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Non-vanishing of L-functions of Vector-valued Modular Forms

Subong Lim* and Wissam Raji

Abstract. Kohnen proved a non-vanishing result for L-functions associated to Hecke
eigenforms of integral weights on the full group. In this paper, we show a non-vanishing
result for the averages of L-functions associated with the orthogonal basis of the space
of cusp forms of vector-valued modular forms of weight k € %Z on the full group. We
also show the existence of at least one basis element whose L-function does not vanish
under certain conditions. As an application, we generalize the result of Kohnen to
I'o(N) and prove the analogous result for Jacobi forms.

1. Introduction

Vector-valued modular forms have played a crucial role in the theory of modular forms. In
particular, Selberg used these forms to give an estimation for the Fourier coefficients of the
classical modular forms [13]. Moreover, vector-valued modular forms arise naturally in the
theory of Jacobi forms, Siegel modular forms, and Moonshine. Some applications of vector-
valued modular forms stand out in high-energy physics by mainly providing a method of
differential equations in order to construct the modular multiplets, and also revealing the
simple structure of the modular invariant mass models [11]. Other applications concerning
vector-valued modular forms of half-integer weight seem to provide a simple solution to
the Riemann—Hilbert problem for representations of the modular group [2].

In [7,[8], Knopp and/or Mason gave a systematic development of the theory of vector-
valued modular forms where they introduced the foundation of the space of these forms
mainly through the introduction of vector-valued Poincaré series and vector-valued Eisen-
stein series leading to a better understanding of the space of vector-valued modular forms.
More recently, several algorithms for computing Fourier coefficients of vector-valued mod-
ular forms were determined in connection to Weil representations due to their importance
in the Moonshine applications [12].

On the other hand, L-functions of vector-valued modular forms play important role in
the above-mentioned computations as well so it is natural to study them. In this paper,

we show a non-vanishing result for averages of L-functions associated with vector-valued
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modular forms. To illustrate, we let {fx1,..., fx.q4,} be an orthogonal basis of Sy, ., with

Fourier expansions

m
Fra@) = > bri(n)e?™ 0 Te; 1 <1 < dy,
j=1n+r;>0
where x is a multiplier system of weight k € %Z on SLo(Z) and p: SLy(Z) — GL,,(C) is
an m-dimensional unitary complex representation. Here and throughout the paper, x; is
a certain positive number with 0 < x; < 1. We let o € R, € > 0, and 1 < ¢ < m. Then,
there exists a constant C'(tg,€,4) > 0 such that for k > C(tg,€,4) the function

dy

<L*(fk,l’ 8)7 ei>
; (fr0s fr1)

does not vanish at any point s = o +itg with (k—1)/2 < 0 < k/2—¢, where (L*(fx,5s),€;)

br.1.i(1i0)

denotes the i-th component of L*(fy;,s) and n; ¢ is defined by

1 ifﬁizo,
0 if k; #0.

nio =

)

By using the integral weight case, we generalize a result of Kohnen in [9] to I'o(/V) in Sec-
tion [5l On the other hand, by using the half-integral weight case, we prove the analogous

result for Jacobi forms in Section [6l

2. Preliminaries

Let k € %Z and y be a unitary multiplier system of weight k£ on T, i.e., x: SLy(Z) — C

satisfies the following conditions:
(1) |x(y)| =1 for all v € SLa(Z).

(2) x satisfies the consistency condition

X(v3)(csT + d3)* = x(71)x(v2) (c1y2T + d1)* (car + do)F,
where 3 = 12 and v; = (ZZ gi) € SLy(Z) for i =1,2,3.

Throughout this paper, we use the convention that /7 is chosen so that arg(y/7) €
(—=m/2,7/2]. Let m be a positive integer and p: SLa(Z) — GL,,(C) an m-dimensional
unitary complex representation. We assume that p(—1) is the identity matrix, where I
denotes the identity matrix. Let {ej,...,e;} denote the standard basis of C™. For a

vector-valued function f = Z;n:l fje; on H and v € I, define a slash operator by

(FlepesV) () = x" (1) (er + d)Fp~ () f(y7).
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Definition 2.1. A vector-valued modular form of weight k and multiplier system y with
respect to p on SLo(Z) is a sum f = Z;n:l fje; of functions holomorphic in H satisfying

the following conditions:

(1) fle.py = f for all 4 € SLy(Z).

(2) For each 1 < j < m, each function f; has a Fourier expansion of the form

fi(ry =Y aj(n)etmre)r,

n+r;>0

We write My, , for the space of vector-valued modular forms of weight &£ and multiplier
system x with respect to p on SLy(Z). There is a subspace Sy, of vector-valued cusp

forms for which we require that each a;(n) = 0 when n + &; is non-positive.

From the condition (2) in Definition we see that x ((§1))p((31)) is a diago-
nal matrix whose (j,j) entry is e*™. If f € Sg, , is a vector-valued cusp form, then
a;j(n) = O(nF/?) for every 1 < j < m, as n — oo by the same argument for clas-
sical modular forms (for example, see |7, Section 1]). For a vector-valued cusp form

flz) = Z;”Zl Zn+nj>0 a; (n)e2”i("+"‘i)zej we define the L-series
j=1 n+nJ>0 + HJ

This series converges absolutely for Re(s) > 0.
The following theorem for vector-valued modular forms follows from the same argument

used for classical modular forms.

Theorem 2.2. Let k € %Z. If f € Sk y,p is a vector-valued cusp form, then

L6 S o [ e
ol = [ sty

Furthermore, L(f,s) has an analytic continuation to the whole complex plane and the

functional equation

where

L*(f,s) =

and S = ((1)_01).
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3. The construction of the kernel function

In what follows, we define the kernel function R}, ;; which will play a crucial role in deter-
mining the Fourier coefficients of the orthogonal basis of the space of vector-valued cusp
forms using Petersson’s scalar product. Moreover, we determine the Fourier coefficients
of this kernel function using the Lipshitz summation formula.

Let [ be an integer with 1 <[ < m. Define

Ps(T) =T "€y

For 7 € H and s € C with 1 < Re(s) < k — 1, we define

Rior i=(s) D Psilkxss
~€SL2(Z)

where 5 (s) := %e’ris/QF(s)F(k —3).

We write (-,-) for the standard scalar product on C™, i.e.,

<Z oy ,“jej> => N
=1 =1 =1

Then, for f,g € My, ,, we define the Petersson scalar product of f and g by

dudv
2

v

(f.9) = /f (F(r). g(r)t

if the integral converges, where F is the standard fundamental domain for the action of
SLy(Z) on H and 7 = u + iv.

Lemma 3.1. Let k € 37 with k > 2, and let s € C with 1 < Re(s) < k —1.

(1) The series Ry, s, converges absolutely uniformly whenever T = u +iv satisfies v > e,

u < 1/e for a given € > 0, and s varies over a compact set.
(2) The series Ry, s is a vector-valued cusp form in Sy ,-

(3) For f € Sky,p» we have
(f7 Rk‘,g,l) = Ck‘<L*(fa S)a el>a

—1D)k/20(k—2)!
where ¢y, 1= %

Proof. For the first part, note that for each 1 < j < m, we have

R =) 5 (@) ()l (T

RS
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where p~! ((@ Z)) denotes the (j,1)-th entry of the matrix p=! ((2%)) and (Rkys,);
denotes the j-th component of Ry s;. Then, we have

e e ()

(cr+d)~* <‘” i b)_s

cT +d

(]

(2 ) esia
since p is a unitary representation. It is known that the series

S et ()

e

converges absolutely uniformly whenever 7 = u + iv satisfies v > €, u < 1/e for a given
€ > 0, and s varies over a compact set of 1 < Re(s) < k—1 (see |9, Section 4]). Therefore,
the series Ry, 5; converges absolutely uniformly whenever 7 = u+iv satisfies v > €, u < 1/e
for a given € > 0, and s varies over a compact set of 1 < Re(s) < k — 1. The second part
follows from the Fourier expansion of Ry s; given in Theorem

For the last part, we follow the argument in [9, Lemma 1]. It is enough to consider
the case when 1 < Re(s) < (k — 1)/2. Note that for each (c,d) € Z? with (c,d) = 1, we
can find (a,b) € Z? such that ad — bc = 1. Then, we see that Ry, 5;(7) is equal to

Z Z or + d <a7‘ + b >_s
(c,d)€Z? nEZ + d
(¢,d)=1

XD XTHE) P ((28) e (G ) e

where for each coprime pair (c,d) € Z?, one chooses a fixed pair (a,b) € Z? such that

ad — bc = 1. Therefore, we have
(Bh,s,0)5(T)
at +b - —2minKk; ., — a — a
9 S Ml (S ) et () 07 (2),

(c,d)eZ? n€Z
(c,d)=1

Next, we will use the Lipschitz summation formula [10]: For 0 < a < 1, Re(s) > 1 and

7 € H, we have

F(S) e2miak e eZm'T(n—a)

(—2mi)® k% (k+7) = (n—al

(3.1)
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Therefore, we have

(Rk’,s,l)j('r) = %(QW)SF(]{: — 5) Z (n 4 HZ)S_l

n+r; >0
« Z pfl (((CL g))jJ (CT + d)*k627”'(n+"’vl)(a7+b)/(57'+d)_
(e,d) €Z2
(c,d)=

From this, we have

n+r;>0
where
1
Prni(1) = 5 SoxT((eh) e ((2h)) (er + d) Rermilntrarib)/(ertdle,
(c,d)ezZ?
(e,d)=1

is a vector-valued Poincaré series. Suppose that f € S, , has a Fourier expansion of the

§ : § : 271'1 (n+k;)T
CL] J €;.

j=1n+k;>0

form

By following the argument as in [7, Theorem 5.3], we have

- (k- 1)
(fs Ping) = ai(n) Ar(n+m)F 1

Therefore, we see that

(fa Rk,?,l) = Ck(_l)k/2(27r)_(k_8)r(k - 8)<L(f7 k— S)’el> = ck<L*(f7 8)7el>' O

We now compute the Fourier expansion of Ry ,; by following a similar argument as

in |9, Lemma 2].

Lemma 3.2. Let k € %Z with k > 2. The function Ry s; has the Fourier expansion

Rk . l Z Z Ths l,] 27ri(n-‘rf-ij)7—ej7

j=1n+k;>0
where 11,51 5(n) is given by
Thk,s1.5(1)
= 01,5 (2m)° T (k — s)(n + r1)* " + x7H(9)p ™1 (8)ju (=12 (2m)F T (s) (n + )
(=) k-1 L()T'(k — s) K (C)*
oy (@) () T (k) 2. - <a)
(c,d)ezZ?
(e,d)=1, ac>0

(e emeTing (2.)) o7 ((24) 4 s ~2in o)

+e*2”<”+“ﬂd/c T D)) T ), 1P (s s 2min/ (ac)) ),



Non-vanishing of L-functions of Vector-valued Modular Forms 481

where 1 Fy(a, B; 2) is Kummer’s degenerate hypergeometric function.

Proof. First, we consider the contribution of the terms where ac = 0. The contribution of
the terms % (3 })

29(5) Y (= +n)Se Mgy
neZ

can be written, by the Lipschitz summation formula in (3.1]), as follows:

(2m)°T'(k — s) Z (n+ /fl)sfleZWi("Jr”l)zel.
n+r;>0

Note that (Y1) = (9 4')(3%). Therefore, the contribution of the terms + (9 71) is

equal to

2%(5) D (=2) (e ) @I ((0) e G e (0 e

nel

By the similar computation as in the case of the terms & (§ 7), we see that (3.2) is equal
to

m

(D2 T o (V) e (060 Do (r ) T lemimie,

j=1 n+r;>0
The contribution of the terms with ac # 0 at the j-th component is given by
(3.3)

AR —k az +d -7 -1 abd -1 ab —2mi(n+k;)z
w) [ (e (EEE) () o () e
v (c,d)eZ?

(¢,d)=1, ac#0

—u) [N X Cerm et (A

O mer (ed)er?
(¢,d)=1, ac#0

x e 2mimejy =1 ((a b)) p=1((a g))jleﬁm(nmj)z dz

)

for any fixed positive real number C. By the change of variables z — z +m (m € Z), we

see that (3.3) is equal to
(3.4)

—1((ab —1((ab (o —k az + b\’ —2mi(n+k;)z
IO SR () P (V) B R e ) B

(c,d)ez? =00
(e,d)=1, ac#0
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By the change of variables z — z — d/c, we see that (3.4]) is equal to

wis) Y, et () pmH((20),,
(
(3.5) (c,d)=
iC+o0 1 a\ ¢ )
« / ,k <_2 + > 6727rz(n+n]~)z dz.
iC—o0 ¢z cC
If ac > 0, then we have

- 1+a - 1+az -
2z ¢ - 2 ¢ '

Therefore, by the change of variable z — (c/a)it, we see that the integral in (3.5] is equal
to

—kdst1 C+ioco
(36) (-2 (%) w1

- t—k’—i—s t—‘ri‘ - e?ﬂ(n—ﬁ-ﬁj)(c/a)tdt'
271 c?

a C'—ioco
Note that for Re(u), Re(v) > 0, p € C, we have
[ 0 ) = e Bt v (5 - )
2mi o o et = 5P e PPy Py (p, p + v a)p
(see 6]). Therefore, (3.6) can be written as
2m)k _1/C\% .
(—1>k/2(r(]3)(n+ﬁj)’f Y(£) 1F(s ks —2min/(ac)).
From this, we see that the contribution of the terms with ac > 0 at the j-th component
is equal to
—1)k/2 4 D(s)'(k—s
( 2) (27T)k(n+ ’{j)k 1 ( F((k) )
— C\® ori(ntr;)d/c mis. — a — a ;
X Z ck (a) e2mi(ntry)d/cg X 1 ((c g)) P 1 ((C Z))j,l 1F1(s, k; —2min/(ac)).
(c,d)eZ?
(¢,d)=1, ac>0

The contribution of the terms with ac < 0 at the j-th component is obtained by the same

argument if we replace (a, c) by (—a,c). O

4. The main result

In this section, we give the main result where we determine the non-vanishing of the
averages of L-functions associated with the orthogonal basis of the space of cusp forms.
We also show the existence of at least one basis element whose L-function does not vanish

under certain conditions. Let
1 ifk; =0,
0 lf I{j 75 O

15,0 +=
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Theorem 4.1. Let k € %Z with k > 2. Let {fx1,..., fua,} be an orthogonal basis of

Sk,x,p With Fourier expansions

Jia(T Z D bryy(n)e?™ M )Te 1 <1< dy.

j=1n+k;>0

Let tg e R, € >0, and 1 < j < m. Then, there exists a constant C(tg,€,j) > 0 such that
for k> C(to,¢€,7) the function

~(L*(fep 5),€5),
; (frgs frp) ba(ns0)

does not vanish at any point s = o + ity with (k —1)/2 <o <k/2 —e.

Remark 4.2. Note that J
Zk <L*(fk,l7 S)? e])
(fras fr)

is the njo-th Fourier coefficient of Ry 3 ;. Therefore, it is equal to a nonzero constant

bk,1,5(n5,0)
=1

multiple of
(Rk,g,j’ Pk,nj,od)'

Therefore, Theorem implies the nonvanishing of (L*(P 5, .5, 5), €5)-

Proof of Theorem [£.1 By Lemma we have

. Uit Bisj) L*(fr1:5), €5)
Bz = ; (fr05 frt) Ckz fklafkl) fet-

If we take the first Fourier coefficients of both sides at the j-th component, then by

Lemma 3.2l we have

“(fr158):€5)
* Z fkklf fri) brt.s(n30)

= T = 9% (00)) 07 ((95), (-0 T

(—1)k/2 1 L(s)T(k—s) _k[C\®
G B 7y >t (L)

(4.1) +
(c,d)eZ?

(c,d)=1, ac>0
v ( prilntrdfeemioy L ((a8)) p7 ((28)),; 1Fa(s, ks —2min/ (ac))
e eemmin L (0 b)) g (0 1)), Fis ks 2min (ac)) ),
where
1 ifk; =0,
ki if kj #0.

Rj 1=
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Suppose that

*(fri,5),€5)
Ckz fkklffkl) btg(njo) = 0.

If we divide (4.1) by (27r)SI‘(k: —s)k; ! we have

1= p—l (((1) —01))“ (71)14/2(271_)1@—251_‘ ['(s) h—2s

(k—s)
—s~k—s
(—1>k/2(27{')k K’j Z C_k (E)s
2I'(k — s) a
(c,d)ez?
(¢,d)=1, ac>0

(O e (1)) (24)),, 15305,k 7m0
e (0 4))
where
1fi(a, By 2) i= F(Q)II:((E)Q) 171 (e, B 2).

Let s = k/2 — 0 — itg, where € < 6 < 1/2. Then, we have

(%)), 1/ils ks 2min/(ac)),

= (8 5)) 0 (1), (DR e T2 0 i)

I'(k/2 4 6 + ito)
(—1)k/2(27F ;)k/2+0Fito Z o~ k/2=8=ito ,—k/2+d+ito
2I(k/2 + 0 + itp) ez
(e,d)=1, ac>0
(4.2) y ( 2mi(n-+n)d/c gmilk/2=6=ito) | ~1 (( )) (( ))
Jid

x 1f1(k/2 —§ — ity, k; —2min/(ac))
_|_e—27ri(n+lij)d/c —mi(k/2—5—ito) Y~ (( —a b )) ((fa bd)) N
- ¢ —a773,3

x 1f1(k/2 = § — itg, k; 2min/(ac) ))

For Re(f) > Re(a) > 0, we have

1
ilai2) = [ a1 wP e
0
By [1, 13.21], for Re(ar) > 1, Re(8 — a) > 1, and |z| = 1, we have
1 fila, Bi2)| < 1.

If we take absolute values in (4.2)), then we have
25 |T'(k/2 — & —ito))|
IT(k/2 4 6 + ito)]

(13) (271249 e
e D DR R B G

1< (27{/5]')

(c,d)ez?
(e,d)=1, ac>0
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By [1}; 6.147], we have

D(k/2 =6 —ito)| (k)‘%
IT(k/2 + 8 +ito)| 2

as k — oo. Therefore, (4.3) becomes 1 < 0 as k — 0o, which is a contradiction. ]

We now give a corollary that is a direct consequence of Theorem which basically
demonstrates the existence of a basis element of the space of vector-valued cusp forms

whose L-function does not vanish.

Corollary 4.3. Let k € %Z with k > 2. Let {fx1,..., [rd,} be an orthogonal basis of

Sk,x,p With Fourier expansions

Fra@ =" > brai(n)e?™ra)Te; 1 <1< dy.

j=1n+k;>0
Lettg € R and € > 0.

(1) For any k > C(to,€,j), any 1 < j <m, and any s = o + ity with

k=1 _
9 S7S957¢

there ewists a basis element fi; € Sy, such that
(L*(frr5),€5) #0 and by j(njo) # 0.

(2) There exists a constant C(tg,e) > 0 such that for any k > C(to,€), and any s =
o+ ito with
ol o,k PR
5 o<g5—€ and S +e<o 5

there ewists a basis element fi; € Sy, such that
L(fk,hs) 7£ 0.

5. The case of I'y(N)

In what follows, we consider the case of a scalar-valued modular form on the congruence
subgroup I'g(NN). By using Theorem [4.1, we can extend Kohnen’s result in [9] to the case
of I'g(N). To illustrate, let NV be a positive integer and let I' = I'g(N). Let Si(I') be the
space of cusp forms of weight k on I'. Let {7y1,...,7m} be the set of representatives of
'\ SLy(Z) with 41 = I. For f € Sy(T'), we define a vector-valued function f: H — C™ by
f= > vy fiej and

fi= ey, 1<j<m,
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where (f| (24))(2) := (cz+d)"* f(vz). Then, f is a vector-valued modular form of weight
k and the trivial multiplier system with respect to p on SLao(Z), where p is a certain m-
dimensional unitary complex representation such that p(vy) is a permutation matrix for
each 7 € SLg(Z) and is an identity matrix if v € I'. Then, the map f — finduces an
isomorphism between Si(I') and Sy, ,, where Sy, , denotes the space of vector-valued cusp
forms of weight k and trivial multiplier system with respect to p on SLa(Z).

Suppose that f,g € Sg(I"). Then, we have

)= [(Fant S5 =3 [l @Eln Gt 52 = (1.9)

Y

where (f,g) denotes the Petersson inner product. Therefore, if f,g € Si(I') such that f

and g are orthogonal, then fand g is also orthogonal.

Corollary 5.1. Let k be a positive even integer with k > 2. Let N be a positive integer
and I' = To(N). Let {fi1,..., fre,} be an orthogonal basis of Sy(T"). Let tg € R, € > 0.
Then, there exists a constant C(tg,€) > 0 such that for k > C(to,€) there exists a basis
element fi; € Si(T) satisfying

L(f;:l, s)#0

at any point s = o + ity with

6. The case of Jacobi forms

Let k be a positive even integer and m be a positive integer. Let Jj ,, be the space of Jacobi
forms of weight k£ and index m on SLy(Z). From now, we use the notation 7 = u+iv € H
and z = z + iy € C. We review basic notions of Jacobi forms (for more details, see [5]).
Let F' be a complex-valued function on H x C. For v = (¢Y) € SLy(Z), X = (A, n) € Z?,
we define ,
(Flimy)(7,2) := (er +d) e MM F(3(7, 2))

and

(FlmX)(7,2) i= 2mN T2 p(7 o 47 ),
at+b z )

cT+d’ ct+d
With these notations, we introduce the definition of a Jacobi form.

where (7, 2) = (

Definition 6.1. A Jacobi form of weight k and index m on SLy(Z) is a holomorphic
function F' on H x C satisfying
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(1) Flgmy = F for every v € SLa(Z),
(2) F|nX = F for every X € Z2,
(3) F has the Fourier expansion of the form

(6.1) F(r,2) = Z a(l,r)e2milT 2mirz,

l,reZ
Aml—r2>0

We denote by J ., the vector space of all Jacobi forms of weight k& and index m on
SLy(Z). If a Jacobi form satisfies the condition a(l,7) = 0 if 4ml —r? = 0, then it is called
a Jacobi cusp form. We denote by Sy, ,,, the vector space of all Jacobi cusp forms of weight
k and index m on SLo(Z).

For 1 < j < 2m, we consider the theta series

9 )
Hm,j (7_’ Z) — § : 627r7,r T/(4m)€27r7,rz.

rel
r=j (mod 2m)

Suppose that F(7, z) is a holomorphic function of z and satisfies
F|uX =F for every X € Z2.

Then we have

(6.2) F(r,2)= Y Fj(1)0m;(7,2)

1<j<2m
with uniquely determined holomorphic functions F,: H — C. Furthermore, if F' is a
Jacobi form in Jj ,,, with the Fourier expansion (6.1)), then functions in {F}; | 1 < j < 2m}

have the Fourier expansions

n+ 2 . minT/(4dm
COEIED DR L)

4m
n>0
n+352=0 (mod 4m)

In 3], it is proved that the Petersson inner product of skew-holomorphic Jacobi cusp
forms can be expressed as the sum of partial L-values of skew-holomorphic Jacobi cusp
forms. Similarly, for a Jacobi cusp form F' € Jj,, with its Fourier expansion , we
define partial L-functions of F' by

a("H, j)

L(F,j,5) := > K
neZ, n>0 dm
n+352=0 (mod 4m)

for 1 <j < 2m.
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We write Mp,(R) for the metaplectic group. The elements of Mp,y(R) are pairs
(v,9(7)), where v = (¢%) € SLy(R), and ¢ denotes a holomorphic function on H with
#(7)? = ¢ + d. The product of (y1,$1(7)), (2, #2(7)) € Mp,(R) is given by

(71, 91(7)) (v2, 92(7)) = (71725 D1 (y27)P2(T))-

The map o

(¢4) = (24) = ((24) Ver+4d)
defines a locally isomorphic embedding of SLa(R) into Mp,(R). Let Mp,(Z) be the inverse
image of SLa(Z) under the covering map Mp,y(R) — SLa(R). It is well known that Mp,(Z)
is generated by T and S.

We define a 2m-dimensional unitary complex representation p,, of Mpsy(Z) by

ﬁm(T)ej _ e—27rij2/(4m)ej and ﬁm(g) e = 2mijj’/(2m)

e]/,

e
wE
Let x be a multiplier system of weight 1/2 on SLy(Z). We define a map py,: SLa2(Z) —
GL2m(C) by

pm(7) = X(7)Pm(7)
for v € SLo(Z). The map p,, gives a 2m-dimensional unitary representation of SLy(Z).
Let {ei,...,ea,} denote the standard basis of C>*™. For F € Si;,, we define a
vector-valued function F: H — C2™ by F= 2321 Fje;, where Fj is defined by the theta
expansion in (6.2). Then, the map F' +— F induces an isomorphism between Sy ,, and

Sk—1/2%,pm (for more details, see [5, Section 5] and [4, Section 3.1]).
Suppose that I, G € Sk ,. The Petersson inner product of I and G by

dzxdydud
(F,G) = oke T R ()G, )
3
SLo(Z)7\HxC v
where SL(Z)” = SLg(Z) x Z2. Then, by Theorem 5.3 in [5], we have

1
\V2m

Note that p,,(—1I) is not equal to the identity matrix in GLg,,(C). Instead, we have

(F,G) = (F,G).
pm(—I)ej = iegm_j.

Then, the corresponding kernel function Ry s; has the Fourier expansion

Ry s1(T § E Ths1y(n)edmtr)Te

j=1n+k;>0
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where 71, ¢ ;(n) is given by

1 — 1/ S S—
Tksij(n) = §6l,j(27r)sf(k —s)(n+kK;)° Ly 552m_l7j(27r) L'k = s)(n+ kam—1) 1

+ 5 ()0 (8)3a(~ DM EmF T () )

£ o ) (S)sam (DM@ (s) (0 + )

(=DF2 Vo1 L(s)D(k = s) —k (C\°
oy @t y) (k) 2. ¢ (a)
(c,d)ez?
(¢,d)=1, ac>0

x (e (0 ) o7t ((25)) ) 1Fa(s, ks ~2min/ (ac)
el dlegmmis T (o ) pm (0 ) Fa(s ks 2m’n/(ac))).

By the similar argument, we prove the same result as in Corollary [£.3]for the representation

pm. From this, we have the following corollary.

Corollary 6.2. Let k be a positive even integer with k > 2. Let {Fym1,...,Fyma} be
an orthogonal basis of Skm,. Let tg € R and e > 0.

(1) For any k > C(to,€,7), any 1 < j < 2m, and any s = o + ity with

2k -3 2k -1
<o < 1

— e,
there exists a basis element Fy, 1 € Skm such that

L<Fk,m,la.ja S) 7& 0.

(2) There exists a constant C(tg,€) > 0 such that for any k > C(tg,€), and any s =

o + ity with
2k — 3 2k —1 2k — 1 2k +1
— <0< —¢ and +e<o< 1
there exist a basis element Fj 1 € Skm and j € {1,...,2m} such that

L<Fk,m,l7j7 S) 7é 0.
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