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Inertial Algorithms for Solving Nonmonotone Variational Inequality

Problems

Bien Thanh Tuyen, Hy Duc Manh and Bui Van Dinh*

Abstract. In this paper, we will construct an inertial algorithm without using the

embedded projection method to find a solution of variational inequality problems in

which the cost mapping is not required to be satisfied any pseudomonotonicity. The

iterative sequences generated by algorithms under the main assumption SM ̸= ∅ are

proved that they converge to a solution of the corresponding problems. In addition,

numerical experiments are provided to show the effectiveness of the algorithm.

1. Introduction

Let Rn be the Euclidean space with the inner product ⟨ · , · ⟩ and the induced norm ∥ · ∥.
Let C be a nonempty closed convex set in Rn and F be a continuous mapping from Rn

into Rn. The classical variational inequality problem associated with C and F (VIP(C,F )

for short) consist of finding an element x ∈ C such that

⟨F (x), y − x⟩ ≥ 0, ∀ y ∈ C.

We denote the set of solution of VIP(C,F ) by S. The dual problem of this problem

which is called Minty variational inequality problem (shortly, MVIP(C,F )) can be stated

as follows: find x ∈ C such that

⟨F (y), y − x⟩ ≥ 0, ∀ y ∈ C.

The solution set of MVIP(C,F ) is denoted by SM . Let L(y) = {x ∈ C : ⟨F (y), y−x⟩ ≥ 0}.
If x∗ ∈ SM , then

⟨F (y), y − x∗⟩ ≥ 0, ∀ y ∈ C.

This means that

x∗ ∈ L(y) = {x ∈ C : ⟨F (y), y − x⟩ ≥ 0}, ∀ y ∈ C.

Hence, x∗ ∈
⋂

y∈C L(y).
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On the other hand, take x ∈
⋂

y∈C L(y). For any fixed y ∈ C, we have x ∈ L(y), i.e.,

⟨F (y), y − x⟩ ≥ 0.

It follows that

⟨F (y), y − x⟩ ≥ 0, ∀ y ∈ C.

Then x ∈ SM . Consequently, SM =
⋂

y∈C L(y). This means that SM is the intersection

of the closed and convex halfspaces. Then SM is a closed and convex set. It is well-known

that SM ⊂ S if F is continuous on C, in addition, if F is pseudomonotone on C then

S ⊂ SM (see [9, Lemma 2.1]).

Variational inequality theory, initiated by Stampacchia [14, 25], is an important tool

in operation research and mathematical physics, economics, transportation, and so on. In

fact, variational inequalities provide a unifying framework for the study of such diverse

problems as boundary value problems, price equilibrium problems. Due to its vast appli-

cations, variational inequality theory has become a crucial field and has been extensively

studied by many researchers [1, 7, 8, 12,18,19] and the references quoted therein.

One of the most interesting and important problems in variational inequality theory

is to build effective algorithms for finding a solution of VIPs among them the projection

methods play an important role [3, 11, 17, 21, 31]. It is well-know that [16] the projec-

tion method, in general, might not be convergent for the monotone variational inequality

problems. Hence, Korpelevich [20] proposed the following extragradient algorithm

x0 ∈ C, yk = PC(x
k − λF (xk)), xk+1 = PC(x

k − λF (yk)),

where PC is the metric projection onto C and λ ∈ (0, 1/L) (L is the Lipschitz constant of

mapping F ). The sequence {xk} was proved to converge to a solution of VIPs under the

main assumption that F is pseudomonotone and Lipschitz on C. However, when F is not

pseudomonotonicity or is not Lipschitz continuous, the extragradient method may not be

applied to solve VIPs directly.

To find a solution of nonmonotone variational inequality problem, Ye and He [33]

proposed to use the following shrinking projection algorithm:

Algorithm YH. Choose x0 ∈ C, σ ∈ (0, 1) and γ ∈ (0, 1). Set k = 0.

Step 1. Having xk. Compute zk := PC(x
k − F (xk)) and r(xk) = xk − zk. If r(xk) = 0,

Stop. Otherwise, go to Step 2.

Step 2. Compute zk = xk − ηkr(x
k), where ηk = γmk with mk being the smallest non-

negative integer satisfying

⟨F (xk)− F (xk − γmr(xk)), r(xk)⟩ ≤ σ∥r(xk)∥2.
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Step 3. Compute xk+1 = P
C∩Ĥk

(xk), where Ĥk :=
⋂j=k

j=0 Hj with Hj := {v : ⟨F (zj), v −
yj⟩ ≤ 0}. Let k = k + 1 and return Step 1.

It was showed in [33] that if SM ̸= ∅ then the sequence {xk} converges to a solution

x∗ ∈ S. This method has been extended for solving nonmonotone multivalued variational

inequalities [6] and equilibrium problems [10,26]. One advantage of this algorithm is that

it can be used to find a solution of VIPs when F is a nonmonotone and non-Lipschitz

continuous function. However, at each iteration, it requires to solve an optimization

problem in which its constraint set is the intersection of the constraint set in the previous

iteration and a halfspace. Hence, the computation cost may increase, especially when n

is large.

To overcome this drawback, very recently, Ye [32] have proposed the following infeasible

projection type algorithm:

Algorithm IPA. Choose x0 ∈ Rn, 0 < αmin < αmax, η, σ ∈ (0, 1), ϵ > 0 as a terminate

criterion. Set k = 0.

Step 1. Having xk. Take αk
0 ∈ [αmin, αmax], αk := α0

kη
mk , where mk is the smallest

nonnegative integer m satisfying

α0
kη

m∥F (xk)− F (PC(x
k − α0

kη
mF (xk)))∥ ≤ σ∥xk − PC(x

k − α0
kη

mF (xk))∥.

Step 2. Compute zk := PC(x
k − F (xk)), r(xk) = xk − zk. If r(xk) ≤ ϵ0, then stop;

Otherwise, go to Step 3.

Step 3. SetHk = {v ∈ Rn : hk(v) ≤ 0} with hk(v) := ⟨xk−zk−αk(F (xk)−F (zk)), v−zk⟩.
Let tk ∈ argmax{dist(xk, Hj) : 0 ≤ j ≤ k} and Ĥk := Htk , and compute

xk+1 = P
C∩Ĥk

(xk).

Step 4. Let k = k + 1 and return Step 1.

The author proved that sequence {xk} generated by this algorithm converge to a

solution of VIPs if SM is nonempty. One advantage of this algorithm is that it can be used

to find a solution of nonmonotone and non-Lipschitz VIPs without using the embedded

method as in [33].

On the other hand, an inertial type algorithm was first proposed by Poljak [24] as an

acceleration process in solving a smooth convex minimization problem. An inertial-type

algorithm can be consider as a two-step iterative method in which the next iterate is com-

puted by making use of the previous two iterates. It is well known that incorporating an
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inertial term in an algorithm may speed up the rate of convergence of the algorithm. Con-

sequently, there are a vast of researchers have been investigating inertial type algorithms

to solve their problems such as [2, 4, 22,28].

Motivated by this fact, in this paper, we introduce some new inertial type algorithms

for finding a solution of the variational inequality problem in which the cost mapping F is

nonmonotone in two cases F is Lipschitz or non-Lipschitz continuous, in addition, we do

not use the embedded projection methods as in papers [6,10,26,33]. The rest of the paper

is organized as follows. Section 2 contains some preliminaries on the metric projection

and the natural residual mapping of the variational inequality problem. The proposed

algorithms and their convergence are presented in Section 231202S3. Section 4 is devoted

to present some numerical examples to illustrate the efficient of proposed algorithms.

2. Preliminaries

This section contains some basic results that will be used in our subsequent analysis.

Let C be a nonempty subset of n-dimensions Euclidean spaces Rn.

Definition 2.1. [12] A mapping F : C → Rn is said to be

(a) monotone on C if for all vectors x and y in C,

⟨F (x)− F (y), x− y⟩ ≥ 0;

(b) pseudomonotone on C if for all vectors x and y in C,

⟨F (y), x− y⟩ ≥ 0 =⇒ ⟨F (x), x− y⟩ ≥ 0;

(c) quasimonotone on C if for all vectors x and y in C,

⟨F (y), x− y⟩ > 0 =⇒ ⟨F (x), x− y⟩ ≥ 0.

The following implications are obvious from the above definition:

(a) ⇒ (b) ⇒ (c).

Let d(x,C) denote the Euclidean distance from a vector x to C, i.e.,

d(x,C) := inf{∥x− y∥, y ∈ C}.

If C is a nonempty and closed set, then it can be seen that

d(x,C) := min{∥x− y∥, y ∈ C}.
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In the rest of this paper, we consider the set C is a nonempty, closed and convex set.

By PC we denote the metric projection operator on C, that is,

PC(x) ∈ C : ∥x− PC(x)∥ ≤ ∥y − x∥, ∀ y ∈ C.

For a fixed x ∈ Rn and α ≥ 0, we denote the natural residual mapping

(2.1) r(x, α) := x− PC(x− αF (x)).

The following lemmas are well-known for the projection operator onto a closed convex

set and the natural residual mapping.

Lemma 2.2. [34] Suppose that C is a nonempty closed convex subset in Rn. Then, the

following statements hold:

(a) PC(x) is singleton and well defined for every x;

(b) z = PC(x) if and only if ⟨x− z, y − z⟩ ≤ 0, ∀ y ∈ C;

(c) ∥PC(x)− PC(y)∥2 ≤ ∥x− y∥2 − ∥PC(x)− x+ y − PC(y)∥2, ∀x, y ∈ C.

Lemma 2.3. [15] Let C be a nonempty closed and convex set in Rn, t(·) be a real-valued

function on Rn. We define Ω := {x ∈ C : t(x) ≤ 0}. If Ω is nonempty and t(·) is Lipschitz
continuous on C with modulus L > 0, then

d(x,Ω) ≥ L−1max{t(x), 0}, ∀x ∈ C.

Lemma 2.4. [29] Let C ⊂ Rn be a nonempty closed and convex set, r(x, α) be defined in

(2.1). Then x is a solution of VIP(C,F ) if and only if ∥r(x, α)∥ = 0 for each α > 0.

Lemma 2.5. [13] For any x ∈ Rn and α ≥ 0, let r(x, α) be defined in (2.1). Then

(a) function α 7→ ∥r(x, α)∥ is nondecreasing whenever α > 0;

(b) function α 7→ ∥r(x,α)∥
α is nonincreasing whenever α > 0.

Remark 2.6. From Lemma 2.5(b), we obtain that

∥r(x, 1)∥

≤ ∥r(x,α)∥
α if α ≤ 1,

≥ ∥r(x,α)∥
α if α ≥ 1.

This means that

α∥r(x, 1)∥

≤ ∥r(x, α)∥ if α ≤ 1,

≥ ∥r(x, α)∥ if α ≥ 1.

Hence, we have the following inequality

(2.2) min{1, α}∥r(x, 1)∥ ≤ ∥r(x, α)∥ ≤ max{1, α}∥r(x, 1)∥ for any fixed α > 0.
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Lemma 2.7. [30] Let {ak}∞k=0 and {bk}∞k=0 be the nonnegative real number sequences

satisfying
∞∑
i=0

bi < ∞ and ai+1 ≤ ai + bi, ∀ i.

Then, the sequence {ak}∞k=0 is convergent.

Lemma 2.8. [23] Let {xk}∞k=0 be a sequence in Rn and let C be a nonempty subset of

Rn. Suppose that, for every x ∈ C, {∥xk − x∥}∞k=0 converges and that every sequential

cluster point of {xk}∞k=0 belongs to C. Then {xk}∞k=0 converges to a point in C.

3. Inertial algorithms for VIPs

Now, we assume that F is a continuous mapping from Rn and C is a nonempty, closed and

convex subset of Rn such that F is not necessarily quasimonotone on C. The following

algorithm give us a way to find a solution of VIP(C,F ).

Algorithm 1.

Initialization. Let θ ∈ [0, 1), η > 0 and λ, δ ∈ (0, 1). Choose positive sequence {µk}∞k=1

such that
∑∞

k=1 µk < ∞. Take x0, x1 ∈ C and k = 0.

Iteration k (k = 0, 1, 2, . . .). Having xk do the following steps.

Step 1. Compute wk := xk + θk(x
k − xk−1), where 0 ≤ θk ≤ θk, and

θk =

min
{
θ, µk

∥xk−xk−1∥
}

if xk ̸= xk−1,

θ otherwise.

Step 2. Find mk, the smallest nonnegative integer m satisfying

(3.1) ⟨F (wk)− F (yk,m), wk − yk,m⟩ ≤ δ

(
∥wk − yk,m∥

ηλm

)2

,

where

yk,m := PC(w
k − η2λ2mF (wk)).

Set λk := η2λ2mk , zk := yk,mk , r(wk, λk) = wk − zk.

Step 3. Set Tk = {x ∈ Rn : tk(x) ≤ 0} where

(3.2) tk(x) := ⟨wk − zk − λk(F (wk)− F (zk)), x− zk⟩.

Select

(3.3) jk ∈ argmax{d(wk, Tj) : 1 ≤ j ≤ k} and T̂k := Tjk ,
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and compute

xk+1 := P
T̂k
(wk),

and go to Iteration k with k replaced by k + 1.

Remark 3.1. (a) Observe that Algorithm 1 implies

lim
k→∞

θk∥xk − xk−1∥ = 0, and
∞∑
k=0

θk∥xk − xk−1∥ < ∞.

(b) We remark also here that Step 1 in Algorithm 1 is easily implemented in numerical

computation since ∥xk − xk−1∥ can be computed easily to choose θk.

We start to analyze the convergence of the algorithm by proving the following lemmas.

Lemma 3.2. Let F be a continuous function on Rn. Then there exists a nonnegative

integer m such that, the condition (3.1) is satisfied.

Proof. If wk ∈ S, then by Lemma 2.4, we have ∥r(wk, ηλm)∥ = ∥wk−yk,m∥ = 0. Therefore,

(3.1) holds with m = 0. For wk /∈ S, we have ∥r(wk, η2λ2m)∥ = ∥wk − yk,m∥ > 0.

Since

⟨F (wk)− F (yk,m), wk − yk,m⟩ ≤ ∥F (wk)− F (yk,m)∥∥wk − yk,m∥,

therefore, to prove (3.1) we will prove that there exists a nonnegative m such that

⟨F (wk)− F (yk,m), wk − yk,m⟩ ≤ ∥F (wk)− F (yk,m)∥∥wk − yk,m∥

≤ δ

(ηλm)2
∥wk − yk,m∥2.

This means that

(3.4) ∥F (wk)− F (PC(w
k − η2λ2mF (wk)))∥ ≤ δ

(ηλm)2
∥wk − PC(w

k − η2λ2mF (wk))∥.

We prove by contradiction. Assume that, (3.4) is not satisfied for any m, i.e.,

∥F (wk)− F (PC(w
k − η2λ2mF (wk)))∥

>
δ

(ηλm)2
∥wk − PC(w

k − η2λ2mF (wk))∥ for all m.
(3.5)

If wk ∈ C, then wk = PC(w
k). Using the continuity of F (·) and PC(·) we have

(3.6) lim
m→∞

∥F (wk)− F (PC(w
k − η2λ2mF (wk)))∥ = 0.

On the other hand, using Lemma 2.5, λ ∈ (0, 1) and wk /∈ S, we get

(3.7) δ
∥wk − PC(w

k − η2λ2mF (wk))∥
(ηλm)2

= δ
∥r(wk, η2λ2m)∥

(ηλm)2
≥ δ

∥r(wk, 1)∥
1

> 0.
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Thus, (3.6) and (3.7) contradict (3.5).

For wk /∈ C, we have

lim
m→∞

∥wk − yk,m∥ = lim
m→∞

∥wk − PC(w
k − η2λ2mF (wk))∥ = ∥wk − PC(w

k)∥ > 0

and

lim
m→∞

η2λ2m

δ
∥F (wk)− F (yk,m)∥

= lim
m→∞

η2λ2m

δ
∥F (wk)− F (PC(w

k − η2λ2mF (wk)))∥ = 0.

We get a contradiction with (3.5). Consequently, (3.4) holds and the linesearch (3.1) is

well-defined.

We proceed to prove the following lemma before proving the convergence of our Algo-

rithm 1.

Lemma 3.3. Let the solution set SM of the Minty variational inequality problem be

nonempty, x∗ ∈ SM and tk(·) be defined in (3.2). Then the following statements hold:

(a) tk(x
∗) ≤ 0 and SM ⊂

⋂∞
k=1 Tk.

(b) tk(w
k) ≥ (1 − δ)∥r(wk, λk)∥2. In particular, if wk ̸= zk, then tk(w

k) > 0 and

wk /∈ Tk, ∀ k.

Proof. (a) Since x∗ ∈ SM , then ⟨F (zk), zk − x∗⟩ ≥ 0. From (3.2), we have

tk(x
∗) = ⟨wk − zk − λk(F (wk)− F (zk)), x∗ − zk⟩

= ⟨wk − zk − λkF (wk), x∗ − zk⟩+ λk⟨F (zk), x∗ − zk⟩

≤ ⟨wk − zk − λkF (wk), x∗ − zk⟩

= ⟨wk − λkF (wk)− PC(w
k − λkF (wk)), x∗ − PC(w

k − λkF (wk))⟩ ≤ 0.

Therefore, x∗ ∈ Tk for all k. This implies that SM ⊂ Tk, ∀ k. This means that SM ⊂⋂∞
k=1 Tk.

(b) Similarly, using (3.1), we get

tk(w
k) = ⟨wk − zk − λk(F (wk)− F (zk)), wk − zk⟩

= ∥wk − zk∥2 − λk⟨F (wk)− F (zk), wk − zk⟩

≥ ∥wk − zk∥2 − δ∥wk − zk∥2

≥ (1− δ)∥r(wk, λk)∥2 ≥ 0.

If wk ̸= zk then tk(w
k) > 0. Thus, wk /∈ Tk.
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The following theorem establishes the convergence of Algorithm 1.

Theorem 3.4. Suppose that F is a continuous function on Rn and SM is nonempty.

Then {xk} is generated by Algorithm 1 converges to a solution of VIP(C,F ).

Proof. We break our proof into four steps.

Step (i). We first show that the sequence {xk} is bounded. Indeed, for any fixed point

p ∈
⋂∞

i=1 Ti, it is clear that p ∈ T̂k. Therefore, we have

∥xk+1 − p∥ = ∥P
T̂k
(wk)− P

T̂k
(p)∥ ≤ ∥wk − p∥

= ∥xk + θk(x
k − xk−1)− p∥ ≤ ∥xk − p∥+ θk∥xk − xk−1∥.

(3.8)

Using Lemma 2.7 with ak = ∥xk − p∥, bk = θk∥xk − xk−1∥, we obtain that, for any fixed

p ∈
⋂∞

i=1 Ti, the sequence {∥xk−p∥} is convergent. Thus, we can deduce that the sequence

{xk} is bounded.

In addition, we have

∥wk∥ = ∥xk + θk(x
k − xk−1)∥ ≤ ∥xk∥+ θk∥xk − xk−1∥.

Beside that limk→∞ θk∥xk−xk−1∥ = 0 by Remark 3.1. This implies that {wk} is bounded.

Because F is continuous on Rn, then {F (wk)} is bounded. Combining this with definitions

of zk and the continuity of PC(·), we further obtain that {zk}, {F (zk)} and {wk − zk −
λk(F (wk)− F (zk))} are also bounded.

Step (ii). We show that any cluster point x∗ of the sequence {xk} belongs to Tk for

all k. Since wk /∈ Tk for all k, then d(wk, Tk) > 0. Combining with Lemma 2.2, we get

d2(wk, T̂k) = ∥wk − P
T̂k
(wk)∥2 = ∥wk − xk+1∥2 ≤ ∥wk − p∥2 − ∥xk+1 − p∥2

= ∥xk + θk(x
k − xk−1)− p∥2 − ∥xk+1 − p∥2

= ∥xk − p∥2 − ∥xk+1 − p∥2 + θ2k∥xk − xk−1∥2 + 2θk⟨xk − xk−1, xk − p⟩.

Hence,

0 < d2(wk, Tk) ≤ d2(wk, T̂k)

≤ ∥xk − p∥2 − ∥xk+1 − p∥2 + θ2k∥xk − xk−1∥2 + 2θk⟨xk − xk−1, xk − p⟩.
(3.9)

Combining with Remark 3.1, we get in the limit from (3.9) that

(3.10) lim
k→∞

d(wk, Tk) = lim
k→∞

d(wk, T̂k) = 0.

Assume that x∗ is a cluster point of {xk}. Then there exists {xkl} ⊂ {xk} such that

liml→∞ xkl = x∗. From the definition of wk, we get

∥wk − xk∥ = θk∥xk − xk−1∥ → 0 as k → ∞.
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Since xkl → x∗, we have wkl → x∗. By (3.2) and (3.3), we see that

0 ≤ d(wk, Ti) ≤ d(wk, T̂k) for all i ≤ k.

This together with (3.10) implies that

lim
k→∞

d(wk, Ti) = 0 for any fixed i.

Using the continuity of d( · , Ti) on Rn, we obtain that

d(x∗, Ti) = 0 for any fixed i.

Therefore, x∗ ∈
⋂∞

i=1 Ti.

Step (iii). We show that x∗ ∈ S. The boundedness of the sequence {wk − zk −
λk(F (wk)− F (zk))} implies that there exists M > 0 such that

∥wk − zk − λk(F (wk)− F (zk))∥ ≤ M, ∀ k ∈ N.

On the other hand, we have

∥tk(x)− tk(y)∥ = ∥⟨wk − zk − λk(F (wk)− F (zk)), x− y⟩∥

≤ ∥wk − zk − λk(F (wk)− F (zk))∥∥x− y∥

≤ M∥x− y∥.

Using Lemmas 2.3 and 3.3, we get

d(wk, Tk) ≥ M−1tk(w
k) ≥ M−1(1− δ)∥r(wk, λk)∥2 > 0.

This with (3.10) establishes limk→∞ ∥r(wk, λk)∥ = 0.

We next show that limk→∞ ∥r(wk, 1)∥ = 0. To do so, let us consider two distinct cases.

Case 1. There exists λ̃ > 0 such that λ̃ ≤ λi for all i. Using (2.2), we get

0 ≤ ∥r(wi, 1)∥ ≤ ∥r(wi, λi)∥
min{λi, 1}

≤ ∥r(wi, λi)∥
min{λ̃, 1}

.

Hence, limi→∞ ∥r(wi, λi)∥ = 0. Thus, limi→∞ ∥r(wi, 1)∥ = 0. Consequently,

lim
l→∞

∥r(wkl , 1)∥ = 0.

Case 2. liml→∞ λkl = 0. This means that liml→∞ η2λ2mkl = 0. By the linesearch rule

(3.1), for mkl − 1, we have

⟨F (wkl)− F (ykl,mkl
−1), wkl − ykl,mkl

−1⟩ > δ

(
∥wkl − ykl,mkl

−1∥
ηλmkl

−1

)2

.
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Using the Cauchy–Schwartz inequality, we have

∥F (wkl)− F (ykl,mkl
−1)∥ > δ

∥wkl − ykl,mkl
−1∥

(ηλmkl
−1)2

.

Combining with Lemma 2.5, we get

(3.11) ∥F (wkl)− F (ykl,mkl
−1)∥ > δ

∥wkl − ykl,mkl
−1∥

(ηλmkl
−1)2

≥ δ
∥r(wkl , 1)∥

1
> 0.

Furthermore, PC(·) is nonexpansive, then

∥wkl − ykl,mkl
−1∥

≤ ∥wkl − ykl,mkl∥+ ∥ykl,mkl − ykl,mkl
−1∥

= ∥r(wkl , λkl)∥+ ∥PC(w
kl − η2λ2mklF (wkl))− PC(w

kl − η2λ2(mkl
−1)F (wkl))∥

≤ ∥r(wkl , λkl)∥+ η2λ2mkl (λ−2 − 1)∥F (wkl)∥ → 0 as k → ∞.

Using the above inequality and the fact that liml→∞wkl = x∗, we get liml→∞ ykl,mkl
−1 =

x∗. Combining this with continuity of F , we obtain that

lim
l→∞

∥F (wkl)− F (ykl,mkl
−1)∥ = 0.

This together with (3.11) yields liml→∞ ∥r(wkl , 1)∥ = 0. Using the continuity of ∥r( · , 1)∥,
we have ∥r(x∗, 1)∥ = 0. Combining with Lemma 2.4, it is immediate that {x∗} is a solution
of VIP(C,F ).

Step (iv). We prove that {xk} is globally convergent to a solution of VIP(C,F ). Since

x∗ is a cluster point of {xk}, we have x∗ ∈
⋂∞

i=1 Ti. From (3.8), it is clear that

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥+ θk∥xk − xk−1∥.

Using Lemma 2.7, we get that the sequence {∥xk − x∗∥} is convergent. Hence, there exits

a ≥ 0 such that limk→∞ ∥xk − x∗∥ = a.

By the definition of x∗, there exists a subsequence {xkl} ⊂ {xk} such that liml→∞ ∥xkl−
x∗∥ = 0. Using Lemma 2.8, we have

a = 0 and lim
k→∞

∥xk − x∗∥ = lim
l→∞

∥xkl − x∗∥ = 0,

i.e., limk→∞ xk = x∗. Consequently, {xk} is globally convergent to a solution of VIPs.

Next, we propose a modification of Algorithm 1 with another linesearch.

Algorithm 2.

Initialization. Choose θ ∈ [0, 1), η > 0 and λ, δ ∈ (0, 1). Choose positive sequence {µk}∞k=1

such that
∑∞

k=1 µk < ∞. Take x0, x1 ∈ C and k = 0.



408 Bien Thanh Tuyen, Hy Duc Manh and Bui Van Dinh

Iteration k (k = 0, 1, 2, . . .). Having xk do the following steps.

Step 1. Compute wk := xk + θk(x
k − xk−1), where 0 ≤ θk ≤ θk, and

θk =

min
{
θ, µk

∥xk−xk−1∥
}

if xk ̸= xk−1,

θ otherwise.

Step 2. Find mk, the smallest nonnegative integer m satisfying

(3.12) ηλm∥F (wk)− F (yk,m)∥ ≤ δ∥wk − yk,m∥,

where

yk,m := PC(w
k − ηλmF (wk)).

Set λk := ηλmk , zk := yk,mk , r(wk, λk) = wk − zk.

Step 3. Set Tk = {x ∈ Rn : tk(x) ≤ 0} where

tk(x) := ⟨wk − zk − λk(F (wk)− F (zk)), x− zk⟩.

Select

jk ∈ argmax{d(wk, Tj) : 1 ≤ j ≤ k} and T̂k := Tjk ,

and compute

xk+1 := P
T̂k
(wk),

and go to Iteration k with k replaced by k + 1.

Theorem 3.5. Suppose that F is a continuous function on Rn and SM ̸= ∅. Then {xk},
generated by Algorithm 2, converges to a solution of VIP(C,F ).

Proof. From (3.12), we have

∥F (wk)− F (yk,m)∥ ≤ δ

ηλm
∥wk − yk,m∥.

Using this inequality and the same idea as in the proof of Lemma 3.2, we can prove that

the linesearch rule (3.12) is well-defined.

Taking x∗ ∈ SM , similar to Lemma 3.3, we have tk(x
∗) ≤ 0 and SM ⊂

⋂∞
k=1 Tk.

Moreover, using (3.12) we obtain

tk(w
k) = ⟨wk − zk − λk(F (wk)− F (zk)), wk − zk⟩

= ∥wk − zk∥2 − λk⟨F (wk)− F (zk), wk − zk⟩

≥ ∥wk − zk∥2 − λk∥F (wk)− F (zk)∥∥wk − zk∥

≥ ∥wk − zk∥2 − δ∥wk − zk∥2

≥ (1− δ)∥r(wk, λk)∥2 > 0.
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Therefore, wk /∈ Tk for all k.

The proof of convergence can be done by the similar way as in Theorem 3.4, so we

omit it. For instance, instead of using (3.11), we use the following inequality

ηλmkl
−1∥F (wkl)− F (ykl,mkl

−1)∥ > δ∥wkl − ykl,mkl
−1∥.

It follows that

∥F (wkl)− F (ykl,mkl
−1)∥ >

δ∥wkl − ykl,mkl
−1∥

ηλmkl
−1 ≥ δ∥r(wkl , 1)∥

1
> 0.

The proof is completed.

Remark 3.6. The main difference between Algorithms 1 and 2 is that in Step 2 of Algo-

rithm 2, the linesearch (3.1) of Algorithm 1 is replaced by the linesearch (3.12). Indeed,

in Algorithm 1 we need to calculate the scalar products, while, in Algorithm 2 we need to

calculate the norms. In general, the cost of scalar product computation may be cheaper

than the cost of norm computation.

Moreover, using Cauchy–Schwarz inequality, from (3.12) we have

⟨F (wk)− F (yk,mk), wk − yk,mk⟩ ≤ ∥F (wk)− F (yk,mk)∥∥wk − yk,mk∥

≤ δ
∥wk − yk,mk∥2

ηλmk
= δ

∥wk − yk,mk∥2

λk
.

Hence,

⟨F (wk)− F (yk,mk), wk − yk,mk⟩ ≤ δ
∥wk − yk,mk∥2

λk
.

Therefore, if we choose η, λ in Algorithm 2 equal to the square of η, λ respectively in

Algorithm 1, then mk that satisfies linesearch (3.12) also satisfies linesearch (3.1). This

implies that mk in Algorithm 2 is smaller than that mk in Algorithm 1.

One advantage of Algorithms 1 and 2 is that they can be used to find a solution of

nonmonotone and non-Lipschitz variational inequality problem without using embedding

methods. However, in Step 2 of these algorithms, we have to do a linesearch procedure to

determine the step length. In some cases, this may lead to the large cost of computation,

especially, when n is large and F has a complicated form. The algorithm below shows that

if F satisfies the Lipschitz condition, then the linesearch procedure in Step 2 of Algorithm 1

and Algorithm 2 can be removed.

Algorithm 3.

Initialization. Choose θ ∈ [0, 1), 0 < α < 1/L. Choose positive sequence {µk}∞k=1 such

that
∑∞

k=1 µk < ∞. Take x0, x1 ∈ C and k = 0.
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Iteration k (k = 0, 1, 2, . . .). Having xk do the following steps.

Step 1. Compute zk := PC(w
k−αF (wk)), where wk := xk+θk(x

k−xk−1), 0 ≤ θk ≤ θk,

and

θk =

min
{
θ, µk

∥xk−xk−1∥
}

if xk ̸= xk−1,

θ otherwise.

Step 2. Set Tk = {x ∈ Rn : tk(x) ≤ 0}, where

tk(x) := ⟨wk − zk − α(F (wk)− F (zk)), x− zk⟩.

Select

jk ∈ argmax{d(wk, Tj) : 1 ≤ j ≤ k} and T̂k := Tjk ,

and compute

xk+1 := P
T̂k
(wk),

and go to Iteration k with k replaced by k + 1.

In this next theorem, we establish the convergence analysis of the sequence of iterates

generated by Algorithm 3 to a solution of VIP(C,F ).

Theorem 3.7. Let F be L-Lipschitz continuous function on Rn and SM ̸= ∅. Then the

sequence {xk} is generated by Algorithm 3 converges to a solution of VIP(C,F ).

Proof. Following the same reasoning as in Lemma 3.3, we obtain that tk(x
∗) ≤ 0, ∀x∗ ∈

SM and SM ⊂ Tk for all k. Furthermore, since F is L-Lipschitz continuous on Rn and

0 < α < 1/L, we have

tk(w
k) = ⟨wk − zk − α(F (wk)− F (zk)), wk − zk⟩

= ∥wk − zk∥2 − α⟨F (wk)− F (zk), wk − zk⟩

≥ ∥wk − zk∥2 − αL∥wk − zk∥2

≥ (1− αL)∥r(wk, α)∥2 > 0.

Hence, wk /∈ Tk for all k. The rest of the proof is similar to that of Theorem 3.4 with

δ = αL. Therefore, {xk} converges to a solution x∗ of VIP(C,F ).

Remark 3.8. One advantage of Algorithm 3 is that it can be applied for finding a solution

of the nonmonotone and Lipschitz variational inequality problem without doing the line-

search procedure. This can reduce the computation cost, especially, F has a complicated

form. However, Algorithm 3 requires knowing the Lipschitz constant L of F .
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4. Numerical examples

In this section, we provide five numerical examples to show the practicability and the

advantage of proposed algorithms by comparing them with the embedded projection Al-

gorithm of Ye and He [33] and Algorithm IPA of Ye [32].

All the programs are written in Mathlab R2015 and performed on a Laptop DELL

Intel (R), Core (TM) i7-9700 CPU, 3.00 Ghz, Ram 16.0 GB.

In IPA (see [33]), they take αmin = 10−10, αmax = 1010. Inspired by the renowned

Barzilai–Borwein step-size and self-adaptive step-size, they take parameter α0
k as follows:

set α0
0 = 1 and take, for k ≥ 1,

α0
k =

P[10−10,1010]

( ∥xk−xk−1∥2
⟨xk−xk−1,F (xk)−F (xk−1)⟩

)
if ⟨xk − xk−1, F (xk)− F (xk−1)⟩ > 10−12,

P[10−10,1010](1.5αk−1) otherwise.

Example 4.1. Consider a problem of the form (see [5, Exercise 4.7])

min

{
g(x) =

f0(x)

cx+ d
: x ∈ C

}
with c ∈ Rn, d ∈ R and C = {x ∈ Rn : fi(x) ≤ 0, i = 1, . . . ,m,Ax = b}, where

f0, f1, . . . , fm are convex functions, A is a matrix of order m× n, b ∈ Rm.

Table 4.1: Experiment for Example 4.1.

x0 a
Alg. YH Alg. IPA Alg. 1 Alg. 2

CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.

(0, 0, 0, 0, 5)T 5 0.55 35 15.47 24 0.41 32 0.44 32

(2, 1, 0, 0, 2)T - 0.45 31 11.31 30 0.31 30 0.36 30

(1.5, 1.2, 1.3, 0.3, 0.7)T - 0.44 29 10.20 19 0.3 28 0.29 28

(5, 0, 0, 0, 5)T 10 0.88 70 13.19 23 0.59 66 0.51 66

(1, 3, 2, 3, 1)T - 0.72 57 11.72 21 0.50 58 0.46 58

(1.7, 1.8, 1.9, 3.5, 1.1)T - 0.72 56 10.86 20 0.50 57 0.47 57

This is a quasiconvex optimization problem. Choose g(x) =
1
2
xTHx+qT x+r∑5

i=1 xi
and C ={

x = (x1, x2, . . . , x5)
T ∈ R5 : xi ≥ 0, i = 1, . . . , 5,

∑5
i=1 xi = a

}
, where a > 0. Then

g is a smooth quasiconvex function and can attain its minimum value on C, where q =

(−1, . . . ,−1)T , r = 1 and H = hI is a positive diagonal matrix with h ∈ (0.1, 1.6). Let

F (x) = (F1(x), . . . , F5(x))
T be the derivative of g(x) with Fi(x) =

hxi
∑5

j=1 xj− 1
2
h
∑5

j=1 x
2
j−1(∑5

j=1 xj

)2 .

Then the problem VIP(C,F ) is a quasimonotone variational inequality with SM =
{(

1
5a,
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. . . , 15a
)T}

(see [33]). We choose h = 1.2, σ = 0.4, γ = 0.99 in Algorithm YH, σ = 0.4,

η = 0.99 in Algorithm IPA, θ = 0.1, η = 0.99, λ = 0.99, δ = 0.8, µk = 1
(k+1)1.8

in

Algorithms 1 and 2. The initial point is x0 in Algorithm YH, Algorithm IPA, and x0 = x1

in Algorithms 1 and 2. We make comparison of algorithms with ϵ = ∥r(xk)∥ ≤ 10−4 and

report the result in Table 4.1 and Figure 4.1.
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Figure 4.1: Number of iterations in Example 4.1.

Example 4.2. In this example, we consider the affine variational inequality problem

C = [0, 1]n and F (x) = Mx+ d,

where M is an n× n tridiagonal matrix given by

M =



4 −2

1 4 −2

1 4 −2

. . . . . . . . . . . . . . . . . . . . . . . .

1 4


and d = (−1, . . . ,−1)T (see [1, 27,33]).

We take σ = 0.4, γ = 0.1 in Algorithm YH, σ = 0.5, η = 0.99 in Algorithm IPA.

And take θ = 0.5, λ = 0.6, δ = 0.4, η = 0.9, µk = 1
(k+2)1.8

in Algorithm 1, λ = 0.1,

δ = 0.5, θ = 0.2, η = 0.99, µk = 1
(k+1)1.5

in Algorithm 2, µk = 1
(k+2)1.5

, L =
√
(21n− 5),

θ = 0.5, α = 1−σ
L , where σ = 0.01 in Algorithm 3. The starting point is x0 = (0, . . . , 0)T

in Algorithm YH, Algorithm IPA, x0 = x1 = (0, . . . , 0)T in Algorithms 1, 2 and 3. We
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terminate the iteration if ϵ = ∥r(xk)∥ ≤ 10−4. The results are shown in Table 4.2 and

Figure 4.2.

Table 4.2: Experiment for Example 4.2.

n
Alg. YH Alg. IPA Alg. 1 Alg. 2 Alg. 3

CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.

50 24.95 456 9.69 18 0.17 22 0.09 21 0.45 44

100 659.41 894 10.80 18 0.23 23 0.16 22 0.75 71

150 3556.47 1773 52.09 18 1.61 23 0.87 22 3.98 94

200 3986.81 1628 63.66 18 1.95 23 1.09 23 9.02 113

500 50530.97 3889 269.20 18 6.95 21 10.25 33 67.5 202
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Figure 4.2: Number of iterations of Algorithms in Example 4.2 (n = 50, x0 = x1 =

(0, . . . , 0)T ).

Example 4.3. In this example, we let

C = [−1, 1]n and F (x) = (x21, . . . , x
2
n)

T .

Here, the mapping is not quasimonotone but it is easy to check that SM = {(−1, . . . ,−1)T }
(see [33]). Furthermore, it can be see that F satisfies the Lipschitz condition with L =

2
√
n. We use Algorithm YH with parameters σ = 0.5, γ = 0.99, Algorithm IPA with

σ = 0.5, η = 0.99, Algorithm 1 with θ = 0.8, η = 0.99, λ = 0.99, δ = 0.4, µk =
1

(k+2)1.3
and Algorithm 2 with θ = 0.5, η = 0.99, λ = 0.99, δ = 0.4, µk = 1

(k+2)1.3
.
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The starting point is x0 = (−3/4, . . . ,−3/4)T in Algorithm YH, Algorithm IPA and

x0 = x1 = (−3/4, . . . ,−3/4)T in Algorithms 1 and 2. The numerical result is shown in

Table 4.3 and Figure 4.3. The stopping criterion used is ϵ = ∥r(xk)∥ ≤ 10−4.

Table 4.3: Experiment for Example 4.3.

n
Alg. YH Alg. IPA Alg. 1 Alg. 2

CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.

100 0.27 5 2.17 4 0.25 4 0.15 4

500 1.11 5 30.20 5 0.59 4 0.50 4

1000 1.78 5 61.88 5 0.86 4 0.72 4

5000 10.92 5 399.41 5 5.72 5 5.50 5

10000 33.77 5 1180.38 5 12.81 4 12.16 4
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Figure 4.3: Number of iterations of Algorithms in Example 4.3 (n = 5000, x0 = x1 =

(−3/4,−3/4,−3/4, . . . ,−3/4)T ).

Example 4.4. Let C = [0, 1]n and F (x) = (x21 − x1, . . . , x
2
n − xn)

T . Here, the mapping

is not quasimonotone and SM = {(1, . . . , 1)T } (see [33]). We take σ = 0.95, γ = 0.99 in

Algorithm YH, σ = 0.95, η = 0.99 in Algorithm IPA, θ = 0.1, η = 0.99, λ = 0.99, δ = 0.99,

µk = 1
(k+2)1.7

in Algorithm 1 and θ = 0.9, η = 0.8, λ = 0.9, δ = 0.9, µk = 1
(k+1)3

in

Algorithm 2. Let x0 = (1/6, . . . , 1/6)T be initial point in Algorithm YH, Algorithm IPA,

x0 = x1 = (1/6, . . . , 1/6)T be initial points in Algorithms 1 and 2. To terminate the

Algorithms, we use the stopping criteria ϵ = ∥r(xk)∥ ≤ 10−4. The results are listed in
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Table 4.4 and the corresponding figures are displayed in Figure 4.4.

Table 4.4: Experiment for Example 4.4.

n
Alg. YH Alg. IPA Alg. 1 Alg. 2

CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.

100 0.31 9 1.62 7 0.23 9 0.23 12

500 2.59 10 19.07 7 1.37 10 1.82 13

1000 4.05 9 39.13 7 2.34 10 5.06 14

5000 27.82 10 253.15 8 13.25 10 77.12 17

10000 82.00 10 705.14 8 36.73 10 316.98 19
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Figure 4.4: Number of iterations of Algorithms in Example 4.4 (n = 10000, x0 =

(1/6, 1/6, 1/6, . . . , 1/6)T ).

In the last example, we present to numerical experiments to illustrate the performance

of algorithms when F is L-Lipschitz continuous mapping. We compare the convergence

behavior of Algorithm YH and Algorithm 1 with Algorithm 3 and the following algorithm

(denoted by Algorithm IPAL) which is proposed by Ye [32].

Algorithm IPAL.

Initialization. Choose 0 < λ < 1/L, ϵ > 0 and x0 ∈ Rn.

Iteration k (k = 0, 1, 2, . . .). Having xk do the following steps.
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Step 1. Compute zk := PC(x
k − λF (xk)).

Step 2. SetHk = {v ∈ Rn : hk(v) ≤ 0} with hk(v) := ⟨xk−zk−λ(F (xk)−F (zk)), v−zk⟩.

Select tk ∈ argmax{dist(xk, Hj) : 0 ≤ j ≤ k} and Ĥk := Htk , and compute

xk+1 := P
Ĥk

(xk),

and go to Iteration k with k replaced by k + 1.

Example 4.5. Consider C = [−nπ/2, nπ/2]n. Let F : C → Rn be defined by

F (x) =
(
cos

x1
n
, cos

x2
n
, . . . , cos

xn
n

)T
.

It is clear that F is not quasimonotone on C. Since, for x = (−nπ/3, nπ/2, nπ/2, . . . ,

nπ/2)T and y = (−nπ/4, nπ/3, nπ/2, . . . , nπ/2)T , we have

⟨F (x), y − x⟩ = −nπ

24
< 0 and ⟨F (y), y − x⟩ = (

√
2− 1)nπ

12
√
2

> 0.

In addition,

∥F (x)− F (y)∥ ≤ 1√
n
∥x− y∥, ∀x, y ∈ C,

so F is Lipschitz continuous with constant L = 1√
n
. On the other hand,

S =
{
(x1, x2, . . . , xn)

T : xi ∈ {−nπ/2;nπ/2}
}

and

SM =
{
(−nπ/2,−nπ/2, . . . ,−nπ/2)T

}
.

We use Algorithm YH with σ = 0.3, γ = 0.99, Algorithm IPAL with parameters L = 1√
n
,

λ = 1−σ
L , where σ = 0.01, Algorithm 1 with µk = 1

(k+1)1.5
, θ = 0.99, η = 0.99,

λ = 0.8, δ = 0.8 and Algorithm 3 with parameters µk = 1
(k+3)1.5

, L = 1√
n
, θ = 0.01,

α = 1−σ
L , where σ = 0.01, to find a solution of VIP(C,F ). The starting point is x0 =

(−nπ/8,−nπ/8,−nπ/8, . . . ,−nπ/8)T in all algorithms and x1 = (−nπ/8,−nπ/8,−nπ/8,

. . . ,−nπ/8)T in Algorithm 1, x1 = (−nπ/16,−nπ/16,−nπ/16, . . . ,−nπ/16)T in Algo-

rithm 3. To terminate the algorithms, we use the stopping criteria ϵ = ∥r(xk)∥ ≤ 10−4.

The numerical results are described in Figure 4.5, which shows that Algorithm IPAL and

Algorithm 3 behave better then Algorithm YH, Algorithm 1. Table 4.5 shows that Algo-

rithm IPAL, Algorithm 3 are better than Algorithm YH, Algorithm 1 in number of steps

and CPU time.
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Table 4.5: Experiment for Example 4.5.

n
Alg. YH Alg. IPAL Alg. 1 Alg. 3

CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter.

10 1.35 92 0.53 31 0.81 100 0.34 31

50 62.66 462 4.03 75 7.27 620 0.77 78

100 635.09 952 19.03 114 19.61 1224 1.38 117

150 2265.48 1353 44.34 138 206.42 1988 10.23 143

200 5493.66 1835 92.83 175 306.91 2619 12.81 177
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Figure 4.5: Number of iterations of Algorithms in Example 4.5 (n = 100, x0 =

(−nπ/8,−nπ/8,−nπ/8, . . . ,−nπ/8)T ).

Remark 4.6. It can be seen from the results of Example 4.5 that the inertial Algorithm 3

outperformed the non-inertial Algorithm IPAL in terms of time taken for computation.

Remark 4.7. From numerical results, we can see that if the cost mapping F is non-Lipschitz

continuous and n is small, then the computation cost of Algorithms 1 and 2 are quite the

same. On the other hand, if n is large, then Algorithm 1 is better than Algorithm 2. The

cause may be that the computation cost in Step 2 of Algorithm 1 is cheaper than those

of Algorithm 2.

Specially, these three algorithms can be used to solve VIP(C,F ) when F is Lipschitz

continuous. However, if the Lipschitz constant L is big, Algorithm 3 may be less efficient

than Algorithms 1 and 2. This might be due to the reason that the stepsize in this
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algorithm is inversely proportional to L.

Conclusion. We have introduced some inertial type algorithms for finding a solution

of a nonmonotone variational inequality problem with or without linesearch. All the

proposed algorithms do not use the embedding projections and their convergences are

obtained. Some numerical examples are reported to illustrate the convergence and also

to show the advantage of the new algorithms over the existing method for solving these

problems.
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