
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 27, No. 4, pp. 719–735, August 2023

DOI: 10.11650/tjm/230205

Error Analysis of Nonconforming Virtual Element Method for Stokes

Problem with Low Regularity

Tongli Wang and Jikun Zhao*

Abstract. In this paper, the nonconforming virtual element method is used to solve the

Stokes problem where the velocity and pressure are allowed to have the low regularity.

With the help of an enriching operator, the consistency error is estimated under the low

regularity condition. Then the optimal error estimates are obtained for the velocity

and pressure approximations, which implies that the nonconforming virtual element

method has the good convergence even for the Stokes problem with the low regularity.

1. Introduction

Stokes equation is a motion equation describing the momentum conservation of viscous

incompressible fluid and is widely used in fluid mechanics. It is very difficult and compli-

cated to solve the Stokes equation except for some specific conditions.

In recent years, research on the Stokes equation has attracted extensive attention at

home and abroad. As well known, the finite element method (FEM) is an important

method for solving the Stokes equation [10]. When the Stokes equation is discretized

by FEM, the approximate spaces of velocity and pressure should satisfy Babuška–Brezzi

condition [2,7,13,22] in order to guarantee the stability of FEM. For Stokes problem, [25]

presented VPVnet to achieve lower regularity requirements without considering Babuška–

Brezzi condition.

There have been many studies on conforming and nonconforming FEMs for Stokes

problem. When the Stokes problem is solved by the conforming FEMs, the error estimate

of a numerical solution is bounded by the approximation errors of their spaces by Cea’s

lemma [12]. The approximation errors are bounded by the interpolation errors, which can

be estimated under the low regularity (u, p) ∈ H1+s(Ω) × Hs(Ω) with any s ≥ 0 where

u and p are the velocity and the pressure, respectively. For example, the general finite

element approximation of Stokes equation solution for incompressible viscous fluid is given

in [18].
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Compared with the conforming FEMs, the nonconforming FEMs are easier to satisfy

Babuška–Brezzi condition for the Stokes problem [29], but the error estimate of a finite

element solution is more troublesome, which is bounded by the approximation error plus

the consistency error. The approximation error is consistent with the conforming coun-

terparts. The consistency error is usually transformed to some jump flux terms along the

edges of element, which needs the regularity (u, p) ∈ H1+s(Ω) ×Hs(Ω) with s > 1/2 at

least [10,12,17], and this is along with some potential difficulties for solutions with lower

regularity. In order to obtain the error estimates for the nonconforming FEM under low

regularity condition, the so-called quasi-interpolation operator was used to estimate the

consistency error in [4, 28].

Virtual element method (VEM), which is introduced as a generalization of classi-

cal FEM in [5], has some advantages compared with standard FEMs. VEMs are more

convenient to deal with partial differential equations in complex geometric domains or

high-regularity admissible spaces [14,23,30], and are suitable for polygonal or polyhedral

meshes and have the characteristics of high flexibility in mesh processing and avoiding

explicit shape function construction. Polygonal or polyhedral meshes have gained consid-

erable attention in the field of scientific computing, in part because of their flexibility in

dealing with complex regions or regions with curved boundaries, and the detailed analysis

is given in [16,26].

The error from conforming VEMs is usually bounded by three parts: the interpolation

error, the local polynomial approximation error for the exact solution and the approxi-

mation error of the right-hand side. The error estimates for the first two terms can be

estimated under low regularity i.e., in space H1+s(Ω) with any s ≥ 0, and the error es-

timate for the third term only needs sufficiently smooth data, refer to [6, 11]. Thus, the

error estimates can be obtained under the low regularity requirement. The conforming

VEMs for the Stokes problem are developed in [15,18,21]. Compared with the conforming

VEMs, the error estimates for nonconforming VEMs are more troublesome, which have

an extra consistency error term.

At present, nonconforming VEM has won the attention of everyone and applied to

the Stokes problem. For example, the nonconforming formulation of VEM for the steady

Stokes problem is presented in [13] where the authors show that the nonconforming VEM

is inf-sup stable and establish the optimal priori error estimates for the velocity and pres-

sure in providing high-order accurate approximations. The divergence-free nonconforming

VEM for the Stokes problem has been presented in [31] and converges at an optimal rate.

However, the estimation on the consistency error in the works [13,31] still needs the high

regularity requirement i.e., (u, p) ∈ H1+s(Ω)×Hs(Ω) with any s > 1/2 at least.

What’s more, the solution region of Stokes equation is often irregular and complex in
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practice. In particular, when the solution region has a concave angle, such as the L-shaped

region, the regularity of solution for Stokes equation is very low near the concave angle.

Therefore, the research on the nonconforming VEM of the Stokes equation under the low

regularity condition has very important application.

Based on the above facts, in this paper we carry on the convergence analysis of the

nonconforming VEM for the Stokes problem under the low regularity condition. We

note that in [23] a special enriching operator, which connects nonconforming VE space

with the same order conforming VE space, is introduced to estimate the error on the

nonconforming VEMs for 2nd and 4th elliptic problems. Therein, the error analysis is

very complicated. So in this paper, we change the definition of the enriching operator a

little bit, so that it maps the nonconforming space to the corresponding conforming space

with one order higher. Then some terms from the consistency error will vanish which

greatly simplifies the estimation on the consistency error term [24]. For more information

about enriching operators, interested readers can refer to [9, 19, 20, 27]. Then we obtain

the optimal convergence of nonconforming VEM for the Stokes problem under the low

regularity condition in two dimensions.

The paper is organized as follows. In Section 2, we state the steady Stokes problem

and give its weak form. In Section 3, we give the definitions of local and global spaces to

prepare for the subsequent error estimations. In Section 4, we give the discrete form of the

Stokes problem. In Section 5, we introduce a special enriching operator for estimating the

consistency error. In Section 6, we estimate the consistency error and obtain the optimal

estimates for the velocity and pressure approximations.

Throughout the paper, we assume that Ω is a polygonal domain in R2, with boundary

∂Ω. For a positive integer m, let S be any given open subset of Ω, we use the standard

definitions and notations of Sobolev spaces Hm(S) and Hm
0 (S) with the corresponding

norm ∥ · ∥m,S and seminorm | · |m,S . Besides, ( · , · )S and ∥ · ∥S denote the usual integral

inner product and the corresponding norm of L2(S), respectively. For the vector-valued

functions or spaces, we use bold symbols, such as u, v, L2(Ω), Hm(Ω), Hm
0 (Ω), P k(S),

etc.

2. The model problem

We are concerned with the Stokes problem with the unknown fields u and p satisfying

(2.1)


−∆u+∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω.
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We will refer to u and p as velocity and pressure, respectively, and f is the given body

force.

The corresponding variational formulation of problem (2.1) is to find u ∈ H1
0(Ω) and

p ∈ L2
0(Ω) such that for f ∈ L2(Ω) it holds that

(2.2)

a(u,v) + b(v, p) = (f ,v), ∀v ∈ H1
0(Ω),

b(u, q) = 0, ∀ q ∈ L2
0(Ω),

where the bilinear forms a( · , · ) and b( · , · ) are defined by a(u,v) =
∫
Ω∇u : ∇v dx and

b(v, q) = −
∫
Ω q div v dx, respectively, and L2

0(Ω) =
{
q ∈ L2(Ω)

∣∣ ∫
Ω q dx = 0

}
.

The well-posedness of (2.2) follows from the coercivity of the bilinear form a( · , · ) on
the kernel of the bilinear form b( · , · ) and the inf-sup condition, refer to [8].

3. Nonconforming virtual element

For any fixed h > 0, we introduce a finite decomposition (the mesh) Th of the domain

Ω into nonoverlapping simple polygonal elements with maximum size h. Let Eh denote

the set of all mesh edges in Th of Ω. For any E ∈ Th, nE denotes the unit outward

normal vector along the boundary ∂E. ne denotes the unit normal of an edge e ∈ Eh,
whose orientation is chosen arbitrarily but fixed for internal edges and coinciding with the

outward normal of Ω for boundary edges, he denotes the length of e ∈ Eh and hE denotes

the diameter of E.

Throughout the paper, we use the short symbol a ≲ b for the inequality a ≤ Cb with

the constant C independent of a, b and the mesh size.

H0 (Mesh assumption). We assume that there exists a constant ρ > 0 such that

� for every element E of Th and every edge e ⊆ ∂E, it holds that he ≥ ρhE ;

� every element E of Th is star-shaped with respect to a ball of radius ρhE .

For an internal edge e shared by E1, E2 ∈ Th such that ne points from E1 to E2,

we define the jump and average of function v through the edge e by [v]|e = v1 − v2,

and {v}|e = (v1 + v2)/2, where vi = v|Ei , i = 1, 2. Then, we can get that [uv]|e =

u+
1 v

+
1 − u−

2 v
−
2 = {u}[v] + [u]{v}.

For the boundary edge e, there exists E1 ∈ Th such that e ⊆ ∂E1 ∩ ∂Ω, and we define

the jump and average of function v through the edge e by [v]|e = v|e, and {v}|e = v|e/2.
Then, we can also get that [uv]|e = {u}[v] + [u]{v}, refer to [23].

For any E ∈ Th, Pk(E) denotes the space consisting of polynomials of order k or less.

For k ≥ 1, we define the local vector nonconforming VE space on the element E by

V k
h(E) =

{
v ∈ H1(E) | ∆v ∈ P k−2(E), (nE · ∇v)|e ∈ P k−1(e),∀ e ⊆ ∂E

}
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with the convention that P−1(E) = {0}. Obviously it holds that P k(E) ⊆ V k
h(E).

For k ≥ 1, the same discussion as in [30] reveals that the dimension of V k
h(E) is

NE = 2nk + k(k − 1).

Denote by M∗
l (E), l ∈ N, the set of scaled monomials

M∗
l (E) =

{(
x− xE

hE

)α

, |α| = l

}
,

where α = (α1, α2) is a multi-index, |α| = α1+α2, x
α = xα1

1 xα2
2 and xE is the barycenter

of E. Furthermore, we define Mk(E) =
⋃

l≤k M∗
l (E), a basis of the polynomial space

Pk(E) whose dimension is N2,k. The vector version of Mk(E) is denoted by Mk(E).

The degrees of freedom (DOF) for V k
h(E) can be chosen as:

� for k ≥ 1, the moments of degree (k − 1) on each edge

(3.1)
1

|e|

∫
e
vh · q ds, q ∈ Mk−1(e), e ⊆ ∂E,

� for k > 1, the moments of degree (k − 2) inside each element

(3.2)
1

|E|

∫
E
vh · q dx, q ∈ Mk−2(E).

According to [1], we have the unisolvence of DOF as follows.

Lemma 3.1. For k ≥ 1, the DOF (3.1)–(3.2) are unislovent for the space V k
h(E).

A subspace of the broken Sobolev space is defined by

H1(Th) =
{
v ∈ L2(Ω) | v|E ∈ H1(E), ∀E ∈ Th

}
,

and, for k ≥ 1, H1,nc(Th) is defined by

H1,nc(Th) =
{
v ∈ H1(Th)

∣∣∣ ∫
e
[v] · q ds = 0, ∀ q ∈ P k−1(e), ∀ e ∈ Eh

}
.

According to the local DOF (3.1)–(3.2), we define the global vector nonconforming VE

space with order k ≥ 1 by

V k
h =

{
vh ∈ H1,nc(Th) | vh|E ∈ V k

h(E), ∀E ∈ Th
}
.

We note that V k
h ⊈ H1

0(Ω).

The global DOF for V k
h can be chosen as:
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� for k ≥ 1, the moments of degree (k − 1) on each edge

(3.3)
1

|e|

∫
e
vh · q ds, q ∈ Mk−1(e), e ∈ Eh,

� for k > 1, the moments of degree (k − 2) inside each element

(3.4)
1

|E|

∫
E
vh · q dx, q ∈ Mk−2(E), E ∈ Th.

For any function v ∈ H1
0(Ω), we define the interpolation Ihv ∈ V k

h by requiring

that the values of DOF (3.3)–(3.4) of Ihv are equal to the corresponding ones of v, i.e.,

DOF(Ihv) = DOF(v). Then, we have the following interpolation error estimates [3, 13].

Lemma 3.2. For any v ∈ Hs(Ω) with 1 ≤ s ≤ k + 1, we have the estimates

∥v − Ihv∥0,E + hE |v − Ihv|1,E ≲ hsE |v|s,E , ∀E ∈ Th.

According to [10], for any v ∈ Hs(E), there exists a polynomial vπ ∈ P k(E) such that

(3.5) |v − vπ|m,E ≤ Chs−m
E |v|s,E , ∀E ∈ Th,

where 0 ≤ m ≤ s ≤ k + 1.

4. The VEM discretization

In order to approximate the pressure, we use the standard space of piecewise polynomial

of degree up to k − 1 with respect to the domain partition Th:

Qk−1
h =

{
qh ∈ L2

0(Ω) | qh|E ∈ Pk−1(E), ∀E ∈ Th
}
.

Note that, by definition, all functions in Qk−1
h have global mean zero.

A VEM of order k will be defined by two finite dimensional function spaces V k
h and

Qk−1
h of discrete trial velocity and pressure fields and bilinear forms ah : V

k
h × V k

h → R
and bh : V

k
h ×Qk−1

h → R as the discrete counterparts of a( · , · ) and b( · , · ), respectively.
For any element E ∈ Th, we denote by ΠE

k−1 the L
2-projection from L2(E) to Pk−1(E),

which is defined by finding ΠE
k−1vh ∈ Pk−1(E) satisfying

(ΠE
k−1vh,mα)E = (vh,mα)E , ∀mα ∈ Mk−1(E),

where vh ∈ L2(E). For vector-valued functions, it acts on each component, i.e., for any

vh ∈ L2(E), ΠE
k−1vh ∈ P k−1(E). Let Π0

k−1|E = ΠE
k−1 for E ∈ Th. Obviously Π0

k−1 is the

interpolation from L2
0(Ω) to Qk−1

h .
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The choice of DOF in space V k
h(E) ensures that the operator ΠE

k−1 when applied to

∇vh or div vh for a vector vh in V k
h(E) is computable using only the DOF of vh. According

to the definition, for any E ∈ Th and v ∈ L2(E), we have the orthogonal decomposition

and optimal approximation of L2-projection operator ΠE
k−1

∥v∥2E = ∥v −ΠE
k−1v∥2E + ∥ΠE

k−1v∥2E , ∥v −ΠE
k−1v∥E = inf

q∈P k−1(E)
∥v − q∥E .

According to [13], we have the following lemma.

Lemma 4.1. For any E ∈ Th, v ∈ Hs(E) with 1 ≤ s ≤ k, it holds that

∥v −ΠE
k−1v∥0,E + hE |v −ΠE

k−1v|1,E ≤ ChsE |v|s,E .

We define the computable H1-projection operator Π∇
k : V k

h(E) → P k(E) by finding

Π∇
k v ∈ P k(E) satisfying

(∇Π∇
k v,∇mα)E = (∇v,∇mα)E , ∀mα ∈ Mk(E),∫
∂E

Π∇
k v ds =

∫
∂E

v ds,

where v ∈ V k
h(E). Since system of equations above has a unique solution, it is easy to

see that Π∇
k v = v for any v ∈ P k(E). According to the definition, for any E ∈ Th and

v ∈ V k
h(E), we have the orthogonal decomposition and boundedness of H1-projection

operator Π∇
k

|v|21,E = |v −Π∇
k v|21,E + |Π∇

k v|21,E , |Π∇
k v|1,E ≤ |v|1,E .

For convenience, the restriction of bilinear form a( · , · ) and b( · , · ) on element E ∈ Th
are defined by

aE(u,v) =

∫
E
∇u : ∇v dx, bE(v, q) = −

∫
E
q div v dx, u,v ∈ H1(E), q ∈ L2(E).

For each element E ∈ Th, the local bilinear form aEh ( · , · ) on V k
h(E) × V k

h(E) is defined

by

aEh (uh,vh) =

∫
E
∇Π∇

k uh : ∇Π∇
k vh dx+ SE

h

(
(I −Π∇

k )uh, (I −Π∇
k )vh

)
,

where the bilinear form SE
h ( · , · ) is given by

SE
h

(
(I −Π∇

k )uh, (I −Π∇
k )vh

)
=

NE∑
i=1

Xi

(
(I −Π∇

k )uh

)
· Xi

(
(I −Π∇

k )vh

)
,

where Xi, i = 1, 2, . . . , NE is the operator associated to the i-th local DOF.

According to [5], the bilinear term SE
h ( · , · ) satisfies

c∗a
E(vh,vh) ≤ SE

h (vh,vh) ≤ c∗aE(vh,vh), ∀vh ∈ V k
h(E) ∩Ker(Π∇

k ).
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The local bilinear form bEh ( · , · ) on V k
h(E)×Qk−1

h is defined by

bEh (vh, qh) = −
∫
E
qhΠ

E
k−1 div vh dx.

We define the right-hand side by

(fh,vh) =
∑
E∈Th

(fh,vh)E

with

(fh,vh)E =

(ΠE
0 f ,vh)E , k = 1,

(ΠE
k−2f ,vh)E , k ≥ 2,

where vh = 1
|∂E|

∫
∂E vh ds. Moreover, refer to [30], assume f ∈ Hk−1(Ω), we have

(4.1) ∥f − fh∥∗ ≜ sup
∀v∈V k

h,v ̸=0

(f − fh,v)

|v|1,h
≲ hk|f |k−1.

With the above preparations, we obtain that the nonconforming VE discretization of

problem (2.2) is to find (uh, ph) ∈ V k
h ×Qk−1

h such that

(4.2)

ah(uh,vh) + bh(vh, ph) = (fh,vh), ∀vh ∈ V k
h,

bh(uh, qh) = 0, ∀ qh ∈ Qk−1
h ,

where ah(uh,vh) =
∑

E∈Th a
E
h (uh,vh), bh(uh, qh) =

∑
E∈Th b

E
h (uh, qh). Definition of

ah( · , · ) guarantees the following polynomial consistency and stability properties, refer

to [13,14].

Lemma 4.2 (Polynomial consistency and stability). (i) Polynomial consistency: If uh

or vh, or both, belong to P k(E), the bilinear form ah( · , · ) satisfies

aEh (uh,vh) = aE(uh,vh).

(ii) Stability: There exist two positive constants α∗ and α∗ independent of h such that,

for all vh ∈ V k
h(E), the bilinear form ah( · , · ) satisfies

(4.3) α∗a
E(vh,vh) ≤ aEh (vh,vh) ≤ α∗aE(vh,vh).

We present the inf-sup condition that is introduced in the following lemma, refer

to [8, 13].

Lemma 4.3 (Inf-sup condition). There exists a strictly positive constant β independent

of h such that for every qh in Qk−1
h there exists a vector vh in V k

h such that

(4.4)
bh(vh, qh)

|vh|1,h
≥ β∥qh∥.
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The stability (4.3) of ah( · , · ) implies the continuity and coercivity, which together

with the inf-sup condition (4.4) implies that the discrete problem (4.2) is well-posed.

In order to carry out the error analysis, we introduce the broken H1-norm on V k
h by

setting

|vh|1,h =

 ∑
E∈Th

|vh|21,E

1/2

.

5. Enriching operator

Since the nonconforming VE is not C0 continuous, there exists a consistency error term

defined by Wh(v) = (f ,v)−a(u,v)−b(v, p) where v ∈ V k
h when we carry on convergence

analysis.

As usual, the consistency error is transformed to the jump flux terms on edges as

follows: for (u, p) ∈ H1+s(Ω)×Hs(Ω) with any s > 1/2,

(f ,v)− a(u,v)− b(v, p) =
∑
E∈Th

(
−
∫
∂E

∂u

∂nE
v ds+

∫
∂E

pv · nE ds

)

=
∑
e∈Eh

(
−
∫
e

∂u

∂ne
[v] ds+

∫
e
p[v · ne] ds

)
.

Then the right-hand terms on the last equation above can be estimated by using the weak

continuity of nonconforming VE. There also exist many cases with lower regularity. So, to

estimate the consistency error term under the condition of lower regularity, we introduce

an enriching operator to reduce the high regularity requirement in the section. We first

define a conforming VE space by

V k+1,c
h (E) =

{
v ∈ H1(E) | ∆v ∈ P k−1(E),v|e ∈ P k+1(e), e ⊆ ∂E

}
and

V k+1,c
h =

{
v ∈ H1

0(Ω) | v|E ∈ V k+1,c
h (E), E ∈ Th

}
.

The DOF for V k+1,c
h can be chosen as:

� values of vh(a), a ∈ Vh,

� the moments 1
|e|

∫
e vh · q ds, q ∈ Mk−1(e), ∀ e ∈ Eh,

� the moments 1
|E|

∫
E vh · q dx, q ∈ Mk−1(E), E ∈ Th,

where Vh is the set of vertices in mesh.

We construct an enriching operator Ek
h from V k

h to V k+1,c
h by averaging [9,19,20,23,27],

which maps elements in the nonconforming VE space to the conforming VE space with
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one order higher. For an interior vertex p of VE space associated with the decomposition

Th, let Tp be the set of all elements in Th sharing the vertex p.

For v ∈ V k
h, we define Ek

hv ∈ V k+1,c
h by

Ek
hv(p) =

1
|Tp|

∑
E∈Tp v|E(p), ∀ interior mesh vertex p,

Ek
hv = 1

|e|
∫
e v · q ds, q ∈ Mk−1(e), e ∈ Eh,

Ek
hv = 1

|E|
∫
E v · q dx, q ∈ Mk−1(E), E ∈ Th,

where |Tp| is the cardinality of Tp. For all boundary vertex p, set Ek
hv(p) = 0.

For any vh ∈ V k
h, we have Ek

hvh ∈ V k+1,c
h ⊆ H1

0(Ω), so we can obtain that it satisfies

(5.1) a(u, Ek
hvh) + b(Ek

hvh, p) = (f , Ek
hvh).

Further, to derive the estimates related to the enriching operator Ek
h, we introduce the

following lemma, refer to [19,20,23].

Lemma 5.1. For any vh ∈ V k
h, we have the estimates

|vh − Ek
hvh|1,h ≲ |vh|1,h,

∑
E∈Th

h−2
E ∥vh − Ek

hvh∥20,E ≲ |vh|21,h.

6. Medius error analysis

With the above preparations, we estimate the consistency error.

Lemma 6.1. Let u ∈ H1
0(Ω) ∩ Hs+1(Ω) (0 < s ≤ k) be the exact velocity solution to

problem (2.2). Let p ∈ L2
0(Ω)∩Hs(Ω) be the exact pressure solution to problem (2.2). For

any v ∈ V k
h, it holds that

Wh(v) ≲ hs
(
|u|s+1 + |f |s−1 + |p|s

)
|v|1,h.

Proof. According to (5.1), for any vh ∈ V k
h and qh ∈ Qk−1

h we obtain

Wh(v) = (f ,v)− a(u,v)− b(v, p)

= (f ,v − Ek
hv)− a(u,v − Ek

hv)− b(v − Ek
hv, p)

= (f ,v − Ek
hv)− a(u− vh,v − Ek

hv)− b(v − Ek
hv, p− qh)

− a(vh,v − Ek
hv)− b(v − Ek

hv, qh).

We consider the term a(vh,v − Ek
hv) in the above equation firstly. By Green formula we

obtain

a(vh,v − Ek
hv) =

∑
E∈Th

∫
E
∇vh : ∇(v − Ek

hv) dx

= −
∑
E∈Th

∫
E
∆vh · (v − Ek

hv) dx+
∑
E∈Th

∫
∂E

∂vh

∂nE
· (v − Ek

hv) ds.

(6.1)
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By the definition of V k
h, we know that ∆vh ∈ P k−2(E) in E and ∂vh

∂nE
∈ P k−1(e) on

edge e. By the definition of Ek
h, we have∫

E
(v −Ek

hv) · qk−2 dx = 0, qk−2 ∈ P k−2(E),(6.2) ∫
e
(v −Ek

hv) · qk−1 ds = 0, qk−1 ∈ P k−1(e).(6.3)

This, together with (6.1), leads to a(vh,v − Ek
hv) = 0. Then, we consider the term

b(v − Ek
hv, qh). By Green formula we obtain

b(v − Ek
hv, qh) = −

∑
E∈Th

∫
E
qh div(v − Ek

hv) dx

= −
∑
E∈Th

(
−
∫
E
∇qh · (v − Ek

hv) dx+

∫
∂E

qh(v − Ek
hv) · nE ds

)
.

By the definition of Qk−1
h , we know that qh|E ∈ Pk−1(E). Observing (6.2)–(6.3), we can

obtain that b(v − Ek
hv, qh) = 0.

For the term (f ,v − Ek
hv), according to (6.2) and Lemmas 4.1 and 5.1, we obtain

(f ,v − Ek
hv) =

∑
E∈Th

∫
E
f · (v − Ek

hv) dx

=
∑
E∈Th

∫
E
(f −ΠE

k−1f) · (v − Ek
hv) dx

≲

 ∑
E∈Th

h2E∥f −ΠE
k−1f∥20,E

1/2 ∑
E∈Th

h−2
E ∥v − Ek

hv∥20,E

1/2

≲ h · hs−1|f |s−1|v|1,h
= hs|f |s−1|v|1,h.

For the term a(u− vh,v − Ek
hv), according to Lemma 5.1, we obtain

a(u− vh,v − Ek
hv) =

∑
E∈Th

∫
E
∇(u− vh) : ∇(v − Ek

hv) dx

≲ |u− vh|1,h|v − Ek
hv|1,h ≲ |u− vh|1,h|v|1,h.

For the term b(v − Ek
hv, p− qh), according to Lemma 5.1 and by definition, we obtain

b(v − Ek
hv, p− qh) = −

∑
E∈Th

∫
E
(p− qh) div(v − Ek

hv) dx ≲ ∥p− qh∥0,Ω|v|1,h.

Summing up the results above and for any vh ∈ V k
h, qh ∈ Qk−1

h , we obtain

Wh(v) = (f ,v − Ek
hv)− a(u− vh,v − Ek

hv)− b(v − Ek
hv, p− qh)

≲ hs|f |s−1|v|1,h + |u− vh|1,h|v|1,h + ∥p− qh∥0,Ω|v|1,h.
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Since vh and qh are arbitrary, we set vh = Ihu and qh = Π0
k−1p. Then Lemmas 3.2 and

4.1 imply

Wh(v) ≲
(
hs|f |s−1 + |u− Ihu|1,h + ∥p−Π0

k−1p∥0,Ω
)
|v|1,h

≲ hs(|u|s+1 + |f |s−1 + |p|s)|v|1,h,

which concludes the proof.

With the above preparations, we can obtain the following convergence theorems.

Theorem 6.2. Let u ∈ H1
0(Ω) ∩ Hs+1(Ω) (0 < s ≤ k) be the exact velocity solution

to problem (2.2) and uh be the virtual element velocity solution to problem (4.2). Let

p ∈ L2
0(Ω) ∩Hs(Ω) be the exact pressure solution to problem (2.2). Then, it holds that

|u− uh|1,h ≲ hs(|u|s+1 + |f |s−1 + |p|s).

Proof. Using the triangle inequality, we obtain

(6.4) |u− uh|1,h ≤ |u− Ihu|1,h + |Ihu− uh|1,h.

Let ϕ = uh − Ihu ∈ V k
h. Since bh(uh, qh) = 0 for any qh ∈ Qk−1

h , we obtain

bh(ϕ, qh) = −bh(Ihu, qh) =
∑
E∈Th

∫
E
qh div Ihudx

=
∑
E∈Th

(
−
∫
E
∇qh · Ihu dx+

∫
∂E

Ihu · nEqh ds

)

=
∑
E∈Th

(
−
∫
E
∇qh · udx+

∫
∂E

u · nEqh ds

)
= −b(u, qh) = 0.

(6.5)

According to (6.5) and Lemma 4.2, we obtain

|ϕ|21,h
≲ ah(ϕ,ϕ) = ah(uh,ϕ)− ah(Ihu,ϕ)

= (fh,ϕ)− bh(ϕ, ph)− ah(Ihu,ϕ) = (fh,ϕ)− ah(Ihu,ϕ)

= (fh − f ,ϕ) + (f ,ϕ)−
∑
E∈Th

aEh (Ihu− uπ,ϕ)−
∑
E∈Th

aE(uπ − u,ϕ)− a(u,ϕ)

= (fh − f ,ϕ) + (f ,ϕ)−
∑
E∈Th

aEh (Ihu− uπ,ϕ)−
∑
E∈Th

aE(uπ − u,ϕ)− a(u,ϕ)

− b(ϕ, p) + b(ϕ, p−Π0
k−1p)

= (fh − f ,ϕ)−

 ∑
E∈Th

aEh (Ihu− uπ,ϕ) +
∑
E∈Th

aE(uπ − u,ϕ)


+ b(ϕ, p−Π0

k−1p) + ((f ,ϕ)− a(u,ϕ)− b(ϕ, p)).

(6.6)
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For the first term on the right-hand side in (6.6), the inequality (4.1) leads to

(fh − f ,ϕ) ≤ ∥f − fh∥∗|ϕ|1,h.

For the second term on the right-hand side in (6.6), the stability of aEh ( · , · ) implies∑
E∈Th

aEh (Ihu− uπ,ϕ) +
∑
E∈Th

aE(uπ − u,ϕ) ≲
(
|u− Ihu|1,h + |u− uπ|1,h

)
|ϕ|1,h.

For the third term on the right-hand side in (6.6), we have

b(ϕ, p−Π0
k−1p) = −

∑
E∈Th

∫
E
(p−Π0

k−1p) divϕdx ≲ ∥p−Π0
k−1p∥0,Ω|ϕ|1,h.

For the last term on the right-hand side in (6.6), we let Wh(ϕ) = (f ,ϕ)−a(u,ϕ)−b(ϕ, p).

According to Lemma 6.1, we obtain

Wh(ϕ) ≲ hs(|u|s+1 + |f |s−1 + |p|s)|ϕ|1,h.

Summing up the results above and according to (3.5) and Lemma 3.2, we have

|ϕ|21,h ≲
(
|u− Ihu|1,h + |u− uπ|1,h + ∥f − fh∥∗ + ∥p−Π0

k−1p∥0,Ω
)
|ϕ|1,h +Wh(ϕ)

≲ hs(|u|s+1 + |f |s−1 + |p|s)|ϕ|1,h.

So we have

|ϕ|1,h ≲ hs(|u|s+1 + |f |s−1 + |p|s).

This, together with (6.4) and Lemma 3.2, leads to the desired result.

Theorem 6.3. Let p ∈ L2
0(Ω) ∩ Hs(Ω) (0 < s ≤ k) be the exact pressure solution to

problem (2.2). Let ph ∈ Qk−1
h be the virtual element pressure solution to problem (4.2).

Then, it holds that

∥p− ph∥ ≲ hs(|u|s+1 + |f |s−1 + |p|s).

Proof. Using the triangle inequality, we obtain

∥p− ph∥ ≤ ∥p−Π0
k−1p∥+ ∥Π0

k−1p− ph∥.

Firstly, estimate ∥ph − Π0
k−1p∥, and it is easy to see that ph − Π0

k−1p ∈ Qk−1
h . According

to Lemma 4.3, we have

(6.7) ∥ph −Π0
k−1p∥ ≲ sup

vh∈V k
h,vh ̸=0

bh(vh, ph −Π0
k−1p)

|vh|1,h
.
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Let vh be arbitrary, we estimate the term bh(vh, ph −Π0
k−1p):

bh(vh, ph −Π0
k−1p) = bh(vh, ph)− bh(vh,Π

0
k−1p)

= (fh,vh)− ah(uh,vh)− bh(vh,Π
0
k−1p)

= (fh − f ,vh) + (f ,vh)− a(u,vh) + a(u,vh)− ah(uh,vh)

− b(vh, p) + b(vh, p)− bh(vh,Π
0
k−1p)

= (fh − f ,vh) +Wh(vh) + a(u,vh)− ah(uh,vh)

+
(
b(vh, p)− bh(vh,Π

0
k−1p)

)
.

(6.8)

For the first term on the right-hand side in (6.8), according to (4.1), we have

(6.9) (fh − f ,vh) ≲ ∥f − fh∥∗|vh|1,h ≲ hs|f |s−1|vh|1,h.

According to Lemma 6.1, we have

(6.10) Wh(vh) = (f ,vh)− a(u,vh)− b(vh, p) ≲ hs(|f |s−1 + |u|s+1 + |p|s)|vh|1,h.

Considering the term a(u,vh) − ah(uh,vh), for a polynomial uπ ∈ P k(E) with the esti-

mates (3.5) and according to Lemma 4.2 and Theorem 6.2, we obtain

a(u,vh)− ah(uh,vh) =
∑
E∈Th

(
aE(u,vh)− aEh (uh,vh)

)
=

∑
E∈Th

(
aE(u− uπ,vh)− aEh (uh − uπ,vh)

)
≲ (|u− uπ|1,h + |uh − uπ|1,h)|vh|1,h
≲ (|u− uπ|1,h + |u− uh|1,h)|vh|1,h
≲ hs(|u|s+1 + |f |s−1 + |p|s)|vh|1,h.

(6.11)

For the last term on the right-hand side in (6.8), by the definition of Π0
k−1, we obtain

b(vh, p)− bh(vh,Π
0
k−1p) = −

∑
E∈Th

∫
E
p div vh dx+

∑
E∈Th

∫
E
Π0

k−1p div vh dx

= −
∑
E∈Th

∫
E
(p−Π0

k−1p) div vh dx

≲ ∥p−Π0
k−1p∥0,Ω|vh|1,h

≲ hs|p|s|vh|1,h.

(6.12)

Substituting (6.9)–(6.12) into (6.8), we obtain

bh(vh, ph −Π0
k−1p) ≲ hs(|u|s+1 + |f |s−1 + |p|s)|vh|1,h.
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This, together with (6.7), implies

∥ph −Π0
k−1p∥ ≲ hs(|u|s+1 + |f |s−1 + |p|s).

So, by the triangle inequality and Lemma 4.1, we obtain

∥p− ph∥ ≲ hs(|u|s+1 + |f |s−1 + |p|s).
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