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Non-vanishing of L-functions of Vector-valued Modular Forms

Subong Lim* and Wissam Raji

Abstract. Kohnen proved a non-vanishing result for L-functions associated to Hecke

eigenforms of integral weights on the full group. In this paper, we show a non-vanishing

result for the averages of L-functions associated with the orthogonal basis of the space

of cusp forms of vector-valued modular forms of weight k ∈ 1
2Z on the full group. We

also show the existence of at least one basis element whose L-function does not vanish

under certain conditions. As an application, we generalize the result of Kohnen to

Γ0(N) and prove the analogous result for Jacobi forms.

1. Introduction

Vector-valued modular forms have played a crucial role in the theory of modular forms. In

particular, Selberg used these forms to give an estimation for the Fourier coefficients of the

classical modular forms [13]. Moreover, vector-valued modular forms arise naturally in the

theory of Jacobi forms, Siegel modular forms, and Moonshine. Some applications of vector-

valued modular forms stand out in high-energy physics by mainly providing a method of

differential equations in order to construct the modular multiplets, and also revealing the

simple structure of the modular invariant mass models [11]. Other applications concerning

vector-valued modular forms of half-integer weight seem to provide a simple solution to

the Riemann–Hilbert problem for representations of the modular group [2].

In [7,8], Knopp and/or Mason gave a systematic development of the theory of vector-

valued modular forms where they introduced the foundation of the space of these forms

mainly through the introduction of vector-valued Poincaré series and vector-valued Eisen-

stein series leading to a better understanding of the space of vector-valued modular forms.

More recently, several algorithms for computing Fourier coefficients of vector-valued mod-

ular forms were determined in connection to Weil representations due to their importance

in the Moonshine applications [12].

On the other hand, L-functions of vector-valued modular forms play important role in

the above-mentioned computations as well so it is natural to study them. In this paper,

we show a non-vanishing result for averages of L-functions associated with vector-valued
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modular forms. To illustrate, we let {fk,1, . . . , fk,dk} be an orthogonal basis of Sk,χ,ρ with

Fourier expansions

fk,l(τ) =
m∑
j=1

∑
n+κj>0

bk,l,j(n)e
2πi(n+κj)τej , 1 ≤ l ≤ dk,

where χ is a multiplier system of weight k ∈ 1
2Z on SL2(Z) and ρ : SL2(Z) → GLm(C) is

an m-dimensional unitary complex representation. Here and throughout the paper, κj is

a certain positive number with 0 ≤ κj < 1. We let t0 ∈ R, ϵ > 0, and 1 ≤ i ≤ m. Then,

there exists a constant C(t0, ϵ, i) > 0 such that for k > C(t0, ϵ, i) the function

dk∑
l=1

⟨L∗(fk,l, s), ei⟩
(fk,l, fk,l)

bk,l,i(ni,0)

does not vanish at any point s = σ+it0 with (k−1)/2 < σ < k/2−ϵ, where ⟨L∗(fk,l, s), ei⟩
denotes the i-th component of L∗(fk,l, s) and ni,0 is defined by

ni,0 :=

1 if κi = 0,

0 if κi ̸= 0.

By using the integral weight case, we generalize a result of Kohnen in [9] to Γ0(N) in Sec-

tion 5. On the other hand, by using the half-integral weight case, we prove the analogous

result for Jacobi forms in Section 6.

2. Preliminaries

Let k ∈ 1
2Z and χ be a unitary multiplier system of weight k on Γ, i.e., χ : SL2(Z) → C

satisfies the following conditions:

(1) |χ(γ)| = 1 for all γ ∈ SL2(Z).

(2) χ satisfies the consistency condition

χ(γ3)(c3τ + d3)
k = χ(γ1)χ(γ2)(c1γ2τ + d1)

k(c2τ + d2)
k,

where γ3 = γ1γ2 and γi =
(

ai bi
ci di

)
∈ SL2(Z) for i = 1, 2, 3.

Throughout this paper, we use the convention that
√
τ is chosen so that arg(

√
τ) ∈

(−π/2, π/2]. Let m be a positive integer and ρ : SL2(Z) → GLm(C) an m-dimensional

unitary complex representation. We assume that ρ(−I) is the identity matrix, where I

denotes the identity matrix. Let {e1, . . . , em} denote the standard basis of Cm. For a

vector-valued function f =
∑m

j=1 fjej on H and γ ∈ Γ, define a slash operator by

(f |k,χ,ργ)(τ) := χ−1(γ)(cτ + d)−kρ−1(γ)f(γτ).
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Definition 2.1. A vector-valued modular form of weight k and multiplier system χ with

respect to ρ on SL2(Z) is a sum f =
∑m

j=1 fjej of functions holomorphic in H satisfying

the following conditions:

(1) f |k,χ,ργ = f for all γ ∈ SL2(Z).

(2) For each 1 ≤ j ≤ m, each function fj has a Fourier expansion of the form

fj(τ) =
∑

n+κj≥0

aj(n)e
2πi(n+κj)τ .

We write Mk,χ,ρ for the space of vector-valued modular forms of weight k and multiplier

system χ with respect to ρ on SL2(Z). There is a subspace Sk,χ,ρ of vector-valued cusp

forms for which we require that each aj(n) = 0 when n+ κj is non-positive.

From the condition (2) in Definition 2.1, we see that χ (( 1 1
0 1 )) ρ ((

1 1
0 1 )) is a diago-

nal matrix whose (j, j) entry is e2πiκj . If f ∈ Sk,χ,ρ is a vector-valued cusp form, then

aj(n) = O(nk/2) for every 1 ≤ j ≤ m, as n → ∞ by the same argument for clas-

sical modular forms (for example, see [7, Section 1]). For a vector-valued cusp form

f(z) =
∑m

j=1

∑
n+κj>0 aj(n)e

2πi(n+κj)zej we define the L-series

L(f, s) =

m∑
j=1

∑
n+κj>0

aj(n)

(n+ κj)s
ej .

This series converges absolutely for Re(s) ≫ 0.

The following theorem for vector-valued modular forms follows from the same argument

used for classical modular forms.

Theorem 2.2. Let k ∈ 1
2Z. If f ∈ Sk,χ,ρ is a vector-valued cusp form, then

Γ(s)

(2π)s
L(f, s) =

∫ ∞

0
f(iy)ys

dy

y
.

Furthermore, L(f, s) has an analytic continuation to the whole complex plane and the

functional equation

L∗(f, s) = ikχ(S)ρ(S)L∗(f, k − s),

where

L∗(f, s) =
Γ(s)

(2π)s
L(f, s)

and S =
(
0 −1
1 0

)
.
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3. The construction of the kernel function

In what follows, we define the kernel function Rk,s,l which will play a crucial role in deter-

mining the Fourier coefficients of the orthogonal basis of the space of vector-valued cusp

forms using Petersson’s scalar product. Moreover, we determine the Fourier coefficients

of this kernel function using the Lipshitz summation formula.

Let l be an integer with 1 ≤ l ≤ m. Define

ps,l(τ) := τ−sel.

For τ ∈ H and s ∈ C with 1 < Re(s) < k − 1, we define

Rk,s,l := γk(s)
∑

γ∈SL2(Z)

ps,l|k,χ,ργ,

where γk(s) :=
1
2e

πis/2Γ(s)Γ(k − s).

We write ⟨ · , · ⟩ for the standard scalar product on Cm, i.e.,〈
m∑
j=1

λjej ,

m∑
j=1

µjej

〉
=

m∑
j=1

λjµj .

Then, for f, g ∈ Mk,χ,ρ, we define the Petersson scalar product of f and g by

(f, g) :=

∫
F
⟨f(τ), g(τ)⟩vk dudv

v2

if the integral converges, where F is the standard fundamental domain for the action of

SL2(Z) on H and τ = u+ iv.

Lemma 3.1. Let k ∈ 1
2Z with k > 2, and let s ∈ C with 1 < Re(s) < k − 1.

(1) The series Rk,s,l converges absolutely uniformly whenever τ = u+ iv satisfies v ≥ ϵ,

u ≤ 1/ϵ for a given ϵ > 0, and s varies over a compact set.

(2) The series Rk,s,l is a vector-valued cusp form in Sk,χ,ρ.

(3) For f ∈ Sk,χ,ρ, we have

(f,Rk,s,l) = ck⟨L∗(f, s), el⟩,

where ck := (−1)k/2π(k−2)!
2k−2 .

Proof. For the first part, note that for each 1 ≤ j ≤ m, we have

(Rk,s,l)j(τ) = γk(s)
∑

(
a b
c d

)
∈SL2(Z)

χ−1
((

a b
c d

))
ρ−1

((
a b
c d

))
j,l
(cτ + d)−k

(
aτ + b

cτ + d

)−s

,



Non-vanishing of L-functions of Vector-valued Modular Forms 479

where ρ−1
((

a b
c d

))
j,l

denotes the (j, l)-th entry of the matrix ρ−1
((

a b
c d

))
and (Rk,s,l)j

denotes the j-th component of Rk,s,l. Then, we have

∑
(
a b
c d

)
∈SL2(Z)

∣∣∣∣∣χ−1
((

a b
c d

))
ρ−1

((
a b
c d

))
j,l
(cτ + d)−k

(
aτ + b

cτ + d

)−s
∣∣∣∣∣

≤
∑

(
a b
c d

)
∈SL2(Z)

∣∣∣∣∣(cτ + d)−k

(
aτ + b

cτ + d

)−s
∣∣∣∣∣

since ρ is a unitary representation. It is known that the series

∑
(
a b
c d

)
∈SL2(Z)

(cτ + d)−k

(
aτ + b

cτ + d

)−s

converges absolutely uniformly whenever τ = u + iv satisfies v ≥ ϵ, u ≤ 1/ϵ for a given

ϵ > 0, and s varies over a compact set of 1 < Re(s) < k− 1 (see [9, Section 4]). Therefore,

the series Rk,s,l converges absolutely uniformly whenever τ = u+iv satisfies v ≥ ϵ, u ≤ 1/ϵ

for a given ϵ > 0, and s varies over a compact set of 1 < Re(s) < k − 1. The second part

follows from the Fourier expansion of Rk,s,l given in Theorem 4.1.

For the last part, we follow the argument in [9, Lemma 1]. It is enough to consider

the case when 1 < Re(s) < (k − 1)/2. Note that for each (c, d) ∈ Z2 with (c, d) = 1, we

can find (a, b) ∈ Z2 such that ad− bc = 1. Then, we see that Rk,s,l(τ) is equal to

γk(s)
∑

(c,d)∈Z2

(c,d)=1

∑
n∈Z

(cτ + d)−k

(
aτ + b

cτ + d
+ n

)−s

× χ−1
((

a b
c d

))
χ−1 (( 1 n

0 1 )) ρ
−1

((
a b
c d

))
ρ−1 (( 1 n

0 1 )) el,

where for each coprime pair (c, d) ∈ Z2, one chooses a fixed pair (a, b) ∈ Z2 such that

ad− bc = 1. Therefore, we have

(Rk,s,l)j(τ)

= γk(s)
∑

(c,d)∈Z2

(c,d)=1

∑
n∈Z

(cτ + d)−k

(
aτ + b

cτ + d
+ n

)−s

e−2πinκlχ−1
((

a b
c d

))
ρ−1

((
a b
c d

))
j,l
.

Next, we will use the Lipschitz summation formula [10]: For 0 ≤ a < 1, Re(s) > 1 and

τ ∈ H, we have

(3.1)
Γ(s)

(−2πi)s

∑
k∈Z

e2πiak

(k + τ)s
=

∞∑
n=1

e2πiτ(n−a)

(n− a)1−s
.
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Therefore, we have

(Rk,s,l)j(τ) =
1

2
(2π)sΓ(k − s)

∑
n+κl>0

(n+ κl)
s−1

×
∑

(c,d)∈Z2

(c,d)=1

χ−1
((

a b
c d

))
ρ−1

((
a b
c d

))
j,l
(cτ + d)−ke2πi(n+κl)(aτ+b)/(cτ+d).

From this, we have

Rk,s,l(τ) = (2π)sΓ(k − s)
∑

n+κl>0

(n+ κl)
s−1Pk,n,l(τ),

where

Pk,n,l(τ) =
1

2

∑
(c,d)∈Z2

(c,d)=1

χ−1
((

a b
c d

))
ρ−1

((
a b
c d

))
(cτ + d)−ke2πi(n+κl)(aτ+b)/(cτ+d)el

is a vector-valued Poincaré series. Suppose that f ∈ Sk,χ,ρ has a Fourier expansion of the

form

f(τ) =
m∑
j=1

∑
n+κj>0

aj(n)e
2πi(n+κj)τej .

By following the argument as in [7, Theorem 5.3], we have

(f, Pk,n,l) = al(n)
Γ(k − 1)

(4π(n+ κl))k−1
.

Therefore, we see that

(f,Rk,s,l) = ck(−1)k/2(2π)−(k−s)Γ(k − s)⟨L(f, k − s), el⟩ = ck⟨L∗(f, s), el⟩.

We now compute the Fourier expansion of Rk,s,l by following a similar argument as

in [9, Lemma 2].

Lemma 3.2. Let k ∈ 1
2Z with k > 2. The function Rk,s,l has the Fourier expansion

Rk,s,l(τ) =

m∑
j=1

∑
n+κj>0

rk,s,l,j(n)e
2πi(n+κj)τej ,

where rk,s,l,j(n) is given by

rk,s,l,j(n)

= δl,j(2π)
sΓ(k − s)(n+ κl)

s−1 + χ−1(S)ρ−1(S)j,l(−1)k/2(2π)k−sΓ(s)(n+ κj)
k−s−1

+
(−1)k/2

2
(2π)k(n+ κj)

k−1Γ(s)Γ(k − s)

Γ(k)

∑
(c,d)∈Z2

(c,d)=1, ac>0

c−k
( c

a

)s

×
(
e2πi(n+κj)d/ceπisχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
j,l 1F1(s, k;−2πin/(ac))

+ e−2πi(n+κj)d/ce−πisχ−1
((−a b

c −d

))
ρ−1

((−a b
c −d

))
j,l 1F1(s, k; 2πin/(ac))

)
,
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where 1F1(α, β; z) is Kummer’s degenerate hypergeometric function.

Proof. First, we consider the contribution of the terms where ac = 0. The contribution of

the terms ± ( 1 n
0 1 )

2γk(s)
∑
n∈Z

(z + n)−se−2πnκlel

can be written, by the Lipschitz summation formula in (3.1), as follows:

(2π)sΓ(k − s)
∑

n+κl>0

(n+ κl)
s−1e2πi(n+κl)zel.

Note that
(
0 −1
1 n

)
=

(
0 −1
1 0

)
( 1 n
0 1 ). Therefore, the contribution of the terms ±

(
0 −1
1 n

)
is

equal to

2γk(s)
∑
n∈Z

(−z)−s(z + n)s−kχ−1 (( 1 n
0 1 ))χ

−1
((

0 −1
1 0

))
ρ−1 (( 1 n

0 1 )) ρ
−1

((
0 −1
1 0

))
el

= 2γk(s)(−z)−s
m∑
j=1

χ−1
((

0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
j,l

∑
n∈Z

e−2πinκj (z + n)s−kej .

(3.2)

By the similar computation as in the case of the terms ± ( 1 n
0 1 ), we see that (3.2) is equal

to

(−1)k/2(2π)k−sΓ(s)
m∑
j=1

χ−1
((

0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
j,l

∑
n+κj>0

(n+ κj)
k−s−1e2πi(n+κj)zej .

The contribution of the terms with ac ̸= 0 at the j-th component is given by

γk(s)

∫ iC+1

iC

∑
(c,d)∈Z2

(c,d)=1, ac ̸=0

(cz + d)−k

(
az + d

cz + d

)−s

χ−1
((

a b
c d

))
ρ−1

((
a b
c d

))
j,l
e−2πi(n+κj)z dz

= γk(s)

∫ iC+1

iC

∑
m∈Z

∑
(c,d)∈Z2

(c,d)=1, ac ̸=0

(c(z +m) + d)−k

(
a(z +m) + b

c(z +m) + d

)−s

× e−2πimκjχ−1
((

a b
c d

))
ρ−1

((
a b
c d

))
j,l
e−2πi(n+κj)z dz

(3.3)

for any fixed positive real number C. By the change of variables z 7→ z +m (m ∈ Z), we
see that (3.3) is equal to

(3.4)

γk(s)
∑

(c,d)∈Z2

(c,d)=1, ac ̸=0

χ−1
((

a b
c d

))
ρ−1

((
a b
c d

))
j,l

∫ iC+∞

iC−∞
(cz + d)−k

(
az + b

cz + d

)−s

e−2πi(n+κj)z dz.
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By the change of variables z 7→ z − d/c, we see that (3.4) is equal to

γk(s)
∑

(c,d)∈Z2

(c,d)=1, ac ̸=0

c−ke2πi(n+κj)d/cχ−1
((

a b
c d

))
ρ−1

((
a b
c d

))
j,l

×
∫ iC+∞

iC−∞
z−k

(
− 1

c2z
+

a

c

)−s

e−2πi(n+κj)z dz.

(3.5)

If ac > 0, then we have

z−s

(
− 1

c2z
+

a

c

)−s

=

(
− 1

c2
+

a

c
z

)−s

.

Therefore, by the change of variable z 7→ (c/a)it, we see that the integral in (3.5) is equal

to

(3.6) (−1)k/22π
( c

a

)−k+s+1 1

2πi

∫ C+i∞

C−i∞
t−k+s

(
t+

i

c2

)−s

e2π(n+κj)(c/a)t dt.

Note that for Re(µ),Re(ν) > 0, p ∈ C, we have

1

2πi

∫ C+i∞

C−i∞
(t+ α)−µ(t+ β)−νept dt =

1

Γ(µ+ ν)
pµ+ν−1e−βp

1F1(µ, µ+ ν; (β − α)p)

(see [6]). Therefore, (3.6) can be written as

(−1)k/2
(2π)k

Γ(k)
(n+ κj)

k−1
( c

a

)s

1F1(s, k;−2πin/(ac)).

From this, we see that the contribution of the terms with ac > 0 at the j-th component

is equal to

(−1)k/2

2
(2π)k(n+ κj)

k−1Γ(s)Γ(k − s)

Γ(k)

×
∑

(c,d)∈Z2

(c,d)=1, ac>0

c−k
( c

a

)s
e2πi(n+κj)d/ceπisχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
j,l 1F1(s, k;−2πin/(ac)).

The contribution of the terms with ac < 0 at the j-th component is obtained by the same

argument if we replace (a, c) by (−a, c).

4. The main result

In this section, we give the main result where we determine the non-vanishing of the

averages of L-functions associated with the orthogonal basis of the space of cusp forms.

We also show the existence of at least one basis element whose L-function does not vanish

under certain conditions. Let

nj,0 :=

1 if κj = 0,

0 if κj ̸= 0.
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Theorem 4.1. Let k ∈ 1
2Z with k > 2. Let {fk,1, . . . , fk,dk} be an orthogonal basis of

Sk,χ,ρ with Fourier expansions

fk,l(τ) =
m∑
j=1

∑
n+κj>0

bk,l,j(n)e
2πi(n+κj)τej , 1 ≤ l ≤ dk.

Let t0 ∈ R, ϵ > 0, and 1 ≤ j ≤ m. Then, there exists a constant C(t0, ϵ, j) > 0 such that

for k > C(t0, ϵ, j) the function

dk∑
l=1

⟨L∗(fk,l, s), ej⟩
(fk,l, fk,l)

bk,l,j(nj,0)

does not vanish at any point s = σ + it0 with (k − 1)/2 < σ < k/2− ϵ.

Remark 4.2. Note that
dk∑
l=1

⟨L∗(fk,l, s), ej⟩
(fk,l, fk,l)

bk,l,j(nj,0)

is the nj,0-th Fourier coefficient of Rk,s,j .Therefore, it is equal to a nonzero constant

multiple of

(Rk,s,j , Pk,nj,0,j).

Therefore, Theorem 4.1 implies the nonvanishing of ⟨L∗(Pk,nj,0,j , s), ej⟩.

Proof of Theorem 4.1. By Lemma 3.1, we have

Rk,s,j =

dk∑
l=1

(fk,l, Rk,s,j)

(fk,l, fk,l)
fk,l = ck

dk∑
l=1

⟨L∗(fk,l, s), ej⟩
(fk,l, fk,l)

fk,l.

If we take the first Fourier coefficients of both sides at the j-th component, then by

Lemma 3.2 we have

ck

dk∑
l=1

⟨L∗(fk,l, s), ej⟩
(fk,l, fk,l)

bk,l,j(nj,0)

= (2π)sΓ(k − s)κ̃s−1
j + χ−1

((
0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
j,j

(−1)k/2(2π)k−sΓ(s)κ̃k−s−1
j

+
(−1)k/2

2
(2π)kκ̃k−1

j

Γ(s)Γ(k − s)

Γ(k)

∑
(c,d)∈Z2

(c,d)=1, ac>0

c−k
( c

a

)s

×
(
e2πi(n+κj)d/ceπisχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
j,j 1F1(s, k;−2πin/(ac))

+ e−2πi(n+κj)d/ce−πisχ−1
((−a b

c −d

))
ρ−1

((−a b
c −d

))
j,j 1F1(s, k; 2πin/(ac))

)
,

(4.1)

where

κ̃j :=

1 if κj = 0,

κi if κj ̸= 0.
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Suppose that

ck

dk∑
l=1

⟨L∗(fk,l, s), ej⟩
(fk,l, fk,l)

bk,l,j(nj,0) = 0.

If we divide (4.1) by (2π)sΓ(k − s)κs−1
j , we have

−1 = ρ−1
((

0 −1
1 0

))
j,j

(−1)k/2(2π)k−2s Γ(s)

Γ(k − s)
κ̃k−2s
j

+
(−1)k/2(2π)k−sκ̃k−s

j

2Γ(k − s)

∑
(c,d)∈Z2

(c,d)=1, ac>0

c−k
( c

a

)s

×
(
e2πi(n+κj)d/ceπisχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
j,j 1f1(s, k;−2πin/(ac))

+ e−2πi(n+κj)d/ce−πisχ−1
((−a b

c −d

))
ρ−1

((−a b
c −d

))
j,j 1f1(s, k; 2πin/(ac))

)
,

where

1f1(α, β; z) :=
Γ(α)Γ(β − α)

Γ(β)
1F1(α, β; z).

Let s = k/2− δ − it0, where ϵ < δ < 1/2. Then, we have

−1 = χ−1
((

0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
j,j

(−1)k/2(2πκ̃j)
2δ+2it0 Γ(k/2− δ − it0)

Γ(k/2 + δ + it0)

+
(−1)k/2(2πκ̃j)

k/2+δ+it0

2Γ(k/2 + δ + it0)

∑
(c,d)∈Z2

(c,d)=1, ac>0

c−k/2−δ−it0a−k/2+δ+it0

×
(
e2πi(n+κj)d/ceπi(k/2−δ−it0)χ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
j,j

× 1f1(k/2− δ − it0, k;−2πin/(ac))

+ e−2πi(n+κj)d/ce−πi(k/2−δ−it0)χ−1
((−a b

c −d

))
ρ−1

((−a b
c −d

))
j,j

× 1f1(k/2− δ − it0, k; 2πin/(ac))
)
.

(4.2)

For Re(β) > Re(α) > 0, we have

1f1(α, β; z) =

∫ 1

0
ezuuα−1(1− u)β−α−1 du.

By [1, 13.21], for Re(α) > 1, Re(β − α) > 1, and |z| = 1, we have

|1f1(α, β; z)| ≤ 1.

If we take absolute values in (4.2), then we have

1 ≤ (2πκ̃j)
2δ |Γ(k/2− δ − it0)|
|Γ(k/2 + δ + it0)|

+
(2πκ̃j)

k/2+δ

2|Γ(k/2 + δ + it0)|
∑

(c,d)∈Z2

(c,d)=1, ac>0

|c|−k/2−δ|a|−k/2+δ(eπt0 + e−πt0).
(4.3)
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By [1, 6.147], we have

|Γ(k/2− δ − it0)|
|Γ(k/2 + δ + it0)|

∼
(
k

2

)−2δ

as k → ∞. Therefore, (4.3) becomes 1 ≤ 0 as k → ∞, which is a contradiction.

We now give a corollary that is a direct consequence of Theorem 4.1 which basically

demonstrates the existence of a basis element of the space of vector-valued cusp forms

whose L-function does not vanish.

Corollary 4.3. Let k ∈ 1
2Z with k > 2. Let {fk,1, . . . , fk,dk} be an orthogonal basis of

Sk,χ,ρ with Fourier expansions

fk,l(τ) =
m∑
j=1

∑
n+κj>0

bk,l,j(n)e
2πi(n+κj)τej , 1 ≤ l ≤ dk.

Let t0 ∈ R and ϵ > 0.

(1) For any k > C(t0, ϵ, j), any 1 ≤ j ≤ m, and any s = σ + it0 with

k − 1

2
< σ <

k

2
− ϵ,

there exists a basis element fk,l ∈ Sk,χ,ρ such that

⟨L∗(fk,l, s), ej⟩ ≠ 0 and bk,l,j(nj,0) ̸= 0.

(2) There exists a constant C(t0, ϵ) > 0 such that for any k > C(t0, ϵ), and any s =

σ + it0 with
k − 1

2
< σ <

k

2
− ϵ and

k

2
+ ϵ < σ <

k + 1

2
,

there exists a basis element fk,l ∈ Sk,χ,ρ such that

L(fk,l, s) ̸= 0.

5. The case of Γ0(N)

In what follows, we consider the case of a scalar-valued modular form on the congruence

subgroup Γ0(N). By using Theorem 4.1, we can extend Kohnen’s result in [9] to the case

of Γ0(N). To illustrate, let N be a positive integer and let Γ = Γ0(N). Let Sk(Γ) be the

space of cusp forms of weight k on Γ. Let {γ1, . . . , γm} be the set of representatives of

Γ \ SL2(Z) with γ1 = I. For f ∈ Sk(Γ), we define a vector-valued function f̃ : H → Cm by

f̃ =
∑m

j=1 fjej and

fj = f |kγj , 1 ≤ j ≤ m,
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where (f |k
(
a b
c d

)
)(z) := (cz+d)−kf(γz). Then, f̃ is a vector-valued modular form of weight

k and the trivial multiplier system with respect to ρ on SL2(Z), where ρ is a certain m-

dimensional unitary complex representation such that ρ(γ) is a permutation matrix for

each γ ∈ SL2(Z) and is an identity matrix if γ ∈ Γ. Then, the map f 7→ f̃ induces an

isomorphism between Sk(Γ) and Sk,ρ, where Sk,ρ denotes the space of vector-valued cusp

forms of weight k and trivial multiplier system with respect to ρ on SL2(Z).
Suppose that f, g ∈ Sk(Γ). Then, we have

(f̃ , g̃) =

∫
F
⟨f̃ , g̃⟩yk dxdy

y2
=

m∑
j=1

∫
F
(f |kγj)(z)(g|kγ)(z)yk

dxdy

y2
= (f, g)

where (f, g) denotes the Petersson inner product. Therefore, if f, g ∈ Sk(Γ) such that f

and g are orthogonal, then f̃ and g̃ is also orthogonal.

Corollary 5.1. Let k be a positive even integer with k > 2. Let N be a positive integer

and Γ = Γ0(N). Let {fk,1, . . . , fk,ek} be an orthogonal basis of Sk(Γ). Let t0 ∈ R, ϵ > 0.

Then, there exists a constant C(t0, ϵ) > 0 such that for k > C(t0, ϵ) there exists a basis

element fk,l ∈ Sk(Γ) satisfying

L(f̃k,l, s) ̸= 0

at any point s = σ + it0 with

k − 1

2
< σ <

k

2
− ϵ and

k

2
+ ϵ < σ <

k + 1

2
.

6. The case of Jacobi forms

Let k be a positive even integer andm be a positive integer. Let Jk,m be the space of Jacobi

forms of weight k and index m on SL2(Z). From now, we use the notation τ = u+ iv ∈ H
and z = x + iy ∈ C. We review basic notions of Jacobi forms (for more details, see [5]).

Let F be a complex-valued function on H×C. For γ =
(
a b
c d

)
∈ SL2(Z), X = (λ, µ) ∈ Z2,

we define

(F |k,mγ)(τ, z) := (cτ + d)−ke−2πim cz2

cτ+dF (γ(τ, z))

and

(F |mX)(τ, z) := e2πim(λ2τ+2λz)F (τ, z + λτ + µ),

where γ(τ, z) =
(
aτ+b
cτ+d ,

z
cτ+d

)
.

With these notations, we introduce the definition of a Jacobi form.

Definition 6.1. A Jacobi form of weight k and index m on SL2(Z) is a holomorphic

function F on H× C satisfying
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(1) F |k,mγ = F for every γ ∈ SL2(Z),

(2) F |mX = F for every X ∈ Z2,

(3) F has the Fourier expansion of the form

(6.1) F (τ, z) =
∑
l,r∈Z

4ml−r2≥0

a(l, r)e2πilτe2πirz.

We denote by Jk,m the vector space of all Jacobi forms of weight k and index m on

SL2(Z). If a Jacobi form satisfies the condition a(l, r) = 0 if 4ml− r2 = 0, then it is called

a Jacobi cusp form. We denote by Sk,m the vector space of all Jacobi cusp forms of weight

k and index m on SL2(Z).
For 1 ≤ j ≤ 2m, we consider the theta series

θm,j(τ, z) :=
∑
r∈Z

r≡j (mod 2m)

e2πir
2τ/(4m)e2πirz.

Suppose that F (τ, z) is a holomorphic function of z and satisfies

F |mX = F for every X ∈ Z2.

Then we have

(6.2) F (τ, z) =
∑

1≤j≤2m

Fj(τ)θm,j(τ, z)

with uniquely determined holomorphic functions Fa : H → C. Furthermore, if F is a

Jacobi form in Jk,m with the Fourier expansion (6.1), then functions in {Fj | 1 ≤ j ≤ 2m}
have the Fourier expansions

Fj(τ) =
∑
n≥0

n+j2≡0 (mod 4m)

a

(
n+ j2

4m
, j

)
e2πinτ/(4m).

In [3], it is proved that the Petersson inner product of skew-holomorphic Jacobi cusp

forms can be expressed as the sum of partial L-values of skew-holomorphic Jacobi cusp

forms. Similarly, for a Jacobi cusp form F ∈ Jk,m with its Fourier expansion (6.1), we

define partial L-functions of F by

L(F, j, s) :=
∑

n∈Z, n>0
n+j2≡0 (mod 4m)

a
(n+j2

4m , j
)(

n
4m

)s
for 1 ≤ j ≤ 2m.
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We write Mp2(R) for the metaplectic group. The elements of Mp2(R) are pairs

(γ, ϕ(τ)), where γ =
(
a b
c d

)
∈ SL2(R), and ϕ denotes a holomorphic function on H with

ϕ(τ)2 = cτ + d. The product of (γ1, ϕ1(τ)), (γ2, ϕ2(τ)) ∈ Mp2(R) is given by

(γ1, ϕ1(τ))(γ2, ϕ2(τ)) = (γ1γ2, ϕ1(γ2τ)ϕ2(τ)).

The map (
a b
c d

)
7→

(̃
a b
c d

)
=

( (
a b
c d

)
,
√
cτ + d

)
defines a locally isomorphic embedding of SL2(R) into Mp2(R). Let Mp2(Z) be the inverse
image of SL2(Z) under the covering map Mp2(R) → SL2(R). It is well known that Mp2(Z)
is generated by T̃ and S̃.

We define a 2m-dimensional unitary complex representation ρ̃m of Mp2(Z) by

ρ̃m(T̃ )ej = e−2πij2/(4m)ej and ρ̃m(S̃)ej =
i1/2√
2m

2m∑
j′=1

e2πijj
′/(2m)ej′ ,

Let χ be a multiplier system of weight 1/2 on SL2(Z). We define a map ρm : SL2(Z) →
GL2m(C) by

ρm(γ) = χ(γ)ρ̃m(γ̃)

for γ ∈ SL2(Z). The map ρm gives a 2m-dimensional unitary representation of SL2(Z).
Let {e1, . . . , e2m} denote the standard basis of C2m. For F ∈ Sk,m, we define a

vector-valued function F̃ : H → C2m by F̃ =
∑2m

j=1 Fjej , where Fj is defined by the theta

expansion in (6.2). Then, the map F 7→ F̃ induces an isomorphism between Sk,m and

Sk−1/2,χ,ρm (for more details, see [5, Section 5] and [4, Section 3.1]).

Suppose that F,G ∈ Sk,m. The Petersson inner product of F and G by

(F,G) :=

∫
SL2(Z)J\H×C

vke−4πmy2/vF (τ, z)G(τ, z)
dxdydudv

v3
,

where SL2(Z)J = SL2(Z)⋉ Z2. Then, by Theorem 5.3 in [5], we have

(F,G) =
1√
2m

(F̃ , G̃).

Note that ρm(−I) is not equal to the identity matrix in GL2m(C). Instead, we have

ρm(−I)ej = ie2m−j .

Then, the corresponding kernel function Rk,s,l has the Fourier expansion

Rk,s,l(τ) =

2m∑
j=1

∑
n+κj>0

rk,s,l,j(n)e
2πi(n+κj)τej ,
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where rk,s,l,j(n) is given by

rk,s,l,j(n) =
1

2
δl,j(2π)

sΓ(k − s)(n+ κi)
s−1 +

i

2
δ2m−l,j(2π)

sΓ(k − s)(n+ κ2m−l)
s−1

+
1

2
χ−1(S)ρ−1(S)j,l(−1)k/2(2π)k−sΓ(s)(n+ κj)

k−s−1

+
i

2
χ−1(S)ρ−1(S)j,2m−l(−1)k/2(2π)k−sΓ(s)(n+ κj)

k−s−1

+
(−1)k/2

2
(2π)k(n+ κj)

k−1Γ(s)Γ(k − s)

Γ(k)

∑
(c,d)∈Z2

(c,d)=1, ac>0

c−k
( c

a

)s

×
(
e2πi(n+κj)d/ceπisχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
j,l 1F1(s, k;−2πin/(ac))

+ e−2πi(n+κj)d/ce−πisχ−1
((−a b

c −d

))
ρ−1

((−a b
c −d

))
j,l 1F1(s, k; 2πin/(ac))

)
.

By the similar argument, we prove the same result as in Corollary 4.3 for the representation

ρm. From this, we have the following corollary.

Corollary 6.2. Let k be a positive even integer with k > 2. Let {Fk,m,1, . . . , Fk,m,d} be

an orthogonal basis of Sk,m. Let t0 ∈ R and ϵ > 0.

(1) For any k > C(t0, ϵ, j), any 1 ≤ j ≤ 2m, and any s = σ + it0 with

2k − 3

4
< σ <

2k − 1

4
− ϵ,

there exists a basis element Fk,m,l ∈ Sk,m such that

L(Fk,m,l, j, s) ̸= 0.

(2) There exists a constant C(t0, ϵ) > 0 such that for any k > C(t0, ϵ), and any s =

σ + it0 with

2k − 3

4
< σ <

2k − 1

4
− ϵ and

2k − 1

4
+ ϵ < σ <

2k + 1

4
,

there exist a basis element Fk,m,l ∈ Sk,m and j ∈ {1, . . . , 2m} such that

L(Fk,m,l, j, s) ̸= 0.
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[6] A. Erdélyi and Bateman Manuscript Project Staff, Tables of Integral Transforms I,

McGraw-Hill, New York, 1954.

[7] M. Knopp and G. Mason, On vector-valued modular forms and their Fourier coeffi-

cients, Acta Arith. 110 (2003), no. 2, 117–124.

[8] M. Knopp and G. Mason, Vector-valued modular forms and Poincaré series, Illinois
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