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Ventcel-type Transmission Conditions for the Scattering of a Time-harmonic

Wave Problem with Accuracy up to Order 3

Khaled El-Ghaouti Boutarene* and Sami Galleze

Abstract. This work deals with the asymptotic behaviour of the electric field in

the transverse magnetic (TM) mode, propagating in a bidimensional heterogeneous

medium, composed by a homogeneous linear dielectric isotropic material surrounded

by a thin layer of thickness ε (destined to tend to 0) and embedded in an ambient

medium. Using the tools of multiscale analysis, an asymptotic expansion of the so-

lution uε to the Helmholtz problem with respect to the thickness ε is derived. As

a consequence, Ventcel-type transmission conditions on the limit interface Γ are ob-

tained modelling the effect of the thin layer with accuracy up to O(ε3). A particular

choice of the interface Γ leads to a well-posed Ventcel’s problem.

1. Introduction

In the era of the 21st century and digital culture, new computers, like the supercomputer

Fugaku, that can make up to 415.5 petaflops (1015 × 415.5 floating-point operations per

second) have seen the day. Consequently, precision and accuracy are in high demand which

pushes to take into consideration of small parameters that were neglected in the past (for

example, the thickness of cell membrane, the paint coating a plane, or the anechoic covers

of submarines). Unfortunately, they generate more and more complex models (see [18,23]).

Such problems, posed in domains with thin layers, can be solved by boundary or finite

element methods (see [10,19]). However, these methods may cause numerical instabilities

and a significant computing time when the thickness of the thin layer goes to zero. To

bypass these difficulties, we use asymptotic methods to replace the thin layer with an

interface and the effect of the thin layer with nonstandard transmission conditions called

impedance transmission conditions or Ventcel-type transmission conditions in the Russian

literature when they involve tangential differential operators of order greater or equal to

that of the interior differential operator. In the last decade, similar problems have been

extensively studied in numerous papers (see [1, 9, 14–17,21,22,24]).
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This paper is a continuation of [8]. The latter deals with the asymptotic behaviour of

the solution to the Helmholtz equation, in a domain of R3, with a thin layer of thickness

δ. The authors used an asymptotic expansion of the solution to model the effect of the

thin layer by a problem with Ventcel-type transmission conditions, with accuracy up to

O(δ2).

In this work, we derive and justify, with the similar aforementioned techniques, an

approximation of the solution to the Helmholtz equation in a bidimensional domain, with

a thin layer of thickness ε (destined to tend to 0), with accuracy up to O(ε3). We use

a framework (see [5, 8]) which consists in considering an interface Γ, dividing the thin

layer into two thin layers of constant thickness, and an appropriate choice of its position

leads to an approximate well-posed Ventcel’s problem; unlike [7] where the Γ interface is

outside the thin layer. Furthermore, due to the lack of coercivity of Ventcel’s problem, we

investigate several equivalent transmission conditions to be able to use Rellich’s lemma

to ensure the uniqueness of the approximate solution and, therefore, its existence via an

alternative of Fredholm.

The present paper is organized as follows. In Section 2, we state the model of the

considered scattering problem. We state also the existence, the uniqueness, and a stability

estimate of the exact solution of the boundary-value problem relative to the thickness of

the thin layer. In Section 3, we recall some definitions and notations from differential

geometry of curves. Section 4 is devoted to the asymptotic expansion of the solution with

respect to the thin layer up to any order. We calculate the first three terms of a formal

asymptotic expansion, in addition to an error estimate justifying the ansatz. Further

details are given in Appendix A.

The main contribution of this paper is presented in Sections 5 and 6. We derive an

approximate model, with Ventcel-type transmission conditions modelling the effect of the

thin layer, allowing to approximate the solution far from the thin layer and to deduce an

approximation in the vicinity of the thin shell. The well-posedness of Ventcel’s problem

will also be proved, while, in Section 6, an error estimate will be established.

2. Statement of the model problem

Let Ω∞ be an open heterogeneous exterior domain of R2 in which the wave propagates,

such that its complement is a C∞ compact manifold of R2 with boundary Γi representing

the obstacle.

The domain Ω∞ is made of three sub-domains: an open bounded subset Ωε− with

regular boundary consisting of two disjoint parts Γi and Γε−; a thin layer Ωεm coating Ωε−
on the side Γε−, of thickness ε > 0, sufficiently small; and an exterior domain Ωε+ of R2

with boundary Γε+ that represents the medium free of material within and defined by
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Ωε+ = Ω∞ \
(
Ωε− ∪ Ωεm

)
(see Figure 2.1).

an asymptotic expansion of the solution to model the effect of the thin layer by a problem with
Ventcel-type transmission conditions, with accuracy up to O(δ2).

In this work, we derive and justify, with the similar aforementioned techniques, an approximation
of the solution to the Helmholtz equation in a bidimensional domain, with a thin layer of thickness ε
(destined to tend to 0), with accuracy up to O(ε3). We use a framework (cf., e.g., [5, 8]) which consists
in considering an interface Γ, dividing the thin layer into two thin layers of constant thickness, and
an appropriate choice of its position leads to an approximate well-posed Ventcel’s problem; unlike [7]
where the Γ interface is outside the thin layer. Furthermore, due to the lack of coercivity of Ventcel’s
problem, we investigate several equivalent transmission conditions to be able to use Rellich’s lemma
to ensure the uniqueness of the approximate solution and, therefore, its existence via an alternative
of Fredholm.

The present paper is organized as follows. In Section 2, we state the model of the considered
scattering problem. We state also the existence, the uniqueness, and a stability estimate of the exact
solution of the boundary-value problem relative to the thickness of the thin layer. In Section 3, we
recall some definitions and notations from differential geometry of curves. Section 4 is devoted to the
asymptotic expansion of the solution with respect to the thin layer up to any order. We calculate
the first three terms of a formal asymptotic expansion, in addition to an error estimate justifying the
ansatz. Further details are given in Appendix A.

The main contribution of this paper is presented in Sections 5 and 6. We derive an approximate
model, with Ventcel-type transmission conditions modelling the effect of the thin layer, allowing to
approximate the solution far from the thin layer and to deduce an approximation in the vicinity of the
thin shell. The well-posedness of Ventcel’s problem will also be proved, while, in Section 6, an error
estimate will be established.

2 Statement of the model problem

Let Ω∞ be an open heterogeneous exterior domain of R2 in which the wave propagates, such that its
complement is a C∞ compact manifold of R2 with boundary Γi representing the obstacle.

The domain Ω∞ is made of three sub-domains: an open bounded subset Ωε
− with regular boundary

consisting of two disjoint parts Γi and Γε−; a thin layer Ωε
m coating Ωε

− on the side Γε−, of thickness
ε > 0, sufficiently small; and an exterior domain Ωε

+ of R2 with boundary Γε+ that represents the
medium free of material within and defined by Ωε

+ = Ω∞\
(
Ωε
− ∪ Ωε

m

)
(cf. Fig. 1).

Γi

Ωε
−

Ωε
+ Ωε

m

Γε−

Γε+ −→n−

−→n+

Figure 1: Geometry of the problem.

2

Figure 2.1: Geometry of the problem.

Define the two piecewise strictly positive constant functions αε and kε by

(2.1) αε(x) =





α+ if x ∈ Ωε+,

1 if x ∈ Ωεm,

α− if x ∈ Ωε−

and kε(x) =





k+ if x ∈ Ωε+,

km if x ∈ Ωεm,

k− if x ∈ Ωε−.

In (2.1), αε and k
2
ε describe respectively the contrast and the refractive properties of the

mediums Ωε− and Ωεm relative to the exterior propagation domain Ωε+. We also assume

that all the constants α±, k2± and k2m are independent of ε and α± ∈ ]1,+∞[ or α± ∈ ]0, 1[ .

Under the aforementioned assumptions, we look at the asymptotic behaviour as ε→ 0

of the solution uε to the Helmholtz problem





∆uε + k2εu
ε = 0 in Ωε− ∪ Ωεm ∪ Ωε+,(2.2a)

uε = 0 on Γi,(2.2b)

lim
|x|→+∞

√
|x|(∂|x| − ik+)(u

ε − uinc) = 0(2.2c)

with transmission conditions for the Dirichlet and Neumann traces on the interfaces Γε+
and Γε−

{
uε± = uεm on Γε±,(2.2d)

α±∂n±u
ε
± = ∂n±u

ε
m on Γε±,(2.2e)

where ∂n+ and ∂n− denote the derivatives in the direction of the unit normal vectors n+

and n− to Γε+ and Γε− respectively (see Figure 2.1); uε+, u
ε
m, and u

ε
− are the restrictions

of uε respectively to the domains Ωε+, Ω
ε
m, Ω

ε
− and uinc is the incident wave defined by

uinc = eik+(x·d), with d being a unit vector of R2 giving the direction of the plane wave

uinc.
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We shall adopt similar arguments to those used in [5, 8]. It consists in considering an

artificial interface Γ parallel to Γε±, dividing Ωεm into two thin layers Ωεm,1 and Ωεm,2 of

thickness d1ε and d2ε respectively, where d1 and d2 are positive real numbers satisfying

d1 + d2 = 1 (see Figure 2.2).

Define the two piecewise strictly positive constant functions αε and kε by

αε(x) =





α+ if x ∈ Ωε
+,

1 if x ∈ Ωε
m,

α− if x ∈ Ωε
−,

and kε(x) =





k+ if x ∈ Ωε
+,

km if x ∈ Ωε
m,

k− if x ∈ Ωε
−.

(1)

In (1), αε and k2
ε describe respectively the contrast and the refractive properties of the mediums Ωε

−
and Ωε

m relative to the exterior propagation domain Ωε
+. We also assume that all the constants α±, k2

±
and k2

m are independent of ε and α± ∈ ]1,+∞[ or α± ∈ ]0, 1[ .
Under the aforementioned assumptions, we look at the asymptotic behaviour as ε → 0 of the

solution uε to the Helmholtz problem




∆uε + k2
εu

ε = 0 in Ωε
− ∪ Ωε

m ∪ Ωε
+, (2a)

uε = 0 on Γi, (2b)

lim
|x|−→+∞

√
|x|
(
∂|x| − ik+

)
(uε − uinc) = 0, (2c)

with transmission conditions for the Dirichlet and Neumann traces on the interfaces Γε+ and Γε−
{
uε± = uεm on Γε±, (2d)

α±∂n±u
ε
± = ∂n±u

ε
m on Γε±, (2e)

where ∂n+ and ∂n− denote the derivatives in the direction of the unit normal vectors n+ and n− to
Γε+ and Γε− respectively (cf. Fig. 1); uε+, uεm, and uε− are the restrictions of uε respectively to the
domains Ωε

+, Ωε
m, Ωε

− and uinc is the incident wave defined by uinc = eik+(x·d), with d being a unit
vector of R2 giving the direction of the plane wave uinc.

We shall adopt similar arguments to those used in [5, 8]. It consists in considering an artificial
interface Γ parallel to Γε±, dividing Ωε

m into two thin layers Ωε
m,1 and Ωε

m,2 of thickness d1ε and d2ε
respectively, where d1 and d2 are positive real numbers satisfying d1 + d2 = 1 (cf. Fig. 2).

Γε−

Γε+

Ωε
−

Ωε
m

Ωε
+

ε

Γε−

Γ

Γε+

Ωε
−

Ωε
m,1

Ωε
m,2

Ωε
+

d1ε d2ε

Figure 2: A zoom on the thin layer, with and without the Γ interface.

We will first determine an asymptotic expansion of the solution uε with respect to the thickness ε
up to any order using d1 and d2 as parameters. We then provide Ventcel-type transmission conditions
on the interface Γ modelling the effect of the thin layer with accuracy up to O(ε3). The determination
of the constants d1 and d2 in the second step and therefore the position of Γ, which is not, necessary,
the thin layer’s midline, will ensure the existence and the uniqueness of the approximate solution.

3

Figure 2.2: A zoom on the thin layer, with and without the Γ interface.

We will first determine an asymptotic expansion of the solution uε with respect to the

thickness ε up to any order using d1 and d2 as parameters. We then provide Ventcel-

type transmission conditions on the interface Γ modelling the effect of the thin layer with

accuracy up to O(ε3). The determination of the constants d1 and d2 in the second step

and therefore the position of Γ, which is not, necessary, the thin layer’s midline, will ensure

the existence and the uniqueness of the approximate solution.

The following theorem answers the question of existence, uniqueness, and gives a uni-

form estimate of the solution uε with respect to ε, for which a proof can be found in [6,8].

The following theorem answers the question of existence, uniqueness, and gives a uniform estimate
of the solution uε with respect to ε, for which a proof can be found in [8, 6].

Theorem 1 Problem (2) admits a unique solution uε in H1
loc(Ω∞). Furthermore, there exists a con-

stant c independent of ε such that
‖uε‖H1(Ω) ≤ c,

where Ω is a bounded smooth domain with boundary Γi and a smooth curve denoted by Γ∞ enclosing
the obstacle as well as the thin layer Ωε

m (cf. Fig. 3).

Γ∞

Γi

Ωε
−

Ωε
m

Γε−

Γε+

Ω

Figure 3: The Ω set.

3 Differential geometry tools

The goal of this section is to define and to collect the main features of differential geometry to
formulate our problem in a fixed domain (independent of ε). This technique is a key tool to determine
the asymptotic expansion of the solution uε.

3.1 Parameterization of Γ

Let Γ be a regular parameterized closed curve through the C∞ map γ defined by

γ : (0, lΓ) −→ Γ ⊂ R2

t −→ γ(t) = (γ1(t), γ2(t)) ,

where lΓ is the length of Γ and t is the arc length of γ. The tangent and normal unit vectors τ(t) and
n(t) to Γ at γ(t) are given by

τ(t) :=
dγ(t)

dt
= (n2(t),−n1(t)) , n(t) := (n1(t), n2(t)) .

We recall Frénet’s formulas defining the curvature c(t) of Γ at point γ(t) (cf. [13])

dτ(t)

dt
= −c(t)n ,

dn(t)

dt
= c(t)τ.

4

Figure 2.3: The Ω set.

Theorem 2.1. Problem (2.2) admits a unique solution uε in H1
loc(Ω∞). Furthermore,
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there exists a constant c independent of ε such that

∥uε∥H1(Ω) ≤ c,

where Ω is a bounded smooth domain with boundary Γi and a smooth curve denoted by

Γ∞ enclosing the obstacle as well as the thin layer Ωεm (see Figure 2.3).

3. Differential geometry tools

The goal of this section is to define and to collect the main features of differential geometry

to formulate our problem in a fixed domain (independent of ε). This technique is a key

tool to determine the asymptotic expansion of the solution uε.

3.1. Parameterization of Γ

Let Γ be a regular parameterized closed curve through the C∞ map γ defined by

γ : (0, lΓ) → Γ ⊂ R2

t 7→ γ(t) = (γ1(t), γ2(t)),

where lΓ is the length of Γ and t is the arc length of γ. The tangent and normal unit

vectors τ (t) and n(t) to Γ at γ(t) are given by

τ (t) :=
dγ(t)

dt
= (n2(t),−n1(t)), n(t) := (n1(t), n2(t)).

We recall Frénet’s formulas defining the curvature c(t) of Γ at point γ(t) (see [13])

dτ (t)

dt
= −c(t)n, dn(t)

dt
= c(t)τ .

3.2. Parameterization of Ωεm

Let Iε = (−d1ε, d2ε). We parameterize the thin shell Ωεm by the manifold (0, lΓ) × Iε

through the mapping ψ defined by

(0, lΓ)× Iε
ψ−→ Ωεm

(t, η) 7→ x := γ(t) + ηn(t).

As well-known [13], if the thickness of Ωεm is small enough, ψ is a C∞-diffeomorphism

of manifolds. To each function v defined on Ωεm, we associate the function ṽ defined on

(0, lΓ)× Iε by

ṽ(t, η) := v(x), x = ψ(t, η),
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then we have

∇t,ηṽ(t, η) =


∂tṽ(t, η)
∂ηṽ(t, η)


 =


(1 + ηc(t))n2(t) −(1 + ηc(t))n1(t)

n1(t) n2(t)




∂x1v(x)
∂x2v(x)


 ,

so

∇v(x) =


∂x1v(x)
∂x2v(x)


 =




n2(t)
1+ηc(t) n1(t)

−n1(t)
1+ηc(t) n2(t)




∂tṽ(t, η)
∂ηṽ(t, η)


 .

Hence the expression of the Laplacian in the variables (t, η) is

∆v =

[
∂2η +

c(t)

1 + ηc(t)
∂η +

1

1 + ηc(t)
∂t

(
1

1 + ηc(t)
∂t

)]
ṽ.

As usual, due to the dependence of Ωεm on the thickness parameter ε, we cannot give

an asymptotic expansion of uε in powers of ε. Therefore, we transform Ωεm into a fixed

domain independent of ε. We introduce the scaling s = η/ε, and the interval I = (−d1, d2)
such that the C∞-diffeomorphism Φ, defined by

Ωm := (0, lΓ)× I
Φ−→ Ωεm

(t, s) 7→ x := γ(t) + εsn(t),

parameterizes the thin shell Ωεm. To any function v defined on Ωεm, we associate the

function V defined on Ωm through

V (t, s) := v(x), x = Φ(t, s).

Hence the expression of the Laplacian in the variables (t, s) is

∆v = ε−2

[
∂2sV + ε

c(t)

1 + εsc(t)
∂sV +

ε2

1 + εsc(t)
∂t

(
1

1 + εsc(t)
∂t

)
V

]

= ε−2


∂2sV −

N∑

j=1

εjAjV + εN+1TNV


 ,

(3.1)

where TN is a bounded operator with respect to ε. In particular

A1 = −c(t)∂s, A2 = sc2(t)∂s − ∂2t , A3 = −s2c3(t)∂s + 2sc(t)∂2t + sc′(t)∂t.

Remark 3.1. For any function u defined in a neighbourhood of Γ, we denote, for conve-

nience, by u|Γ the trace of u on Γ indifferently in local coordinates or cartesian coordinates.

4. The asymptotic analysis

This section is dedicated to a multiscale expansion for the solution uε to Problem (2.2) in

power of ε. We derive a hierarchy of equations defined in a fixed domain (independent of

ε). Then we give the first three terms of the asymptotic expansions. Further details on

the derivation of these terms are given in Appendix A. We conclude by the convergence

theorem justifying our ansatz.
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4.1. Hierarchy of equations

As well known (see [3,11,12,26]), it is impossible to determine an asymptotic expansion in

power of ε uniformly on the whole domain Ω∞. This is due to boundary layer phenomena

in the vicinity of the thin layer.

Therefore, we consider two asymptotic expansions: exterior asymptotic expansions

corresponding to the expansion of the solution uε restricted to Ωε+ and to Ωε−, written in

cartesian coordinates x = (x1, x2) (macroscopic scale) and given by the ansatz

uε+ =
∑

n≥0

εnun+ in Ωε+,(4.1)

uε− =
∑

n≥0

εnun− in Ωε−,(4.2)

where the terms un+ and un− (n ∈ N) are independent of ε and respectively defined on

Ω+ := Ωε+ ∪ Γε2 ∪ Ωεm,2 and on Ω− := Ωε− ∪ Γε1 ∪ Ωεm,1. They satisfy

(4.3)





∆un+ + k2+u
n
+ = 0 in Ω+,

∆un− + k2−u
n
− = 0 in Ω−,

un− = 0 on Γi,

lim|x|→+∞
√
|x|(∂|x| − ik+)(u

n
+ − δ0,nuinc) = 0

in which δ0,n indicates the Kronecker symbol. And an interior expansion corresponding

to the asymptotic expansion of uε restricted to Ωεm, written in local coordinates (t, s)

(microscopic scale) and defined by the ansatz

(4.4) uεm(x1, x2) = U εm(t, s) =
∑

n≥0

εnUnm(t, s) in Ωm,

where Unm are independent of ε.

Using a Taylor expansion in the normal variable, we infer formally

uε−|Γε
− = u0−|Γ + ε

(
u1−|Γ − d1∂nu

0
−|Γ
)
+ ε2

(
u2−|Γ − d1∂nu

1
−|Γ +

d21
2
∂2nu

0
−|Γ
)
+ · · · ,

α−∂nuε−|Γε
− = α−∂nu0−|Γ + ε

(
α−∂nu1−|Γ − α−d1∂2nu

0
−|Γ
)

+ ε2
(
α−∂nu2−|Γ − α−d1∂2nu

1
−|Γ + α−

d21
2
∂3nu

0
−|Γ
)
+ · · · ,

and

uε+|Γε
+
= u0+|Γ + ε

(
u1+|Γ + d2∂nu

0
+|Γ
)
+ ε2

(
u2+|Γ + d2∂nu

1
+|Γ +

d22
2
∂2nu

0
+|Γ
)
+ · · · ,

α+∂nu
ε
+|Γε

+
= α+∂nu

0
+|Γ + ε

(
α+∂nu

1
+|Γ + α+d2∂

2
nu

0
+|Γ
)

+ ε2
(
α+∂nu

2
+|Γ + α+d2∂

2
nu

1
+|Γ + α+

d22
2
∂3nu

0
+|Γ
)
+ · · · .
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Transmission conditions (2.2d) imply that

U0
m(t,−d1) + εU1

m(t,−d1) + ε2U2
m(t,−d1) + · · ·

= u0−|Γ + ε
(
u1−|Γ − d1∂nu

0
−|Γ
)
+ ε2

(
u2−|Γ − d1∂nu

1
−|Γ +

d21
2
∂2nu

0
−|Γ
)
+ · · · ,

(4.5)

U0
m(t, d2) + εU1

m(t, d2) + ε2U2
m(t, d2) + · · ·

= u0+|Γ + ε
(
u1+|Γ + d2∂nu

0
+|Γ
)
+ ε2

(
u2+|Γ + d2∂nu

1
+|Γ +

d22
2
∂2nu

0
+|Γ
)
+ · · · ,

(4.6)

and the condition (2.2e) gives

ε−1∂sU
0
m(t,−d1) + ∂sU

1
m(t,−d1) + ε∂sU

2
m(t,−d1) + ε2∂sU

3
m(t,−d1) + · · ·

= α−∂nu0−|Γ + ε
(
α−∂nu1−|Γ − α−d1∂2nu

0
−|Γ
)

+ ε2
(
α−∂nu2−|Γ − α−d1∂2nu

1
−|Γ + α−

d21
2
∂3nu

0
−|Γ
)
+ · · · ,

(4.7)

ε−1∂sU
0
m(t, d2) + ∂sU

1
m(t, d2) + ε∂sU

2
m(t, d2) + ε2∂sU

3
m(t, d2) + · · ·

= α+∂nu
0
+|Γ + ε

(
α+∂nu

1
+|Γ + α+d2∂

2
nu

0
+|Γ
)

+ ε2
(
α+∂nu

2
+|Γ + α+d2∂

2
nu

1
+|Γ + α+

d22
2
∂3nu

0
+|Γ
)
+ · · · .

(4.8)

Otherwise, inserting Expansion (4.4) in (2.2a), using (3.1) and matching the same

powers of ε, we get, for all (t, s) ∈ (0, lΓ)× I, the hierarchy of equations

∂2sU
0
m = 0,(4.9)

∂2sU
1
m = A1U

0
m,(4.10)

∂2sU
2
m = A1U

1
m +A2U

0
m − k2mU

0
m,(4.11)

∂2sU
3
m = A1U

2
m +A2U

1
m +A3U

0
m − k2mU

1
m,(4.12)

...

4.2. Calculation of the first three terms

We give in this paragraph the first three terms of the asymptotic expansions of the solution

uε. More details are given in Appendix A.

By solving (4.9)–(4.12), with the help of transmission conditions (4.5)–(4.8), the terms

(un−, u
n
+), 0 ≤ n ≤ 2, are solutions of the following boundary-value problems





∆un+ + k2+u
n
+ = 0 in Ω+,

∆un− + k2−u
n
− = 0 in Ω−,

un− = 0 on Γi,

lim|x|→+∞
√
|x|(∂|x| − ik+)(u

n
+ − δ0,nuinc) = 0
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with transmission conditions on Γ:

At order 0:

u0+ = u0−, α+∂nu
0
+ = α−∂nu0−.

At order 1:

u1+ − u1− =
α+α− − d2α− − d1α+

2α+α−
(α+∂nu

0
+ + α−∂nu0−),

α+∂nu
1
+ − α−∂nu1− =

d1α− + d2α+ − 1

2
(∂2t u

0
+ + ∂2t u

0
−)

+
d1α−k2− + d2α+k

2
+ − k2m

2
(u0+ + u0−).

At order 2:

u2+ − u2−

=
α+α− − d2α− − d1α+

2α+α−
(α+∂nu

1
+ + α−∂nu1−)

+
d1α+α

2
− − d2α

2
+α− + d1d2(α

2
+ − α2

−) + d2α− − d1α+

4α+α−
(∂2t u

0
+ + ∂2t u

0
−)

+ c(t)
(d1 − d2)α−α+ + d22α− − d21α+

2(α+α− − d1α+ − d2α−)
(u1+ − u1−)

+
(d1k

2
−α− − d2k

2
+α+)α+α− + d1d2(k

2
+α

2
+ − k2−α

2
−) + k2m(d2α− − d1α+)

4α+α−
(u0+ + u0−),

α+∂nu
2
+ − α−∂nu2−

=
(d2α+ + d1α− − 1)

2
(∂2t u

1
+ + ∂2t u

1
−)

+
(d2α+k

2
+ + d1α−k2− − k2m)

2
(u1− + u1+)

+
α+d1k

2
m − α−d2k2m − α2

+d1d2k
2
+ + α2

−d1d2k
2
− + α2

+α−d2k2+ − α+α
2
−d1k

2
−

2(α+α− − d2α− − d1α+)
(u1+ − u1−)

+

(
α+d

2
2k

2
+ − α−d21k

2
− + d1k

2
m − d2k

2
m

4

)
c(t)(u0+ + u0−)

+

(
d2 − d1 + α−d21 − α+d

2
2

4

)
c(t)(∂2t u

0
+ + ∂2t u

0
−)

+

(
d2 − d1 + α−d21 − α+d

2
2

4

)
c′(t)(∂tu0+ + ∂tu

0
−)

+

(
(d2α+ − d1α−)(α+α− − d1α+ − d2α−) + (d2 − d1)α+α− + d1α+ − d2α−

2(α+α− − d2α− − d1α+)

)

× (∂2t u
1
+ − ∂2t u

1
−).
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Moreover (Unm)0≤n≤2 is determined by

U0
m(t, s) = u0−|Γ = u0+|Γ, ∀ (t, s) ∈ Ωm,(4.13)

U1
m(t, s) = u1−|Γ + (α−s+ d1α− − d1)∂nu

0
−|Γ, ∀ (t, s) ∈ Ωm,(4.14)

U2
m(t, s) = u2−|Γ + (α−s+ d1α− − d1)∂nu

1
−|Γ

−
(
d21
2
k2− − d21α−k2− − d1α−sk2− +

d21
2
k2m +

s2

2
k2m + d1k

2
ms

)
u0−|Γ

−
(
s2

2
+ d1s+ d21 − d21α− − d1α−s

)
∂2t u

0
−|Γ

−
(
s2

2
α− − d21

2
α− +

d21
2

)
c(t)∂nu

0
−|Γ.

(4.15)

We have derived the first three terms of the asymptotic expansions (4.1), (4.2) and

(4.4). We can continue up to any order since the data are smooth enough. We now come

to a convergence theorem justifying the ansatz (4.1), (4.2) and (4.4) by estimating the

error resulting from the truncation of the expansions after a finite number of terms. A

complete proof giving theorems of existence and uniqueness of the series (un−)n, (u
n
+)n and

(Unm)n and an error estimate can be found in [6,8]. Let N ∈ N and Ω̃ε+ be a domain of R2

defined by Ω̃ε+ := Ωε+ ∩ Ω. We set

u
ε,(N)
− :=

N∑

n=0

εnun−, u
ε,(N)
+ :=

N∑

n=0

εnun+ and uε,(N)
m :=

N∑

n=0

εnunm,

where unm(x) := Unm(t, s), ∀x = Φ(t, s) ∈ Ωεm.

Theorem 4.1 (Convergence theorem). For all integers N , there exists a constant c inde-

pendent of ε such that

∥∥uε− − u
ε,(N)
−

∥∥
H1(Ωε

−)
+ ε1/2

∥∥uεm − uε,(N)
m

∥∥
H1(Ωε

m)
+
∥∥uε+ − u

ε,(N)
+

∥∥
H1(Ω̃ε

+)
≤ cεN+1.

5. Approximate transmission conditions

In this section, which is the main part of the paper, we model the effect of the thin layer

by a problem with Ventcel-type transmission conditions with accuracy up to O(ε3).

In the spirit of [5,8], we truncate the series (4.1) and (4.2) keeping only the first three

terms and neglect all the terms of order greater than or equal to 3. This yields a candidate

(uε,ap− , uε,ap+ ), solution of the following problem, to approximate the exact solution uε far
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from the thin layer

(5.1a)





∆uε,ap+ + k2+u
ε,ap
+ = 0 in Ω+,

∆uε,ap− + k2−u
ε,ap
− = 0 in Ω−,

uε,ap− = 0 on Γi,

lim|x|→+∞
√
|x|(∂|x| − ik+)(u

ε,ap
+ − uinc) = 0

with the following transmission conditions on Γ:

uε,ap+ − uε,ap− = εA1(α+∂nu
ε,ap
+ + α−∂nu

ε,ap
− ) + ε2A2(∂

2
t u

ε,ap
+ + ∂2t u

ε,ap
− )

+ εA3(u
ε,ap
+ − uε,ap− ) + ε2A4(u

ε,ap
+ + uε,ap− ),

(5.1b)

α+∂nu
ε,ap
+ − α−∂nu

ε,ap
− = (εB1 + ε2B2)(∂

2
t u

ε,ap
+ + ∂2t u

ε,ap
− )

+ (εB3 + ε2B4)(u
ε,ap
+ + uε,ap− ) + εB5(u

ε,ap
+ − uε,ap− )

+ ε2B6(∂tu
ε,ap
+ + ∂tu

ε,ap
− ) + εB7(∂

2
t u

ε,ap
+ − ∂2t u

ε,ap
− )

(5.1c)

in which

A1 =
α+α− − d2α− − d1α+

2α+α−
,(5.2)

A2 =
d1α+α

2
− − d2α

2
+α− + d1d2(α

2
+ − α2

−) + d2α− − d1α+

4α+α−
,(5.3)

A3 = c(t)
(d1 − d2)α+α− + d22α− − d21α+

2(α+α− − d1α+ − d2α−)
,(5.4)

A4 =
(d1k

2
−α− − d2k

2
+α+)α+α− + d1d2(k

2
+α

2
+ − k2−α

2
−) + k2m(d2α− − d1α+)

4α+α−
,(5.5)

B1 =
d2α+ + d1α− − 1

2
,(5.6)

B2 =
d2 − d1 + α−d21 − α+d

2
2

4
c(t),(5.7)

B3 =
d2α+k

2
+ + d1α−k2− − k2m

2
,(5.8)

B4 =
α+d

2
2k

2
+ − α−d21k

2
− + d1k

2
m − d2k

2
m

4
c(t),(5.9)

B5 =
α+d1k

2
m − α−d2k2m − α2

+d1d2k
2
+ + α2

−d1d2k
2
− + α2

+α−d2k2+ − α+α
2
−d1k

2
−

2(α+α− − d2α− − d1α+)

= −A4

A1
,

(5.10)

B6 =

(
d2 − d1 + α−d21 − α+d

2
2

4

)
c′(t) = ∂tB2,(5.11)

B7 =
(d2α+ − d1α−)(α+α− − d1α+ − d2α−) + (d2 − d1)α+α− + d1α+ − d2α−

2(α+α− − d2α− − d1α+)

= −A2

A1
.

(5.12)
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Note that A1 ̸= 0 since we have assumed that α± ∈ ]1,+∞[ or α± ∈ ]0, 1[ .

Once the approximate solution (uε,ap− , uε,ap+ ) is determined, we deduce, from (4.13)–

(4.15), an approximation uε,apm of the part uεm of the exact solution uε defined in Ωεm
by

uε,apm (x) := U ε,apm (t, s) := uε,ap− |Γ + ε(α−s+ d1α− − d1)∂nu
ε,ap
− |Γ

− ε2
(
d21
2
k2− − d21α−k2− − d1α−sk2− +

d21
2
k2m +

s2

2
k2m + d1k

2
ms

)
uε,ap− |Γ

− ε2
(
s2

2
+ d1s+ d21 − d21α− − d1α−s

)
∂2t u

ε,ap
− |Γ

− ε2
(
s2

2
α− − d21

2
α− +

d21
2

)
c(t)∂nu

ε,ap
− |Γ, ∀x = Φ(t, s) ∈ Ωεm.

(5.13)

Theorem 5.1. Problem (5.1) admits at most one solution.

Proof. Let us consider the homogeneous problem associated with Problem (5.1):





∆uε,ap+ + k2+u
ε,ap
+ = 0 in Ω+,(5.14)

∆uε,ap− + k2−u
ε,ap
− = 0 in Ω−,(5.15)

uε,ap− = 0 on Γi,(5.16)

lim
|x|→+∞

√
|x|(∂|x| − ik+)u

ε,ap
+ = 0(5.17)

with transmission conditions on Γ:

uε,ap+ − uε,ap− = εA1(α+∂nu
ε,ap
+ + α−∂nu

ε,ap
− ) + ε2A2(∂

2
t u

ε,ap
+ + ∂2t u

ε,ap
− )

+ εA3(u
ε,ap
+ − uε,ap− ) + ε2A4(u

ε,ap
+ + uε,ap− ),

(5.18)

α+∂nu
ε,ap
+ − α−∂nu

ε,ap
− = (εB1 + ε2B2)(∂

2
t u

ε,ap
+ + ∂2t u

ε,ap
− )

+ (εB3 + ε2B4)(u
ε,ap
+ + uε,ap− ) + εB5(u

ε,ap
+ − uε,ap− )

+ ε2B6(∂tu
ε,ap
+ + ∂tu

ε,ap
− ) + εB7(∂

2
t u

ε,ap
+ − ∂2t u

ε,ap
− ).

(5.19)

Standard regularity results for elliptic problems (see [2]) ensure that (uε,ap− , uε,ap+ ) ∈ C∞(Ω−)

× C∞(Ω+). Let BR be the ball with centre O and radius R sufficiently large to enclose

Ω− and let ΩR be the domain of R2 defined by ΩR := BR ∩ Ω+. Multiplying (5.14) and

(5.15) by uε,ap+ and uε,ap− respectively and using Green’s formula, we get

α−

∫

Ω−
|∇uε,ap− |2 dΩ− − α−k2−

∫

Ω−
|uε,ap− |2 dΩ− + α+

∫

ΩR

|∇uε,ap+ |2 dΩR

(5.20)

− α+k
2
+

∫

ΩR

|uε,ap+ |2 dΩR −
∫

Γ

εA3 − 1

2εA1
|uε,ap+ − uε,ap− |2 dΓ
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+
1

2

∫

Γ
(εB3 + ε2B4)

(
|uε,ap+ + uε,ap− |2

)
dΓ− 1

2

∫

Γ
(εB1 + ε2B2)

(
|∂tuε,ap− + ∂tu

ε,ap
+ |2

)
dΓ

+ εB5

∫

Γ

(
|uε,ap+ |2 − |uε,ap− |2

)
dΓ− εB7

∫

Γ

(
|∂tuε,ap+ |2 − |∂tuε,ap− |2

)
dΓ

= α+

∫

SR

∂Ru
ε,ap
+ uε,ap+ dSR,

where SR denotes the circle with centre O and radius R. Taking the imaginary part of

(5.20), we obtain

ℑ
(∫

SR

∂Ru
ε,ap
+ uε,ap+ dSR

)
= 0.

It follows from radiation condition (5.17) and Rellich’s lemma [25] that uε,ap+ = 0 in Ω+.

Problem (5.14)–(5.19) is thus reduced to





∆uε,ap− + k2−u
ε,ap
− = 0 in Ω−,

uε,ap− = 0 on Γi

with the following transmission conditions on Γ:

uε,ap− = −εA1(α−∂nu
ε,ap
− )− ε2A2(∂

2
t u

ε,ap
− ) + εA3(u

ε,ap
− )− ε2A4(u

ε,ap
− ),

α−∂nu
ε,ap
− = −(εB1 + ε2B2)(∂

2
t u

ε,ap
− )− (εB3 + ε2B4)(u

ε,ap
− ) + εB5(u

ε,ap
− )

− ε2B6∂tu
ε,ap
− + εB7(∂

2
t u

ε,ap
− ).

This implies that

(5.21)

[(
1

A1
− ε

A3

A1
− ε2B3 − ε3B4

)
I − (ε2B1 + ε3B2)∂

2
t − ε3B6∂t

]
uε,ap− |Γ = 0.

Multiplying (5.21) by uε,ap− |Γ and integrating over Γ, we obtain

∫

Γ

(
1

A1
− ε

A3

A1
− ε2B3 − ε3B4

)
|uε,ap− |2 dΓ +

∫

Γ
(ε2B1 + ε3B2)|∂tuε,ap− |2 dΓ = 0.

As α± ∈ ]1,+∞[ or α± ∈ ]0, 1[ , then A1B1 > 0, and since ε is small enough, there exists

a positive constant C such that

C
(
∥uε,ap− ∥2L2(Γ) + ∥∂tuε,ap− ∥2L2(Γ)

)
≤
∫ ∣∣∣∣

1

A1
− ε

A3

A1
− ε2B3 − ε3B4

∣∣∣∣ |u
ε,ap
− |2 dΓ

+ ε2
∫

Γ
|B1 + εB2||∂tuε,ap− |2 dΓ

= 0.
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This leads to uε,ap− |Γ = 0. Then, we obtain





∆uε,ap− + k2−u
ε,ap
− = 0 in Ω−,

uε,ap− = 0 on Γ,

∂nu
ε,ap
− = 0 on Γ,

uε,ap− = 0 on Γi.

Well-know arguments of uniqueness of the solution of this type of problems (see [20]) leads

to uε,ap− = 0 in Ω−, which proves the uniqueness of the solution (uε,ap− , uε,ap+ ).

To show the existence of the solution (uε,ap− , uε,ap+ ), we transform Problem (5.1) into

a pseudodifferential equation set on Γ. Therefore, we introduce the Steklov–Poincaré

operators (see [3]) (called also Dirichlet-to-Neumann operators) T− and T+ defined from

H1/2(Γ) onto H−1/2(Γ) by T−φ := α−∂nu−|Γ, where u− is the solution to the boundary-

value problem 



∆u− + k2−u− = 0 in Ω−,

u− = φ on Γ,

u− = 0 on Γi,

and by T+ψ := α+∂−nu+|Γ, where u+ is the solution to the boundary-value problem




∆u+ + k2+u+ = 0 in Ω+,

u+ = ψ on Γ,

lim|x|→+∞
√
|x|(∂|x| − ik+)u+ = 0.

The Dirichlet-to-Neumann operators T− and T+ are elliptic pseudodifferential operators

(see [27–29]) of real symbol of order 1.

Remark 5.2. The function u− is defined only in the case where the constant k2− does not

belong to the spectrum of the closed operator (−∆, H1
0 (Ω−)). We will therefore assume

that this condition holds.

The definition of The Steklov–Poincaré operators allows us to rewrite Problem (5.1)

into an equivalent system of boundary equations: Find (ω,κ) ∈ H1/2(Γ)×H1/2(Γ) such

that

(5.22) Λ


ω
κ


 =


εA1g

−g


 ,

where ω and κ are the traces of uε,ap+ and uε,ap− on Γ respectively,

g = T+(uinc|Γ) + α+∂nuinc|Γ,
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and Λ = (Λij)1≤i,j≤2 is a matrix of pseudodifferential operators defined by

Λ11 = (1− εA3 − ε2A4)I + εA1T+ − ε2A2∂
2
t ,(5.23)

Λ12 = (−1 + εA3 − ε2A4)I − εA1T− − ε2A2∂
2
t ,(5.24)

Λ21 = (−εB3 − εB5 − ε2B4)I − T+ − ε(B1 + B7 + εB2)∂
2
t − ε2B6∂t,(5.25)

Λ22 = (−εB3 + εB5 − ε2B4)I − T− − ε(B1 − B7 + εB2)∂
2
t − ε2B6∂t.(5.26)

We are now in position to state the existence theorem. In the case α+ ̸= α−, we have

Theorem 5.3. For any integer k ≥ 1, if α+ ̸= α− and g ∈ Hk−5/2(Γ) then Problem (5.1)

admits a unique solution (uε,ap− , uε,ap+ ) ∈ Hk(Ω−)×Hk
loc(Ω+).

Proof. We set

Λ =M ε
1


I 0

0 I


+M ε

2


T+ 0

0 T−


+M ε

3


−∂2t 0

0 −∂2t


+M ε

4


∂t 0

0 ∂t




= (M ε
1 −M ε

3 )


I 0

0 I


+M ε

2


T+ 0

0 T−


+M ε

4


∂t 0

0 ∂t


+M ε

3


I − ∂2t 0

0 I − ∂2t


 ,

where

M ε
1 =


 1− εA3 − ε2A4 −1 + εA3 − ε2A4

−εB3 − εB5 − ε2B4 −εB3 + εB5 − ε2B4


 , M ε

2 =


εA1 −εA1

−1 −1


 ,

M ε
3 =


 ε2A2 ε2A2

ε(B1 + B7 + εB2) ε(B1 − B7 + εB2)


 , M ε

4 =


 0 0

−ε2B6 −ε2B6


 .

The operator I − ∂2t is an elliptic self-adjoint semibounded from bellow pseudodifferential

operator of order 2 (see [4]), it is Fredholm with zero index and maps Hs(Γ) to Hs−2(Γ),

for any s ∈ R. As det(M ε
3 ) ̸= 0, then the operator M ε

3

(
∂2t −I 0

0 ∂2t −I

)
: Hs(Γ) × Hs(Γ) →

Hs−2(Γ) × Hs−2(Γ) is Fredholm with zero index. Since ∂t, T+, and T− are pseudod-

ifferential operators of order 1, they map Hs(Γ) to Hs−1(Γ), and since the injection

Hs−1(Γ) ↪→ Hs−2(Γ) is compact, (M ε
1 −M ε

3 )
(
I 0
0 I

)
+M ε

2

(
T+ 0
0 T−

)
+M ε

4

(
∂t 0
0 ∂t

)
: Hs(Γ)×

Hs(Γ) → Hs−2(Γ) ×Hs−2(Γ) is a compact operator. It follows that Λ is Fredholm with

zero index, then the equivalence of System (5.22) to Problem (5.1) and Theorem 5.1 show

that the uniqueness of (uε,ap− , uε,ap+ ) implies that for any integer k ≥ 1, if (εA1g,−g) ∈
Hk−5/2(Γ)×Hk−5/2(Γ), there exists a unique solution (ω,κ) ∈ Hk−1/2(Γ)×Hk−1/2(Γ) of

(5.22) which leads to the existence of a unique solution (uε,ap− , uε,ap+ ) ∈ Hk(Ω−)×Hk
loc(Ω+),

as we wished.

Remark 5.4. Note that Theorem 5.3 remains valid when α+ = α− and d1 ̸= 1/2.
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In the case α+ = α− and d1 = d2 = 1/2, the matrix of pseudodifferential operators Λ

defined by formulas (5.23)–(5.26) becomes

Λ11 = (1− ε2A4)I + εA1T+,

Λ12 = (−1− ε2A4)I − εA1T−,

Λ21 = (−εB3 − εB5 − ε2B4)I − T+ − εB1∂
2
t ,

Λ22 = (−εB3 + εB5 − ε2B4)I − T− − εB1∂
2
t .

Then, we have the following theorem.

Theorem 5.5. For any integer k ≥ 1, if α+ = α−, g ∈ Hk−3/2(Γ) and

(5.27)
ε2A4 − 1

εA1
/∈ σ(T+),

then Problem (5.1) admits a unique solution (uε,ap− , uε,ap+ ) ∈ Hk(Ω−)×Hk
loc(Ω+).

Proof. Let k be an integer in N∗. In view of (5.27), Λ−1
11 is a well-defined pseudodifferential

operator of order −1. Thus, from the first equation of System (5.22) we get

ω = −Λ−1
11 Λ12κ + εA1Λ

−1
11 g,

then (5.22) is reduced to the equation

Kκ := (K1 +K2 +K3)κ = θ,

where

K1 = (−εB3 + εB5 − ε2B4)I + (εB3 + εB5 + ε2B4)Λ
−1
11 Λ12,

K2 = −T− + T+Λ
−1
11 Λ12,

K3 = −εB1∂
2
t Λ

−1
11 (Λ11 − Λ12),

θ = −g − εA1Λ21Λ
−1
11 g.

Using the same arguments as in Theorem 5.3 based on Fredholm alternative, we shall prove

thatK is Fredholm with 0 index. SinceK1 andK2 are pseudodifferential operators respec-

tively of order 0 and 1, they map respectively Hk−1/2(Γ) to Hk−1/2(Γ) and Hk−1/2(Γ) to

Hk−3/2(Γ). K3 is a pseudodifferential operator of order 2, it mapsHk−1/2(Γ) toHk−5/2(Γ).

The injections Hk−1/2(Γ) ↪→ Hk−5/2(Γ) and Hk−3/2(Γ) ↪→ Hk−5/2(Γ) being compact and

B1 ̸= 0, the operator K defined from Hk−1/2(Γ) to Hk−5/2(Γ) is a compact perturbation

of K3. Thus, since ∂
2
t is Fredholm with index 0, it follows that to show that K3 is Fredhom

with index 0, it remains to prove that the operator Λ11 − Λ12 = T+ + T− + 2
εA1

I defined

from Hk−1/2(Γ) to Hk−3/2(Γ) is invertible. Let us consider the equation

(5.28)

(
T+ + T− +

2

εA1
I

)
φ = ψ, ψ ∈ Hk−3/2(Γ), k ≥ 1.
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Using the definition of the operators T+ and T−, (5.28) is equivalent to the boundary-value

problem

(5.29)





∆u+ + k2+u+ = 0 in Ω+,

∆u− + k2−u− = 0 in Ω−,

u− = 0 on Γi,

u− = u+ on Γ,

α−∂nu− − α+∂nu+ + 2
εA1

u+ = ψ on Γ,

lim|x|→+∞
√
|x|(∂|x| − ik+)u+ = 0,

where φ = u−|Γ = u+|Γ. Standard arguments based on Rellich’s lemma and the Fredholm

alternative show that, for all k in N∗, if ψ ∈ Hk−3/2(Γ), then Problem (5.29) admits a

unique solution (u−, u+) in Hk(Ω−) ×Hk
loc(Ω+), and hence there exists a unique Dirich-

let trace φ ∈ Hk−1/2(Γ). As a consequence, the operator T+ + T− + 2
εA1

I, defined from

Hk−1/2(Γ) to Hk−3/2(Γ), is invertible. The end of the proof is the same as that of Theo-

rem 5.3.

Remark 5.6. As an alternative to Condition (5.27), we may replace the latter with

(5.30)
−1− ε2A4

εA1
/∈ σ(T−).

We can easily verify that the proof of Theorem 5.5 with Condition (5.30) is almost the

same.

6. Error estimation

We are now able to establish an approximate solution uε,ap of the exact solution uε and

an error estimate of the convergence of uε,ap to uε. Intuitively, we define the approximate

solution uε,ap, using (uε,ap− , uε,ap+ ) and (5.13), by

uε,ap =





uε,ap+ in Ωε+,

uε,apm in Ωεm,

uε,ap− in Ωε−.

Then we have an optimal error estimate given by the following theorem.

Theorem 6.1. There exists a constant c independent of ε such that

∥∥uε− − uε,ap−
∥∥
H1(Ωε

−)
+ ε1/2

∥∥uεm − uε,apm

∥∥
H1(Ωε

m)
+
∥∥uε+ − uε,ap+

∥∥
H1(Ω̃ε

+)
≤ cε3.
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Before starting the proof of Theorem 6.1, we need a stability result. Let H1(Ω) be the

Hilbert space defined by

H1(Ω) :=
{
v = (v−, v+) ∈ H1(Ω−)×H1(Ω̃+) | v−|Γi = 0

}
,

where Ω̃+ = Ω+ ∩ Ω and bε( · , · ) be the bilinear form on H1(Ω) defined by

bε(u, v) := α−

∫

Ω−
∇u− · ∇v− dΩ− − α−k2−

∫

Ω−
u−v− dΩ−

+ α+

∫

Ω̃+

∇u+ · ∇v+ dΩ̃+ − α+k
2
+

∫

Ω̃+

u+v+ dΩ̃+

− 1

2
λε

∫

Γ
(u− − u+)(v− − v+) dΓ

+ α+⟨Tu+, v+⟩H−1/2(Γ∞)×H1/2(Γ∞),

where λε = O(ε−1) and T is the Steklov–Poincaré operator defined from H1/2(Γ∞) onto

H−1/2(Γ∞) by Tφ := −∂n
Ω̃∞
w|Γ∞ in which Ω̃∞ is an exterior domain of R2 with boundary

Γ∞, n
Ω̃∞

indicates the unit normal to Γ∞ outwardly directed to Ω and w is the solution

to the boundary-value problem




∆w + k2+w = 0 in Ω̃∞,

w = φ on Γ∞,

lim|x|→+∞ |x|1/2(∂|x| − ik+)w = 0.

We have the following lemma, which proof can be founded in [6].

Lemma 6.2. For all hε ∈ (H1(Ω))′, there exists a positive constant c independent of ε

such that the solution to the variational problem

Find u ∈ H1(Ω), ∀ v ∈ H1(Ω), such that bε(u, v) = hε(v),

satisfies

∥u∥H1(Ω) ≤ cε−1/2∥hε∥(H1(Ω))′ .

Proof of Theorem 6.1. According to

∥∥U ε,apm − U ε,(2)m

∥∥
H1(Ωm)

≤ c
(∥∥uε,ap− − u

ε,(2)
−

∥∥
H1(Ω−)

+ ε3∥u1−∥H1(Ω−) + ε3∥u2−∥H1(Ω−)

)
,

where c is a constant independent of ε, and convergence theorem, it suffices to estimate

∥uε,ap− −uε,(2)− ∥H1(Ω−) and ∥uε,ap+ −uε,(2)+ ∥H1(Ω+). As in [8], we derive asymptotic expansions

for uε,ap− and uε,ap+ through the ansatz

(6.1) uε,ap− =
∑

n≥0

εnwn− and uε,ap+ =
∑

n≥0

εnwn+,
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where the terms wn− and wn+ are independent of ε. Inserting (6.1) in Problem (5.1) and

identifying the same powers of ε, we get the following hierarchy of boundary-value problems




∆wn+ + k2+w
n
+ = 0 in Ω+,

∆wn− + k2−w
n
− = 0 in Ω−,

wn− = 0 on Γi,

lim|x|→+∞
√
|x|(∂|x| − ik+)(w

n
+ − δ0,nuinc) = 0,

with transmission conditions on Γ:

wn+ − wn− = A1(α+∂nw
n−1
+ + α−∂nw

n−1
− ) +A2(∂

2
tw

n−2
+ + ∂2tw

n−2
− )

+A3(w
n−1
+ − wn−1

− ) +A4(w
n−2
+ + wn−2

− ),

α+∂nw
n
+ − α−∂nwn−

= B1(∂
2
tw

n−1
+ + ∂2tw

n−1
− ) + B2(∂

2
tw

n−2
+ + ∂2tw

n−2
− ) + B3(w

n−1
+ + wn−1

− )

+ B4(w
n−2
+ + wn−2

− ) + B5(w
n−1
+ − wn−1

− ) + B6(∂tw
n−2
+ + ∂tw

n−2
− )

+ B7(∂
2
tw

n−1
+ − ∂2tw

n−1
− )

in which (Ai)1≤i≤4 and (Bi)1≤i≤7 are defined by formulas (5.2)–(5.12) with the convention

that w−1
− = w−2

− = w−1
+ = w−2

+ = 0. A simple calculation shows that the terms (wn−, w
n
+)

coincide with (un−, u
n
+), for n ∈ {0, 1, 2}. Furthermore, each term in (6.1) is bounded in

H1(Ω) (see [8, Theorem 4.1]).

Let Rw be the remainder obtained by truncating the asymptotic expansions (6.1) at

order 4:

Rw|Ω− = Rw− = uε,ap− − w0
− − εw1

− − ε2w2
− − ε3w3

− − ε4w4
−,

Rw|Ω+ = Rw+ = uε,ap+ − w0
+ − εw1

+ − ε2w2
+ − ε3w3

+ − ε4w4
+.

Hence Rw is the solution of the following problem




∆Rw+ + k2+Rw+ = 0 in Ω+,

∆Rw− + k2−Rw− = 0 in Ω−,

Rw− = 0 on Γi,

lim|x|→+∞
√
|x|(∂|x| − ik+)Rw+ = 0

with transmission conditions on Γ:

Rw+ −Rw− = εA1(α+∂nRw+ + α−∂nRw−) + ε2A2(∂
2
tRw+ + ∂2tRw−)

+ εA3(Rw+ −Rw−) + ε2A4(Rw+ +Rw−) + ε5A1(α+∂nw
4
+ + α−∂nw4

−)

+ ε5A2(∂
2
tw

3
+ + ∂2tw

3
−) + ε6A2(∂

2
tw

4
+ + ∂2tw

4
−) + ε5A3(w

4
+ − w4

−)

+ ε5A4(w
3
+ + w3

−) + ε6A4(w
4
+ + w4

−),
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α+∂nRw+ − α−∂nRw−

= (εB1 + ε2B2)(∂
2
tRw+ + ∂2tRw−) + (εB3 + ε2B4)(Rw+ +Rw−)

+ εB5(Rw+ −Rw−) + ε2B6(∂tRw+ + ∂tRw−) + εB7(∂
2
tRw+ − ∂2tRw−)

+ B1ε
5(∂2tw

4
+ + ∂2tw

4
−) + B2ε

5(∂2tw
3
+ + ∂2tw

3
−) + B2ε

6(∂2tw
4
+ + ∂2tw

4
−)

+ B3ε
5(w4

+ + w4
−) + B4ε

5(w3
+ + w3

−) + B4ε
6(w4

+ + w4
−)

+ B5ε
5(w4

+ − w4
−) + B6ε

5(∂tw
3
+ + ∂tw

3
−) + B6ε

6(∂tw
4
+ + ∂tw

4
−)

+ B7ε
5(∂2tw

4
+ − ∂2tw

4
−).

So for all v = (v−, v+) ∈ H1(Ω), we get

α−

∫

Ω−
∇Rw− · ∇v− dΩ− − α−k2−

∫

Ω−
Rw−v− dΩ− + α+

∫

Ω̃+

∇Rw+ · ∇v+ dΩ̃+

− α+k
2
+

∫

Ω̃+

Rw+v+ dΩ̃+ −
∫

Γ

−1 +A3ε

2A1ε
(Rw+ −Rw−)(v+ − v−) dΓ

+ α+⟨TRw+ , v+⟩H−1/2(Γ∞)×H1/2(Γ∞)

= hε(v),

where

hε(v)

= −ε
2

∫

Γ
(B1 + εB2)(∂

2
tRw+ + ∂2tRw−)(v+ + v−) dΓ− B3

2
ε

∫

Γ
(Rw+ +Rw−)(v+ + v−) dΓ

− B7

2
ε

∫

Γ
(∂2tRw+ − ∂2tRw−)(v+ + v−) dΓ− B5

2
ε

∫

Γ
(Rw+ −Rw−)(v+ + v−) dΓ

− ε2

2

∫

Γ
B6(∂tRw+ + ∂tRw−)(v+ + v−) dΓ +

A2

2A1
ε

∫

Γ
(∂2tRw+ + ∂2tRw−)(v+ − v−) dΓ

+
A4

2A1
ε

∫

Γ
(Rw+ +Rw−)(v+ − v−) dΓ− ε2

2

∫

Γ
B4(Rw+ +Rw−)(v+ + v−) dΓ

+
1

2
ε4
∫

Γ
(α+∂nw

4
+ + α−∂nw4

−)(v+ − v−) dΓ +
A2

2A1
ε4
∫

Γ
(∂2tw

3
+ + ∂2tw

3
−)(v+ − v−) dΓ

+ ε4
∫

Γ

A3

2A1
(w4

+ − w4
−)(v+ − v−) dΓ +

A4

2A1
ε4
∫

Γ
(w3

+ + w3
−)(v+ − v−) dΓ

− ε5

2

∫

Γ
B4(w

3
+ + w3

−)(v+ + v−) dΓ− ε5

2

∫

Γ
B2(∂

2
tw

3
+ + ∂2tw

3
−)(v+ + v−) dΓ

− ε5

2

∫

Γ
B6(∂tw

3
+ + ∂tw

3
−)(v+ + v−) dΓ− B1

2
ε5
∫

Γ
(∂2tw

4
+ + ∂2tw

4
−)(v+ + v−) dΓ

− B3

2
ε5
∫

Γ
(w4

+ + w4
−)(v+ + v−) dΓ− B7

2
ε5
∫

Γ
(∂2tw

4
+ − ∂2tw

4
−)(v+ + v−) dΓ

− B5

2
ε5
∫

Γ
(w4

+ − w4
−)(v+ + v−) dΓ +

A2

2A1
ε5
∫

Γ
(∂2tw

4
+ + ∂2tw

4
−)(v+ − v−) dΓ
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+
A4

2A1
ε5
∫

Γ
(w4

+ + w4
−)(v+ − v−) dΓ− ε6

2

∫

Γ
B2(∂

2
tw

4
+ + ∂2tw

4
−)(v+ + v−) dΓ

− ε6

2

∫

Γ
B4(w

4
+ + w4

−)(v+ + v−) dΓ− ε6

2

∫

Γ
B6(∂tw

4
+ + ∂tw

4
−)(v+ + v−) dΓ.

By using Lemma 6.2, we obtain

∥Rw∥H1(Ω) ≤ cε−1/2
[
ε∥Rw∥H1(Ω) + ε4∥w3∥H1(Ω) + ε4∥w4∥H1(Ω)

]
,

where c is a positive constant independent of ε. Therefore

∥Rw∥H1(Ω) ≤
cε7/2

1− cε1/2
(
∥w3∥H1(Ω) + ∥w4∥H1(Ω)

)
.

Since ε is very small, it follows that

∥Rw∥H1(Ω) ≤ cε3
(
∥w3∥H1(Ω) + ∥w4∥H1(Ω)

)
,

as we wished.

7. Conclusion and perspective

In this work, we have derived an asymptotic expansion of the solution uε to Problem (2.2),

with respect to the thickness ε, of the thin layer Ωεm, up to any order using parameters

d1 and d2. We have provided Ventcel-type transmission conditions on the interface Γ,

modelling the effect of the thin layer, with accuracy up to O(ε3). In our analysis, we have

shown that there exists an infinite number of the values of d1 and d2, i.e., of the position

of the limit interface Γ, ensuring the existence and the uniqueness of the approximation

solution. Finally, we have given a theorem on error estimation.

A natural question is whether such approximation results can be improved in order

to have an error estimate of order greater than 3 and whether the above study can be

extended to the cases α− < 1 < α+ or α+ < 1 < α− and the case where the constants

α+ and α− depend on ε. Another interesting forthcoming work is to consider Maxwell,

elasticity or Eddy currents problems.

A. Calculation of the first three terms

A.1. Term of order 0

Equation (4.9) and the conditions (4.7) and (4.8) give

∂sU
0
m = 0.
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Using (4.5) and (4.6), we get

(A.1) U0
m(t, s) = u0−|Γ = u0+|Γ, ∀ (t, s) ∈ Ωm.

Equation (4.10) implies

∂2sU
1
m = A1U

0
m = −c(t)∂sU0

m = 0.

Using (4.7) and (4.8), we obtain

(A.2) ∂sU
1
m(t, s) = α−∂nu0−|Γ = α+∂nu

0
+|Γ, ∀ (t, s) ∈ Ωm.

Therefore, with (4.3), (A.1) and (A.2), (u0−, u
0
+) is a solution of the following problem





∆u0+ + k2+u
0
+ = 0 in Ω+,

∆u0− + k2−u
0
− = 0 in Ω−,

u0+ = u0− on Γ,

α+∂nu
0
+ = α−∂nu0− on Γ,

u0− = 0 on Γi,

lim|x|→+∞
√
|x|(∂|x| − ik+)(u

0
+ − uinc) = 0.

Note that the term (u0−, u
0
+) is nothing but the solution to the problem without the thin

layer.

A.2. Term of order 1

The relation (A.2) with the condition (4.5) yield

U1
m(t, s) = (α−∂nu0−|Γ)s+ u1−|Γ + d1(α− − 1)∂nu

0
−|Γ, ∀ (t, s) ∈ Ωm.

So (4.6) gives

(A.3) u1+|Γ − u1−|Γ =
α+α− − d2α− − d1α+

2α+α−
(α+∂nu

0
+|Γ + α−∂nu0−|Γ).

From (4.11), we have

∂2sU
2
m = A1U

1
m +A2U

0
m − k2mU

0
m = −c(t)α−∂nu0−|Γ − ∂2t u

0
−|Γ − k2mu

0
−|Γ.

Using (4.7), we obtain

(A.4) ∂sU
2
m =

[
− c(t)α−∂nu0−|Γ−∂2t u0−|Γ−k2mu0−|Γ

]
(s+d1)+α−∂nu1−|Γ−d1α−∂2nu

0
−|Γ.
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Now, from the condition (4.8) at order 1, we get

α+∂nu
1
+|Γ − α−∂nu1−|Γ

=
[
− c(t)α−∂nu0−|Γ − ∂2t u

0
−|Γ − k2mu

0
−|Γ
]
(d2 + d1)− d2α+∂

2
nu

0
+|Γ − d1α−∂2nu

0
−|Γ

= −c(t)α−∂nu0−|Γ − ∂2t u
0
−|Γ − k2mu

0
−|Γ − d2α+∂

2
nu

0
+|Γ − d1α−∂2nu

0
−|Γ.

(A.5)

As

∆ =
1

1 + ηc(t)
∂t

(
1

1 + ηc(t)
∂t

)
+

c(t)

1 + ηc(t)
∂η + ∂2η and ∆un+ + k2+u

n
+ = 0,

it follows

−ηc′(t)
[1 + ηc(t)]3

∂tu
n
+ +

1

[1 + ηc(t)]2
∂2t u

n
+ +

c(t)

1 + ηc(t)
∂ηu

n
+ + ∂2ηu

n
+ + k2+u

n
+ = 0.

Taking the limit η → 0, we obtain

∂2t u
n
+|η=0 + c(t)∂ηu

n
+|η=0 + ∂2ηu

n
+|η=0 + k2+u

n
+|η=0 = 0,

i.e.,

(A.6) ∂2nu
n
+|Γ = −∂2t un+|Γ − c(t)∂nu

n
+|Γ − k2+u

n
+|Γ, ∀n ≥ 0.

Similarly for un−, we get

(A.7) ∂2nu
n
−|Γ = −∂2t un−|Γ − c(t)∂nu

n
−|Γ − k2−u

n
−|Γ, ∀n ≥ 0.

So (A.5) becomes

α+∂nu
1
+|Γ − α−∂nu1−|Γ =

d1α− + d2α+ − 1

2
(∂2t u

0
+|Γ + ∂2t u

0
−|Γ)

+
d1α−k2− + d2α+k

2
+ − k2m

2
(u0+|Γ + u0−|Γ).

(A.8)

Therefore, with (4.3), (A.3) and (A.8), (u1−, u
1
+) is a solution of the following problem





∆u1+ + k2+u
1
+ = 0 in Ω+,

∆u1− + k2−u
1
− = 0 in Ω−,

u1− = 0 on Γi,

lim|x|→+∞
√
|x|(∂|x| − ik+)(u

1
+) = 0

with transmission conditions on Γ:

u1+ − u1− =
α+α− − d2α− − d1α+

2α+α−
(α+∂nu

0
+ + α−∂nu0−),

α+∂nu
1
+ − α−∂nu1− =

d1α− + d2α+ − 1

2
(∂2t u

0
+ + ∂2t u

0
−)

+
d1α−k2− + d2α+k

2
+ − k2m

2
(u0+ + u0−).



708 Khaled El-Ghaouti Boutarene and Sami Galleze

A.3. Term of order 2

Using (A.4) and the condition (4.5), we obtain, ∀ (t, s) ∈ Ωm,

U2
m(t, s) = u2−|Γ + (α−s+ d1α− − d1)∂nu

1
−|Γs−

(
s2

2
+ d1s+

d21
2

)
c(t)α−∂nu0−|Γ

−
(
s2

2
+ d1s+

d21
2

)
∂2t u

0
− +

(
d21
2

− d21α− − d1α−s
)
∂2nu

0
−|Γ

−
(
d21
2

+
s2

2
+ d1s

)
k2mu

0
−|Γ.

As

U2
m(t, d2) = u2+|Γ + d2∂nu

1
+|Γ +

d22
2
∂2nu

0
+|Γ,

we find

u2+|Γ − u2−|Γ = −1

2
(c(t)α−∂nu0−|Γ + ∂2t u

0
− + k2mu

0
−)− d2∂nu

1
+|Γ

+ (α− − d1)∂nu
1
−|Γ − d22

2
∂2nu

0
+|Γ +

(
d21
2

− d1α−

)
∂2nu

0
−|Γ.

With (A.6) and (A.7), we get

u2+|Γ − u2−|Γ
= −d2∂nu1+|Γ + (α− − d1)∂nu

1
−|Γ

+
d22
2
(∂2t u

0
+|Γ + c(t)∂nu

0
+|Γ + k2+u

0
+|Γ)−

1

2
(c(t)α−∂nu0−|Γ + ∂2t u

0
− + k2mu

0
−)

−
(
d21
2

− d1α−

)
(∂2t u

0
−|Γ + c(t)∂nu

0
−|Γ + k2−u

0
−|Γ).

Using the transmission conditions (A.1), (A.2) and (A.8), we get

u2+|Γ − u2−|Γ

=
α+α− − d2α− − d1α+

2α+α−
(α+∂nu

1
+|Γ + α−∂nu1−|Γ)

+
d1α+α

2
− − d2α

2
+α− + d1d2(α

2
+ − α2

−) + d2α− − d1α+

4α+α−
(∂2t u

0
+|Γ + ∂2t u

0
−|Γ)

+ c(t)
(d1 − d2)α−α+ + d22α− − d21α+

4α+α−
(α+∂nu

0
+|Γ + α−∂nu0−|Γ)

+
(d1k

2
−α− − d2k

2
+α+)α+α− + d1d2(k

2
+α

2
+ − k2−α

2
−) + k2m(d2α− − d1α+)

4α+α−

× (u0+|Γ + u0−|Γ),
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and with the help of (A.3), we obtain

u2+|Γ − u2−|Γ

=
α+α− − d2α− − d1α+

2α+α−
(α+∂nu

1
+|Γ + α−∂nu1−|Γ)

+
d1α+α

2
− − d2α

2
+α− + d1d2(α

2
+ − α2

−) + d2α− − d1α+

4α+α−
(∂2t u

0
+|Γ + ∂2t u

0
−|Γ)

+ c(t)
(d1 − d2)α−α+ + d22α− − d21α+

2(α+α− − d1α+ − d2α−)
(u1+|Γ − u1−|Γ)

+
(d1k

2
−α− − d2k

2
+α+)α+α− + d1d2(k

2
+α

2
+ − k2−α

2
−) + k2m(d2α− − d1α+)

4α+α−

× (u0+|Γ + u0−|Γ).

(A.9)

Equation (4.12) implies that

∂sU
3
m(t, s)

=
[
2c2(t)Ψ1(t) + c(t)k2mU

0
m − ∂2t (Ψ1(t)) + 3c(t)∂2t U

0
m + c′(t)∂tU0

m − k2mΨ1(t)
]s2
2

−
[
c(t)Ψ2(t) + ∂2tΦ1(t) + k2mΦ1(t)

]
s+ φ(t),

(A.10)

where

Ψ1(t) = α−∂nu0−|Γ = α+∂nu
0
+|Γ,

Ψ2(t) = α+∂nu
1
+|Γ + (d2 − d2α+)∂

2
t u

0
+|Γ + (d2k

2
m − d2k

2
+α+)u

0
+|Γ,

Φ1(t) = u1−|Γ + (α− − 1)d1∂nu
0
−|Γ = u1+|Γ + (1− α+)d2∂nu

0
+|Γ,

and φ is a function defined on Γ independent of s. Using transmission condition (4.7) at

order 2, we find

φ(t) = α−∂nu2−|Γ − d1α−∂2nu
1
−|Γ +

α−d21
2

∂3nu
0
−|Γ

−
[
2c2(t)Ψ1(t) + c(t)k2mU

0
m − ∂2t (Ψ1(t)) + 3c(t)∂2t U

0
m + c′(t)∂tU0

m − k2mΨ1(t)
]d21
2

−
[
c(t)Ψ2(t) + ∂2tΦ1(t) + k2mΦ1(t)

]
d1.

In the same way, using (A.10) and the transmission condition (4.8), we obtain

φ(t) = α+∂nu
2
+|Γ + d2α+∂

2
nu

1
+|Γ +

α+d
2
2

2
∂3nu

0
+|Γ

−
[
2c2(t)Ψ1(t) + c(t)k2mU

0
m − ∂2t (Ψ1(t)) + 3c(t)∂2t U

0
m + c′(t)∂tU0

m − k2mΨ1(t)
]d22
2

+
[
c(t)Ψ2(t) + ∂2tΦ1(t) + k2mΦ1(t)

]
d2.
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Therefore

α+∂nu
2
+|Γ − α−∂nu2−|Γ

= −d1α−∂2nu
1
−|Γ − d2α+∂

2
nu

1
+|Γ − α+d

2
2

2
∂3nu

0
+|Γ +

α−d21
2

∂3nu
0
−|Γ

− d2∂
2
t u

1
+|Γ − d2k

2
mu

1
+|Γ − d1cα−∂nu1−|Γ − d1∂

2
t u

1
−|Γ − d1k

2
mu

1
−|Γ − d2cα+∂nu

1
+|Γ

−
(
d21
2
k2mα+ + d21α+c

2(t)− d22c
2(t)α+ − d22

2
k2mα+ + k2md

2
2 − k2md

2
1

α+

α−

)
∂nu

0
+|Γ

−
(
d21α−k2− − d22α+k

2
+ +

d2 − d1
2

k2m

)
c(t)u0+|Γ −

(
d1 − d2

2

)
c′(t)∂tu0+|Γ

−
(
d21α− − d22α+ +

d1
2

− d2
2

)
c(t)∂2t u

0
+|Γ

−
(
d22 −

α+

α−
d21 +

d1 − d2
2

α+

)
∂2t (∂nu

0
+|Γ).

(A.11)

Now, recall that

∆un+ + k2+u
n
+ =

−ηc′(t)
[1 + ηc(t)]3

∂tu
n
+ +

1

[1 + ηc(t)]2
∂2t u

n
+ +

c(t)

1 + ηc(t)
∂ηu

n
+ + ∂2ηu

n
+ + k2+u

n
+ = 0.

The partial derivative with respect to η leads to

−c′(t)[1 + ηc(t)]3 + 3c(t)[1 + ηc(t)]2ηc′

[1 + ηc(t)]6
∂tu

n
+ +

ηc′(t)
[1 + ηc(t)]3

∂η∂tu
n
+

− 2c

[1 + ηc(t)]3
∂2t u

n
+ +

1

[1 + ηc(t)]2
∂η∂

2
t u

n
+ − c2(t)

[1 + ηc(t)]2
∂ηu

n
+

+
c(t)

1 + ηc(t)
∂2ηu

n
+ + ∂3ηu

n
+ + k2+∂ηu

n
+

= 0.

Taking the limit η → 0, we obtain

−c′(t)∂tun+|Γ−2c(t)∂2t u
n
+|Γ+∂n∂2t un+|Γ−c2(t)∂nun+|Γ+c(t)∂2nun+|Γ+∂3nun+|Γ+k2+∂nun+|Γ = 0,

hence

(A.12)

∂3nu
n
+|Γ = c′(t)∂tun+|Γ + 2c∂2t u

n
+|Γ − ∂n∂

2
t u

n
+|Γ + c2(t)∂nu

n
+|Γ − c(t)∂2nu

n
+|Γ − k2∂nu

n
+|Γ.

Using the identity (A.6), the relation (A.12) becomes

∂3nu
n
+|Γ = 3c(t)∂2t u

n
+|Γ + (2c2(t)− k2+)∂nu

n
+|Γ + c′(t)∂tun+|Γ

− ∂n∂
2
t u

n
+|Γ + c(t)k2+u

n
+|Γ, ∀n ≥ 0.

(A.13)
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In the same way as for un−, we find that

∂3nu
n
−|Γ = 3c(t)∂2t u

n
−|Γ + (2c2(t)− k2−)∂nu

n
−|Γ + c′(t)∂tun−|Γ

− ∂n∂
2
t u

n
−|Γ + c(t)k2−u

n
−|Γ, ∀n ≥ 0.

(A.14)

Therefore, with (A.13) and (A.14) for n = 0, the transmission condition (A.11) becomes

α+∂nu
2
+|Γ − α−∂nu2−|Γ

= −d1α−∂2nu
1
−|Γ − d2α+∂

2
nu

1
+|Γ − d2c(t)α+∂nu

1
+|Γ

− d2∂
2
t u

1
+|Γ − d2k

2
mu

1
+|Γ − d1c(t)α−∂nu1−|Γ − d1∂

2
t u

1
−|Γ − d1k

2
mu

1
−|Γ

+

(
d22α+

2
k2+ − d21α+

2
k2− − d1

2
k2mα+ +

d2
2
k2mα+ − k2md

2
2α− − k2md

2
1α+

α−

)
∂nu

0
+|Γ

+

(
α+d

2
2

2
k2+ − α−d21

2
k2− − d2

2
k2m +

d1
2
k2m

)
c(t)u0+|Γ

+

(
d2
2

− d1
2

+
α−d21
2

− α+d
2
2

2

)
c(t)∂2t u

0
+|Γ

+

(
α+d

2
1 − α−d22
α−

− d1α+ + d2α+

)
∂2t (∂nu

0
+|Γ)

+

(
−d1

2
+
d2
2

− α+d
2
2

2
+
α−d21
2

)
c′(t)∂tu0+|Γ.

Again, we use the identities

∂2nu
1
+|Γ = −∂2t u1+|Γ − c(t)∂nu

1
+|Γ − k2+u

1
+|Γ,

∂2nu
1
−|Γ = −∂2t u1−|Γ − c(t)∂nu

1
−|Γ − k2−u

1
−|Γ

to obtain

α+∂nu
2
+|Γ − α−∂nu2−|Γ

= (d2α+ − d2)∂
2
t u

1
+|Γ + (d1α− − d1)∂

2
t u

1
−|Γ

+ d2α+k
2
+u

1
+|Γ − d2k

2
mu

1
+|Γ − d1k

2
mu

1
−|Γ + d1α−k2−u

1
−|Γ

+

(
d22α+

2
k2+ − d21α+

2
k2− − d1 − d2

2
k2mα+ − k2md

2
2α− − k2md

2
1α+

α−

)
∂nu

0
+|Γ

+

(
α+d

2
2

2
k2+ − α−d21

2
k2− − d2 − d1

2
k2m

)
c(t)u0+|Γ

+

(
d2 − d1

2
− α+d

2
2 − α−d21
2

)
c(t)∂2t u

0
+|Γ

+

(
α+d

2
1 − α−d22
α−

− d1α+ + d2α+

)
∂2t (∂nu

0
+|Γ)

+

(
d2 − d1

2
− α+d

2
2 − α−d21
2

)
c′(t)∂tu0+|Γ.
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Upon using the transmission conditions

u1+|Γ = u1−|Γ +
α+α− − d2α− − d1α+

α−
∂nu

0
+|Γ,

u0+|Γ = u0−|Γ and α+∂nu
0
+|Γ = α−∂nu0−|Γ,

we get

α+∂nu
2
+|Γ − α−∂nu2−|Γ

=
d2α+ + d1α− − 1

2
(∂2t u

1
+|Γ + ∂2t u

1
−|Γ)

+
d2α+k

2
+ + d1α−k2− − k2m

2
(u1−|Γ + u1+|Γ)

+

(
α+d1k

2
m − α−d2k2m − α2

+d1d2k
2
+ + α2

−d1d2k
2
− + α2

+α−d2k2+ − α+α
2
−d1k

2
−

4α−α+

)

× (α+∂nu
0
+|Γ + α−∂nu0−|Γ)

+

(−α−d21k
2
− + α+d

2
2k

2
+ − d2k

2
m + d1k

2
m

4

)
c(t)(u0+|Γ + u0−|Γ)

+

(−d1 + d2 − α+d
2
2 + α−d21

4

)
c(t)(∂2t u

0
+|Γ + ∂2t u

0
−|Γ)

+

(−d1 + d2 − α+d
2
2 + α−d21

4

)
c′(t)(∂tu0+|Γ + ∂tu

0
−|Γ)

+
(d2α+ − d1α−)(α+α− − d1α+ − d2α−) + (d2 − d1)α+α− + d1α+ − d2α−

4α+α−

× (α+∂
2
t ∂nu

0
+|Γ + α−∂2t ∂nu

0
−|Γ).

But
2α+α−

α+α− − d2α− − d1α+
(∂2t u

1
+|Γ − ∂2t u

1
−|Γ) = α+∂

2
t ∂nu

0
+|Γ + α−∂2t ∂nu

0
−|Γ,

then

α+∂nu
2
+|Γ − α−∂nu2−|Γ

=
d2α+ + d1α− − 1

2

[
∂2t u

1
+|Γ + ∂2t u

1
−|Γ
]

+
d2α+k

2
+ + d1α−k2− − k2m

2
(u1−|Γ + u1+|Γ)

+

(
α+d1k

2
m − α−d2k2m − α2

+d1d2k
2
+ + α2

−d1d2k
2
− + α2

+α−d2k2+ − α+α
2
−d1k

2
−

4α−α+

)

× (α+∂nu
0
+|Γ + α−∂nu0−|Γ)

+

(
α+d

2
2k

2
+ − α−d21k

2
− + d1k

2
m − d2k

2
m

4

)
c(t)(u0+|Γ + u0−|Γ)
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+

(
d2 − d1 + α−d21 − α+d

2
2

4

)
c(t)(∂2t u

0
+|Γ + ∂2t u

0
−|Γ)

+

(
d2 − d1 + α−d21 − α+d

2
2

4

)
c′(t)(∂tu0+|Γ + ∂tu

0
−|Γ)

+
(d2α+ − d1α−)(α+α− − d1α+ − d2α−) + (d2 − d1)α+α− + d1α+ − d2α−

2(α+α− − d2α− − d1α+)

× (∂2t u
1
+|Γ − ∂2t u

1
−|Γ).

Finally, using (A.3), we obtain

α+∂nu
2
+|Γ − α−∂nu2−|Γ

=
d2α+ + d1α− − 1

2
(∂2t u

1
+|Γ + ∂2t u

1
−|Γ)

+
d2α+k

2
+ + d1α−k2− − k2m

2
(u1−|Γ + u1+|Γ)

+

(
α+d1k

2
m − α−d2k2m − α2

+d1d2k
2
+ + α2

−d1d2k
2
− + α2

+α−d2k2+ − α+α
2
−d1k

2
−

2(α+α− − d2α− − d1α+)

)

× (u1+|Γ − u1−|Γ)

+

(
α+d

2
2k

2
+ − α−d21k

2
− + d1k

2
m − d2k

2
m

4

)
c(t)(u0+|Γ + u0−|Γ)

+

(
d2 − d1 + α−d21 − α+d

2
2

4

)
c(t)(∂2t u

0
+|Γ + ∂2t u

0
−|Γ)

+

(
d2 − d1 + α−d21 − α+d

2
2

4

)
c′(t)(∂tu0+|Γ + ∂tu

0
−|Γ)

+
(d2α+ − d1α−)(α+α− − d1α+ − d2α−) + (d2 − d1)α+α− + d1α+ − d2α−

2(α+α− − d2α− − d1α+)

× (∂2t u
1
+|Γ − ∂2t u

1
−|Γ).

(A.15)

Therefore, with (4.3), (A.9) and (A.15), (u2−, u
2
+) is a solution of the following problem





∆u2+ + k2+u
2
+ = 0 in Ω+,

∆u2− + k2−u
2
− = 0 in Ω−,

u2− = 0 on Γi,

lim|x|→+∞
√
|x|(∂|x| − ik+)(u

2
+) = 0

with transmission conditions on Γ:

u2+ − u2−

=
α+α− − d2α− − d1α+

2α+α−
(α+∂nu

1
+ + α−∂nu1−)
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+
d1α+α

2
− − d2α

2
+α− + d1d2(α

2
+ − α2

−) + d2α− − d1α+

4α+α−
(∂2t u

0
+ + ∂2t u

0
−)

+ c(t)
(d1 − d2)α−α+ + d22α− − d21α+

2(α+α− − d1α+ − d2α−)
(u1+ − u1−)

+
(d1k

2
−α− − d2k

2
+α+)α+α− + d1d2(k

2
+α

2
+ − k2−α

2
−) + k2m(d2α− − d1α+)

4α+α−
(u0+ + u0−),

α+∂nu
2
+ − α−∂nu2−

=
d2α+ + d1α− − 1

2
(∂2t u

1
+ + ∂2t u

1
−)

+
d2α+k

2
+ + d1α−k2− − k2m

2
(u1− + u1+)

+

(
α+d1k

2
m − α−d2k2m − α2

+d1d2k
2
+ + α2

−d1d2k
2
− + α2

+α−d2k2+ − α+α
2
−d1k

2
−

2(α+α− − d2α− − d1α+)

)

× (u1+ − u1−)

+

(
α+d

2
2k

2
+ − α−d21k

2
− + d1k

2
m − d2k

2
m

4

)
c(t)(u0+ + u0−)

+

(
d2 − d1 + α−d21 − α+d

2
2

4

)
c(t)(∂2t u

0
+ + ∂2t u

0
−)

+

(
d2 − d1 + α−d21 − α+d

2
2

4

)
c′(t)(∂tu0+ + ∂tu

0
−)

+
(d2α+ − d1α−)(α+α− − d1α+ − d2α−) + (d2 − d1)α+α− + d1α+ − d2α−

2(α+α− − d2α− − d1α+)

× (∂2t u
1
+ − ∂2t u

1
−).

Moreover, using (A.10) and the condition (4.5), the profile U2
m is given by

U2
m(t, s) = u2−|Γ + (α−s+ d1α− − d1)∂nu

1
−|Γs

−
(
d21
2
k2− − d21α−k2− − d1α−sk2− +

d21
2
k2m +

s2

2
k2m + d1k

2
ms

)
u0−|Γ

−
(
s2

2
+ d1s+ d21 − d21α− − d1α−s

)
∂2t u

0
−

−
(
s2

2
α− − d21

2
α− +

d21
2

)
c(t)∂nu

0
−|Γ.
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sis, Université de Nantes, 2006.

[24] L. Rahmani, Reinforcement of a Mindlin–Timoshenko plate by a thin layer, Z. Angew.

Math. Phys. 66 (2015), no. 6, 3499–3517.
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