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The Solutions of a Class of Sylvester-like Linear Matrix Equations and the

Estimation of the Associated Measurements of Their Solutions

Fuying Tang and Jianzhou Liu*

Abstract. This paper studies solutions and relevant measures of a class of Sylvester-like

linear matrix equations commonly encountered in control theory. Firstly, inequalities

related to the singular values of solutions of a class of Sylvester-like linear matrix

equations are obtained. These results improve upon existing relevant studies. Next,

starting from the definition of singular values for any matrix, a lower bound for the

product of solutions and their complex conjugate transpose matrices is directly ob-

tained. Additionally, when a Hermite matrix is a solution to the matrix equation, a

convergent matrix series is obtained, as the positive definite solution under certain

conditions. Finally, we design two algorithms for solving the class of matrix equa-

tions, where each recursive iteration results in obtaining the upper and lower solution

bounds. Numerical experiments demonstrate that our results outperform some exist-

ing studies.

1. Introduction

Let Rn×n (Cn×n) denote the set of n× n real (complex) matrices. Suppose A,B ∈ Cn×n,

the notation A ≻ 0 (A ⪰ 0) is used to denote that A is a Hermite positive (semi-)definite

matrix. A ≻ B (A ⪰ B) means A − B is Hermite positive (semi-)definite. AT , A∗, A−1

and det(A) denote the transpose, the complex conjugate transpose, the inverse and the

determinant of A, respectively. Let A ∈ Cn×n, we assume the real parts of the eigenvalues

of A are arranged such that Reλ1(A) ≥ Reλ2(A) ≥ · · · ≥ Reλn(A). The singular values of

A are arranged such that σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A). ρ(A) is the set of all eigenvalues

of A. A ∈ Cn×n is said to be stable if the eigenvalues of A lie on the open left half-plane,

i.e., Reλi(A) < 0, i = 1, 2, . . . , n.
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In the analysis and design of a control system, such as optimal control and stability

analysis, it is often reduced to solve the corresponding Sylvester-like linear matrix equa-

tion [12, 30]. For example, consider the following stability analysis problem of singularly

perturbed system [31]:

(1.1) Eϵẋ = Acx+Bww,

where x is the state vector, w is the external disturbance and Eϵ ≻ 0. Regarding the sta-

bility problem of singularly perturbed system (1.1), when a Lyapunov function is defined

as V = xTEεPεEεx with Pε ≻ 0, then its derivative is formulated as

V̇ = xTAT
c PεEεx+ xTEεPεAcx+ xTEεPεBww + wTBT

wPεEεx,

from which we obtain that a sufficient and necessary condition for the asymptotic stability

of system (1.1) with w = 0 is

AT
c PεEε + EεPεAc ≺ 0.

It is obvious that, for any given positive definite symmetric matrix C, a sufficient and

necessary condition for system (1.1) with w = 0 to be asymptotically stable is that the

equation AT
c PϵEϵ+EϵPϵA

T
c +C = 0 has a unique symmetric positive definite solution Pϵ. In

summary, it is of great theoretical and practical significance for solving the corresponding

Sylvester-like linear matrix equation.

In this paper, we consider a class of Sylvester-like linear matrix equations as follows:

(1.2) A∗XB +B∗X∗A = C

and

(1.3) A∗XB +B∗XA = C with X = X∗,

where A,B,C ∈ Cn×n are given, X ∈ Cn×n is an unknown matrix. Equation (1.3) studies

the case where a Hermite matrix is a solution of equation (1.2). Equations (1.2) and (1.3)

contain equations

(1.4) A∗X +X∗A = C

and

(1.5) A∗X +XA = C with X = X∗,

as their special forms, respectively. Specially, equations

(1.6) AXE +DX∗B = C



Solutions of a Class of Sylvester-like Linear Matrix Equations 3

and

(1.7) AXE +DXB = C with X = X∗,

are natural extension of equations (1.2) and (1.3), respectively. Equation (1.2) com-

monly occur in practical applications, such as structured generalized and quadratic inverse

eigenvalue problems [1, 4, 34], an inverse problem of vibration theory [15], Hamiltonian

systems [3, 6]. And in some applications, such as time-varying singular value decomposi-

tion [2], system balancing [19], Newton’s method for solving continuous algebraic Riccati

equations [13, 17, 26], model reduction [27] and complex network systems [10] etc., the

Hemite solution is required. For more details, please refer to [28, 30]. Many significant

research achievements had been made due to the important role of equations (1.2) and

(1.3) in practical applications. The analytical expressions of the solution of equation (1.5)

and its properties were explored in [18, 20], and the analytical expressions of the solution

to equation (1.4) and its variant were presented in [3, 6]. [23, 24] studied the properties

of the positive definite solution of a continuous time algebraic Riccati equation. Equa-

tion (1.7) was investigated in [7, 21, 35]. [11] explored the uniqueness condition of the

solution of equation (1.6). The quaternion and operator equation form of equation (1.3)

were explored in [5] and [32], respectively. In [8, 22, 33], the authors presented analytical

expressions of the solutions and the solutions with the minimum norm of equations (1.2)

and (1.3). However, these expressions seem complicated. In [9], the authors first proposed

a lower bound for the determinants of the solutions of equations (1.2) and (1.3) in terms of

real number domain. Later, Soares [29] further studied them, extending A and B that are

stable to det(A) det(B) > 0. But for practical problems, these are not enough. Therefore,

more accurate estimations related to the solutions of equations (1.2) and (1.3) are carried

out in this paper.

Compared with existing relevant works on solving Sylvester-like linear matrix equa-

tions, the main contributions of this paper are as follows:

� The relationship between the singular values of a square matrix and the eigenval-

ues of its Hermitian part, as well as singular value inequalities, are used to derive

inequalities related to the singular values of the solutions of equation (1.2). The

results improve upon those of [9, 29].

� Starting from the definition of singular values of any matrix, a lower bound for the

product of the solutions to the matrix equation and their complex conjugate trans-

pose matrices is obtained. Numerical experiments reveal that the results obtained

outperform those in [9, 29] when the result is reduced to the lower bound of the

determinant.
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� When a Hermite matrix is a solution to the matrix equation, a convergent matrix

series is obtained as the positive definite solution to the matrix equation under

certain conditions.

� Two algorithms are designed to solve the positive definite solution of the matrix

equation, with each recursive iteration obtaining the upper and lower bounds of

the positive definite solution. The superiority of our results over papers [9, 29] is

demonstrated by a class of numerical experiments with random matrices.

The remainder of this paper is organized as follows. In Section 2, relevant measures

for the solutions of equation (1.2) are explored. In Section 3, the solution of equation (1.3)

and its related properties are explored under certain conditions.

2. Relevant measures for the solutions of the matrix equation

In [9], lower bounds for the product of the eigenvalues of the solutions of equations (1.2)

and (1.3) were presented, in terms of real number domain.

Theorem 2.1. [9] Assume equation (1.2) is consistent. If A ∈ Rn×n and B ∈ Rn×n are

stable matrices and C ∈ Rn×n is a symmetric positive definite matrix, then

(2.1) δ1δ2 · · · δn ≥
∏n

i=1 γi
2n
∏n

i=1 αiβi
≜ dl2,

where ρ(A) = {α1, α2, . . . , αn}, ρ(B) = {β1, β2, . . . , βn}, ρ(C) = {γ1, γ2, . . . , γn} and

ρ(X) = {δ1, δ2, . . . , δn}.

Remark 2.2. The result in [29] generalized that of Theorem 2.1 and extended the conditions

satisfying the inequality (2.1) to det(A) det(B) > 0 and C is a symmetric positive definite

matrix.

Applying the same technique to equation (1.3), which studies the case when a symmet-

ric matrix is a solution of equation (1.2), similar results as Theorem 2.1 and Remark 2.2

can be obtained. In this paper, we will improve them.

Lemma 2.3. [36] Let A ∈ Cn×n, then

λi

(
A+A∗

2

)
≤ σi(A).

Lemma 2.4. [36] Let A,B ∈ Cn×n and 1 ≤ i1 ≤ · · · ≤ ik ≤ n, then

k∏
t=1

σit(AB) ≤
k∏

i=1

σi(A)

k∏
t=1

σit(B).
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Lemma 2.5. [14] Let A ∈ Cn×n be a Hermite matrix, then

λ1(A)I ⪰ A ⪰ λn(A)I.

Lemma 2.6. [36] Let A,B ∈ Cn×n, r + s ≤ n− 1, then

σr+s+1(AB) ≤ σr+1(A)σs+1(B).

Lemma 2.7. [16] For any square matrix A ∈ Cn×n, it can be decomposed into A = E+F

with E∗ = E ≻ 0 and F ∗ = −F , then det(E) ≤ | det(A)|. Equality holds if and only if A

is Hermite.

Lemma 2.8. [36] Let A,B,C ∈ Cn×n be Hermite matrices. If A ⪰ 0, B ⪰ 0, and A ⪰ B,

then A1/2 ⪰ B1/2.

Lemma 2.9. Assume that A,B,C ∈ Rn×n such that det(A) det(B) > 0 and C is a

symmetric positive definite matrix. Let X ∈ Rn×n be a solution of equation(1.2), then

det(X) > 0 holds.

Proof. In fact, for any matrix A ∈ Rn×n, one can conclude

λn

(
A+AT

2

)
≤ Reλi(A) ≤ λ1

(
A+AT

2

)
.

According to equation (1.2) and C is a symmetric positive definite matrix, one can conclude

Reλi(A
TXB) > 0.

Since A,X,B ∈ Rn×n and the complex eigenvalues of a real matrix appear in pairs, one

can conclude

det(A) det(X) det(B) = det(ATXB) > 0.

Thus, when det(A) det(B) > 0, det(X) > 0.

Taking advantage of the relationship between the singular values of a square matrix

and the eigenvalues of its Hermitian part and singular value inequalities, a lower bound of

the product of k singular values of the solutions of matrix equation (1.2) can be obtained.

Theorem 2.10. Assuming that A and B are non-singular and C is Hermite positive

definite. Let X be a solution of equation (1.2), then

(2.2)

k∏
t=1

σit(X) ≥
∏k

t=1 λit(A
−∗CA−1)

2k
∏k

i=1 σi(BA−1)
.
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Proof. When A is non-singular, multiplying by A−∗ to the left and by A−1 to the right,

equation (1.2) can be converted to

(2.3) Ã∗X∗ +XÃ = C̃,

where Ã = BA−1, C̃ = A−∗CA−1. By the use of Lemmas 2.3 and 2.4 to (2.3), one can

conclude

(2.4)
k∏

t=1

λit

(
C̃

2

)
=

k∏
t=1

λit

(
Ã∗X∗ +XÃ

2

)
≤

k∏
t=1

σit(XÃ) ≤
k∏

t=1

σit(X)
k∏

i=1

σi(Ã).

Since A and B are non-singular, then

k∏
t=1

σit(X) ≥
∏k

t=1 λit(C̃)

2k
∏k

i=1 σi(Ã)
.

When k = n, we can also get some inequalities related to the determinants of the

solutions of equation (1.2).

Remark 2.11. Assuming that A and B are non-singular and C is Hermite positive definite

such that C ̸= 2A∗XB. Let X be a solution of equation (1.2), then

|det(X)| > det(C)

2n|det(A) det(B)|
.

Moreover, when equation (1.2) is defined in real number domain and det(A) det(B) > 0,

one can conclude

(2.5) det(X) >
det(C)

2n det(A) · det(B)
.

It is the result of Theorem 2.4 in [29].

Proof. Note that when k = n, for any matrix X ∈ Cn×n, |det(X)| =
∏n

i=1 σi(X). When

k = n, (2.2) can be transformed into

(2.6) | det(X)| ≥ det(C)

2n| det(A)| · | det(B)|
.

If C ̸= 2A∗XB, then

(2.7) C̃ ̸= 2XÃ.

Combining (2.7) with (2.3), one can conclude XÃ ̸= Ã∗X∗. By the use of Lemma 2.7, the

first inequality sign in (2.4) strictly holds. Thus (2.6) strictly holds. Moreover, when equa-

tion (1.2) is defined in real number domain and det(A) det(B) > 0, applying Lemma 2.9,

one can conclude det(X) > 0, and then (2.5) holds.
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The above results are related with the product of certain singular values of the solutions

of equation (1.2), and we can also get the results about individual singular value.

Theorem 2.12. Assuming that A and B are non-singular and C is Hermite positive

definite. Let X be a solution of equation (1.2), then for any integer i ∈ {1, 2, . . . , n},

(2.8) σi(X) ≥ max
j=i,i+1,...,n

{
λj(A

−∗CA−1)

2σj−i+1(BA−1)

}
.

Proof. For any integer i ∈ {1, 2, . . . , n}, j = i, i+ 1, . . . , n, by the use of Lemmas 2.3 and

2.6 to (2.3), one can conclude

λj

(
Ã∗X∗ +XÃ

2

)
≤ σj(XÃ) ≤ σi(X)σj−i+1(Ã).

When i takes every value of the set {1, 2, . . . , n}, and A and B are non-singular, one can

conclude (2.8) holds.

Applying Theorem 2.10, when k = 1, (2.2) is equal to

σi(X) ≥ σi(A
−∗CA−1)

2σ1(BA−1)
.

Compared with (2.8), due to σi(A
−∗CA−1)

2σ1(BA−1)
∈
{ σj(A

−∗CA−1)
2σj−i+1(BA−1)

∣∣ j = i, i + 1, . . . , n
}
, then we

have
σi(A

−∗CA−1)

2σ1(BA−1)
≤ max

j=i,i+1,...,n

{
σj(A

−∗CA−1)

2σj−i+1(BA−1)

}
.

Thus, we can obtain the remark as follows.

Remark 2.13. The result of Theorem 2.12 is better than that of Theorem 2.10, when using

them to estimate individual singular values of the solutions of equation (1.2).

Example 2.14 illustrates the superiority of our results, compared with that of [9] and

[29].

Example 2.14. Consider the following equation (1.2) with

A =


−1 0 0 1

0 8 1 0

0 0 4 0

1 0 0 −10

 , B =


6 0 0.5 0

0 6 0 0

1 0 −5 0

0 0 0 5

 and C =


10 0 0 1

0 9 0 0

0 0 7 0

1 0 0 7

 .

By computation, det(A) = 288, det(B) = −915, and C is a symmetric positive definite

matrix. Due to det(A) det(B) < 0, a lower bound of the determinant of the solution X
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of matrix equation (1.2) cannot be obtained with Theorem 2.1 and Remark 2.2, since the

conditions of Theorem 2.1 and Remark 2.2 can not be met. While here a lower bound of

the absolute value of the determinant of the solution can be obtained. We can also obtain

lower bounds of singular values of the solution (see Tables 2.1 and 2.2). Thus, the results

obtained in this section improved that of Theorem 2.1 and Remark 2.2.

Table 2.1: Lower bounds for the product of singular values in Theorem 2.10.

σ1(X) ≥ 0.9419 σ2(X) ≥ 0.0330 σ3(X) ≥ 0.0100

σ4(X) ≥ 0.0049 σ1(X)σ2(X) ≥ 0.1663 σ1(X)σ3(X) ≥ 0.0505

σ1(X)σ4(X) ≥ 0.0245 σ2(X)σ3(X) ≥ 0.0018 σ2(X)σ4(X) ≥ 8.5854× 10−4

σ3(X)σ4(X) ≥ 2.6052× 10−4 σ1(X)σ2(X)σ3(X)σ4(X) ≥ 0.0010 σ1(X)σ2(X)σ3(X) ≥ 0.0154

σ1(X)σ2(X)σ4(X) ≥ 0.0075 σ1(X)σ3(X)σ4(X) ≥ 0.0023 σ2(X)σ3(X)σ4(X) ≥ 7.9530× 10−5

Table 2.2: Lower bounds of individual singular value in Theorem 2.12.

σ1(X) ≥ 0.9419 σ2(X) ≥ 0.0536 σ3(X) ≥ 0.0260 σ4(X) ≥ 0.0049

It can be seen from Tables 2.1 and 2.2 that the result of Theorem 2.12 is superior to

that of Theorem 2.10 in terms of individual singular value.

The above results are related with the singular values of the solutions of equation (1.2).

Next, starting from the definition of singular values of any matrix X ∈ Cn×n i.e., σi(X) =√
λi(XX∗), by ingeniously constructing a positive semi-definite matrix and combining

with matrix inequality for special matrices, we can directly obtain a lower bound of the

matrix XX∗.

Theorem 2.15. Assuming that A and B are non-singular and C is Hermite positive

definite. Let X be a solution of equation (1.2), then for any positive constant α such that

(2.9) α ≤ λn

[
(A−∗B∗BA−1)−1/2A−∗CA−1(A−∗B∗BA−1)−1/2

]
,

we have

XX∗ ⪰ αA−∗CA−1 − α2A−∗B∗BA−1 ≜ Y (α) ⪰ 0.

Proof. According to (2.3), for any positive constant α, one can conclude

0 ⪯ (αÃ−X∗)∗(αÃ−X∗) = α2Ã∗Ã− α(Ã∗X∗ +XÃ) +XX∗

= α2Ã∗Ã− αC̃ +XX∗.
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Applying Lemma 2.5 to (2.9), one can conclude

αI ⪯ (Ã∗Ã)−1/2C̃(Ã∗Ã)−1/2,

i.e.,

α2Ã∗Ã− αC̃ ⪯ 0.

Thus,

(2.10) XX∗ ⪰ αC̃ − α2Ã∗Ã.

When X = X∗ ⪰ 0, using Lemma 2.8 to (2.10), we can easily get the corollary as

follows.

Corollary 2.16. Assuming that there exists a positive semi-definite solution to matrix

equation (1.3). If A and B are non-singular and C is Hermite positive definite, then for

any positive constant α such that

α ≤ λn

[
(A−∗B∗BA−1)−1/2A−∗CA−1(A−∗B∗BA−1)−1/2

]
,

we have

X ⪰ (αA−∗CA−1 − α2A−∗B∗BA−1)1/2 ⪰ 0.

In Example 2.14, choose α = 1
2λ4

[
(ÃT Ã)−1/2C̃(ÃT Ã)−1/2

]
≈ 0.1191, by the use of

Theorem 2.15, one can directly obtain a lower bound of the product for the solution and

its complex conjugate transpose matrix, i.e.,

XXT ⪰


0.8577 0 −0.0079 0.1043

0 0.0088 −0.0022 0

−0.0079 −0.0022 0.0303 −0.0008

0.1043 0 −0.0008 0.0171

 .

3. The solution of matrix equation (1.3) and its related properties

When A and B are non-singular and X ̸= X∗, by calculation, X = 1
2A

−∗CB−1 is a

solution of matrix equation (1.2), and the solution is not unique. In [9, 29], the authors

proposed an lower bound of the determinants of the solutions of matrix equation (1.2).

And the lower bound is the determinant of the solution X = 1
2A

−∗CB−1. In this section,

we obtain an analytical expression for the positive definite solution of equation (1.3) and

design two algorithms for the solution. Each recursive iteration is its upper bound or lower

bound of the positive definite solution of equation (1.3).



10 Fuying Tang and Jianzhou Liu

Lemma 3.1. [14] Let A,B ∈ Cn×n be Hermite matrices, if A ⪰ B, then λi(A) ≥ λi(B),

i = 1, 2, . . . , n.

Lemma 3.2. [14] Let A ∈ Cn×n and B ∈ Cn×n be Hermite matrices, then

λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B), i = 1, 2, . . . , n.

Lemma 3.3. [25] For given A ∈ Cn×n, ρ(A) < 1 if and only if there exists a nonsingular

matrix D ∈ Cn×n such that σ1(DAD−1) < 1.

Remark 3.4. An algorithm for obtaining a nonsingular matrix D was given in Algorithm II

of [25].

Lemma 3.5. [14] Let A(k) ∈ Cm×n, then the series
∑∞

k=1A
(k) absolutely converges if and

only if the series
∑∞

k=1 ∥A(k)∥ converges, where ∥ · ∥ denotes any matrix norm on Cm×n.

Lemma 3.6. [14] Let A ∈ Cn×n, then limk→∞Ak = 0 if and only if ρ(A) < 1.

By utilizing the characteristics of the matrix equation, and by combining them with

the eigenvalue inequalities of positive semi-definite matrices and matrix inequalities, new

inequalities are obtained. We then construct a convergent matrix series under certain

conditions and prove that this series is the positive definite solution to equation (1.3).

Theorem 3.7. Assuming that the coefficient matrices A, B and C satisfy

(3.1) Reλi(BA−1) > 0, i = 1, 2, . . . , n,

and C is a Hermite positive definite matrix. Let X be the positive definite solution of

matrix equation (1.3), then we have the following results:

(i) For arbitrary positive constant q, there exists a non-singular matrix D such that

(3.2) σ1[D(Ã− qI)(Ã+ qI)−1D−1] < 1.

(ii) For arbitrary integer k = 0, 1, 2, . . .,

X ⪰ X
(k)
l ≜ η1

[
(Ã+ qI)−∗(Ã− qI)∗

]k+1
D∗D

[
(Ã− qI)(Ã+ qI)−1

]k+1

+
k∑

i=0

[
(Ã+ qI)−∗(Ã− qI)∗

]i
(Ã+ qI)−∗2qC̃(Ã+ qI)−1

×
[
(Ã− qI)(Ã+ qI)−1

]i
,

(3.3)

where Ã = BA−1, C̃ = A−∗CA−1 and

η1 ≜
λn

[
D−∗(Ã+ qI)−∗2qC̃(Ã+ qI)−1D−1

]
1− λn

[
D−∗(Ã+ qI)−∗(Ã− qI)∗D∗D(Ã− qI)(Ã+ qI)−1D−1

] .
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(iii) For arbitrary integer k = 1, 2, . . .,

(3.4) X
(k)
l ⪰ X

(k−1)
l .

Moreover, the monotonically increasing lower bound sequence X
(k)
l converges, and

there exists a Hermite positive definite matrix Xl such that

(3.5) Xl = lim
k→∞

X
(k)
l .

(iv) The limit of monotonically increasing lower bound sequence is equal to

(3.6) Xl =
∞∑
i=0

[
(Ã+qI)−∗(Ã−qI)∗

]i
(Ã+qI)−∗2qC̃(Ã+qI)−1

[
(Ã−qI)(Ã+qI)−1

]i
.

It is the positive definite solution of equation (1.3).

(v) For arbitrary integer k = 0, 1, 2, . . .,

X ⪯ X(k)
u ≜ ξ1

[
(Ã+ qI)−∗(Ã− qI)∗

]k+1
D∗D

[
(Ã− qI)(Ã+ qI)−1

]k+1

+
k∑

i=0

[
(Ã+ qI)−∗(Ã− qI)∗

]i
(Ã+ qI)−∗2qC̃(Ã+ qI)−1

×
[
(Ã− qI)(Ã+ qI)−1

]i
,

where

ξ1 ≜
λ1

[
D−∗(Ã+ qI)−∗2qC̃(Ã+ qI)−1D−1

]
1− λ1

[
D−∗(Ã+ qI)−∗(Ã− qI)∗D∗D(Ã− qI)(Ã+ qI)−1D−1

] .
(vi) For arbitrary integer k = 1, 2, . . .,

X(k−1)
u ⪰ X(k)

u , k = 1, 2, . . . .

The monotonically decreasing upper bound sequence X
(k)
u converges, and the limit of

the sequence is equal to

lim
k→∞

X(k)
u =

∞∑
i=0

[
(Ã+qI)−∗(Ã−qI)∗

]i
(Ã+qI)−∗2qC̃(Ã+qI)−1

[
(Ã−qI)(Ã+qI)−1

]i
.

Proof. (i) let

V = Ã+ qI,

then

(Ã− qI)(Ã+ qI)−1 = (V − 2qI)V −1 = I − 2qV −1.
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Thereupon,

(3.7) λi

[
(Ã− qI)(Ã+ qI)−1

]
= 1− 2qλn−i+1(V

−1) = 1− 2q
1

λi(Ã) + q
=

λi(Ã)− q

λi(Ã) + q
.

According to (3.1) and (3.7), one can conclude

∣∣λi

[
(Ã− qI)(Ã+ qI)−1

]∣∣2 = λi(Ã)− q

λi(Ã) + q
· λi(Ã)− q

λi(Ã) + q
=

q2 − 2qReλi(Ã) + |λi(Ã)|2

q2 + 2qReλi(Ã) + |λi(Ã)|2
< 1,

and then

(3.8) ρ
[
(Ã− qI)(Ã+ qI)−1

]
< 1.

Applying Lemma 3.3 to (3.8), one can conclude there exists a nonsingular matrix D such

that

(3.9) σ1
[
D(Ã− qI)(Ã+ qI)−1D−1

]
< 1.

(ii) Multiplying by A−∗ on the left and by A−1 on the right, (1.3) can be converted to

(3.10) Ã∗X +XÃ = C̃.

Multiplying by D−∗ on the left and by D−1 on the right, (3.10) can be converted to

Â∗X̂ + X̂Â = Ĉ,

where Â = DÃD−1, X̂ = D−∗XD−1, Ĉ = D−∗C̃D−1. According to the equality

(Â+ qI)∗X̂(Â+ qI)− (Â− qI)∗X̂(Â− qI) = 2q
(
Â∗X̂ + X̂Â

)
= 2qĈ,

one can conclude

(3.11) X̂ = (Â+ qI)−∗(Â− qI)∗X̂(Â− qI)(Â+ qI)−1 + (Â+ qI)−∗2qĈ(Â+ qI)−1.

By the use of Lemma 2.5, one can conclude

X̂ ⪰ (Â+ qI)−∗(Â− qI)∗λn(X̂)I(Â− qI)(Â+ qI)−1 + (Â+ qI)−∗2qĈ(Â+ qI)−1.

By the use of Lemmas 3.1 and 3.2, one can conclude

λn(X̂)

≥ λn

[
(Â+ qI)−∗(Â− qI)∗λn(X̂)(Â− qI)(Â+ qI)−1 + (Â+ qI)−∗2qĈ(Â+ qI)−1

]
≥ λn(X̂)λn

[
(Â+ qI)−∗(Â− qI)∗(Â− qI)(Â+ qI)−1

]
+ λn

[
(Â+ qI)−∗2qĈ(Â+ qI)−1

]
.

(3.12)
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By the use of (3.2), we have

σ2
1

[
D(Ã− qI)(Ã+ qI)−1D−1

]
= σ2

1

[
(Â− qI)(Â+ qI)−1

]
= λ1

[
(Â+ qI)−∗(Â− qI)∗(Â− qI)(Â+ qI)−1

]
< 1,

(3.13)

and then

(3.14) λn

[
(Â+ qI)−∗(Â− qI)∗(Â− qI)(Â+ qI)−1

]
< 1.

According to (3.14), (3.12) can be converted into

(3.15) λn(X̂) ≥
λn

(
(Â+ qI)−∗2qĈ(Â+ qI)−1

)
1− λn

[
(Â+ qI)−∗(Â− qI)∗(Â− qI)(Â+ qI)−1

] ≜ η1.

According to (3.11) and X̂ ⪰ η1I, it is easy to known that

X̂ ⪰ η1
[
(Â+ qI)−∗(Â− qI)∗

]k+1[
(Â− qI)(Â+ qI)−1

]k+1

+
k∑

i=0

[
(Â+ qI)−∗(Â− qI)∗

]i
(Â+ qI)−∗2qĈ(Â+ qI)−1

[
(Â− qI)(Â+ qI)−1

]i
≜ X̂

(k)
l .

(3.16)

(3.16) is multiplied by D∗ on the left and by D on the right, then X ⪰ X
(k)
l .

(iii) For arbitrary integer k = 1, 2, . . .,

X̂
(k)
l − X̂

(k−1)
l

=
[
(Â+ qI)−∗(Â− qI)∗

]k
×
{
η1(Â+ qI)−∗(Â− qI)∗(Â− qI)(Â+ qI)−1 − η1I + (Â+ qI)−∗2qĈ(Â+ qI)−1

}
×
[
(Â− qI)(Â+ qI)−1

]k
=
[
(Â+ qI)−∗(Â− qI)∗

]k
(Â+ qI)−∗

×
{
η1(Â− qI)∗(Â− qI)− η1(Â+ qI)∗(Â+ qI) + 2qĈ

}
× (Â+ qI)−1

[
(Â− qI)(Â+ qI)−1

]k
=
[
(Â+ qI)−∗(Â− qI)∗

]k
(Â+ qI)−∗{− 2qη1Â

∗ − 2qη1Â+ 2qĈ
}
(Â+ qI)−1

×
[
(Â− qI)(Â+ qI)−1

]k
.

(3.17)

According to (3.13), we have

0 ≻ (Â+ qI)−∗(Â− qI)∗(Â− qI)(Â+ qI)−1 − I

= (Â+ qI)−∗[(Â− qI)∗(Â− qI)− (Â+ qI)∗(Â+ qI)
]
(Â+ qI)−1

= −(Â+ qI)−∗[2q(Â+ Â∗)
]
(Â+ qI)−1.
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Thereupon,

(3.18) Â+ Â∗ ≻ 0.

According to the definition of η1 in (3.15) and (3.18), one can conclude

η1Â+ η1Â
∗ =

λn

[
(Â+ qI)−∗2qĈ(Â+ qI)−1

]
1− λn

[
(Â+ qI)−∗(Â− qI)∗(Â− qI)(Â+ qI)−1

](Â+ Â∗)

=
λn

[
(Â+ qI)−∗2qĈ(Â+ qI)−1

]
λ1

[
I − (Â+ qI)−∗(Â− qI)∗(Â− qI)(Â+ qI)−1

](Â+ Â∗)

=
λn

[
(Â+ qI)−∗2qĈ(Â+ qI)−1

]
λ1

[
(Â+ qI)−∗2q(Â+ Â∗)(Â+ qI)−1

](Â+ Â∗)

= (Â+ Â∗)1/2λn

[
(Â+ qI)−∗Ĉ(Â+ qI)−1

]
× λn

[
(Â+ qI)(Â+ Â∗)−1(Â+ qI)∗

]
(Â+ Â∗)1/2

⪯ (Â+ Â∗)1/2λn

[
(Â+ qI)−∗Ĉ(Â+ qI)−1(Â+ qI)(Â+ Â∗)−1(Â+ qI)∗

]
× (Â+ Â∗)1/2

= (Â+ Â∗)1/2λn

[
(Â+ Â∗)−1/2Ĉ(Â+ Â∗)−1/2

]
(Â+ Â∗)1/2

⪯ Ĉ.

(3.19)

Substituting (3.19) into (3.17), one can conclude X̂
(k)
l ⪰ X̂

(k−1)
l . The above equality is

multiplied by D∗ on the left and by D on the right, (3.4) holds. Due to (3.3) and (3.4),

there exists a Hermite positive definite matrix Xl such that

Xl = lim
k→∞

X
(k)
l .

(iv) By the use of (3.9), we have

n∑
i=0

∥A(i)∥

≜
n∑

i=0

∥∥[(Â+ qI)−∗(Â− qI)∗
]i
(Â+ qI)−∗2qĈ(Â+ qI)−1

[
(Â− qI)(Â+ qI)−1

]i∥∥
≤

n∑
i=0

σi
1

[
(Â+ qI)−∗(Â− qI)∗

]
σ1
[
(Â+ qI)−∗2qĈ(Â+ qI)−1

]
σi
1

[
(Â− qI)(Â+ qI)−1

]
≤

σ1
[
(Â+ qI)−∗2qĈ(Â+ qI)−1

]
1− σ2

1

[
(Â− qI)(Â+ qI)−1

] ,

and then the series
∑∞

i=0 ∥A(i)∥ converges. Applying Lemma 3.5, the series
∑∞

i=0A
(i)

converges. Due to ρ(A) ≤ σ1(A), for given A ∈ Cn×n, one can conclude ρ((Â − qI)(qI +
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Â)−1) < 1 from (3.9). Applying Lemma 3.6, we have

(3.20) lim
k→∞

η1
[
(Â+ qI)−∗(Â− qI)∗

]k+1[
(Â− qI)(Â+ qI)−1

]k+1
= 0.

Since the series
∑∞

i=0A
(i) converges and (3.20) holds,

(3.21) lim
k→∞

X̂k
l =

∞∑
i=0

[
(Â+qI)−∗(Â−qI)∗

]i
(Â+qI)−∗2qĈ(Â+qI)−1

[
(Â−qI)(Â+qI)−1

]i
.

(3.21) is multiplied by D∗ on the left and by D on the right, then

(3.22)

lim
k→∞

X
(k)
l =

∞∑
i=0

[
(Ã+ qI)−∗(Ã− qI)−∗]i(Ã+ qI)−∗2qC̃(Ã+ qI)−1

[
(Ã− qI)(Ã+ qI)−1

]i
.

According to (3.5) and (3.22), (3.6) holds. (3.6) can be rewritten as

(3.23) Xl = (Ã+ qI)−∗2qC̃(Ã+ qI)−1 + (Ã+ qI)−∗(Ã− qI)−∗Xl(Ã− qI)(Ã+ qI)−1.

(3.23) is multiplied by (Ã+ qI)∗ on the left and by (Ã+ qI) on the right, then (3.23) can

be converted to

Ã∗Xl +XlÃ+ C̃ = 0.

Thereupon, Xl in (3.6) is the positive definite solution of equation (1.3).

(v) The proof is similar to (ii).

(vi) The proof is similar to (iii) to (iv).

Moreover, we designed two algorithms to solve the positive definite solution of equa-

tion (1.3). Each recursive iteration of these algorithms obtains the upper or lower bounds

of the positive definite solution of equation (1.3). The results obtained from these algo-

rithms improve upon the results of existing relevant studies.

Based on the monotonically increasing lower bound sequence X
(k)
l , k = 0, 1, 2, . . ., we

design the following algorithm for the positive definite solution of equation (1.3).

Algorithm 3.1

1: For arbitrary given positive constant q, let W = (Ã− qI)(Ã+ qI)−1, applying Algorithm II in [25] can

obtain a non-singular matrix D such that σ1(DWD−1) < 1.

2: For arbitrary given error precision ε, by calculating ∥X(k)
l −X

(k−1)
l ∥ < ε, we can determine n.

3: Compute X
(n)
l , then X

(n)
l is an approximate solution of equation (1.3) that satisfies the precision ε.

Based on the monotonically decreasing upper bound sequence X
(k)
u , k = 0, 1, 2, . . ., we

design the following algorithm for the positive definite solution of equation (1.3).
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Algorithm 3.2

1: For arbitrary given positive constant q, let W = (Ã− qI)(Ã+ qI)−1, applying Algorithm II in [25] can

obtain a non-singular matrix D such that σ1(DWD−1) < 1.

2: For arbitrary given error precision ε, by calculating ∥X(k)
u −X

(k−1)
u ∥ < ε, we can determine n.

3: Compute X
(n)
u , then X

(n)
u is an approximate solution of equation (1.3) that satisfies the precision ε.

For Algorithms 3.1 and 3.2, it is difficult to determine the corresponding n from Step 2.

We give the following two simple criteria to determine n.

Theorem 3.8. For equation (1.3), assuming that the coefficient matrices A, B and C

satisfy

Reλi(BA−1) > 0, i = 1, 2, . . . , n,

and C is a Hermite positive definite matrix. For arbitrary given error precision ε, take an

natural number N1 such that

ln
(

ε

λ1

(
η1W ∗D∗DW−η1D∗D+(Ã+qI)−∗2qC̃(Ã+qI)−1

))
ln(λ1(W ∗W ))

< N1 ≤
ln
(

ε

λ1

(
η1W ∗D∗DW−η1D∗D+(Ã+qI)−∗2qC̃(Ã+qI)−1

))
ln(λ1(W ∗W ))

+ 1,

(3.24)

then X
(N1)
l obtained by Algorithm 3.1 can be regarded as an approximate solution of equa-

tion (1.3) that meets the precision ε.

Proof. Take the natural number N1 defined as (3.24), then∥∥X(N1)
l −X

(N1−1)
l

∥∥
=
∥∥(W ∗)N1

(
η1W

∗D∗DW − η1D
∗D + (Ã+ qI)−∗2qC̃(Ã+ qI)−1

)
WN1

∥∥
≤ λN1

1 (W ∗W )λ1

(
η1W

∗D∗DW − η1D
∗D + (Ã+ qI)−∗2qC̃(Ã+ qI)−1

)
< ε.

Similar to the proof of Theorem 3.8, we obtain the following theorem.

Theorem 3.9. Under the condition of Theorem 3.8, for arbitrary given error precision

ε, take an natural number N2 such that

ln
(

ε

σ1

(
ξ1W ∗D∗DW−ξ1D∗D+(Ã+qI)−∗2qC̃(Ã+qI)−1

))
ln(λ1(W ∗W ))

< N2 ≤
ln
(

ε

σ1

(
ξ1W ∗D∗DW−ξ1D∗D+(Ã+qI)−∗2qC̃(Ã+qI)−1

))
ln(λ1(W ∗W ))

+ 1,

then X
(N2)
u obtained by Algorithm 3.2 can be regarded as an approximate solution of equa-

tion (1.3) that meets the precision ε.
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Example 3.10 illustrates that the obtained results in this section improve that of The-

orems 2.10, 2.12 and 2.15 and Corollary 2.16.

Example 3.10. Consider the following matrix equation (1.3) with

A =


1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

 , B =


1 1 0 0

1 2 1 0

0 0 1 2

0 0 0 1

 and C =


28 37 9 3

37 64 27 5

9 27 34 26

3 5 26 92

 .

By computation, the elements of the set of the spectrum of the matrix BA−1 are {1, 1, 1, 1},
and C is a symmetric positive definite matrix. Thus the conditions of Theorem 3.7 are

met.

Let X be the positive definite solution of matrix equation (1.3), choose q = 1, by the

use of Algorithm II in [25], one can obtain

D =


0 2.5 0 0

1.5625 0 0 0

0 0 2.5 0

0 0 0 1.5625

 .

By the use of Theorem 3.7, one can conclude

X ⪰ P
(0)
l =


13.75 0 0 1

0 9 0 1

0 0 8 0

1 1 0 30

 and X ⪯ X(0)
u =


61.6649 0 0 1

0 9 0 1

0 0 8 0

1 1 0 77.9149

 .

By the use of Corollary 2.16, choose α = 1
2λ6

[
(ÃT Ã)−1/2C̃(ÃT Ã)−1/2

]
= 6.5, one can get

X ⪰ Y 1/2(α) =


9.8113 0.8650 −0.0148 0.7003

0.8650 8.5892 −0.0104 0.4761

−0.0148 −0.0104 7.8486 0.3859

0.7003 0.4761 0.3859 17.4538

 .

By computation, the elements of the set of the spectrum of the matrix P
(0)
l −Y 1/2(α) are

{12.5887, 4.1359, 0.1995, 0.1229}, then P
(0)
l ⪰ Y 1/2(α).

Due to X = XT ≻ 0, one can conclude λi(X) = σi(X) > 0. Applying Theorems 2.10,

2.12 and 3.7 to equation (1.3), we can obtain upper and lower bounds of the singular

values of the solution of matrix equation (1.3), see Tables 3.1 and 3.2.
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Table 3.1: The eigenvalues values (singular values) of X = XT ≻ 0 (1).

eigenvalues lower bounds lower bounds upper bounds upper bounds

(singular values) (Theorem 2.10) (Theorem 3.7) (Theorem 2.10) (Theorem 3.7)

λ1(X)λ2(X) 194.1750 412.1698 − 4804.5147

λ1(X)λ3(X) 86.0541 269.5318 − 700.7844

λ1(X)λ4(X) 75.0256 240.8680 − 623.9255

λ2(X)λ3(X) 45.7419 122.5484 − 553.5393

λ2(X)λ4(X) 39.8797 109.5158 − 492.8296

λ3(X)λ4(X) 17.6738 71.6161 − 71.8839

λ1(X)λ2(X)λ3(X) 2288.8368 3689.7500 − 43170.9112

λ1(X)λ2(X)λ4(X) 1995.5047 3297.3584 − 38436.1176

λ1(X)λ3(X)λ4(X) 884.3643 2156.2541 − 5606.2751

λ2(X)λ3(X)λ4(X) 470.0817 980.3874 − 4428.3147

λ1(X)λ2(X)λ3(X)λ4(X) 23522 29518 − 345367.2895

It can be seen that from Table 3.1 the results of Theorem 3.7 improve that of Theo-

rem 2.10 in terms of the product of the singular values.

Table 3.2: The eigenvalues values (singular values) of X = XT ≻ 0 (2).

eigenvalues
lower bounds lower bounds lower bounds upper bounds upper bounds upper bounds

(Theorem 2.10) (Theorem 2.12) (Theorem 3.7) (Theorem 2.10) (Theorem 2.12) (Theorem 3.7)

λ1(X) 19.1129 19.1129 30.1085 − − 77.9907

λ2(X) 10.1594 10.2768 13.6895 − − 61.6037

λ3(X) 4.5024 4.5024 8.9520 − − 8.9855

λ4(X) 3.9254 3.9254 8 − − 8

It can be seen from Table 3.2 that the results of Theorem 3.7 improve that of Theo-

rems 2.10 and 2.12 in terms of individual singular values.

Let ε = 10−7, then Algorithms 3.1 and 3.2 iterate 15 and 16 respectively to obtain the

matrix

X =


14 0 0 1

0 9 0 1

0 0 8 0

1 1 0 30

 .

It can be regarded as the symmetric positive definite solution of equation (1.3) that meets

the precision ε.
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It can be seen that when equation (1.3) has a symmetric positive definite solution,

Remark 2.2 only gives the lower bound of the determinant of the solution, while we

give the estimates of the solution, its upper and lower bounds and its singular values

including the determinant of the solution. Thus, the results obtained improve the result

of Remark 2.2.

The following example, consisting of random matrices, illustrates that through a cer-

tain number of iterations, our result improve the result of Remark 2.2 in most cases.

Example 3.11. We randomly construct the following 50 matrix equations in the form of
(1.3) with

A =


−2− 2a1 a11 a12 a13

a5 −3− 3a2 a14 a15

a6 a7 −3− 3a3 a16

a8 a9 a10 −3− 3a4

 , B =


−2− 2b1 b11 b12 b13

b5 −2− 2b2 b14 b15

b6 b7 −2− 2b3 b16

b8 b9 b10 −2− 2b4

 ,

C =


20 + 10c1 c1 0 0

c1 20 + 10c2 c2 0

0 c2 20 + 10c3 c3

0 0 c3 20 + 10c4

 ,

under the condition that A and B are stable and C is symmetric positive definite.

Applying Remark 2.2, lower bounds of the determinants of symmetric positive definite

solutions of 50 matrix equations in the form (1.3) can be obtained.

Taking qj = 1, Dj is obtained by Algorithm II in [25]. Applying Theorem 3.7, upper

and lower bounds of the determinants of symmetric positive definite solutions of 50 matrix

equations in the form (1.3) can be obtained.
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Tighter upper and lower bounds of Theorem 3.7 can be obtained, and the lower bound

of Theorem 3.7 is superior to Remark 2.2, iterating 6 times, in most cases (see Figures 3.1

and 3.2). After 6 iterations, the result of Theorem 3.7 is better.

In Figures 3.1 and 3.2, dl1 = det(X
(6)
l ) and du1 = det(X

(6)
u ) denote the lower and

upper bounds of the determinant obtained by applying Theorem 3.7. dl2 denotes the

lower bound of the determinant obtained by applying Theorem 2.1.

4. Conclusion

In this paper, inequalities related to the singular values of the solutions of a class of linear

Sylvester-like matrix equations are presented. In addition, a lower matrix bound of the

product for the solutions and their complex conjugate transpose matrices is presented

directly. When a Hermite matrix is a solution of the matrix equation, we obtain a con-

vergent matrix series under certain conditions and it is proved to be the positive definite

solution of the matrix equation. Finally, two algorithms for solving the matrix equation

are presented and each recursive iteration is its upper bound or lower bound of the pos-

itive definite solution of the matrix equation. Considering the importance of the matrix

equation in practical applications, it is our future work to explore numerical algorithms

for the solution of the matrix equation that are more accurate and easier to calculate and

explore more accurate estimates of the associated measurements of the solutions.
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