=1(1− g(Ci))

.
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We end with an example of a configuration of lines on a K3 surface in P3. In this

example, the nefness hypothesis of Theorem 2.2 is not satisfied, but the conclusion holds.

Example 2.22. Let X ⊂ P3 be a Fermat quartic defined by the vanishing locus of

x40 + x41 + x42 + x43, where x0, . . . , x3 are the coordinates of P3. Then X contains the

following 48 lines; 16 from each of the following three types:

A : x0 = αx1 and x2 = βx3,

A′ : x0 = αx2 and x1 = βx3,

A′′ : x0 = αx3 and x1 = βx2,

where α, β ∈ {ζ,−ζ, iζ,−iζ} and ζ is a primitive eighth root of unity.

Now let L = {l1, l2, . . . , l48} be the arrangement consisting of all these 48 lines. In-

tersection behaviour of lines on a Fermat quartic is classically well-known. In particular,

it is known that the only singular points for the arrangement L are either double points

or quadruple points; [12, Example 3.3]. It is also not difficult to see that the number of

singular points on any line l in L is 10. Of these, two are quadruple points obtained by

intersecting l with lines of the same type. The remaining eight points are double points

obtained by intersecting l with lines of different types.

The hyperplane section X ∩ V (x0 − ζx1) is the union of the four lines of type A in

L given by x0 = ζx1 and x2 = βjx3 for 1 ≤ j ≤ 4. Consequently, the sum of these four

lines is linearly equivalent to OX(1). Similarly, the sum of the four lines x0 = αix1 and

x2 = ζx3, for 1 ≤ i ≤ 4, is linearly equivalent to OX(1). Thus we note that the line

x0 = ζx1 and x2 = ζx3 is in two different sets of 4 lines each so that the sum of lines in

each set is linearly equivalent to OX(1). Using a similar argument, one can see that there

are 24 sets of 4 lines each such that each line in L appears in exactly two of the sets and

the sum of the 4 lines in each set is linearly equivalent to OX(1).

We now compute the multi-point Seshadri constant of OX(1) at the singular locus of

the arrangement L. This arrangement has 216 singular points. So we have

ε(X,OX(1), Sing(L)) ≤
√

4

216
∼ 0.136.

In fact, we claim that

(2.3) ε(X,OX(1),Sing(L)) = 1

10
.

Note that Theorem 2.2 predicts that the Seshadri constant is indeed 1/10, though it

cannot be applied here. This is because d = 48, bi = 10 and L · li = 1 for every i. So

the divisor which appears in the statement of Theorem 2.2 is not nef, as can be seen by

intersecting with li.
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To prove (2.3), we first show that the Seshadri ratio computed by a line in L is 1/10.

As mentioned above, every line in L contains exactly 10 singular points of L. Note that

each line l in L has degree 1 in P3. So for every line l ∈ L,

OX(1) · l∑
p∈Sing(L)multp l

=
1

10
.

Now let C ⊂ X be any reduced and irreducible curve such that C /∈ L and which

passes through some point in the singular locus of L. We will show that the Seshadri ratio

given by C is strictly bigger than 1/10.

By Bézout’s theorem, we have the following inequality for every line l ∈ L:

2C · l ≥ 2

 ∑
p∈l∩Sing(L)

multpC

 .

We now sum such inequalities over all the 48 lines and then group the lines into sets

of four lines as described above, so that the sum of the four lines in each set is linearly

equivalent to OX(1). Therefore we get

48∑
i=1

2C · li ≥
48∑
i=1

2

 ∑
p∈li∩Sing(L)

multpC


=⇒

24∑
i=1

C · OX(1) ≥ 2

 48∑
i=1

∑
p∈li∩Sing(L)

multpC

 .

Since each double point appears in two lines and each quadruple point appears in four

lines, we obtain

24 deg(C) ≥ 2

2
∑

pi∈Sing2(L)

multpi C + 4
∑

qj∈Sing4(L)

multqj C

 ≥ 4
∑

p∈Sing(L)

multpC.

Here Sing2(L) and Sing4(L) denote the set of double points and the set of quadruple points

of the arrangement L, respectively. Therefore we get

OX(1) · C∑
p∈Sing(L)multpC

=
deg(C)∑

p∈Sing(L)multpC
≥ 1

6
>

1

10
.

This completes the proof of (2.3).
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