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Existence of Solutions for Fractional (p, q)-Laplacian Problems Involving

Critical Hardy–Sobolev Nonlinearities

Xuehui Cui and Yang Yang*

Abstract. This paper is devoted to studying a class of fractional (p, q)-Laplacian

problems with subcritical and critical Hardy potentials:(−∆)s1p u+ ν(−∆)s2q u = λ |u|r−2u
|x|a + |u|p

∗
s1

(b)−2
u

|x|b in Ω,

u = 0 in RN \ Ω,

where Ω ⊂ RN is a smooth and bounded domain, and p∗s1(b) = (N−b)p
N−ps1

denotes the

fractional critical Hardy–Sobolev exponent. More precisely, when ν = 1 and ν > 0 is

sufficiently small, using some asymptotic estimates and the Mountain Pass Theorem,

we establish the existence results for the above fractional elliptic equation under some

suitable hypotheses, respectively, which are gained over a wider range of parameters.

1. Introduction and main results

Consider the following fractional p&q-Laplacian problems with two different Hardy po-

tentials

(Pν(λ))

(−∆)s1p u+ ν(−∆)s2q u = λ |u|r−2u
|x|a + |u|p

∗
s1

(b)−2
u

|x|b in Ω,

u = 0 in RN \ Ω,

where Ω ⊂ RN is a smooth and bounded domain, N ≥ 2, λ, ν > 0 are parameters. 0 <

s2 < s1 < 1 < q < p < N
s1
, 0 < a, b < ps1 < N , r ∈ (q, p∗s1(b)), p

∗
s1(b) = (N−b)p/(N−ps1)

denotes the fractional critical Hardy–Sobolev exponent. Up to normalization, the nonlocal

operator (−∆)sp (p ≥ 1) is the fractional p-Laplacian defined by

(−∆)spu(x) := lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN ,

along any function u(x) ∈ C∞
0 (RN ), where Bε(x) = {y ∈ RN : |x− y| < ε}.
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As the basic theories of fractional Sobolev space gradually mature, a good deal of study

on nonlocal operators has achieved extensive popularity. Nonlocal operators are applied

in an extremely natural way in lots of different contexts such as water waves, nonlocal

phase transitions, finance, geophysics, and image recovery, see [3,12,24,25,33], one of these

operators is the fractional p-Laplacian.

Research on the fractional p-Laplacian has many interesting results; see for instance

[7, 17, 19, 23, 27, 29, 31] and references therein. Among them, we pay special attention

to [27] where Mosconi et al. studied the well-known Brézis–Niréberg problem (1983) for

the fractional p-Laplacian and obtained the nontrivial weak solution by working with

certain asymptotic estimates for minimizers and an abstract link theorem in [32].

More recently, due to the research done for problems driven by the local and nonlocal

operators −∆pu, −∆qu, and (−∆)spu, the existence, multiplicity, regularity, and maximum

principles of solutions for fractional p&q-Laplacian problems have received plenty of atten-

tion, see [1,2,4–6,8–11,14,16,21,28,30]. In [11] Bhakta and Mukherjee got the existence of

infinitely many nontrivial solutions of a class of fractional p&q elliptic equations involving

concave-critical nonlinearities in bounded domains in RN . When the nonlinearity was

of convex-critical type, they also established the multiplicity of nonnegative solutions by

variational methods. In [4] Ambrosio proved a strong maximum principle in an open set

Ω ⊂ RN for weak supersolutions of

(−∆)spu+ β(−∆)squ+ c(x)
(
|u|p−2u+ |u|q−2u

)
= 0.

In [10] Behboudi et al. studied a quasi-linear problem in a bounded Lipschitz domain

Ω: (−∆)rpu+ γ(−∆)squ = λ|u|p−2u+ f(x, u) in Ω,

u = 0 in RN \ Ω.

They investigated the existence of a mountain pass solution via critical point theory and

variational methods. On the other hand, Goel et al. [21] studied the following nonlinear

doubly nonlocal equation

(1.1)

(−∆)s1p u+ β(−∆)s2q u = λa(x)|u|δ−2u+ b(x)|u|r−2u on Ω,

u = 0 in RN \ Ω.

By analyzing the fibering maps and the energy functional over suitable subsets of the

Nehari manifold, they got the multiplicity of weak solutions, and in the case of δ = q, they

obtained the existence of solutions.

When β = a(x) = b(x) = 1 in (1.1), Chen and Yang [14] studied the related Brézis–
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Niréberg problem for the fractional p&q-Laplacian(−∆)s1p u+ (−∆)s2q u = µ|u|q−2u+ λ|u|p−2u+ |u|p
∗
s1

−2u in Ω,

u = 0 in RN \ Ω,

where µ, λ > 0, 0 < s2 < s1 < 1 < q < p < N
s1
. By the mountain pass theorem and

certain asymptotic estimates for minimizers, the existence of a nonnegative nontrivial

weak solution was obtained, which extended the results of p&q-Laplacian in [13] to the

fractional p&q-Laplacian.

Moreover, we note that the elliptic equations with Hardy term have been studied

recently in many papers such as [8, 18–20, 31]. In [8], Ambrosio and Isernia studied the

following problem with critical Sobolev–Hardy exponents in an open bounded domain

with smooth boundary Ω ⊂ RN :

(1.2)

(−∆)spu+ (−∆)squ = |u|p∗s(α)−2u
|x|α + λf(x, u) in Ω,

u = 0 in RN \ Ω,

where λ > 0 is a parameter, p∗s(α) = p(N−α)
N−ps is the so-called Hardy–Sobolev critical

exponent. Using concentration-compactness principle and the mountain pass lemma, they

showed that there exists λ∗ > 0 such that for any λ ∈ (0, λ∗), problem (1.2) has infinitely

many nontrivial solutions.

In addition, Fan [18] studied the related problems(−∆)s1p u+ (−∆)s2q u = f(x)|u|m−2u+ |u|r−2u
|u|α in Ω,

u = 0 in RN \ Ω.

If 2 < q + 1 < p < m < r = p∗α = (N−α)p
(N−ps1)

, via variational methods, at least one nontrivial

solution was obtained when N < p2s1 and m > Np/(N − ps1)− p/(p− 1).

Motivated by the results mentioned above, in the present paper, we consider the frac-

tional p&q-Laplacian problem (Pν(λ)) with a subcritical and a critical Hardy term, which

generalize the results of [22] to the fractional p&q-Laplacian problem with critical Hardy

nonlinearity. The purpose of this paper is using Lemmas 2.1 and 2.7 to study the nontrivial

weak solutions of (Pν(λ)) under the cases ν = 1 and ν > 0 sufficiently small, respectively.

To the best of our knowledge, our result is new.

Here are the results:

Theorem 1.1. When ν = 1, problem (P1(λ)) has a nontrivial weak solution for all λ > 0

in each to following cases when N < p2s1:

(i) 1 < q < p − p(N−ps1)
N(p−1) , p(N−a)

N−ps1
− p

p−1 < r < p∗s1(b), and max
{
0, b − N−ps1

p−1

}
< a ≤

p2s1−N
p−1 ;
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(ii) p− p(N−ps1)
N(p−1) ≤ q < p, Nq−ap

N−ps1
< r < p∗s1(b), and 0 < b ≤ a ≤ p2s1−N

p−1 .

Remark 1.2. When a = b = 0, the result of Theorem 1.1 also holds.

We find that when 1 < p ≤ 3N+
√

5N2−4Ns1
2(N+s1)

, case (i) in Theorem 1.1 cannot hold and

the first inequality in case (ii) holds for q > 1, so we have the following corollary.

Corollary 1.3. When N < p2s1, if 1 < q < p ≤ 3N+
√

5N2−4Ns1
2(N+s1)

, Nq−ap
N−ps1

< r < p∗s1(b),

0 < b ≤ a ≤ p2s1−N
p−1 , then the problem (P1(λ)) has a nontrivial weak solution for all λ > 0.

Theorem 1.4. When ν > 0, there exists ν0 > 0 such that problem (Pν(λ)) has a nontrivial

weak solution for all ν ∈ (0, ν0) and λ > 0 in each of the following cases:

(i) a ∈
[
max

{
0, p

2s1−N
p−1

}
, ps1

)
\ {0} and r ∈ (q, p∗s1(b));

(ii) p2s1 > N , either 0 < a < p2s1−N
p−1 , and q < r < p or max

{
0, b − N−ps1

p−1

}
< a <

p2s1−N
p−1 , and p(N−a)

N−ps1
− p

p−1 < r < p∗s1(b).

Remark 1.5. When a = b = 0, the result of Theorem 1.4 also holds.

When q < r < p, we have the following corollary.

Corollary 1.6. When 0 < a < (p2s1 −N)/(p− 1), if q < r < p, then there exists ν0 > 0

such that problem (Pν(λ)) has a nontrivial weak solution for all ν ∈ (0, ν0) and λ > 0.

The main novelty of this paper is that the form of (Pν(λ)) is new and the existence of

solutions is gained over a wider range of parameter λ and r, compared with the relevant

study. Precisely, in contrast to [8], Theorem 1.1 gives a nontrivial solution of (Pν(λ)) for all

λ > 0. On the other hand, we obtain a nontrivial solution, not only allows p < r < p∗s1(b),

but also allows q < r ≤ p, which is different from [18], where p < r < p∗s1(b).

Our main difficulty in this paper is the lack of explicit formulas for minimizers, we

will overcome this by working with certain estimates for minimizers recently obtained

in [26, 31]. At the same time, the nodus of lacking compactness is also overcome. The

outline of this paper is as follows. In Section 2, we analyze the behavior of the Palais–

Smale sequence, the mountain pass geometry, and some useful asymptotic estimates that

can be applied to prove our theorems. In Section 3 and Section 4, we give the proofs of

Theorems 1.1 and 1.4, respectively.

2. Preliminaries

In order to precisely state our main theorems, we first introduce some notations. We

denote the fractional Sobolev space by W s,p(Ω) endowed with the norm

∥u∥W s,p(Ω) =

(
∥u∥pp +

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

,
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where ∥u∥t =
( ∫

Ω |u|t dx
)1/t

denotes the norm of the space Lt(Ω) (1 ≤ t ≤ p∗s1(b)).

For p > 1 and s ∈ (0, 1), we set Q := R2N \ (Ωc × Ωc), where Ωc = RN \ Ω and

t ∈ {p, q}, we define

Xs,t :=

{
u : RN → R is measurable, u|Ω ∈ Lt(Ω), and

∫
Q

|u(x)− u(y)|t

|x− y|N+st
dxdy < +∞

}
.

We work in the closed linear subspace

X0,s1,p =
{
u ∈ Xs1,p : u = 0 a.e. in RN \ Ω

}
,

which is a uniformly convex Banach space endowed with the norm as

∥u∥X0,s1,p
=

(∫
Q

|u(x)− u(y)|p

|x− y|N+s1p
dxdy

)1/p

.

Since u = 0 a.e. in RN \ Ω, the above integral can be extended to all of the RN .

From [11, Lemma 2.2], we know if 0 < s2 < s1 < 1 and 1 < q ≤ p, Ω is a smooth

bounded in RN , when N > ps1, then X0,s1,p ⊂ X0,s2,q, and there exists a constant C =

C(|Ω|, N, p, q, s1, s2) > 0 such that for all u ∈ X0,s1,p,

(2.1) ∥u∥X0,s2,q
≤ C∥u∥X0,s1,p

.

We define

(2.2) S := inf
u∈W s1,p(Ω)\{0}

∥u∥pX0,s1,p( ∫
Ω

|u|p
∗
s1

(b)

|x|b dx
) p

p∗s1 (b)

.

Let Lj(Ω, |x|−b dx) be the weighted Lj space with the norm

∥u∥Lj(Ω,|x|−b dx) =

(∫
Ω

|u|j

|x|b
dx

)1/j

.

Then from [15], we know that the embedding X0,s1,p ↪→ Lj(Ω, |x|−b dx) is continuous for

j ∈ [1, p∗s1(b)] and compact for j ∈ [1, p∗s1(b)). So we have the inequality as follows:

∫
Ω

|u|r

|x|a
dx ≤ C∥u∥rX0,s1,p

for all 0 < r ≤ p∗s1(b), where C is a suitable constant.
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2.1. A compactness result

For ν ≥ 0, a function u ∈ X0,s1,p is a weak solution of (Pν(λ)) for all h ∈ X0,s1,p if∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(h(x)− h(y))

|x− y|N+ps1
dxdy

+ ν

∫
R2N

|u(x)− u(y)|q−2(u(x)− u(y))(h(x)− h(y))

|x− y|N+qs2
dxdy

= λ

∫
Ω

|u|r−2uh

|x|a
dx+

∫
Ω

|u|p
∗
s1

(b)−2uh

|x|b
dx.

Weak solutions of (Pν(λ)) coincide with critical points of C1-functional

Eν(u) =
1

p
∥u∥pX0,s1,p

+
ν

q
∥u∥qX0,s2,q

− λ

r

∫
Ω

|u|r

|x|a
dx− 1

p∗s1(b)

∫
Ω

|u|p
∗
s1

(b)

|x|b
dx.

Our main results will be based on the following lemma which extends Ho et al. [22,

Proposition 3.1] to the fractional p&q-Laplacian.

Lemma 2.1. Let 1 < q < p < N
s1
, 0 < s2 < s1 < 1, 0 < a, b < ps1 < N , r ∈ (q, p∗s1(b)).

If 0 < c < c∗ =
(
1
p − 1

p∗s1 (b)

)
S

N−b
ps1−b , then every (PS)c sequence has a subsequence that

converges weakly to a nontrivial critical point of Eν(u).

Proof. Recall that a sequence (uj) ⊂ X0,s1,p such that Eν(uj) → c and E′
ν(uj) → 0 is

called a (PS)c sequence, i.e.,

Eν(uj) =
1

p
∥uj∥pX0,s1,p

+
ν

q
∥uj∥qX0,s2,q

− λ

r

∫
Ω

|uj |r

|x|a
dx− 1

p∗s1(b)

∫
Ω

|uj |p
∗
s1

(b)

|x|b
dx

= c+ o(1),

(2.3)

and

⟨E′
ν(uj), h⟩ =

∫
R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))(h(x)− h(y))

|x− y|N+ps1
dxdy

+ ν

∫
R2N

|uj(x)− uj(y)|q−2(uj(x)− uj(y))(h(x)− h(y))

|x− y|N+qs2
dxdy

− λ

∫
Ω

|uj |r−2uh

|x|a
dx−

∫
Ω

|uj |p
∗
s1

(b)−2uh

|x|b
dx

= o(1)∥h∥X0,s1,p
.

(2.4)

Taking h = uj in (2.4) gives

⟨E′
ν(uj), uj⟩ = ∥uj∥pX0,s1,p

+ ν∥uj∥qX0,s2,q
− λ

∫
Ω

|uj |r

|x|a
dx−

∫
Ω

|uj |p
∗
s1

(b)

|x|b
dx

= o(1)∥uj∥X0,s1,p
.

(2.5)
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Fix m ∈ (p, p∗s1(b)), dividing (2.5) by m and subtracting from (2.3) gives

c+ o(1) + o(1)∥uj∥X0,s1,p
=

(
1

p
− 1

m

)
∥uj∥pX0,s1,p

+

(
1

m
− 1

p∗s1(b)

)∫
Ω

|uj |p
∗
s1

(b)

|x|b
dx

+ ν

(
1

q
− 1

m

)
∥uj∥qX0,s2,q

− λ

(
1

r
− 1

m

)∫
Ω

|uj |r

|x|a
dx.

(2.6)

From this and Hölder inequality, we conclude that(
1

m
− 1

p∗s1(b)

)∫
Ω

|uj |p
∗
s1

(b)

|x|b
dx ≤ c+ o(1) + o(1)∥uj∥X0,s1,p

+ C

(∫
Ω

|uj |p
∗
s1

(b)

|x|b
dx

) r
p∗s1 (b)

,

combining with (2.6), we conclude that (uj) is bounded. So there exists a subsequence

(still denoted by (uj)) and u ∈ X0,s1,p such that

uj ⇀ u weakly in X0,s1,p,

uj → u a.e. on Ω,

uj ⇀ u weakly in Lp∗s1 (b)(Ω, |x|−b dx),

uj → u strongly in Lr(Ω, |x|−b dx), r ∈ [1, p∗s1(b)).

Denoting by p′ = p
p−1 the Hölder conjugate of p, q′ = q

q−1 the Hölder conjugate of q.

Similar as in [14], let us observe that the sequence{
|uj(x)− uj(y)|p−2(uj(x)− uj(y))

|x− y|
N+ps1

p′

}
j∈N

is bounded in Lp′(R2N ),

and

|uj(x)− uj(y)|p−2(uj(x)− uj(y))

|x− y|
N+ps1

p′
→ |u(x)− u(y)|p−2(u(x)− u(y))

|x− y|
N+ps1

p′
a.e. in R2N ,

and
h(x)− h(y)

|x− y|
N+ps1

p

∈ Lp(R2N ).

Hence, up to a subsequence, we have∫
R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))(h(x)− h(y))

|x− y|N+ps1
dxdy

→
∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(h(x)− h(y))

|x− y|N+ps1
dxdy.

Similarly for q, ∫
R2N

|uj(x)− uj(y)|q−2(uj(x)− uj(y))(h(x)− h(y))

|x− y|N+qs2
dxdy

→
∫
R2N

|u(x)− u(y)|q−2(u(x)− u(y))(h(x)− h(y))

|x− y|N+qs2
dxdy.
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On the other hand, for any h ∈ X0,s1,p, we have∫
Ω

|uj |r−1h

|x|a
dx →

∫
Ω

|u|r−1h

|x|a
dx,

∫
Ω

|uj |p
∗
s1

(b)−1h

|x|b
dx →

∫
Ω

|u|p
∗
s1

(b)−1h

|x|b
dx.

Passing to the limit in (2.4) shows that u ∈ X0,s1,p is a weak solution of (Pν(λ)), that is,

E′
ν(u) = 0.

Suppose u = 0, then (2.3) and (2.5) reduce to

(2.7) Eν(uj) =
1

p
∥uj∥pX0,s1,p

+
ν

q
∥uj∥qX0,s2,q

− 1

p∗s1(b)

∫
Ω

|uj |p
∗
s1

(b)

|x|b
dx = c+ o(1),

and

(2.8) ⟨E′
ν(uj), uj⟩ = ∥uj∥pX0,s1,p

+ ν∥uj∥qX0,s2,q
−
∫
Ω

|uj |p
∗
s1

(b)

|x|b
dx = o(1)∥uj∥X0,s1,p

.

Equation (2.8) together with (2.2) gives

(2.9) ∥uj∥pX0,s1,p
≤
∫
Ω

|uj |p
∗
s1

(b)

|x|b
dx+ o(1) ≤ S

−
p∗s1 (b)

p ∥uj∥
p∗s1 (b)

X0,s1,p
+ o(1).

If ∥uj∥X0,s1,p
→ 0 for a renamed subsequence, then (2.7) gives c = 0, contrary to our

assumption that c > 0. So ∥uj∥X0,s1,p
is bounded away from 0, and hence (2.9) implies

that

∥uj∥pX0,s1,p
≥ S

p∗s1 (b)

p∗s1 (b)−p + o(1) = S
N−b
ps1−b + o(1).

Now, multiplying (2.8) by 1
p∗s1 (b)

and subtracting from (2.7) gives

c =

(
1

p
− 1

p∗s1(b)

)
∥uj∥pX0,s1,p

+ ν

(
1

q
− 1

p∗s1(b)

)
∥uj∥qX0,s2,q

+ o(1)

≥
(
1

p
− 1

p∗s1(b)

)
S

N−b
ps1−b + o(1),

which is contrary to our assumption.

2.2. Mountain pass geometry

Weak solutions of (P1(λ)) coincide with the critical points of the C1-functional

E1(u) =
1

p
∥u∥pX0,s1,p

+
1

q
∥u∥qX0,s2,q

− λ

r

∫
Ω

|u|r

|x|a
dx− 1

p∗s1(b)

∫
Ω

|u|p
∗
s1

(b)

|x|b
dx.

Let

(2.10) η1 = inf
u∈X0,s1,p\{0}

∥u∥pX0,s1,p∫
Ω

|u|p
|x|a dx
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be the first eigenvalue of the eigenvalue problem(−∆)s1p u = η |u|p−2u
|x|a in Ω,

u = 0 in RN \ Ω.

Let

(2.11) µ1 = inf
u∈X0,s2,q\{0}

∥u∥qX0,s2,q∫
Ω

|u|q
|x|a dx

be the first eigenvalue of the eigenvalue problem(−∆)s2q u = µ |u|q−2u
|x|a in Ω,

u = 0 in RN \ Ω.

We note that when r ∈ (q, p∗s1(b)), for some η ∈ (0, η1) and some constant b1 > 0, we have

(2.12)
λ

r

|u|r

|x|a
≤ η

p

|u|p

|x|a
+

µ1

q

|u|q

|x|a
+ b1

|u|s

|x|a

holds for a.e. x ∈ Ω and all u ∈ R, where s ∈ (p, p∗s1(b)).

Lemma 2.2. (i) There exist constants ρ > 0 and α > 0 such that E1(u) ≥ α for all

u ∈ X0,s1,p with ∥u∥X0,s1,p
= ρ.

(ii) There exists u1 ∈ X0,s1,p with ∥u1∥X0,s1,p
> ρ such that E1(u1) < α.

Proof. (i) By (2.2), (2.10)–(2.12), and Sobolev inequality, we have

E1(u) ≥
1

p
∥u∥pX0,s1,p

+
1

q
∥u∥qX0,s2,q

− η

p

∫
Ω

|u|p

|x|a
dx

− µ1

q

∫
Ω

|u|q

|x|a
dx− b1

∫
Ω

|u|s

|x|a
dx− 1

p∗s1(b)

∫
Ω

|u|p
∗
s1

(b)

|x|b
dx

≥ 1

p

(
1− η

η1

)
∥u∥pX0,s1,p

− b1

∫
Ω

|u|s

|x|a
dx− 1

p∗s1(b)

∫
Ω

|u|p
∗
s1

(b)

|x|b
dx

≥ 1

p

(
1− η

η1

)
∥u∥pX0,s1,p

− b2∥u∥sX0,s1,p
− 1

p∗s1(b)
S
−

p∗s1 (b)

p ∥u∥
p∗s1 (b)

X0,s1,p

for some constant b2 > 0. Since p < s < p∗s1(b), it follows that the origin is a strict local

minimizer of E1(u). Thus we can choose ∥u∥X0,s1,p
= ρ sufficiently small and Lemma 2.2(i)

holds.

(ii) Let h ∈ X0,s1,p with h > 0, then we get for t → +∞,

E1(th) =
tp

p
∥h∥pX0,s1,p

+
tq

q
∥h∥qX0,s2,q

− λ
tr

r

∫
Ω

|h|r

|x|a
dx− tp

∗
s1

(b)

p∗s1(b)

∫
Ω

|h|p
∗
s1

(b)

|x|b
dx

→ −∞.

By taking u1 = th, we can conclude the proof of Lemma 2.2(ii).
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Let Γ1 = {γ ∈ C([0, 1], X0,s1,p) : γ(0) = 0, E1(γ(1)) < 0} be the class of paths in

X0,s1,p joining the origin to the set {u ∈ X0,s1,p : E1(u) < 0} and set

(2.13) c := inf
γ∈Γ1

max
u∈γ([0,1])

E1(u).

Since the origin is a strict local minimizer of E1(u), c > 0.

2.3. Some estimates

In the following, we shall fix a radially symmetric nonnegative decreasing minimizer U =

U(r) for the Sobolev constant S. If necessary multiplying U by a positive constant, we

may assume that

(2.14) (−∆)s1p u =
Up∗s1 (b)−1

|x|b
, x ∈ RN .

Testing this equation with U and using (2.2) shows that

(2.15) ∥U∥pX0,s1,p
= |U |

p∗s1 (b)

p∗s1 (b)
= S

N−b
ps1−b .

For any ε > 0, the function

(2.16) Uε(x) = ε
−N−ps1

p U

(
|x|
ε

)
is also a minimizer for S satisfying (2.14) and (2.15), so after a rescaling we may assume

that U(0) = 1. Henceforth U will denote such a normalized (with respect to constant

multiples and rescaling) minimizer and Uε will denote the associated family of minimizer

given by (2.16). In the absence of an explicit formula for U , we will use the following

estimates.

Lemma 2.3. [26] There exist constants c1, c2 > 0 and θ > 1 such that for all r > 1,

c1

r
N−ps1
p−1

≤ U(r) ≤ c2

r
N−ps1
p−1

and
U(θr)

U(r)
≤ 1

2
.

We construct some auxiliary functional and estimate their norms. In what follows θ is

a universal constant in Lemma 2.3 that depends only on N , p, and s1. We may assume

without loss of generality that 0 ∈ Ω, for ε, δ > 0, let

mε,δ =
Uε(δ)

Uε(δ)− Uε(θδ)
,

and let

gε,δ(t) =


0, 0 ≤ t ≤ Uε(θδ),

mp
ε,δ(t− Uε(θδ)), Uε(θδ) ≤ t ≤ Uε(δ),

t+ Uε(δ)
(
mp−1

ε,δ − 1
)
, t ≥ Uε(δ),
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and let

Gε,δ(t) =

∫ t

0
g′ε,δ(τ)

1/p dτ =


0, 0 ≤ t ≤ Uε(θδ),

mε,δ(t− Uε(θδ)), Uε(θδ) ≤ t ≤ Uε(δ),

t, t ≥ Uε(δ).

The functions gε,δ(t) and Gε,δ(t) are absolutely continuous and nondecreasing. By defini-

tion, we obtain

G′
ε,δ(t) =

(
g′ε,δ(t)

)1/p
=


0, 0 ≤ t ≤ Uε(θδ),

mε,δ, Uε(θδ) ≤ t ≤ Uε(δ),

1, t ≥ Uε(δ),

therefore,

(2.17) G′
ε,δ(t) ≤ max{mε,δ, 1} ≤ mε,δ + 1.

Next we estimate mε,δ as follows. Choosing ε > 0 small enough such that δ/ε > 1 and

thus U(θδ/ε)/U(δ/ε) ≤ 1/2, we get

(2.18) mε,δ =
Uε(δ)

Uε(δ)− Uε(θδ)
=

U(δ/ε)

U(δ/ε)− U(θδ/ε)
≤ c2

c1
θ

N−ps1
p−1 .

Consider the radially symmetric nonincreasing function uε,δ = Gε,δ(Uε(r)), which sat-

isfies

Uε,δ(r) =

Uε(r) if r ≤ δ,

0 if r ≥ θδ.

Recall that h(x) = Θ(g(x)) as x → 0 if there exist constants c, C > 0 such that

c · |g(x)| ≤ |h(x)| ≤ C · |g(x)|

for all sufficiently small ε > 0. We have the following estimates.

Lemma 2.4. [31, Lemma 2.7] For any 0 < 2ε ≤ δ < θ−1 dist(0, ∂Ω), we have the

following estimates

(2.19) ∥uε,δ∥pX0,s1,p
= S

N−b
ps1−b +Θ

(
(ε/δ)

N−ps1
p−1

)
,

and

(2.20) |uε,δ|
p∗s1 (b)

p∗s1 (b)
= S

N−b
ps1−b −Θ

(
(ε/δ)

N−b
p−1
)
.
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Lemma 2.5. Let uε,δ be defined as above, inspired by [11], we have

∥uε,δ∥tX0,s2,t
= Θ

(
ε

N(p−t)
p
)
.

Proof. By (2.1) we have

∥uε,δ∥tX0,s2,t
≤ C∥uε,δ∥tX0,s1,t

= C

∫
R2N

∣∣Gε,δ(Uε(x))−Gε,δ(Uε(y))
∣∣t

|x− y|N+ts1
dxdy

≤ C

∫
R2N

∣∣G′
ε,δ

(
Uε(x) + τ(Uε(y)− Uε(x))

)∣∣t|Uε(x)− Uε(y)|t

|x− y|N+ts1
dxdy.

(2.21)

In the last line, we have used the mean value theorem for some τ ∈ (0, 1). Thus from

(2.17) and (2.18) we get

(2.22) G′
ε,δ

(
Uε(x) + τ(Uε(y)− Uε(x))

)
≤ 1 +

c2
c1
θ

N−ps1
p−1 = C.

Putting (2.22) into (2.21) yields

∥uε,δ∥tX0,s2,t
≤ C

∫
R2N

|Uε(x)− Uε(y)|t

|x− y|N+ts1
dxdy

= ε
N−ts1− (N−ps1)t

p

∫
R2N

|U(x)− U(y)|t

|x− y|N+ts1
dxdy

= ε
N(p−t)

p ∥U∥tX0,s1,t
.

In particular,

(2.23) ∥uε,δ∥qX0,s2,q
= Θ

(
ε

N(p−q)
p
)
.

Lemma 2.6. Let uε,δ be defined as above, we have

∫
Ω

|uε,δ|r

|x|a
dx =


Θ
(
ε
(N−ps1)

(
r

p−1
− r

p

)
δ
N−a− (N−ps1)r

p−1
)

if r < (N−a)(p−1)
N−ps1

,

Θ
(
ε

N−a
p | ln(δ/ε)|

)
if r = (N−a)(p−1)

N−ps1
,

Θ
(
ε
N−a− r(N−ps1)

p
)

if r > (N−a)(p−1)
N−ps1

.

Proof. ∫
Ω

|uε,δ|r

|x|a
dx ≥

∫
Bδ(0)

|Uε(x)|r

|x|a
dx

= ε
− r(N−ps1)

p

∫
Bδ(0)

|U(xε )|
r

|x|a
dx

= ε
N−a− r(N−ps1)

p

∫
Bδ/ε(0)

|U(x)|r

|x|a
dx

≥ Cε
N−a− r(N−ps1)

p

∫ δ/ε

1
ρ
− r(N−ps1)

p−1
+N−a−1

dρ.
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(i) If r < (N−a)(p−1)
N−ps1

, then∫ δ/ε

1
ρ
− r(N−ps1)

p−1
+N−a−1

dρ = C(δ/ε)
−N(p−s1)r

p−1
+N−a

,

so ∫
Ω

|uε,δ|r

|x|a
dx = Θ

(
ε
(N−ps1)

(
r

p−1
− r

p

)
δ
N−a− (N−ps1)r

p−1
)
.

(ii) If r = (N−a)(p−1)
N−ps1

, then∫ δ/ε

1
ρ
− r(N−ps1)

p−1
+N−a−1

dρ =

∫ δ/ε

1

1

ρ
dρ = C| ln(δ/ε)|,

so ∫
Ω

|uε,δ|r

|x|a
dx = Θ

(
ε

N−a
p | ln(δ/ε)|

)
.

(iii) If r > (N−a)(p−1)
N−ps1

, then there exists C such that∣∣∣∣∣
∫ δ/ε

1
ρ
− r(N−ps1)

p−1
+N−a−1

dρ

∣∣∣∣∣ ≤ C,

so ∫
Ω

|uε,δ|r

|x|a
dx = Θ

(
ε
N−a− r(N−ps1)

p
)
.

Lemma 2.7. If (εj), (δj) are sequences such that εj → 0, 0 < δj ≤ 1, εj/δj → 0,

(2.24)
ν∥uεj ,δj∥

q
X0,s2,q∫

Ω

|uεj ,δj
|r

|x|a dx
→ 0,

(εj/δj)
N−ps1
p−1∫

Ω

|uεj ,δj
|r

|x|a dx
→ 0,

then

max
t≥0

Eν

(
tuεj ,δj (x)

)
< c∗ =

(
1

p
− 1

p∗s1(b)

)
S

N−b
ps1−b

for all sufficiently large j.

Proof. Write ũj = uεj ,δj (x). We know that

Eν(tũj) =
tp

p
∥ũj∥pX0,s1,p

+ ν
tq

q
∥ũj∥qX0,s2,q

− λ
tr

r

∫
Ω

|ũj |r

|x|a
dx− tp

∗
s1

(b)

p∗s1(b)

∫
Ω

|ũj |p
∗
s1

(b)

|x|b
dx

=: φ(t).

Suppose that the conclusion of the Lemma 2.7 is false. Then there are renamed subse-

quences (εj), (δj) and tj > 0 such that

φ(tj) =
tpj
p
∥ũj∥pX0,s1,p

+ ν
tqj
q
∥ũj∥qX0,s2,q

− λ
trj
r

∫
Ω

|ũj |r

|x|a
dx−

t
p∗s1 (b)

j

p∗s1(b)

∫
Ω

|ũj |p
∗
s1

(b)

|x|b
dx

≥ c∗,

(2.25)
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and

tjφ
′(tj) = tpj∥ũj∥

p
X0,s1,p

+ νtqj∥ũj∥
q
X0,s2,q

− λtrj

∫
Ω

|ũj |r

|x|a
dx− t

p∗s1 (b)

j

∫
Ω

|ũj |p
∗
s1

(b)

|x|b
dx

= 0.

(2.26)

Noting that by (2.23), Lemmas 2.4 and 2.6, we have

∥ũj∥pX0,s1,p
→ S

N−b
ps1−b , ∥ũj∥qX0,s2,q

→ 0,

∫
Ω

|ũj |r

|x|a
dx → 0,

∫
Ω

|ũj |p
∗
s1

(b)

|x|b
dx → S

N−b
ps1−b .

So (2.25) implies that the sequence (tj) is bounded and hence converges to some t0 > 0

for a subsequence. Passing to the limit in (2.26) gives

(2.27) tp0S
N−b
ps1−b − t

p∗s1 (b)

0 S
N−b
ps1−b = 0,

so t0 = 1. Subtracting (2.27) from (2.26) and using (2.19) and (2.20) gives

tpj

(
S

N−b
ps1−b +Θ

(
(εj/δj)

N−ps1
p−1

))
+ νtqj∥ũj∥

q
X0,s2,q

− λtrj

∫
Ω

|ũj |r

|x|a
dx

− t
p∗s1 (b)

j

(
S

N−b
ps1−b −Θ

(
(εj/δj)

N−b
p−1
))

−
(
tp0S

N−b
ps1−b − t

p∗s1 (b)

0 S
N−b
ps1−b

)
= 0.

Simplifying this gives

S
N−b
ps1−b

(
tpj − tp0

)
− S

N−b
ps1−b

(
t
p∗s1 (b)

j − t
p∗s1 (b)

0

)
= λtrj

∫
Ω

|ũj |r

|x|a
dx− νtqj∥ũj∥

q
X0,s2,q

+Θ
(
(εj/δj)

N−ps1
p−1

)
+Θ

(
(εj/δj)

N−b
p−1
)
.

By the mean value theorem, we can get

S
N−b
ps1−b

(
pσp−1

j − p∗s1(b)τ
p∗s1 (b)−1

j

)
(tj − t0)

= λtrj

∫
Ω

|ũj |r

|x|a
dx− νtqj∥ũj∥

q
X0,s2,q

+Θ
(
(εj/δj)

N−ps1
p−1

)
,

(2.28)

where σj and τj are between t0 and tj . Since tj → t0, σj , τj → t0, hence

pσp−1
j − p∗s1(b)τ

p∗s1 (b)−1

j → −(p∗s1(b)− p).

Thus (2.28) together with (2.24) gives

tj − t0 =
λtrj
∫
Ω

|ũj |r
|x|a dx− νtqj∥ũj∥

q
X0,s2,q

+Θ
(
(εj/δj)

N−ps1
p−1

)
S

N−b
ps1−b

(
pσp−1

j − p∗s1(b)τ
p∗s1 (b)−1

j

) ,

that is,

tj = t0 −

 λtrj

(p∗s1(b)− p)S
N−b
ps1−b

+ o(1)

∫
Ω

|ũj |r

|x|a
dx < t0
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for all sufficiently large j.

Dividing (2.26) by p∗s1(b) and subtracting from (2.25) gives(
1

p
− 1

p∗s1(b)

)
tpj∥ũj∥

p
X0,s1,p

+ ν

(
1

q
− 1

p∗s1(b)

)
tqj∥ũj∥

q
X0,s2,q

− λ

(
1

r
− 1

p∗s1(b)

)
trj

∫
Ω

|ũj |r

|x|a
dx ≥ c∗,

then using (2.19) gives(
1

p
− 1

p∗s1(b)

)
tpjS

N−b
ps1−b + ν

(
1

q
− 1

p∗s1(b)

)
tqj∥ũj∥

q
X0,s2,q

− λ

(
1

r
− 1

p∗s1(b)

)
trj

∫
Ω

|ũj |r

|x|a
dx

≥
(
1

p
− 1

p∗s1(b)

)
S

N−b
ps1−b +Θ

(
(εj/δj)

N−ps1
p−1

)
.

This together with tj < t0 = 1 and (2.24) gives

λ

(
1

r
− 1

p∗s1(b)

)
≤ 0,

a contradiction since r ∈ (q, p∗s1(b)) and λ > 0.

3. Proof of Theorem 1.1

As mentioned above, it suffices to show that the mountain pass level c defined in (2.13) is

below the threshold level c∗ defined in Lemma 2.1.

For any u ∈ X0,s1,p \ {0}, E1(tu) → −∞ as t → +∞ and hence ∃ t0 > 0 such that

E1(t0u) < 0, then the line segment {tu : 0 ≤ t ≤ t0} belongs to Γ1 and hence

(3.1) c ≤ max
0≤t≤t0

E1(tu) ≤ max
t≥0

E1(tu).

If r > (N − a)(p− 1)/(N − ps1), we will construct sequences (εj), (δj) such that εj → 0,

0 < δj ≤ 1, εj/δj → 0 and (2.24) with ν = 1.

(i) When N < p2s1, we take a sequence εj → 0 and set δj = εκj , where κ ∈ [0, 1) is to

be determined. Let

q < p− p(N − ps1)

N(p− 1)
, r >

p(N − a)

N − ps1
− p

p− 1
, max

{
0, b− N − ps1

p− 1

}
< a ≤ p2s1 −N

p− 1
.

Since a ≤ (p2s1 −N)/(p− 1),

r >
p(N − a)

N − ps1
− p

p− 1
≥ (N − a)(p− 1)

N − ps1
.

By (2.23) and Lemma 2.6, we have

∥uεj ,δj∥
q
X0,s2,q∫

Ω

|uεj ,δj
|r

|x|a dx
= Θ

(
ε

N(p−q)
p

−N+a+
r(N−ps1)

p

j

)
,
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where the exponent of εj is positive obviously, after that the first limit in (2.24) holds.

For the second limit in (2.24), we have

(εj/δj)
N−ps1
p−1∫

Ω

|uεj ,δj
|r

|x|a dx
= Θ

(
ε

N−ps1
p−1

−N+a+
r(N−ps1)

p

j δ
−N−ps1

p−1

j

)
= Θ

(
ε

N−ps1
p−1

−N+a+
r(N−ps1)

p
−κ

N−ps1
p−1

j

)
= Θ

(
ε

(κ−κ)(N−ps1)
p−1

j

)
,

where

κ =
(N − ps1)p+ (a−N)(p− 1)p+ r(N − ps1)(p− 1)

(N − ps1)p
.

We want to choose κ ∈ [0, 1) such that κ > κ, this is possible if and only if κ > 0.

Calculations show that inequality is equivalent to

r > −(N − ps1)p+ (a−N)(p− 1)p

(N − ps1)(p− 1)
=

p(N − a)

N − ps1
− p

p− 1
,

under our assumptions on q, r, N , and a, this is clearly true, then the second limit (2.24)

holds.

(ii) When N < p2s1, we take a sequence εj → 0 and set δj = 1. Let

p− p(N − ps1)

N(p− 1)
≤ q < p, r >

Nq − ap

N − ps1
, 0 < b ≤ a ≤ p2s1 −N

p− 1
.

Since q ≥ p− p(N − ps1)/N(p− 1) and a ≤ (p2s1 −N)/(p− 1),

r >
Nq − ap

N − ps1
≥ p(N − a)

N − ps1
− p

p− 1
≥ (N − a)(p− 1)

N − ps1
.

In this case, we have the following estimates of quotient in (2.24):

∥uεj ,δj∥
q
X0,s2,q∫

Ω

|uεj ,δj
|r

|x|a dx
= Θ

(
ε

N(p−q)
p

−N+a+
r(N−ps1)

p

j

)
,

and

(εj/δj)
N−ps1
p−1∫

Ω

|uεj ,δj
|r

|x|a dx
= Θ

(
ε

N−ps1
p−1

−N+a+
r(N−ps1)

p

j

)
.

Since r > (Nq − ap)/(N − ps1), the first limit in (2.24) holds, the second limit also holds

since
Nq − ap

N − ps1
≥ p(N − a)

N − ps1
− p

p− 1
.

Whether in cases (i) or (ii), it follows from Lemma 2.7 and (3.1) that c < c∗.
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4. Proof of Theorem 1.4

Weak solutions of (Pν(λ)) coincide with critical points of C1-functional

Eν(u) = E0(u) +
ν

q
∥u∥qX0,s2,q

,

where

E0(u) =
1

p
∥u∥pX0,s1,p

− λ

r

∫
Ω

|u|r

|x|a
dx− 1

p∗s1(b)

∫
Ω

|u|p
∗
s1

(b)

|x|b
dx.

Let Γν = {γ ∈ C([0, 1], X0,s1,p) : γ(0) = 0, Eν(γ(1)) < 0}, set

c̃ := inf
γ∈Γν

max
u∈γ([0,1])

Eν(u),

and note that c̃ > 0 when ν > 0. We will show that c̃ < c∗ for sufficiently small ν.

Taking ν = 0 and δj = 1 in Lemma 2.7, for all sufficiently small ε > 0, we can conclude

that maxt≥0E0(tuε,1(x)) < c∗ holds, provided

(4.1)
ε

N−ps1
p−1∫

Ω
|uε,1|r
|x|a dx

→ 0 as ε → 0.

As the proof of Theorem 1.1, in each of the two cases of Theorem 1.4, we will show that

(4.1) holds for u0 = uε,1(x) with ε > 0 sufficiently small.

(i) Let (p2s1 −N)/(p − 1) ≤ a < ps1, we note that if r < (N − a)(p − 1)/(N − ps1),

then

ε
N−ps1
p−1∫

Ω
|uε,1|r
|x|a dx

= Θ
(
ε

N−ps1
p−1

−(N−ps1)
(

r
p−1

− r
p

))
→ 0 as ε → 0;

and if r = (N − a)(p− 1)/(N − ps1), then

ε
N−ps1
p−1∫

Ω
|uε,1|r
|x|a dx

= Θ
(
ε

(
N−ps1
p−1

−N−a
p

)/
| ln ε|

)
→ 0 as ε → 0;

and if r > (N − a)(p− 1)/(N − ps1), then

ε
N−ps1
p−1∫

Ω
|uε,1|r
|x|a dx

= Θ
(
ε

N−ps1
p−1

−N+a+
r(N−ps1)

p
)
→ 0 as ε → 0.

Thus when r ∈ (q, p∗s1(b)) and a ∈
[
max

{
0, p

2s1−N
p−1

}
, ps1

)
\ {0}, the (4.1) holds obviously.

(ii) Let a < (p2s1 −N)/(p− 1), we have

p <
(N − a)(p− 1)

N − ps1
<

p(N − a)

N − ps1
− p

p− 1
.
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If q < r < p, then

r <
(N − a)(p− 1)

N − ps1
.

On the other hand, when a > max
{
0, b− N−ps1

p−1

}
, we have

p(N − a)

N − ps1
− p

p− 1
< p∗s1(b).

Then if p(N − a)/(N − ps1)− p/(p− 1) < r < p∗s1(b), then

r >
(N − a)(p− 1)

N − ps1
.

In this case, from Lemma 2.6, we have the following estimates for the quotient in (4.1):

ε
N−ps1
p−1∫

Ω
|uε,1|r
|x|a dx

=

Θ
(
ε

N−ps1
p−1

−(N−ps1)
(

r
p−1

− r
p

))
if r < (N−a)(p−1)

N−ps1
,

Θ
(
ε

N−ps1
p−1

−N+a+
r(N−ps1)

p
)

if r > (N−a)(p−1)
N−ps1

,

where the exponents of ε are both positive.

Whether in cases (i) or (ii), it follows from (4.1) that for some u0 ∈ X0,s1,p \ {0},

max
t≥0

E0(tu0) < c∗.

Therefore, we have

c0 := inf
γ∈Γ0

max
u∈γ([0,1])

E0(u) < c∗.

Then there is a path γ0 ∈ Γ0 such that

max
u∈γ0([0,1])

E0(u) < c∗.

For all sufficiently small ν > 0,

Eν(γ0(1)) = E0(γ0(1)) +
ν

q
∥γ0(1)∥qX0,s2,q

< 0,

and

max
u∈γ0([0,1])

Eν(u) ≤ max
u∈γ0([0,1])

E0(u) +
ν

q

(
max

u∈γ0([0,1])
∥u∥qX0,s2,q

)
< c∗.

So γ0 ∈ Γν and

c̃ ≤ max
u∈γ0([0,1])

Eν(u) < c∗.

This completes the proof of Theorem 1.4.
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