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Tate-linear Formal Varieties
Ching-Li Chai

Abstract. A Tate-linear structure on a smooth noetherian local formal scheme T
over a field k of characteristic p is an isomorphism 7" = Ng/N of sheaves on the
fpqc site of Spec(k), where N is an fpqc sheaf of torsion free nilpotent on Spec(k)
which admits a central series N = N; 2 Ny 2 --- 2 Neyg = (1) such that each
subquotient N; /N,y is the Tate Z,-module attached to a p-divisible group over x,
and Ng is the Mal’cev completion of N. A smooth formal scheme over x with a
Tate-linear structure is called a Tate-linear formal variety over k. Examples of Tate-
linear formal varieties include p-divisible formal groups, biextensions of p-divisible
formal groups, and formal completions at closed points of central leaves in Siegel
modular varieties in characteristic p. Tate-linear structures have a remarkable rigidity
property: if a reduced irreducible closed formal subscheme W of a Tate linear formal
variety T is stable under the action of a group of Tate-linear automorphisms of T’
which operates strongly nontrivially on 7', then W is a Tate-linear formal subvariety.
Proofs of statements in this survey article can be found in Chapters 5-6 and 10-11
of [11].

1. What are Tate-linear structures

1.1.

This is a survey of Tate linear structures on smooth formal varieties associated to Tate
unipotent groups. In every Tate-linear structure, there is a prime number implicitly re-
ferred to, which will be denoted by p. This prime number p is fixed throughout this
article.

A few soundbites may serve as lead-ins.

(a) A Tate unipotent group is analogous to the Tate Z,-modules of an abelian varieties
or a p-divisible group. It is a sheaf of unipotent groups on the big fpqc site of the
base field such that each graded piece of its ascending central series is the limit of a

projective system attached to a p-divisible group.
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A Tate-linear formal variety T, or a formal variety 7' with a Tate-linear structure,
is assembled from finitely many p-divisible formal groups (X;) through a family of
torsors of p-divisible formal groups over Tate-linear subquotients of 7. The assembly
instruction is contained in a Tate unipotent group, which determines the Tate-linear

structure.

The relation between a Tate-linear formal variety to its associated Tate unipotent
group is akin to the relation between a p-divisible group and its associated Tate Z,-
module. From a parallel group-theoretic perspective, Tate-linear formal varieties are
analogous to compact nilmanifolds. Under this analogy, the Tate unipotent group
associated to a Tate-linear formal variety corresponds to the fundamental group of

a compact nilmanifold.

The formal completion C/*° at a closed point o of a central leaf C of a Siegel
modular variety JZ{g’ dn,Fy? which classifies polarized g-dimensional abelian varieties
of polarization degree d plus level-n structures, in characteristic p, has a natural
Tate-linear structure. The same is true for formal completions of central leaves of

Shimura subvarieties of ‘%, dnFy

Tate-linear structures are remarkably rigid: Suppose that T is a Tate-linear for-
mal variety assembled from a family (X;) of p-divisible groups, and G is a closed
subgroup of the compact p-adic Lie group Autrr(7T') consisting of all Tate-linear
automorphisms of 7', such that G operates strongly nontrivially on T', in the sense
that among all Jordan-Holder components of the Lie(G)-modules D, (X;) attached
to the G-equivariant p-divisible groups X;, none is the trivial representation of the
Lie algebra Lie(G) of G. Then every reduced irreducible closed formal subscheme of

T stable under the action of G is a Tate-linear formal subvariety of T

1.2.

To explain (a)f(c), let’s consider a p-divisible group X over a field K. It’s Tate Z,-
module T, (X) is the projective limit m X[p"], and V,(X) := T)(X) ®z Q is it’s Tate
Qp-module. The p-divisible group X is canonically isomorphic to V,(X)/Tp(X). This is

well-known if p is invertible in K, and is still true when p is equal to the characteristic of

K if the limit @n X|[p"] is taken in the category of sheaves of abelian groups on the big

fpqc site of Spec(K).

Recall that every torsion free nilpotent group N has an associated uniquely divisible

nilpotent group Ng, called the Mal’cev completion of N, which is a minimal element

among all uniquely divisible nilpotent group containing N. Moreover for every element
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x € Ng, there exists a non-zero integer n such that 2™ € N. When N is commutative, its
Mal’cev completion Ng is the familiar localization N ®z Q of N.

As indicated in (a), a Tate unipotent group IN over a field x of characteristic p is
sheaf of unipotent groups on the big fpqc site of Spec(x) which is a successive extension of
Tate Z,-modules attached to p-divisible groups over x. The Mal’cev completion of a Tate
unipotent group N over « is an fpqc sheaf of uniquely divisible groups Ng on Spec(k)
containing N. The quotient sheaf Ng/N is represented by a smooth formal scheme TL(IN)
over k. This formal scheme TL(N) is, by definition, the Tate-linear formal variety attached
to the Tate unipotent group N. Put differently, a Tate-linear structure on a formal scheme
X over k is an isomorphism £: X = Ng/N for a Tate unipotent group N over k.

We remark that the inclusion N < Ng gives rise to a co-filtered family of finite locally
free covers T Tr(nvy): TL(N') — TL(N) of TL(N), where N’ is a Tate unipotent
subgroup of N such that Ni; = Ng and TTL(N,TL(N)) 18 the canonical projection. The
sheaf Ng operates on the left of this projective tower (TL(N’) — TL(N))

rise to a family of finite algebraic correspondences on TL(N).

n» and gives

Every Tate unipotent group N over a field k of characteristic p carries three filtrations:
those given by the the ascending and descending central series, plus the slope filtration.
Each one gives rise to a family of torsors of p-divisible groups over Tate-linear formal
varieties which accomplishes the assembly task for the Tate-linear formal variety Ng/N
mentioned in (b).

So far we have explained §1.1[a)—(b) and the first part of §1.1|(c). The analogy with
compact nilmanifolds refers to the fact that every connected compact nilmanifold M is
isomorphic to a homogeneous space G/T" of a connected and simply connected nilpotent
Lie group G, where I" is a discrete cocompact torsion free subgroup of G such that the
isolator subgroup

IT,G)={x € G|3IneNygs.t. 2" €T}

of I' in G is uniquely divisible and dense in G.

1.3.
We gather some properties of Tate-linear structures below.
(1) Examples of Tate-linear formal varieties include

(a) p-divisible formal groups over fields of characteristic p,
(b) biextensions of p-divisible formal groups over fields of characteristic p,

(c) sustained deformation spaces of (polarized) p-divisible groups over fields of

characteristic p,
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(d) formal completions at closed points of central leaves [29] in modular varieties
of PEL type,

(e) reduced irreducible formal subschemes of a Tate-linear formal variety 7" stable
under the strongly nontrivial action of a subgroup of the group Autyy,(7) of all

Tate-linear automorphisms of 7.
Examples (c), (d) guided us to the definition of Tate-linear formal varieties.

(2) Given any Tate-linear formal variety 7" over a field k of characteristic p, there exists
an isogeny «: 17 — T of Tate-linear formal varieties and a Tate-linear embedding
B: Ty <= Def(X)sus of T into the sustained deformation space of a p-divisible group

X over K.

(3) For every Tate-linear formal variety T" over a perfect field  of characteristic p, there
is a non-zero element vgyler,7 Of the Lie algebra of Autry,(7") canonically attached

to T'. A one-parameter subgroup pguler,7,n: P"Zp — Autrr,(T) of the form

PEuler,Tin(t) = €XP gy (1) (L VBuler, 1), V't € p"Zyp

for some natural number n is called an Fuler flow on T'. Every Euler flow operates

strongly nontrivially on T. Moreover

foexpaupr, (1) () = eXPautyy (1) (B) © f, Vit € p"Zp, YV > ng.
for any Tate-linear morphism f: 77 — T5 between Tate-linear formal varieties.

Careful readers likely have noticed that the above properties “almost determine” the class
of Tate-linear formal subvarieties of sustained deformation spaces De f(X )sys. There aren’t

many good choices if the conditions (1)—(3) are imposed.

1.4.

The motivation of the definition of Tate-linear formal varieties goes back to the Serre—
Tate local coordinates on deformation spaces of abelian varieties and p-divisible groups;
see [18,120], |23, Appendix].

The relation between the Serre-Tate formal tori and Shimura subvarieties of Siegel
modular varieties were investigated in [24,25,28]. Their results say that the formal com-
pletion at a point of the ordinary locus of a Shimura subvariety of a Siegel modular variety
is a formal subtorus of the Serre-Tate formal torus. In [26] Moonen defined a notion of
[p]-ordinary p-divisible groups with prescribed endomorphisms, and showed that the de-

formation space of a [p]-ordinary p-divisible group with prescribed endomorphisms has a
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natural structure as a cascade: they are assembled from a family of biextensions, with

p-divisible groups as the basic building blocks.

Shortly after the notation of central leaves was introduced by Oort in [29], it was
observed that the formal completion C/% at a closed point zg of a central leaf C in
%,Ln,ﬁ has a natural structure as an isoclinic p-divisible group with hight g(g + 1)/2, if
xo corresponds to a principally polarized abelian variety with exactly 2 slopes. Similarly
the central leaf in the deformation space of a p-divisible group with exactly two slopes has
a natural structure as an isoclinic p-divisible groups; see [5]. It follows that the central
leaf in the deformation space of a p-divisible group whose slope filtration splits carries a
natural cascade structure. The message was clear: the formal completion at a closed point
of a central leaf in a Siegel modular variety should carry a natural “Tate-linear structure”;
similarly the central leaf in the equi-characteristic p deformation space of any p-divisible
group should have a natural “Tate-linear structure”. But a precise definition codifying
the general idea that Tate-linear formal variety are put together from p-divisible formal

groups was not pinned down.

Part of the difficulty was that the notion of central leaves relies on the “pointwise”
concept of geometrically fiberwise constant p-divisible groups, and it was unclear what
a geometrically fiberwise constant p-divisible group over an artinian local ring should
mean. This difficulty was removed by the notion of sustained p-divisible groups, a scheme-
theoretic upgrade of the notion of geometrically fiberwise constant p-divisible groups;
see [8,/10]. Analysis of sustained deformation spaces of p-divisible groups revealed the cen-
tral role of the projective system of stabilized Aut group schemes .ut**(X) (respectively
uts (Y, \)) of a p-divisible group X (respectively a polarized p-divisible group (Y, \)): A
sustained p-divisible group modeled on X is a right @ut>*(X)-torsor, while a sustained po-
larized p-divisible group modeled on (Y, ) is a right 2utst (Y, \)-torsor. Also, the sustained
deformation space Def(X )sys is canonically isomorphic to V,(«ut®®(X))/T,(ut>* (X)),
where the fpqc sheaf T, («/ut** (X)) of nilpotent groups is the limit of the projective system
ut™*(X), and V,(ut™*(X)) is the Mal’cev completion of T)(«/ut*(X)). Similarly the
sustained deformation space De f (Y, \)sus is isomorphic to V,(«Zut™ (Y, X))/ Tp(ut** (Y, \)).
These examples quickly led to a tentative formulation of the notion of Tate-linear formal
subschemes of sustained deformation spaces in |9, 6.2], followed by the general notion of
Tate unipotent groups and Tate-linear formal varieties in Definitions and [11]
Ch. 11].

The rigidity property of Tate-linear structures was first observed in the case of p-
divisible formal groups; see [4, §6], [6l §8] and [7]. The rigidity of p-divisible formal
groups traces back to [3| Larsen’s Example, p. 443] and [3, Prop. 4, p. 471], and was

used in the proof [6] of the Hecke orbit conjecture for Siegel modular varieties and Hida’s



216 Ching-Li Chai

theorem [16] on the vanishing of the Iwasawa p-invariant of p-adic Hecke L-functions. For
a long time it was unclear whether the rigidity property indicated in (e) holds for other
formal schemes which are assembled from p-divisible groups, for instance biextensions of
p-divisible formal groups over algebraically closed fields of characteristic p. There were
difficulties in adapting the proof of rigidity in |4, §6] and [7] to the case of biextensions.
On the other hand no counter-examples were found. Eventually those technical obstacles
were overcome through the notion of tempered perfections. The resulting proof of the
rigidity of biextensions also works for general Tate-linear formal varieties. We refer to
[11, Chaps. 10-11] for more information about tempered perfections and the method of
hypocotyl elongation in these non-noetherian complete local domains.

Tao Song has generalized the proof of orbital rigidity of biextensions of p-divisible
formal groups in |11}, Ch. 10], and proved the orbital rigidity of the sustained deformation
space Def(X )sus of a p-divisible group X with at most 4 slopes in his 2022 Penn thesis [33].
D’Addezio and van Hoften [14] have defined a class of Tate-linear formal varieties over
perfect fields of characteristic p, under the assumption that p is strictly bigger than the
nilpotency class of the Tate unipotent Lie algebra in question. They proved orbital rigidity
of these Tate-linear formal varieties using the method of hypocotyl elongation in tempered
perfections in an earlier draft of [11, Ch. 10]. This rigidity result linearizes the Hecke orbit
problem, so that their results on monodromy of linear p-adic differential equations can be

brought to bear.

1.5.

The rest of this article is organized as follows. The definition and basic properties of Tate
unipotent groups and Tate unipotent Lie algebras are explained in §2| which also contains
a summary (see on localizations of nilpotent groups and the Mal’cev completion.
Basic properties of Tate-linear formal varieties are indicated in §3] The two families of
examples of Tate-linear formal varieties mentioned in ( 1), biextensions of formal groups
and sustained deformation spaces of (polarized) p-divisible groups, are explained in §3.6)
and §3.7 respectively. The definition of Euler flows, which are “universal automorphisms”
of Tate-linear formal varieties, is in Definition The proof of the main rigidity theorem
(see Theorem of Tate-linear formal varieties is sketched in The two ingredients of
the proof, tempered virtual functions and hypocotyl elongation in tempered perfections,

are explain in A number of open questions are collected in §7]

1.6.

The author would like to acknowledge his intellectual debts to Mumford’s beautiful paper

[27]. Biextensions of p-divisible groups, introduced in |27], provide an ideal testing ground
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for the validity of orbital rigidity of Tate-linear formal varieties. In addition, the explicit
construction of the Weil pairings as structural cocycles of biextensions in [27, §5] was
enormously helpful during the conception of notion of tempered virtual formal morphisms
E --» Z attached to one-parameter groups of automorphisms of a biextension E of (X,Y)
by Z. He would also like to thank the support of a Simons Fellowship 561644 and a Simons
Foundation collaboration grant 701067. Lastly he thanks the referee for a very careful

reading and suggestions for improvement.

2. Tate unipotent groups and Tate unipotent Lie algebras

Definition 2.1. Let k be a field of characteristic p, and let S = Spec(k). Let N be a
sheaf of groups with respect to the fpqc topology on the category of all schemes over S.
We say that N is a Tate unipotent group over S if there exist

e a natural number c,

e a central series (1) = Ng € Ny € Ny C --- € N, = N of fpqc sheaves of normal
subgroups N; of N with [N;, N]gp, € Ny_q for ¢ = 1,...,¢, where [-,-]gp is the

group commutator (x,y) — x~ 1y lxy,

e p-divisible groups X7, ..., X, over S, and

e isomorphisms
Nz/szlng(Xz) = @Xl[pn], ’L'Zl,...,c,
n

where the transition maps X;[p"*!] — X;[p"] in the projective system (X; [p”])n>1
are induced by [p|x,, multiplication by p on X;, and the projective limit Tp(X;) is
taken in the 2-category of sheaves of abelian groups on the big fpqc site Sgyqc of S.

The minimum of all ¢’s satisfying the above conditions is called the nilpotency class of N.
The fpqc sheaf T, (X;) above is called the Tate Z,-module of X;. The p-divisible group X,
as an fpqc sheaf of abelian groups, is canonically isomorphic to (T)(X;) ®z Q)/Tp(X;).

Every Tate unipotent group over a field s of characteristic p admits a slope filtration.
More precisely, Definition is equivalent to the alternative Definition below.

Definition 2.2. Let k be a field of characteristic p. A Tate unipotent group over k is
a sheaf of nilpotent groups N for the fpqc topology on the category Gch,, of all schemes
over k, together with a decreasing filtration (Fﬂ;l N).>0 by sheaves of normal subgroups

indexed by non-negative real numbers, with the following properties.
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e Fil) N =N, and Filj N = (1) for all s > 1.

o [Fil}l N,Fil’2 N]gp C Fﬂ:11+52 N for all s1,s2 > 0, where [, -], denotes the group

commutator (z,y) — x~ly lay.

e There exists a finite subset slope(N) C (0,1] N Q such that grg; N # (0) if and
only if s € slope(N), where griy N :=Filg N/ Fil7* N.

e For every ¢ € slope(N), there exists a non-trivial p-divisible group Y; over x such
that

g’y N = Jim Y; "]

n
where lim | Yi[p"] is the projective limit of the projective system (Y}[p”])n21 with
transition map induced by [p]y,, and the limit is taken in the category of sheaves of

abelian groups on Gch,. for the fpqc topology.

Remark 2.2.1. (i) Definition[2.2is used in [11} Ch. 11]. In Definition[2.2] the slope filtration
Fil3 N of N is uniquely determined by the group structure of N: The Lie algebra £ieNg
of the Mal’cev completion of IN, which is a sheaf of Lie Q,-algebras on the big fpqc site
of &c¢h,,, admits a slope filtration. The slope filtration on LieNg gives rise to a slope
filtration on Ng via the Mal’cev correspondence. The slope filtration on N is induced
from the slope filtration on Ng.

(ii) That every Tate unipotent group over k in the sense of Definition satisfies
the conditions in Definition [2.1] is straight forward. To show that every Tate unipotent
group N over the spectrum of a field s of characteristic p in the sense of Definition [2.1
carries a slope filtration with the properties required in Definition[2.2] one uses the Mal’cev
correspondence and the fact that every p-divisible group x admits a unique slope filtration,
similar to the argument indicated in (i). See Remark

(iii) The slopes of a Tate unipotent group N over s together with their multiplicities
form a multiset, uniquely determined by N, called the slope sequence of N. In Defini-
tion this multiset is the union of the slope sequences of the p-divisible groups X;’s; in
Definition it is the union of the slope sequences of the isoclinic p-divisible groups Y;’s.

Remark. 1t is easy to see that every Tate unipotent group N is torsion free and uniquely

{-divisible for every prime number ¢ different from p.

2.3. Localization of nilpotent groups

Let P be a subset of the set ® of all prime numbers, and let °P be the complement of P
in ®. A P-number is a non-zero integer all of whose prime divisors are contained in P. A

non-zero integer is said to be prime to P if and only if it is a “P-number.
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A group G is P-torsion free (respectively P-divisible, respectively uniquely P-divisible)
if the self map x — 2" of G is injective (respectively surjective, respectively bijective) for
every P-number n. When P = ®, we say that G is torsion free (respectively divisible,
respectively uniquely divisible).

Let P C ® and °P = ®\ P as before. For every nilpotent group N, there exists a group
homomorphism ey p: N — Np, uniquely determined up to unique isomorphism, such that
Np is uniquely P°-divisible and the map €} p: Hom(Np, H) — Hom(N, H) induced by
en,p is bijective for every uniquely °P-divisible group H. The assignment N ~~ Np defines
a functor Locp from the category of all nilpotent groups to the category of all uniquely
°P-divisible nilpotent groups.

The localization functor Locp preserves short exact sequences. More precisely, the
localization ap of a homomorphism «: N1 — Ny between nilpotent groups is injective
(respectively surjective) if and only if the order of every element of Ker(«) is finite of
order prime to P (respectively for every element xo € N, there exists an element z; € N;

and a non-zero integer n prime tode P such that ) = a(z1)).

2.4. Mal’cev completion and Mal’cev correspondence

The Mal’cev completion MC(N) of a nilpotent group N is, by definition, the localization
of N with respect to the empty subset () of ®. In other words, MC := Locy. The universal
homomorphism €y g: N — MC(NV) is characterized by the following properties.

e Ker(eyp) = Nior, the subgroup of N consisting of all elements of N of finite order.

e MC(N) is a uniquely divisible nilpotent group.

e For every y € MC(N), there exists a non-zero integer n and an element x € N such
that y" = ey g(z).

The Mal’cev correspondence asserts that there is an equivalence between the category
of uniquely divisible nilpotent groups and the category of nilpotent Lie Q-algebras. If a
uniquely divisible nilpotent group NV corresponds to a nilpotent Lie Q-algebra n, then the
nilpotency class of IV is equal to the nilpotency class of n, and there are mutually inverse
bijections

expy:n— N, logy: N —n,
such that the function
nxn—n, (x,y)— logy(expy(xz+y))

from n x n to n is given by the Baker—-Campbell-Hausdorff (BCH) formula. Recall that

the BCH formula is a specific element of the completion of the free Lie QQ-algebra in
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variables { X, Y} with respect to its descending lower central series; see [32, Part I, Ch. II
§8] and |2, Ch. II §6] for Dynkin’s explicit form of the BCH formula. Note that for each
uniquely divisible nilpotent group N corresponding to a nilpotent Lie Q-algebra n, the
infinite series logy(expy(z +y)) is a finite sum.

There is an “integral version” of the Mal'cev correspondence, due to Lazard, but
restricted to the case when the nilpotency class is “small”. Let ¢ be a positive integer,
and let P<. be the set of all prime numbers not exceeding c. The Lazard correspondence
asserts that there is an equivalence of categories between the category of all uniquely P<.-
divisible nilpotent groups of class at most ¢, and the category of nilpotent Z[1/c!]-algebras
of class at most c.

We refer to [1,13}/15}/17,[34] for general information about nilpotent groups and their
localizations, [19,2112230], [31, Ch. 2] for the Mal’cev completion and Mal’cev correspon-

dence, and [19] for the Lazard correspondence.
Definition 2.5. Let N be a Tate unipotent group over a field k of characteristic p.

(a) Let MC(N) be the presheaf on Sch,, whose value on any s-scheme S is MC(IN(S)),
the Mal’cev completion of N(S). Here Gch,, is the category of k-schemes.

(b) Denote by N the sheafification of the presheaf MC(N) on Scb,, with respect to the
fpqc topology.

(c) The fpqc sheaf Ng of uniquely divisible nilpotent groups corresponds, under the
Mal’cev correspondence, to an fpqc sheaf of Lie Q-algebras. The Lie Q-algebras
structure of the latter sheaf extends naturally to an fpqc sheaf of Lie Q,-algebras,
denoted by LieNg. We call £ieNg the Tate unipotent Lie Q,-algebra attached to
N.

(d) Let N’ be another Tate unipotent group over .

(d1) A k-homomorphism up to isogeny from N to N’ is a k-homomorphism from
NQ to N(I@

(d2) A k-isogeny from N to N’ is a k-homomorphism from N to N’ which induces
an isomorphism from Ng to N{@. A quasi-isogeny over x from N to N’ is a &

isomorphism from Ng to N,

Lemma 2.6. Let N, N’ be Tate unipotent groups over a field k of characteristic p, and
let a: Ng — N{@ be a k-homomorphism up to isogeny from N to N'. There exists a
k-homomorphism : N — N’ such that the homomorphism from Nq to N{Q induced by B

1s equal to p"« for a positive integer n > 0.

Definition 2.7. Let k be a field of characteristic p.
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(a) A Tate unipotent Lie Zy-algebra over k is an fpqc sheaf Nz, of Lie Zj-algebras on
Sch,, such there exists a p-divisible group N over s and an isomorphism T, (N) =
Nz, of fpqc sheaves of Z,-modules on Scbh,,. Here Ty(N) = l&nn N[p"] is the Tate

Zy-module of N.

(b) A Tate unipotent Lie Qp-algebra over k is an fpqc sheaf of Lie Q)-algebras on &cb,,

isomorphic to Nz, ®z, Q) for some Tate unipotent Lie Z,-algebra Nz, over k.

Remark 2.7.1. (i) In Definition (a), under the isomorphism T,(N) = 9z, the Lie
algebra structure on 9z, corresponds to a projective family ([-,-]nn: N[p"] x N[p"] —
N[p"), -, of Lie algebra structures on N[p"], compatible with the transition maps N [p"*!]
—» N[p"]. Moreover the slope filtration on IV corresponds to a filtration on Nz, also called
the slope filtration on z,.

(ii) Let N be a Tate unipotent group over x in the sense of Definition It is easy
to see that the fpqc sheaf £ieNg of Lie Qp-algebras on Spec(k) is a Tate unipotent Lie
Qp-algebra over x in the sense of Definition The slope filtration on £ieNg induces a
slope filtration on Ng via the Mal’cev correspondence, hence N is a Tate unipotent group
in the sense of Definition This shows that Definitions and are compatible;

cf. Remark 2.2.11

Lemma 2.8. Let Ng, be a Tate unipotent Lie Qp-algebra over a field r of characteristic
p. There exists a Tate unipotent group N over k and an isomorphism LieNg = Ng, .
Note that Nq s determined by Ng, up to unique isomorphism, according to the Mal’cev

COT’T@SpOTld@TZC@.

Definition 2.9. The fpqc sheaf uniquely divisible nilpotent groups Ng in Lemma
is called the Tate unipotent group up to isogeny attached to the Tate unipotent Lie Q-
algebra Ng, .

2.10.

We explain two families of examples of Tate unipotent groups and Tate unipotent Lie
algebras, from the theory of sustained p-divisible groups. See [9}/10], [11, Ch. 5] for more
information.

(a) Let X be a p-divisible group over a field x of characteristic p. For each positive
integer n, the stabilized End group scheme &nd(X), at level-n attached to X is, by

definition, the schematic image
Image (rp 4N End(X[p" ™)) = End(X[p"])), N >0

of the restriction homomorphisms ry, ,4 n for N sufficiently large, where &nd(X [p"]) is the

ring scheme over x whose S-points are in functorial bijection with S-endomorphisms of
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X [p"], for all k-schemes S. The ring scheme &nd* (X),, is finite over « for every n. Restrict-
ing endomorphisms of X[p"*!] to X[p"] gives epimorphisms &nd**(X), 11 — &nd**(X),,
and we get a projective system (&hd(X [p"]))n>1 of ring schemes over x. Note that we
also have natural monomorphisms (&nd®*(X),, +) <= (hd®*(X)ni1,+); the resulting in-
ductive system is a p-divisible group over k. However these monomorphism do not respect
multiplication.

Let &nd®* (X)) be the neutral component of &nhd®(X),; it is a nilpotent ring scheme
without unity. Again we have a projective system (éandSt(X )9l)n>1 of nilpotent ring
schemes. Let @ut®(X), = (&nd*(X),)*, the group of units of &nd*(X),. Clearly
the neutral component 2ut**(X)? of <uts'(X), is equal to 1+ &nd(X)Y.

Consider the projective system @ut*(X)? = (uts(X )91)721 of nilpotent group
schemes over k, and let

Ty (ut™(X)°) := lim ut™ (X))

be the projective limit of @ut*(X) as an fpqc sheaf on Spec(x). We also have an fpqc
sheaf of nilpotent Z,-algebras

Ty(énd™(X)°) := lim End™ (X)5.

Formally adding 1 to the sheaf of nilpotent Z,-algebras T,(&nd* (X)) gives us an fpqc
sheaf of groups 1 + T, (&nd**(X)?), naturally isomorphic to T (<Zut™(X)?).

The sheaf T,(2ut*(X)°) is a Tate unipotent group over k. From the natural action
of Tp(&nd®*(X)?) on T,(X), it is easy to see that if X has r distinct slopes, then both
T, (End*(X)?) and T,(«utst(X)?) have (r + 1)(r — 2)/2 slopes. On the other hand,
the r-th power of the ideal Tj(&nd** (X)) of Tp(End™ (X)) is (0), and T,(/ut** (X)) is
nilpotent of class r — 1.

Define the Tate Q,-algebra V,(&nd* (X)) of &nd**(X)° by

Vy(nd™ (X)) := Tp(énd™ (X)°) @2 Q,
an fpqc sheaf of nilpotent Q,-algebras on Spec(k).
e The Mal’cev completion of T,(=ut**(X)?), denoted by V,(«uts*(X)?), is
V(b (X)) = Ty( ot (X)) = 1+ V(6 (X)°),

the sheaf of groups obtained from the sheaf of nilpotent Q,-algebras V,(&nd* (X )°)
by formally adding 1 to the latter.

e The slope filtrations on T (Zut™(X)?) and V,(«ut**(X)?) are induced by the slope

filtration on Tp(&nd™(X)?), or equivalently the slope filtration on the p-divisible

0

group whose p"-torsion subgroup scheme is &hd®(X)2.
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e The Tate unipotent Lie Qp-algebra LieV,(eut*(X)°) corresponding to the sheaf
V,(2ut™*(X)?) of uniquely divisible nilpotent groups under the Mal’cev correspon-

dence is the sheaf of Lie Q,-algebras underlying the nilpotent associative Q,-algebra
V,(Endt(X)0).

e The exponential map
exp: Vp(énd™(X)?) — V,(«ut™ (X))

is given by the truncated exponential series
r—1 o
n=1
while the logarithm map

log: V,(uts*(X)%) — V,(&nd™ (X))

is given by the truncated logarithm series
r—1
n—1 (U — 1)71

where r is the number of distinct slopes of the p-divisible group X.

(b) For every polarized p-divisible group (Y, \) over a field x of characteristic p, the
polarization A induces an involution 7 on the fpqc sheaf V,(&nd**(Y)) := lim End**(Y),
of Qp-algebras on Spec(k), and also on the sheaf V,(&nd*(Y)?) of nilpotent associative
Qp-algebras.

e The subsheaf V,(&nd** (Y)?)™=! of V,,(&nd®* (Y)?) is a Tate unipotent Lie subalge-
bra of V,(&nd*(Y)?) over k.

e The Tate unipotent group up to isogeny corresponding to V,(&hd**(Y)?)7="1 is
the sheaf U(V,(&nd**(Y)?),7) of unitary groups attached to the sheaf of nilpotent
associative Qp-algebras with involution (V,(&nd**(Y)?), 7), whose points consists of
all functorial points z of V,(&hd**(Y)?) such that z+2"+2-2" =0=z2+2"+27 - 2.

o Let cut™(Y,\)? = («ut™(Y,\);),~, be the projective system of connected stabi-
lized Aut group scheme of (Y, \), where N > 0,

ut™t (Y, \)? = (Image (rn7n+N: %ut(Y[p”*N], )\[p”+N]) — out(Y[p"], /\[p"])))o,

for each n. The projective limit T, (ut™(Y,\)?) = Jm utt (Y, \)V is a Tate
unipotent group over k, naturally isomorphic to the intersection of T, (a7t (Y )?)
and U(V,(énd™(Y)?),7) in Vp(@ut**(Y)°):

T, (ut™ (Y, \)°) = U(V,(&nd™(Y)?), 7) N Tp(ut™(Y)?).
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e The Mal’cev completion V,,(«/ut**(Y,\)?) of T,(«/uts*(Y,\)?) is naturally isomor-
phic to U(V,(énd**(Y)?), 7).
e The exponential map
exp: Vp(&nd™(Y)?)™="1 = U(V,(énd™(Y)"), 7)
and the logarithm map
log: U(V,(&nd™(Y)?),7) = Vp(énd™(Y)?)™=*

are given by the truncated exponential series
i
z—= 1+ nz:l )
and the truncated logarithm series

r—1 n
U Z(_l)n—l (U _nl)
n=1

respectively, where r is the number of distinct sums of Y.

Proposition below is an analog of Ado’s theorem. It says that up to isogeny,
every Tate unipotent group can be realized as a TL subgroup of the Tate module of the

stabilized Aut group of a p-divisible group.

Proposition 2.11. Let Ng, be a Tate unipotent Lie Qy-algebra over a field k of charac-

teristic p. There exists a p-divisible group X over k and an embedding
Ng, < Vp(énd™(X)°)

of the fpqc sheaf Ng, of Lie Qy-algebras into the fpgc sheaf of Lie Q,-algebras underlying
the sheaf of nilpotent associative Qp-algebras (without unity) V,(&nd**(X)%) on Sch,..

Lemma 2.12. Let N be a Tate unipotent group over a field k of characteristic p.

(a) The group Aut(Ng) of automorphisms of the Mal’cev completion Ng of N has a
natural structure as a p-adic Lie group. It is the group of Qp-points of a linear

algebraic group over Q.
(b) The group Aut(IN) of automorphisms of N is a compact open subgroup of Aut(Ng).

(c) The Lie algebra Lie(Aut(Ng)) of Aut(Nq) is naturally isomorphic to the Lie Q-
algebra consisting of all Q,-linear derivations 0: £ieNg — LieNg of the Tate unipo-
tent Lie Qp-algebra LieNg attached to N.
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2.13.

Suppose that k is a perfect field of characteristic p. Then the covariant Dieudonné theory
tells us that a Tate unipotent Lie Z,-algebra 9z, corresponds to a free module D, (z,)
of finite rank over the ring W(k) of p-adic Witt vectors with entries in &, together with

semilinear operators F, V on D,(Nz,) and a skew symmetric W (x)-bilinear map
[T =1 b)) s De(Mz,) X Di(Nz,) = D.(Ng,),
satisfying the following properties.
(i) [z [y, 2] + [y, [z 2]] + [2, [z, y]] = O for all 2,y, 2 € D(Nz,).
(i) F(a-z) = o(a)-F(z) and V(a-z) = 0~ (a)-V(x) for all a € W(x) and all z € D, (N, ).
(iii) [V(x),V(y)] = V([z,y]) for all 2,y € D.(Nz,).
(iv) [F(z),y] = F([z,V(y)]) and [z, F(y)] = F([V(z),y]) for all 2,y € D.(Ng,).

Here o denotes the canonical lifting of Frobenius on W (k).

Similarly a Tate unipotent Lie Q,-algebra Mg, over x corresponds to a finite dimen-
sional vector space D.(Mg,) over W(x) ®z Q, together with operators F, V and a skew
bilinear map [-,-]: D«(Mg,) x D«(Ng,) — D«(MNg, ), satisfying conditions (i)-(iv) above.

2.14.

Suppose that the base field x is perfect. Let g, be a Tate unipotent Lie Q,-algebra.

Then the slope filtration on 91g, splits, and we have a canonical decomposition

me = @ ‘ﬁsyQp,

seslope(Ng,,)

where M, q, = V,(Ns) for some isoclinic p-divisible group Ny over s, for each s €

slope(Ng, ). Moreover
[ms,Qpa ms/,Qp]me - ms+s’,(@p7 v S, S/ S Slope(m(@p)'

Definition 2.15. Let k be a perfect field of characteristic p. Let

Ng, = @ Ns.0,
s€slope(Ng,, )

be the slope decomposition of Ng, of a Tate unipotent Lie Q,-algebra.
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(a) Denote by Oguler the derivation of Mg, such that Opwer(us) = sus for all s €
slope(‘ﬁQp) and all functorial points us of N; g, -

The element of the Lie algebra Lie(Aut(9g,)) of Aut(Mg) corresponding to Jguler
will be called the Euler vector field on Mg, , denoted again by Oguler-

(b) Let N be a Tate unipotent group over x whose Mal’cev completion Ng is the Tate
unipotent group up to isogeny attached to g, . A closed subgroup of the p-adic Lie
group Aut(N) of the form

{eXpAut(N@) (t . 8Euler) } t e U}
for an open subgroup U of (Z,,+) is called an Euler flow on N.

Remark. (i) In the case when N is the Tate Zy-module of a p-divisible group X, the
Euler flows correspond to the subgroups {[a]x | @ € 1+ p"Z,} of Aut(X), where n ranges
through all inters n > 1 if p # 2, and all integers n > 2 if p = 2.

(ii) Every homomorphism h: g, — ‘ﬁ(’@p between Tate unipotent Lie Q,-algebras
respects the Euler vector fields on 91 and 9V, in the sense that 8Euler,m{@p oh = ho@Euleerp.
Similarly every homomorphism a: N — N’ between Tate unipotent groups respects Euler
flows on N and N'.

(iii) Let bp be the least common multiple of all denominators of slope(Mg, ). The map
¢ from Ng, to itself such that % (ug) = pbsu, for all functorial points us of Ns,q, is
an endomorphism of the fpqc sheaf g, of Lie Q,-algebras on Spec(x). It is an analog of
the bo-th iterate of the relative Frobenius of g, .

3. Tate-linear formal varieties

Proposition 3.1. Let N be a Tate unipotent group over a field k of characteristic p. The
fpgc sheaf Ngo/IN on Spec(k) is represented by a noetherian local formal scheme smooth
over k, isomorphic to the formal spectrum of a formal power series Ting over k in finitely

many variables.
Definition 3.2. Let k be a field of characteristic p.

(a) Let T be a noetherian local formal scheme over k. A Tate-linear structure on T is
an isomorphism ¢: T = Ng/N from the fpqc sheaf on Spec(x) represented by T to
the fpqc sheaf Ng/IN, where N is a Tate unipotent group over k. We will denote
the quotient Ng/N by TL(IN), and call it the Tate-linear formal variety attached
to the Tate unipotent group N.

(b) A Tate-linear formal variety over & is pair (T,¢: T <> Ng/N) consisting of a formal

k-scheme T and a Tate-linear structure ¢ on 7.
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Definition 3.3. Let TL(N;) and TL(N32) be Tate-linear formal varieties over a field x of

characteristic p.

(a) A formal morphism f: TL(N;) — TL(Ng) over « is Tate-linear, or a TL morphism,
if there exists a homomorphism h: N7 — Ny over k£ which induces f. Note that

such a homomorphism A is unique if it exists.

(b) A TL morphism TL(h): TL(N;) — TL(N3) induced by a homomorphism h: N; —

N over « is said to be an isogeny (respectively a quasi-isogeny) if h is.

Definition 3.4. Let N be a Tate unipotent group over a field s of characteristic p. Let
G be a closed subgroup of the group of all Tate-linear automorphisms of TL(N). We say
that G operates strongly nontrivially on TL(N) if G corresponds to a closed subgroup of
Aut(N) such that every Jordan-Holder component of the Lie(G)-module D, (Mg, ) is
non-trivial, where x# is an algebraic closure of x and ‘ﬁQp,Halg is the base change to k'
of the Lie Qp-algebra g, of N.

Remark. Every Euler flow (Definition[2.15)) on N induces a subgroup of TL-automorphisms
of TL(N) acting strongly nontrivially on TL(IN).

Lemma below implies that a Tate-linear formal variety can be assembled from p-

divisible formal groups through a finite collection of torsors for p-divisible formal groups.

Lemma 3.5. Let N be a Tate unipotent group over a field k of characteristic p. Let Z be
a Tate unipotent subgroup of N contained in the center Z(IN) of N, such that N/Z is a
Tate unipotent group. Then the map w: TL(N) — TL(N/Z) induced by the quotient map
N — N/Z has a natural structure as a TL(Z)-torsor over TL(IN/Z).

3.6. Biextensions as Tate-linear formal varieties

Let X, Y, Z be p-divisible formal groups over a field x of characteristic p. Let X = T)(X),
Y =T,(), Z=T,(Z) be the Tate Z,-modules of X, Y, Z respectively. Let

q

1 Z N XXxY——1

be a central extension of X x Y by Z, which splits over X and also over Y. Then N
is a Tate unipotent group over k. We choose and fix embeddings X < N and Y — N
which splits the central extensions Z — ¢ 'X — X and Z — ¢~ 'Y — Y respectively,
and regard X and Y as sheaves of subgroups of N.

Let E := TL(N) be the Tate-linear formal variety over x attached to N. By Lemmal3.5]
we have a canonical translation action of Z on E and a projection map 7: £ — X x Y

such that E is a Z-torsor over X x Y. We will explain below an enhancement of the
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Z-torsor structure on £ — X X Y to a biextension of (X,Y) by Z, and identify the family

of Weil pairings of this biextension in terms of the group structure of IN.

Remark. Strictly speaking, the input data which produce the biextension structure on E

include the embeddings X < N and Y < N. This fine point is suppressed below.

(a) We know from the exactness of localization functors for nilpotent groups that

the Mal’cev completion Ng of N is a central extension of Xg x Yg by Zg. The group

commutator
[+, ]erpNg: Ng x Ng = Ng, [n1,ng]gp = nflnglnlnz,
on Ng induces a skew-symmetric bilinear pairing
(-3 )Ny (Xg x Yo) x (Xg x Yg) = Zg
such that the diagram

['7']grp,N@

NQ X N@ NQ

i(I@XQQ /L
<'»'>N@

(Xg x Yg) x (Xg x Yg) Zg

commutes.

(b) We will define relative group laws

+1: Exy F—F and +9: Exx FE—FE

Vni,n € NQ

on E, which will give E a biextension structure. See [27] for the notion of biextensions.

(i) Given a functorial point y of Y, pick a functorial point yo on Yg lifting y. The fiber

(pryom)~1(y) of E over y consists of all elements of the form [z - x - yo], where z is

a functorial point of Zg, x is a functorial point of Xg, and [z - x - y¢] is the image

of z-x-yo in TL(N) = E. Two functorial points [z - X1 - yo| and [z2 - X2 - yo| of E,

over the same k-scheme are equal if and only

x1—x2 € X and (X1 —X2,y0)N, + 21 — 22 € Z.

(ii) For any two functorial points [z1 - X; - yo] and [z2 - X2 - yo] of E, over the same

k-scheme, define their sum under 41 by

1 - x1 - yo| +1 [22 - X2 - yol| = [(z1 + 22) - (x1 + X2) - yol-

This gives a well-defined morphism +1: FE Xy E to E.
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Also, for each functorial point y of Y, the sheaf of commutative groups (prs om)~1(y)
under the group law + is the push-out of the top row by the vertical arrow &, in

the commutative diagram

1—>Zg-X Zo - Xg Xo/X=X—>1
«| | |-
1 Z (praom) ™ (y) X 1

with exact rows. Here §,: Zg - X — Z is the group homomorphism given by
§y(z-x) = (X,y0)N, mod Z, VzeZg Vxe€X,
and yq is a representative of y in Xg.
(iii) Similarly, define a group law +9: E X x E — X relative to X by
21 - 2 - Xo] +2 [21 - y2 - X0 := [(z1 + 22) - (¥1 + ¥2) - X0]

for functorial points x¢g € X, y1,y2 € Y, 21,29 € Z with values in the same k-

scheme.

For each functorial point x of X, the sheaf of commutative groups (pr; or)~!(x) is an

extension of Y by Z, which sits in the push-out diagram

1—>Zg-Y Zg - Yo—> Yo /Y=Y ——>1

R

where 1,: Zg - Y — Z is given by

Ne(z-y) = (y,x0) modZ=—(x0,y) modZ, VzeZg VyecY.
(c) A straight forward calculation shows that the family of Weil pairings
Bn: X[p"] xY[p"] = Z[p"]

attached to the biextension E — X XY constructed in (B) above, with the sign convention

in [27], is expressed in terms of the Lie bracket on Ng by

Bn(«rn’ yn) = pn<xn7 yn>N
Q

for all functorial points (xy,, yn) of X[p"] x Y[p"] and liftings (x,,y») in (p~"X) x (p7"Y)
of (Zn, Yn)-
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Since every biextension of p-divisible groups is determined up to isomorphism by its
Weil pairings, the above formula for (3, identifies the biextension structure on £ = TL(IN).
On the other hand, the skew symmetric pairing (-,-)n, is easily recovered from the
family (58,)n>1 of Weil pairings. So the Tate unipotent group N is also determined by the
biextension £ — X X Y up to isomorphism.

The formula for the Weil pairings also shows that every biextension of p-divisible
formal groups arises from a Tate-linear formal variety associated to Tate unipotent group
N satisfying the conditions in the first paragraph of Thus every Tate-linear formal
variety TL(N) over a perfect field attached to a Tate unipotent group N of nilpotency

class at most 2 is isogenous to a biextension of p-divisible formal groups.

3.7. Sustained deformation spaces are Tate-linear formal varieties

(a) Let X be a p-divisible group over a field x of characteristic p. Let Def(X)sus be the
sustained deformation space of X, such that for every augmented commutative artinian
local k-algebra R, Def(X)sus(R) is canonically identified with the set of all equivalence
classes of sustained p-divisible groups over R whose closed fiber is X. It is shown in |11}
Ch. 5] that Def(X)sus is represented by a smooth formal scheme over «, and there is a

natural isomorphism
Cx: TL (Tp(ut™(X)°)) = Def (X)sus:
The gist is as follows. Let R be an augmented artinian local x-algebra.

e A sustained p-divisible group X over R is strongly sustained modeled on X, because
its closed fiber is X. Therefore X corresponds to a right torsor for the projective

system «ut®*(X) of stabilized Aut group schemes.

e A (rigidified) right @ut>*(X)-torsor over R is induced by a right «7ut>*(X)°-torsor
over R, unique up to isomorphism. The latter is the same as a right torsor for
T, (utst(X)0).

e An R-valued point of TL (T («7ut**(X)°)) determines a right T, («/uts*(X)?)-torsor.
This defines a natural map (x: TL (Tp,(«ut* (X)) = De f(X )sus-

e The fact that (x is an isomorphism is a special case of a more general statement on
the deformation of torsors for Tate unipotent groups. A d’evisage argument reduces
the latter statement to the case of a commutative Tate unipotent group, which is

known.

(b) Let (Y, \) be a polarized p-divisible group. Let Def (Y, A)sus be the sustained
deformation functor of (Y, \). Similar to (a) above, Def(Y, A)sus is represented by a
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smooth formal scheme over x, and we have a canonical isomorphism
Cyat TL (Ty(ut™ (Y, N)")) = Def(Y, Nsus.

It follows that for every F -point zy of a central leaf C in a moduli space .o/ 9.dn.Fy with
n > 3 and ged(n,p) = 1, such that zp corresponds to a polarized abelian variety (Ag, Ag)
with level-n structure, the formal completion C/*0 of C at z( has a natural Tate-linear

structure

Coot TL (Tp(ut™ (A [p™), Ao [p™])")) = €/*°.
Such a group-theoretic description of the local structure of central leaves in Siegel modular
varieties motivated the notion of Tate-linear formal varieties.

Proposition below provides a “trivial estimate” of the actions of one-parameter

subgroups of Aut(Ng) on a Tate-linear formal variety TL(N).

Proposition 3.8. Let N be a Tate unipotent group over a field k of characteristic p. Let
s € (0,1] be a real number such that max(slope(IN)) < s < 1. Let U be a finitely generated
Zy-submodule of the Lie algebra of the p-adic Lie group Aut(Ng). There exist constants
co,no € N such that for every n > ng and every B € U, the exponential eXpAut(NQ)(p”B)
of p" B is an element of Aut(IN) which operates trivially on the infinitesimal neighborhood
TL(N)[Frl?/s]=¢0] of the base point of TL(N). Here TL(N)[Frl"/s1=¢] denotes the inverse
image under the relative Frobenius morphism Fan/(SJ N) “: TL(N) — TL(N)(T’L”/SJ%O) of the
base point of TL(IN )(/pwsJ 0.

4. Orbital rigidity of Tate-linear structures

Tate-linear formal varieties satisfy a strong rigidity property, Theorem below. The
special case when the Tate unipotent group N is commutative, i.e., the Tate-linear formal
variety TL(N) is a p-divisible formal group X over x and N = T,,(X), is the main result
of [7].

Theorem 4.1 (Orbital rigidity of Tate-linear formal varieties). Let  be a perfect field of
characteristic p, and let N be a Tate unipotent group over k. Let G be a closed subgroup of
Aut(N) acting strongly nontrivially on N. Let W be a reduced irreducible closed formal
subscheme of TL(N). If W is stable under the action of G on TL(N), then W is a Tate-
linear formal subvariety of TL(N). In other words, there exists a unique cotorsion free
Tate unipotent subgroup N’ of N such that W = TL(N).

Let Ay be the highest slope of N and let Z = Fil;\I1 N be the Tate unipotent subgroup
of N isomorphic to T)(Z) of an isoclinic p-divisible group Z over s with slope A, such

that all slopes of N/Z are strictly smaller than A\;. An easy induction on the number of
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distinct slopes of N shows that Theorem [4.1] follows from the case when N is isoclinic,
which is a special case of [7], plus Theorems and below.

Theorem 4.2. Notation and assumptions as in the above paragraph.

(a) The reduced closed subscheme (W N Z)yeq of Z is a p-divisible subgroup of Z. Here
(W N Z)req is the largest reduced closed subscheme of Z contained in W.

(b) The formal subscheme W of TL(IN) is stable under the action of the p-divisible
subgroup Z' := (W N Z)yeq of Z.
Let Z' be the Tate unipotent subgroup of Z corresponding to Z'. Let N1 := N/Z'.
The quotient Wy := W/Z" is an irreducible closed formal subscheme of TL(N1), and
is stable under the action of G. Let : TL(Ny) — TL(IN2) be the map associated to
the quotient map N1 — No.

(¢c) The restriction 7|y, : W1 — TL(Ng) of 7: TL(N;) — TL(Ng) to W/Zy is purely

inseparable.

Theorem 4.3. Let Ny be a Tate unipotent group over a field k of characteristic p. Let G
be a p-adic Lie group acting strongly nontrivially on N1. Let Z; be a Tate unipotent normal
subgroup of N1 stable under the action of G, such that Min(slope(Z;)) > Max(slope(N2)),
where Ng := Ny /Z;.

Suppose that the projection map 7: TL(Ny) — TL(N2) admits a G-equivariant section
& Then & is a TL morphism, i.e., there exists a G-equivariant group homomorphism
1: No — Ny of fpgc sheaves on Sceb,. which splits the quotient homomorphism N — Na,
such that € is equal to the TL morphism TL(¢): TL(Ngy) — TL(INy) induced by 1.

Remark 4.4. (i) The proof of Theorem uses rigidity of p-divisible groups in [7], and is
easier than Theorem Here is a sketch.

The slope decompositions of £ie(N;)g for ¢ = 1,2 provide a canonical isomorphism
Lie((Ny)g) = LieZg @ Lie((N2)g). To prove Theorem it suffices to show that the
existence of a G-equivariant section of m: TL(IN;) — TL(IN2) implies that the sheaf
Lie((N1)q) of Q,-submodules of £ie((N2)q) is stable under the Lie bracket of £ie((N1)g),

or equivalently,

[, (Lie((N2)g)) ,» D (Lie((N2)@) o lp. (gienyyg) = (0)

for all slopes s, s’ of Ny such that s + s’ > Max(slope(N3z)), where D, (Lie((N2)g))
denotes the slope-t component of the Dieudonné module D, (Lie((N2)g)) of Lie((N2)g)
regarded as a submodule of D, (£ie((N1)g)), for every ¢ € slope(Ny).

t
)

An easy induction reduces this assertion to the case when Z; is isoclinic. By func-

toriality of the slope decomposition and the Lie bracket structures of £ie((IN;)g) further
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reduces the assertion to the special case when N9 has at most 2 slopes. In this situation
TL(N;) is isogenous to a biextension, and the desired conclusion is deduced from the
orbital rigidity of p-divisible formal groups applied to suitable maps produced from the
section ¢ and the biextension structure of TL(INy).

(ii) The proof of Theorem uses the method of hypocotyl prolongation in tempered
perfections, discussed in An outline of the proof of Theorem is given in

Remark 4.5. For every Tate unipotent subgroup N; of a Tate unipotent group N over
a field k of characteristic p, there exists an Euler flow on the Tate-linear formal variety
TL(N) which sends the Tate-linear formal subvariety TL(NN); to itself. So the definition
of Tate-linear formal varieties is tightly constrained by the orbital rigidity property (see
Theorem , the requirement that the sustained deformation spaces Def(X )sys of p-

divisible groups over x are Tate-linear formal varieties and Proposition [2.11

5. Tempered virtual functions and hypocotyl elongation

The proof of orbital rigidity for Tate-linear formal varieties (see Theorem |4.1)) uses the the
general strategy of the proof of orbital rigidity of p-divisible formal groups |7]: To show
that a formal power series f(ui,...,uq,v1,...,0,) Over k in 2a variables is identically zero,

it suffices to produce a infinite sequence of congruence relations

n n

flxy,. . xg,2d .28 =0 (mod (z1,...,24)%)

)

where ¢ is a power of p, and (dy,)n>n, 1S a sequence of positive integers such that

lim — = 0.

We call this the method of hypocotyl elongation. See Proposition [5.3] for a slightly more

general formulation.

5.1. Tempered virtual functions

The notion of tempered virtual functions on noetherian local formal schemes in character-
istic p was discovered during the investigation of the rigidity phenomenon of biextensions
of p-divisible formal groups. We explain this in the simplest nontrivial case, a biextension
m: E— X xY of (X,Y) by Z, where Z, X, Y are isoclinic p-divisible formal groups over
a perfect field k of characteristic p, with slopes A1, Ag, A3 respectively, A1 = Ay + A3, and
the family of Weil pairings (8,: X[p"] x Y[p"] = Z[p"]), -,
follows the method of hypocotyl elongation (see Proposition , one would attempt to

is non-trivial. If one naively

find a projection morphism 3 E— Z from E to Z , and use it to construct a “first order

asymptotic approximation” of the action on E of any given one-parameter subgroup of
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Autpiext (E). However this is a non-starter, for there is no projection morphism E — Z
which is natural in any sense.

Next one tries to find, for each given one-parameter subgroup exp(tv) of Autpiext(E),
where v is an element of Lie(Autpiex(£)) and ¢ ranges through an open subgroup p™Z,
of (Zp,+), a morphism 3[v]: E — Z which interpolates the action of exp(tv) on E. This
attempt fails again. However if one analyzes this failure more closely, one sees that the
root cause is that the ring of all formal functions on E is “too small”. If one enlarges the
affine coordinate ring Rg of E to a suitable extension ring R% contained in the completion
of the perfection of Rg, one gets a “virtual morphism g[v]: E --» Z with coeflicients in
RB’E” which has the desired properties. Here a virtual morphism E --+ Z is interpreted
as a continuous k-linear homomorphism from the affine coordinate ring of Z to R%. See
Steps 2-3 of §6|for a description of the process of producing such a virtual g[v] in the more
general setting of Tate-linear formal varieties.

Tempered virtual functions on the formal spectrum Spf(R) of a complete noetherian
integral domain (R, m) over a perfect field k of characteristic p are elements contained in
tempered perfections of (R, m). There are several filtered inductive families of tempered
perfections of (R, m). These families are cofinal with each other, so their inductive limits
focoincide. In we give a summary of tempered perfections of complete augmented
local domains over perfect fields of characteristic p, and refer to |11, Ch. 10.7] for more

information.

5.2. Tempered perfections

Let x be a perfect field of characteristic p, and let (R, m) be a complete augmented
noetherian local integral domain over k, i.e., structural homomorphism x — R of the
k-algebra R induces an isomorphism £ — R/m.

(a) There is a family
((R, m)perf,b

srqﬁr;[io])ns,io

of non-noetherian complete augmented local domains over k, sandwiched between (R, m)
and the completion ((R, m)PH)" of its perfection (R, m)P°™ with integer parameters r, s,
1o satisfying

O0<r<s, 149=>0.

Recall that the perfection RP®™ of (R, m) has a decreasing filtration Filfeq RPef indexed
by real numbers, defined by

{z e R |35 e Nst. a” e ml*?1} ifu >0,
Rperf if u <O0.

Filf, RP =
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The completed perfection ((R, m)P*H)" of R is the completion of RP®f with respect to
the above filtration. The filtration Filg,, on RP! induces a decreasing filtration on
(R, m)P™H" denoted again by Filf,.

By definition, (R, m)perf’b | is the completion of the subring

8:¢7;[i0
Z ¢—m“ (mns—io)

n>1

of RP'f with respect to the filtration given by powers of the ideal generated by m, where

¢ is the Frobenius endomorphism z — P of RP®f. Every closed subring of the completed
perf.,b
8:¢73d0

perfection of R which lies between R and (R, m) ] for some parameters (r,s,ig) is
said to be a tempered perfection of (R, m).

Clearly each (R, m)gjflflo} is a tempered perfection of (R, m). This family of complete
augmented local domains over k is filtered in the following sense: given any two rings Ry,
Ry in this family, there is a third ring R3 in the family which contains both R; and Ra.
The union

S erf b
(ij)t pPp f:: U (Ram)gfbf,[m}

7,850
is a subring of ((R, m)P*)" which contains RP®'f, but strictly smaller than ((R,m)PeH)".
Elements of (R, m)"™PPerf will be called tempered elements of the completed perfection
(R, m)P™HN of R. The filtration F ileg on the completed perfection (RPN induces a
filtration on each tempered perfection of (R, m).

(b) There are other versions of families

perf.,b perf.,b perf,#
((Rom) ol rsir (Bm)Ap0) apg and (Rom)350) 4 g

of tempered perfections of (R, m), indexed by parameters (r, s, i) and (A, b, d) respectively.
Each of these three families is cofinal with the family ((R, m)?f;f’.?io])r s.io

ring (R, m)?iﬁ;?@.d is contained in (R,m)i‘ﬁf for a suitable (A, b,d), and each (R, m)i‘fii’ib

is contained in a (R, m)

. For instance each

perf.,b
s:¢7;3lio]”
equal to the subring (R, m)"™PPerf congisting of all tempered elements of ((R,m)PerH)A,

Therefore the union of rings in each of these families is

Any ring in one of the above families is a tempered perfection of (R, m). It is instructive

tmp perf

to regard elements of (R, m) as a sort of “tempered generalized functions” on the

formal scheme Spf(R). We will call elements of (R, m)™PPet tempered virtual functions
on Spf(R).

(c) For fixed parameters (r, s, 1), the assignment

— perf,b
(R7 m) (Rv m)szzzﬁ’“;[io]

is functorial in (R, m). Moreover the continuous k-algebra homomorphism

b perf.,b perf.,b
h: (Rl,ml)s:(ﬁT;[iO] - (R27m2)s:¢r;[io]
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induced by a continuous k-algebra homomorphism
h: (Rl,ml) — (Rg,mg)

is surjective (respectively injective) if h is surjective (respectively injective). The same is

f,4 f.h f,#
S:eq;;[io}’ <(R’m)zflz;d)A,b,d and ((Rv m>i‘fi;d )A,b,d'

(d) We illustrate the general idea of tempered virtual functions with the family

true for the formations of (R, m)

oo —\\Eb
("i<<t11) PR 7tfn >>C;d)E,c,d

of tempered perfections of power series ring k[[t1,...,tn]], depending on parameters

(E,c,d), where F, c,d are real numbers, E > 0, C > 0, d > 0. As we have already

mentioned, this family of tempered perfections of k[[t1, ..., ty]] is cofinal with each of the

four families of tempered perfections of k[[t1, ..., tm]].

By definition m((t’fiw, ot w))gfz consists of all formal power series of the form
> b
Iesupp(m:b:E;C,d)

such that by € k for all I € supp(m :b: E;C,d). Here

e supp(m :b: E;C,d) is the sub-semigroup of (N[%]m, +) given by

supp(m:b: E;C,d) == {I € N[%]m | 11|, < max (C - (|I|, +d)”,1)}.

o N[%]m is the sub-semigroup of (Z[%]m, +) consisting of all m-tuples (i1,...,%y) in
Z[%]m with all entries 7; > 0.
e For each I = (i1,...,im) € N[%]m, |I], is the usual p-adic norm of I given by

|I‘p =p ordy (max(i1,...,im))

9

while |I|, is the archimedean norm of I given by
| =114+ im.

In particular the p-adic norm of I is bounded by a polynomial ff . 4(|I|) of the archimedean
norm of I, for all I in supp(m : b : E;C,d).

(e) If we replace the archimedean norm ||, on N[%]m by the max norm
oo := max(i1,...,1p),
we get a ring k(... ,t%w»gjj The resulting family

[ee] —o0

_ E,
(,‘ﬁ)<<t11) ,...,tzrjn >>C;jl#)E,c,d
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of tempered perfections k[[t1, . . ., ty]] is cofinal with the family (m((tzlfoo, e t%m»gZ) Fred
as well.

Proposition below, called hypocotyl elongation in commutative noetherian local
domains over perfect fields of characteristic p, is the main input of the proof of rigidity of
p-divisible formal groups in [7]. It follows from Propositions 2.1 and 3.1 of |7], and provides
a way to establish power series relations f(uy,...,uq,v1,...,vy) between functions on a

product formal scheme Spf(R) x Spf(R) of the form pr g1, ..., pr] g, and pr3 by, ..., prs hp.

Proposition 5.3 (Hypocotyl elongation in complete noetherian local domains). Let k be a
perfect field of characteristic p. Letu = (u1,...,uq), v= (v1,...,vp) be two tuples of vari-
ables, and let f(u,v) € k[[u,v]] be a formal power series in variables uy, ..., Ug, V1, ..., Vp
with coefficients in k. Let (R,m) be an augmented noetherian complete local domain R
over k such that k = R/m. Let g1,...,ga,h1,...,hy be elements of the mazrimal ideal m.
Let ng € N and let (dy)n>n, be a sequence of positive integers and let g be a power of p

such that lim,,_, oo % = 0. Suppose that

Flgrs- s 9a,hY . R )Y =0 (mod m?n)
for alln > ng. Then

fr1®1,...,0a®1,10h,...,1®@h) =0

in the completed tensor product R®LR, where Ry R is the formal completion of the local
domain R ®, R.

Proposition [5.4) extends Proposition [5.3| to tempered perfections, and allows g1, .. ., ga,
hi,...,hy to be tempered virtual functions on Spf(R). See |11, Ch. 10 §5] for a proof.

Proposition 5.4 (Hypocoptyl elongation in tempered perfections). Let (R, m) be an aug-

mented complete Noetherian local domain over a perfect field k of characteristic p.

o Let g1,...,Gm,N1,..., hy be elements of the maximal ideal of (R,m)zelrf&b.
o Let f(ui,...,Um,v1,...,Un) be an element of
—oo — 0 — o0 — o0 E,l?
r((u ok, ), )l

which lies in the closure of the image of

—o0 —o0

K((uP Ve

)

Eb —co\WEb
Neia @ 607 Neog — w({w” 0P

o Letq=p" be a power of p for some positive integer . Let (dp)neN, n>n, be a sequence

of positive integers such that lim, % =0.
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Suppose that

f(gl,...,gm,h(fn,...,hf:,) =0 (mod Fil

£,b
deg(R’ m)i(?l:b/;d/)

in (R, m)ze,ri,’k_’d, for all sufficiently large natural numbers n. Then
far®l,....gn®1,1Q0h1,....,1Q@hp) =0
in the completed tempered perfection (R@KR,mRQ@HR)Ze,fi}Ed, of R®.R.

Remark 5.5. (a) The condition in Proposition [5.4]that the relation f(u1,. .., uq,v1,...,vp)
lies in the closure of the image of K<<gp*°°>>g;|; R ﬁ((gp7w>>gzz — m((ypfoo,gpfw))gzz
may seem to be too stringent at first sight. However some subtleties in tensor products of
tempered perfections are to be expected, if one recalls analogous situations in the theory
of distributions, such as the Schwartz kernel theorem.

(b) The proof of orbital rigidity of Tate-linear formal varieties uses the special case of
Proposition when the relation f(u,v) is an element of [[ug, ..., uq,v1,..., ).

(¢) In Proposition f is a formal function on a product formal scheme X x Y, where
X = Spf(k[[u]]), Y = Spf(k[[v]]), and the tuple (g1, ..., gs) (respectively (hi,...,hp)) rep-
resents a formal k-morphism from Spf(R) to X (respectively Y'). Coordinates are similarly
involved in the statement of Proposition [5.4] Proposition [5.6] below is a “coordinate-free”
formulation of Proposition[5.4 The special case when Sy is the affine coordinate ring of an
isoclinic p-divisible group Z of slope A; such that Z[p*"1] = Z[Fr?] with ¢ = p™* is used in
the proof of orbital rigidity of Tate-linear formal varieties. The condition Z[p*™] = Z[FrY]
implies that there is a coordinate system on Z in which the endomorphism [p*"1]z corre-

sponds to “raising all coorinates to the p"'-th power”.

Proposition 5.6 (Hypocoptyl elongation in tempered perfections reformulated). Let k
be a perfect field of characteristic p which contains a finite field with ¢ = p" elements. Let
(R,m), (S1,mq) and (S2,mz) be augmented commutative noetherian local domains over k.
Assume that S has an Fg-model Sop,, i.e., an augmented noetherian local subring So,

over [Fy such that the natural map SQJ%@FQH — Sy is an isomorphism.

o Let ¢ = ¢q: So — S2 be the k-linear continuous ring endomorphism of So which

sends every element x € qu to xf.

o Let g1: 51— (R, m)zeg(’; and ga: Sa — (R,m)ieg(’; be continuous k-linear ring ho-

momorphisms from S; to (R, m)ie,g&b, 1=1,2.

e Let f be an element of the completed tensor product (S, ml)ielri’lb,dl(?@,@(Sg,mg)perf’b

Agz,ba;da
for parameters (Aq,b1,dy) and (Az,be,ds).
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o Let (dn)neN,n>n, be a sequence of positive integers such that lim, g—: =0.

o Let (A, d") be suitable parameters such that the homomorphisms g; extends to a
continuous k-linear homomorphism g’ : (Si,mi)pAirlf);b,di — (R,m)%’rlf}fbd/ fori=1,2.
Let (¢} - g5) o (1® (QSZ)”) be the composition
perfb = perf,b 1®(¢Z)n perfb =S perf,b
(Slvml)Athdl@K(Sz’m2)A27b2;d2 - (Sl’ml)Al,bl;d1®K(S2’m2)A2vb2§d2
b

b
9192 f,b
Ay (R mypty,

Suppose that
b b b _ c1dn of b
((91-93) 0 (1@ (dg)"))(f) =0 (mod Filgy, (R, m)%" )
for all sufficiently large natural numbers n. Then
. fh = f,b
(g? ® gg)(f) =0 in (R, m)ic,fb,;d@H(R, m)iclfb/;d/a
where g? ® gg denotes the composition

B ®g5 (

perfb = perf.,b perfb = perf.,b
(Sl ’ ml)Al ,b15d1 Or (SQ’ m2)A2,b2;d2 R, m)A’,b’;d'®” (R’ m>A’7b’;d’ )

Proof. This is an easy consequence of Proposition ]

6. An outline of the proof of Theorem

Let Z := V,(Z)/T,(Z), an isoclinic p-divisible group. Let \; be the slope of Z, let
ro € N5 be the denominator of A1, let A2 := max(slope(N3)), and let ¢; := max(A1/2, \2).
By assumption A\; > ¢;. Choose a positive integer multiple r; of ¢y and a positive inte-
ger s1 such that r1 < s1, s161 € N and s161 < r1A;. Let gz, be a Zp-lattice in the
Lie algebra Lie(Aut(Ng)) of Aut(Ng) which contains a Qp-basis of Lie(Aut(Ng)), and

eXpAut(NQ)(gZp) C Aut(N).

Step 1. Reduction to the case when the following conditions hold.

e We may assume that x is an algebraically closed field.

e We may assume that there exists a positive integer 79 such that Ker(Fr'p) = Z[proM],
where Fr'?: Z — Z (") is the ro-th iterate of the relative Frobenius of Z.

Step 2. We know from Proposition [3.8 that there exist constants ng, ¢y € N such that the
restriction to 7! ( TL(Ny)[Fr n/ AlJ_CO]) of the Tate-linear automorphism exp ¢ (ng) (P"v)
of TL(IN) is equal to the translation by a formal morphism

dpfv]: 771 (TL(Ng) [Frl/Al=eo]) — 7
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for all n > ng and all v € gz, i.e.,

CXPput(Ng) (P"0) (2) = dn[v](2) * 2

for all functorial points = of 7T_1(TL(NQ)[FI‘LTL/)QJ?CO}).

Analyze the maps d,[v] using the first order term in the Baker—Campbell-Hausdorff
formula to show the following compatibility property of these maps: There exist constants
ny,c1 € N, ny > ng, such that |[n/s1] —c1 < [n/A2] — co, and

(5’n+1 [v] = [p]z o 5n[”]) ‘TL(N)[FI-L7L/§1J7€1}: 0
for all n > ny and all v € gz,. We will use the following slightly weaker form of this
compatibility property. There exists a constant m; such that
(6.1) (6(m+1)7"1)\1 [v] = [Pz 0 S [V]) ‘TL(N)[Frmsl]: 0
for all m > my and all v € gz,.

Step 3. Let Rz and Rr be the affine coordinate rings of Z and 7' = TL(N) respectively.
Out of the family (5mr1/\1 ‘TL(N)[Frmsl] )mZmo
relation (6.1), one produces a tempered virtual formal morphism g[v]: T --+ Z which
such that

of maps, which satisfies the compatibility

interpolates the maps d,,,, x, ‘TL(N)[Frmsl]y

([P 0 3[v]) * idy

is in some sense an “asymptotic expansion” of the automorphism exp Aut(NQ)(pm”’\lv) up
to the first order, for m > 0.
The actual meaning of a tempered virtual formal morphism 3[v]: T --» Z is a contin-

uous k-linear ring homomorphism SM* from Rz to a tempered perfection
3]s Rz — (Rp,my)5hy
for suitable parameters (A, b, d). The idea is to define g[v]*( f) for every formal function f
on Z by
() = Tt (S 1 L g ) (571576

The compatibility relation (6.1)) guarantees that the above limit exists as a tempered

virtual function, i.e., an element of (Rr, mT)iez,f; for some parameters (A, b, d).

Step 4. Apply the method of hypocotyl elongation in tempered perfections, Proposi-
tions [5.4] and to conclude that W is stable under the translation by the schematic
image of 3[v]: W --» Z.
This assertion means that
(((ahy o 3[e]") ® aw) o p*) (f) = 0

for all f in the ideal Iy of Ry which defines W and all v € gz,. Here
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e gy : Rt — Ry is the natural surjective ring homomorphism from Rp to the affine

coordinate ring Ry of the closed subscheme W of T,

° gy (RT)ZeZi’; — (RW)TZE;,b is the continuous ring homomorphism between tem-
pered perfections induced by ¢y, and

o (g} 0 3[v]*) ® qu) o p* is the composition

* ~ b odu]*
R ™ Ry6. Ry (ayy o3[v]*)®aw

f.b
(Bw)}y o ©nBow .
We adopt a good coordinate system on Z, under which the ring endomorphism [pm”il 1%
of Rz becomes “raising all coordinates of Z to the p"-th power”. The property of 3[v]
that exp Aut(NQ)(pm”Alv) is well approximated by ([p™"*]z o 3[v]) * idy guarantees that

the congruences required by the hypocotyl elongation method are satisfied.

Step 5. Proof of Theorem [£.2a)~(b). Note that the statement in Theorem [4.2fa) that
(WNZ)yeq is a p-divisible subgroup Z’ of Z follows from orbital rigidity of p-divisible formal
groups. The conclusion of Step 4 implies that (W N Z),eq is stable under translation by
the sum, over all elements v € gz,, of the schematic images of Mollw: W —=» Z. Tt is
clear that the restriction of S[U] to Z is the endomorphism of Z induced by v. It follows
quickly from the assumption that G operates strongly nontrivially on TL(IN) that W is

stable under translation by Z’.

Step 6. It remains to prove the assertion in Theorem (c) that the restriction 7|y, to
W1 of the formal morphism 7: TL(IN;) — TL(Ny) is purely inseparable. Clearly we may
and do assume that (W N Z).eq is equal to the singleton consisting of the base point of Z.
We need to show that W is purely inseparable over TL(Ny).

We use the property of the virtual tempered formal morphism S[v] that it behaves

nicely with respect to the Z-torsor structure of TL(IN):
(6.2) 3[v](z % x) = v(z) % 3[v](z) for all functorial points (z,z) of Z x TL(N).

Strictly speaking, the property should be interpreted as a statement that a suit-
able diagram of ring homomorphisms commute. We will gloss over this technical point
here and describe the argument in geometric terms. The idea is that, if W is not purely
inseparable over TL(Ny), then we can find two k[[t]]-valued points &1, £ of W, such that
they differ by a non-zero k[[t]]-point ¢ of Z, say £ = d x&2. Then implies that v(d) is
a k[[t]]-point of W N Z for all v € gz,. Since G operates strongly non-trivially on TL(N),
we conclude that W N Z contains a non-zero x|[[t]]-valued point. This contradicts the as-
sumption that (W N Z)eq = (0). We have finished the sketch of the proof of Theorem
and refer to [12] for details.
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7. Open questions

Question 7.1. Clarify the relation between cascades and Tate-linear formal varieties.

Remark. Many Tate-linear formal varieties, including the sustained deformation spaces
Def(X)sus of p-divisible groups X over fields of characteristic p, have natural cascade
structures in the sense of [26]. It is likely that additional constraints need to be imposed
on the Weil pairings of the intermediate biextensions of a given cascade constituted from
p-divisible formal groups over a field k of characteristic p, in order to force the cascade to

have a Tate-linear structure over k.

7.2.

Let X be a p-divisible group over an algebraically closed field s of characteristic p. Let
Def(X) be the equi-characteristic p deformation space of X. Let W = W(X) be the
largest reduced closed subscheme of Def(X) such that every x[[t]]-point of W corresponds
to a p-divisible group over [[t]] with constant Newton polygon. Denote by R the affine
coordinate ring of W, an augmented complete noetherian local k-algebra with maximal
ideal m. Let X be the universal p-divisible group over W. For every pair (m, n) of positive
integer, let W, = Spf(R/m™*1) and let

ESm(X)mn 1= Tsomw,xw,, (P15 X[p"|lw,., pri X[p"Iw )

the Isom scheme over W, x W, between the pull-backs of X[p"] of the two projections
maps pry,pro: Wiy X Wy — Wi Let 1o pimontit ESm(X)mpti — Esm(X)m,n be the

natural restriction map for every ¢ € N. Let
é"smSt(X)m,n := Image (é(’sm(%)m’nJrN — éasm(%)mm), N>0

be the schematic image of 7y, y.m n+n for sufficiently large N, a scheme of finite type over
Wi X Wy, Let
R(X)m,n := Image (Esm(X)mmn — Wi X W)

be the schematic image of the map &sm(X),,n — Wi X Wy, Since each R(X),, is an

Artinian scheme, R(X),,, stabilizes as n — oco. Let
R(X)m = R(X)mn forn>0.

Let S,, be the affine coordinate ring of R(X), a quotient of (R/m™ &, (R/m™*1). We

have natural x-linear homomorphisms

dm,m+1 - Serl — Sm,
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corresponding to the natural morphisms
Jmt1m R(X)m = R(X)m+1.-
Let S :=1lim Sy, and let R(X) := Spf(S). Let
fx: R(X) = W(X)

be the morphism induced by the first projection pr;: W(X) x W(X) — W(X).

Similarly, for a polarized p-divisible group (Y, ) over k, we have a formal morphism
fya R(D,A) = WY, A)

defined in an analogous way, where W(Y, ) is the largest reduced closed subscheme of

Def(Y, ) corresponding to deformations of (Y, A) with constant Newton polygon.

Question. Are the formal morphisms fx and fy flat? Do they have other regularity

properties, if any?

Remark. (a) Questionstems from an attempt to analyze the equivalence relation “lying
on the same central leaf” in a given Newton polygon stratum of a Siegel modular variety
in characteristic p. A good understanding of the morphism R(Q), \) — W(Y, \) may lead
to a notion of “families of Tate-linear formal varieties” involving a notion of “families of
Tate unipotent groups”.

(b) It seems plausible that for “generic” X and (Y, ), the morphisms fx and fy y are
flat.

Question 7.3. Develop a theory of families of Tate-linear formal varieties, i.e., Tate-linear
formal schemes over general base schemes. Does a version of Proposition [2.11] hold in such

a theory?

Remark. 1t is tempting to define the notion of a Tate unipotent group N over a general
base scheme S exactly as in Definition 2.1 without the restriction that S is the spectrum
of a field of characteristic p, then define Ng/IN to be the Tate-linear formal scheme over
S attached to N. However such a definition may be too restrictive. It may be better to
impose weaker conditions. A starting point can be the following: one requires that N is
a sheaf of nilpotent groups on the big fpqc site of S, and there exists a p-divisible group
X over S with the following properties.

(a) The Lie Qp-algebra £ieNg of the Mal’cev completion Ng is isomorphic to the Q-
Tate module V(X)) attached to a X.

(b) Tp(X) is a sheaf of Lie Zy-submodules of £ieNg.
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¢) The exponential of the sheaf of Lie Z,-subalgebras T, (X) of £i¢eNg is an fqpc sheaf
P P Q
of nilpotent subgroups of Ng isogenous to N.

Question 7.4. Let Z be a reduced irreducible closed subscheme of a central leaf C in
a Siegel modular variety over IETP. Suppose that the formal completion Z/%0 of Z at an
F,-point zo € Z(F,) is a Tate-linear formal subvariety of C/*. Show that the formal

completion Z/7 is a Tate-linear formal subvariety of C/* for every = € Z(F,).

Remark. Question [7.4]asks for a “principle of analytic continuation” of Tate linearity. One
may need to pass to the normalization of Z to sidestep the potential issue that Z/* might
be reducible.

7.5.

Let Q be the algebraic closure of Q in an algebraic closure Q, of Q,. Let (9@ be the ring

of integers of @p. Let S@ be a Shimura subvariety of a Siegel modular variety <7, 4, ol

over Q. Let S%2 be the Zariski closure of S@ in o qn JO—s and let Sﬁ be the closed fiber
Qp

of §%& which is a closed subscheme of the closed fiber Ay dn i of %y an JO—
Qp

Question. Suppose that S@ is contained in the Zariski closure of a central leaf C in
%,d,n/ﬁ- Let g € (SE N C)(Fp) be an Fp-point of Sy, N C. Show that the formal
completion (SE NC)/®o of S’E NC at xg is a Tate-linear formal subvariety of C/0.

Remark. The desired conclusion in is known when p is large relative to g. So this
question is about small primes, including primes ramified with respect to the input data

for the Shimura variety S@.

Question 7.6. Let C be a central leaf in a Siegel modular variety over F,. Let z¢ € C(F,)
be an F,-point of C. Determine which Tate-linear formal subvarieties of C/%0 are of the

form (SE N C)/ 0 for some Shimura subvariety S of <7, 4, /g 8s in

Question 7.7. (a) Determine whether every Tate-linear formal variety over a field of
characteristic p admits a lifting to characteristic 0 (in the sense of an answer to Ques-
tion .

(b) Generalize the notion of complex multiplication to Tate-linear formal varieties over
a field of characteristic p.

(c) Let T be a Tate-linear formal variety over a finite field x of characteristic p, with
sufficiently many complex multiplication in the sense of an answer to (b) above. Does T'
admit a “quasi-canonical lifting” to characteristic 0 in a suitable sense?

(d) Let O be the ring of integers of a finite extension field of Q,. Is there a good p-adic

Hodge theory for Tate-linear formal varieties over Spec(Q)?
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7.8.

Let O be the ring of integer of a finite extension field K of Q,. Let k = O/m be the
residue field of O. Let X, Y be p-divisible groups over O whose closed fibers X, Y are
isoclinic of slopes px, py respectively, and px < py. For every positive integer n, let
Ay, = Homgpec0)(X[p"], Y[p"]) be the Hom scheme over Spec(O) from X[p"] to Y[p"],
and let m, p41: J, 11 — 4, be the homomorphism over O such that

(Y[p"] = Y[p"]) 0 Magnsr(h) = ho (X[p"] = X[p"+1)

for every functorial point h of %, 1. Let H, be the Zariski closure in .7, of the generic
fiber of .77;,. Clearly H, is a commutative finite locally free group scheme over O, because

¢, is proper over O.

Question. Is the homomorphism 7y, p41|m, w11 Hpy1 — Hy induced by 7y, 5,41 flat (hence

faithfully flat) over O, for every positive integer n?

Remark. Question [7.8] is a test of a naive approach to the general question on lifting
Tate-linear formal varieties from characteristic p to characteristic 0. It seems likely that
the answer is negative in general. If so, one would like to find some conditions on the
p-divisible groups X and Y over O under which the answer to is affirmative.

7.9.

There are many obvious questions about tempered perfections. We mention two here.
Let k be a perfect field of characteristic p. For any augmented complete noetherian local
domain (R,m) over x, denote by (R, m)"™PPf the ring consisting of all tempered virtual

functions on Spf(R).

(i) Investigate the spaces consisting of all continuous valuations of topological k-algebras
(R, m)tmPrerf (pespectively (R, m)iez,f&b), endowed with suitable topologies. Describe

them explicitly in the case when R is the formal power series ring over & in 2 variables.

(ii) Develop a geometric theory of tempered perfections of not-necessarily-local formal

schemes, modeled on the usual theory of formal schemes.

Remark. (a) Perhaps the strongest motivation here is that tempered perfections might be
useful in questions unrelated to Tate-linear structures.

(b) A subsequent quest after (ii) is to develop a theory of crystals over tempered
perfections of formal schemes, such as tempered perfections of (C x C)/ Ac_ where C is a
central leaf in a Siegel modular variety %7d7nﬂ, and (C x C)/A¢ is the formal completion

of C x C along its diagonal subscheme Ac.
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