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Precise Asymptotic Spreading Behavior for an Epidemic Model with

Nonlocal Dispersal

Jong-Shenq Guo, Amy Ai Ling Poh and Masahiko Shimojo*

Abstract. This paper is to derive the precise asymptotic spreading behavior for an

epidemic model with nonlocal dispersal. The proof is based on a Liouville type theorem

on the positive bounded entire solutions. This Liouville theorem holds for a general

class of reaction-diffusion systems with nonlocal dispersal which can be useful for

reaction-diffusion systems arising in ecology and epidemiology.

1. Introduction

In this paper, we consider the following SIR (susceptible-infective-removed) epidemic

model with nonlocal dispersal

St(x, t) = d1N1[S( · , t)](x) + µ− µS(x, t)− βS(x, t)I(x, t)

1 + αI(x, t)
, x ∈ R, t > 0,(1.1)

It(x, t) = d2N2[I( · , t)](x) +
βS(x, t)I(x, t)

1 + αI(x, t)
− (µ+ σ)I(x, t), x ∈ R, t > 0,(1.2)

Rt(x, t) = d3N3[R( · , t)](x) + σI(x, t)− µR(x, t), x ∈ R, t > 0,(1.3)

where S(x, t), I(x, t), R(x, t) represent the population densities of the susceptible, infec-

tive, removed individuals at position x and time t, respectively. The parameters d1, d2,

d3, µ, β, σ are all positive constants in which di is the diffusion coefficient, i = 1, 2, 3, and

µ denotes the same death rates of susceptible, infective and removed populations. Also,

after a suitable rescaling (cf. [21]), the inflow of newborns into the susceptible population

is taken to be the same constant µ. The parameter σ is the removed/recovery rate and β is

the infective transmission rate. While the nonnegative constant α measures the saturation

level (see [5, 23]) in the Holling type II incidence function βSI/(1 + αI).

Moreover, the nonlocal dispersal Ni is an operator acting on a function φ defined by

Ni[φ](x) := (Ji ∗ φ)(x)− φ(x) =

∫
R
Ji(x− y)φ(y) dy − φ(x), x ∈ R,
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where the kernel Ji is a probability density function, i = 1, 2, 3. Throughout this paper,

we adopt the following class of kernels. For a given λ̂ ∈ (0,∞], a function J : R → [0,∞)

is said to be in the class P(λ̂) if the following conditions hold:

(J1) the kernel J is nonnegative and continuous;

(J2) it holds that ∫
R
J(y) dy = 1, J(y) = J(−y) for all y ∈ R;

(J3) it holds that
∫
R J(y)eλ|y| dy < ∞ for any λ ∈ (0, λ̂) and∫

R
J(y)eλ|y| dy → ∞ as λ ↑ λ̂.

Unlike the classical diffusion modelling the random movements, the mechanism of

nonlocal dispersal describes the individuals moving freely to have a long-range diffusion

effect [22]. This nonlocal interaction nature is often presented in many diffusive systems

in ecology, biology, neuroscience etc. Therefore, the study of nonlocal evolution equations

has attracted a lot of attention in past years, we refer the reader to, e.g., [1–4, 6–11, 14–

18,20,24–27] and the references cited therein.

We are concerned with the precise asymptotic spreading behaviors of solutions to

system (1.1)–(1.3). Since (1.3) is decoupled from the other two equations in our SIR

model, in the sequel we shall only consider the system (1.1)–(1.2). In particular, we are

interested in the initial value problem for (1.1)–(1.2) with the initial condition

(1.4) S(x, 0) = 1, I(x, 0) = I0(x), x ∈ R,

where I0 is a nonnegative continuous function defined in R with a nonempty compact

support.

Under the assumption

(1.5) β > µ+ σ,

there is a unique stable positive endemic equilibrium (S∗, I∗), where

S∗ =
µ+ σ + αµ

αµ+ β
, I∗ =

µ(β − µ− σ)

(µ+ σ)(αµ+ β)
,

which corresponds to the coexistence state of (S, I). Hereafter we set γ := µ + σ and

define

(1.6) c∗ := inf
0<λ<λ̂2

d2
[ ∫

R J2(y)e
λy dy − 1

]
+ β − γ

λ
.

Note that the constant c∗ is well-defined and c∗ > 0, since β − γ > 0 due to (1.5).

We now state the main theorem of this paper as follows.
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Theorem 1.1. Let α ≥ 0 and Ji ∈ P(λ̂i) for some λ̂i ∈ (0,∞], i = 1, 2. Assume (1.5).

In the case α = 0, we further assume that d1 = d2 and J1 = J2. Let (S, I) be a solution of

(1.1), (1.2) and (1.4) with a nonnegative nontrivial compactly supported continuous initial

data I0. Then

lim
t→∞

sup
|x|≤ct

{|S(x, t)− S∗|+ |I(x, t)− I∗|} = 0, ∀ c ∈ (0, c∗),

where c∗ is defined by (1.6).

To prove Theorem 1.1, we present in this paper a Liouville type theorem (see Theo-

rem 2.1 below) to characterize entire solutions for more general reaction-diffusion systems

including system (1.1)–(1.2) as a special case. Hereafter, a solution is called an entire

solution if it is defined for all t ∈ R. For the characterization of entire solutions in the

study of the asymptotic behavior of the associated reaction-diffusion systems, we refer the

reader to, e.g., the references cited in [12] for the case of classical diffusion and [13] for

the fractional diffusion. In fact, the proof of Theorem 2.1 is quite similar to the one given

in [13]. However, extending a Lyapunov function for ODE to a Lyapunov functional for

PDE in an unbounded spatial domain relies on a suitable choice of the weight function.

We are able to find such a weight function to overcome this difficulty. Consequently,

Theorem 2.1 can be applied to a large class of systems in ecology and epidemiology such

as those reaction-diffusion systems studied in [12,13] with diffusions replaced by nonlocal

dispersals.

The rest of this paper is organized as follows. We present a Liouville type theorem

along with its proof in Section 2. Then we give the detailed proof of Theorem 1.1 for the

precise asymptotic spreading behavior of system (1.1)–(1.2) in Section 3.

2. A Liouville type theorem

In this section, we consider the following general reaction-diffusion system

(2.1)
∂ui
∂t

= diNi[ui( · , t)](x) + fi(u1, . . . , um), x ∈ Rn, t ∈ R, i = 1, . . . ,m,

where m, n are positive integers, di > 0 and fi : Rm → R is a C1 function for each

i = 1, . . . ,m. Moreover, Ji ∈ P(λ̂i) for some constant λ̂i ∈ (0,∞] for i = 1, . . . ,m. Note

that conditions (J1)–(J3) are well-defined in Rn for n ≥ 1.

We assume that (2.1) has a unique positive constant equilibrium u∗ := (u∗1, . . . , u
∗
m)

such that u∗i ∈ (0,∞) for each i. Set g(θ) := θ − 1− ln θ, θ > 0. Note that g is a strictly

convex smooth function on (0,∞) such that g(1) = 0 and g(θ) > 0 for all θ ̸= 1. Then we

have the following Liouville type theorem for (2.1).
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Theorem 2.1. Let u = (u1, . . . , um) be an entire solution of (2.1) such that 0 < ai ≤
ui ≤ Ai < ∞ for i = 1, . . . ,m for some positive constants {ai, Ai} with ai ≤ u∗i ≤ Ai.

Suppose that the corresponding diffusion-free system of (2.1) admits a nonnegative bounded

Lyapunov function in the form

F (u) =
m∑
i=1

Fi(ui), u = (u1, . . . , um) ∈ Rm
+ ,

where Fi(ui) = cig(ui/u
∗
i ) for some positive constant ci for i = 1, . . . ,m such that

(2.2)
m∑
i=1

F ′
i (ui)fi(u) ≤ −κF (u) for ui ∈ [ai, Ai], 1 ≤ i ≤ m

for some positive constant κ. Then u = u∗.

To prove Theorem 2.1, we first prepare the following lemma.

Lemma 2.2. Let J ∈ P(λ̂) for some λ̂ ∈ (0,∞]. Then for any ε > 0 there exists R > 0

sufficiently large such that

N [ρR](x) := (J ∗ ρR)(x)− ρR(x) ≤ ερR(x), ∀x ∈ Rn,

where

ρR(x) := e−|x|/R.

Proof. First, J ∗ e−|x|/R is well-defined because of (J2).

Next, writing

N [ρR](x) =

∫
Rn

J(y)
[
e−|x−y|/R − e−|x|/R] dy = ρR(x)

∫
Rn

J(y)
[
e|x|/R−|x−y|/R − 1

]
dy

and using |x| − |x− y| ≤ |y| for any x, y ∈ Rn, we obtain

(2.3) N [ρR](x) ≤ ρR(x)

∫
Rn

J(y)
{
e|y|/R − 1

}
dy.

Now, let ε > 0 be given and let R0 > 1 be sufficiently large such that 1/R0 < λ̂. Then,

by (J2) and (J3), there exists r > 0 sufficiently large such that

(2.4) 0 <

∫
|y|≥r

J(y)
{
e|y|/R − 1

}
dy ≤

∫
|y|≥r

J(y)
{
e|y|/R0 − 1

}
dy < ε/2, ∀R ≥ R0.

Moreover, since the sequence J(y)
{
e|y|/R − 1

}
converges to 0 as R → ∞ uniformly over

{|y| ≤ r}, we may choose a large enough R ≥ R0 such that

0 <

∫
|y|≤r

J(y)
{
e|y|/R − 1

}
dy < ε/2.

Then the lemma follows from this estimate together with (2.3) and (2.4).
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With the weight ρR, we introduce the functional

FR(t) :=

∫
Rn

F (u(x, t))ρR(x) dx

for an entire solution u of (2.1) satisfying

0 < ai ≤ ui ≤ Ai < ∞, i = 1, . . . ,m.

Note that F (u(x, t)) is uniformly bounded over Rn × R and ρR is integrable over Rn.

Hence FR(t) is well-defined and uniformly bounded for t ∈ R. Then Theorem 2.1 can be

proved in the same manner as that for [13, Theorem 1.1]. To be self-contained and for the

reader’s convenience, we provide some details here.

Proof of Theorem 2.1. First, we compute

d

dt
FR(t) =

m∑
i=1

∫
Rn

F ′
i (ui)fi(u)ρR dx+

m∑
i=1

di

∫
Rn

F ′
i (ui)Ni[ui]ρR dx.

It follows from (2.2) and g′(θ) = 1− 1/θ that

(2.5)
d

dt
FR(t) ≤ −κFR(t) +

m∑
i=1

dici
1

u∗i

∫
Rn

(
1− u∗i

ui

)
Ni[ui]ρR dx.

Next, for a fixed i set

Ii(t) :=

∫
Rn

(
1− u∗i

ui(x, t)

)
Ni[ui](x, t)ρR(x) dx.

Then we obtain from

Ni[ui](x, t) =

∫
Rn

Ji(x− y){ui(y, t)− ui(x, t)} dy,

that

(2.6) Ii(t) =

∫
Rn

∫
Rn

Ji(x− y)u∗i

[
1− ui(x, t)

u∗i
+

ui(y, t)

u∗i
− ui(y, t)

ui(x, t)

]
ρR(x) dydx.

By changing the order of integration, we also have

(2.7) Ii(t) =

∫
Rn

∫
Rn

Ji(x− y)u∗i

[
1− ui(x, t)

u∗i
+

ui(y, t)

u∗i
− ui(y, t)

ui(x, t)

]
ρR(x) dxdy.

On the other hand, by exchanging the roles of x and y and using J(x− y) = J(y− x), we

get from (2.6) that

(2.8) Ii(t) =

∫
Rn

∫
Rn

Ji(x− y)u∗i

[
1− ui(y, t)

u∗i
+

ui(x, t)

u∗i
− ui(x, t)

ui(y, t)

]
ρR(y) dxdy.
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Summing over (2.7) and (2.8), we obtain 2Ii(t) = Ii1(t) + Ii2(t), where

Ii1(t) :=

∫
Rn

∫
Rn

Ji(x− y)u∗i

[
ρR(x) + ρR(y)−

ui(x, t)ρR(y)

ui(y, t)
− ui(y, t)ρR(x)

ui(x, t)

]
dxdy,

Ii2(t) :=

∫
Rn

∫
Rn

Ji(x− y)
{
[ui(y, t)− ui(x, t)]ρR(x) + [ui(x, t)− ui(y, t)]ρR(y)

}
dxdy.

Then, by exchanging x and y and using J(x− y) = J(y − x), we obtain

Ii1(t) = 2

∫
Rn

∫
Rn

Ji(x− y)u∗i

[
1− ui(y, t)

ui(x, t)

]
ρR(x) dxdy,

Ii2(t) = 2

∫
Rn

∫
Rn

Ji(x− y)
[
ui(y, t)− ui(x, t)

]
ρR(x) dxdy.

It follows that

Ii(t) =

∫
Rn

∫
Rn

Ji(x− y)

[
ui(y, t) + u∗i − ui(x, t)− u∗i

ui(y, t)

ui(x, t)

]
ρR(x) dxdy

≤
∫
Rn

∫
Rn

Ji(x− y)

[
ui(y, t)− ui(x, t) + u∗i ln

(
ui(x, t)

ui(y, t)

)]
ρR(x) dxdy,

using 1−X ≤ ln(1/X) for all X > 0. Thus we get

(2.9) Ii(t) ≤
u∗i
ci

∫
Rn

∫
Rn

Ji(x− y)
[
Fi(ui(y, t))− Fi(ui(x, t))

]
ρR(x) dxdy.

Moreover, using∫
Rn

∫
Rn

Ji(x− y)Fi(ui(y, t))ρR(x) dxdy =

∫
Rn

∫
Rn

Ji(y − x)Fi(ui(x, t))ρR(y) dydx

=

∫
Rn

∫
Rn

Ji(x− y)Fi(ui(x, t))ρR(y) dxdy,

it follows from (2.9) that

Ii(t) ≤
u∗i
ci

∫
Rn

Fi(ui(x, t))Ni[ρR](x) dx.

According to Lemma 2.2, for each Ji, for any ε ∈ (0, κ/2), there exists Ri > 0 such

that

Ni[ρRi ] ≤
ε

mdi
ρRi .

If we choose R ≥ max1≤i≤mRi, then

(2.10) Ii(t) ≤
εu∗i
mdici

∫
Rn

Fi(ui(x, t))ρR(x) dx.

Finally, from (2.5) and (2.10) it follows that

d

dt
FR(t) ≤ −(κ− ε)FR(t) ≤ −κ

2
FR(t), ∀ t ∈ R.

By integrating in time from −∞ to t, we deduce that FR(t) = 0 for all t ∈ R. Hence

F (u(x, t)) ≡ 0 and so u(x, t) ≡ u∗ for all (x, t) ∈ Rn × R. Theorem 2.1 is thereby

proved.
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3. Proof of Theorem 1.1

First, we recall the following proposition from [11].

Proposition 3.1. Let α > 0 and let (S, I) be a solution of (1.1), (1.2) and (1.4) with a

nonnegative nontrivial compactly supported continuous initial data I0. Assume the condi-

tion (1.5) is enforced. Then the constant c∗ defined in (1.6) is the (asymptotic) spreading

speed of I in the sense

(3.1) lim
t→∞

sup
|x|>ct

I(x, t) = 0, ∀ c > c∗; lim inf
t→∞

inf
|x|<ct

I(x, t) > 0, ∀ c ∈ (0, c∗).

Let α ≥ 0. Since 0 is a sub-solution of (1.2) with I(x, 0) ≥ 0 for any S(x, t) ∈ R,
by comparison we obtain I ≥ 0 in R × [0,∞). Similarly, 0 is a sub-solution and 1 is a

super-solution of (1.1) with S( · , 0) ≡ 1. Hence, by comparison, we have 0 ≤ S ≤ 1 in

R× [0,∞). With this information, one can check that the proof of [11, Theorem 1.1] works

well for α = 0. Hence we obtain

Corollary 3.2. Let α = 0 and let (S, I) be a solution of (1.1), (1.2) and (1.4) with a

nontrivial nonnegative compactly supported continuous initial data I0. Assume the condi-

tion (1.5) is enforced. Then (3.1) holds with the constant c∗ defined in (1.6).

Note that, for a given α > 0, the uniform persistence of S follows from that S ≥
αµ/(β + αµ) in R× [0,∞), since αµ/(β + αµ) is a sub-solution of (1.1) with S( · , 0) ≡ 1.

Recall also from [11, (2.2)] that I ≤ max{∥I0∥∞, (β − γ)/(αγ)}.
The case for α = 0 is more delicate. We only consider the case when d1 = d2 := d and

J1 = J2 := J . Then equations (1.1)–(1.2) are reduced to

(3.2)
St(x, t) = dN [S( · , t)](x) + µ− µS(x, t)− βS(x, t)I(x, t), t > 0, x ∈ R,

It(x, t) = dN [I( · , t)](x) + βS(x, t)I(x, t)− (µ+ σ)I(x, t), t > 0, x ∈ R,

where

N [φ](x) :=

∫
R
J(x− y)φ(y) dy − φ(x), x ∈ R.

Set W := 1− (S + I). Then W satisfies

Wt = dN [W ]− µW + σI ≥ dN [W ]− µW, x ∈ R, t > 0.

It follows that

(eµtW )t(x, t) ≥ dN
[
eµtW ( · , t)

]
(x), x ∈ R, t > 0.

Since W (x, 0) = −I0(x) ≥ −∥I0∥∞, by comparison, we obtain the estimate

S(x, t) + I(x, t) ≤ 1 + e−µt∥I0∥∞ ≤ 1 + ∥I0∥∞ := θ, x ∈ R, t > 0.
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Using S ≥ 0 and I ≥ 0, we conclude that

I is uniformly bounded in R× [0,∞).

Moreover, since the constant µ/(µ+βθ) is a sub-solution of S-equation in (3.2), we obtain

S ≥ µ/(µ+ βθ) > 0 in R× [0,∞),

by comparison.

Next, with the help of Theorem 2.1, Proposition 3.1, Corollary 3.2, and a uniform

persistent result on (S, I) in the zone {(x, t) | |x| ≤ ct, t ≫ 1} for c ∈ (0, c∗), the proof of

Theorem 1.1 can be done by a similar argument as that of [12, Theorem 1.4] with some

modifications due to the regularity of solutions. We provide a proof as follows.

Proof of Theorem 1.1. First, we recall from [18, 20] that both S( · , t) and I( · , t) are uni-

formly continuous on R for each t ≥ 0. Moreover, the uniform boundedness of (S, I) and

(1.1)–(1.2) implies that both St and It are uniformly bounded. This implies that both S

and I are uniformly continuous in R × [0,∞). Furthermore, it follows from (1.1)–(1.2)

that both St and It are uniformly continuous in R× [0,∞).

Next, we let

(3.3) k0 ≤ S(x, t) ≤ 1, 0 ≤ I(x, t) ≤ k1 < ∞, x ∈ R, t ≥ 0

for some positive constants k0, k1. Following [12], we assume for contradiction that there

is a positive constant δ such that

(3.4) |S(xj , tj)− S∗|+ |I(xj , tj)− I∗| ≥ δ, ∀ j ≥ 1

for some sequence {(xj , tj)} with tj → ∞ as j → ∞ and |xj | ≤ c0tj for all j ≥ 1 for some

constant c0 ∈ (0, c∗). Set

(Sj , Ij)(x, t) := (S, I)(x+ xj , t+ tj), (x, t) ∈ R2, j ≥ 1.

It follows from the above regularity result that {(Sj , Ij)} and {((Sj)t, (Ij)t)} are uniformly

bounded and equi-continuous sequences on R2. Hence, by Arzelá–Ascoli theorem with the

help of a diagonal process, the limit

(S∞, I∞)(x, t) := lim
j→∞

(Sj , Ij)(x, t), (x, t) ∈ R2,

exists (up to a subsequence) such that (S∞, I∞) is an entire solution of system (1.1)–(1.2).

Finally, note that (3.3) holds for (S∞, I∞) in R2. Also, by (3.1) with c ∈ (c0, c
∗), there is

a positive constant k3 such that I∞ ≥ k3 in R2. Hence (S∞, I∞) = (S∗, I∗) by Theorem 2.1

and a Lyapunov function given in [12,19]. However, |S∞(0, 0)−S∗|+|I∞(0, 0)−I∗| ≥ δ > 0

by (3.4), a contradiction. This completes the proof of Theorem 1.1.
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