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A Depth-dependent Stability Estimate in an Iterative Method for Solving a

Cauchy Problem for the Laplace Equation

Akari Ishida

Abstract. In this paper, we consider the Cauchy problem for the Laplace operator. We

construct approximate solutions by using the iterative method proposed by Bastay,

Kozlov and Turesson. In the iterative method, we solve the corresponding boundary

value problems repeatedly. Then, we show that we construct them more stably when

we choose the smaller domain where we consider the boundary value problems. Fur-

thermore, since the iterative method is applicable to the case where we know only

approximations to the exact data with error, we also deal with this case.

1. Introduction

In this paper, we consider the following Cauchy problem for the Laplace operator

(1.1)


∆u = 0 in Ω∗,

u = φ on Γ0,

∂u
∂ν = ψ on Γ0.

Here Ω∗ is a bounded domain in R2, and its boundary is represented as ∂Ω∗ = Γ0 ∪ Γ∗,

where Γ0 and Γ∗ are closed and disjoint (see Figure 1.1), and ν denotes the outward unit

vector normal of ∂Ω∗. There exist various methods for solving the problem (1.1). One

way is to use iterative methods, which were proposed by Bastay, Kozlov and Turesson [1].

We remark that this iterative method is reduced to the Landweber iteration. For the

Landweber iteration, see [3, Ch. 6, Sec. 1] for example. In [1], they discussed the iterative

methods for Cauchy problems for parabolic equations and mentioned that their methods

can be also applied to elliptic equations. The iterative methods for the elliptic equations

are also discussed in [6, 8], and the ones for the parabolic equations are also discussed

in [2, 7], for instance.

In the iterative method, we construct a sequence of approximate solutions to the

problem (1.1) by solving the boundary value problems repeatedly. Here, we need to solve

the corresponding boundary value problems in the whole of domain Ω∗ if we would like to
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construct the solution to the problem (1.1) in Ω∗. However, if we would like to construct

the solution to the problem (1.1) in Ω∗ (⊂ Ω∗) near Γ0, then we can also consider the

boundary value problems only in Ω satisfying Ω∗ ⊂ Ω ⊂ Ω∗ (see Figure 1.1). We then

expect that we can construct approximate solutions more stably when we choose smaller

domain Ω. The aim of this paper is to show this property by giving explicitly the order

of convergence of approximate solutions. We remark that the order of convergence is not

given in [1]. In this paper, we give the order.

Γ0

Γ∗

Ω∗ Ω∗ Ω

Figure 1.1: The relationship of Ω∗, Ω
∗ and Ω.

In order to show it, we consider the following situation. Throughout this paper, we

shall use the following notation. Let r be a positive number. We shall donate by Br = {x ∈
R2 | |x| < r} (the circle of radius r centered at the origin) and ∂Br = {x ∈ R2 | |x| = r}
(the circumference of radius r centered at the origin). We consider domains Ω∗, Ω

∗ and Ω

to be as annulus B1 \Bρ∗ , B1 \Bρ∗ and B1 \Bρ respectively, where 0 < ρ∗ ≤ ρ ≤ ρ∗ < 1

(see Figure 1.2). Instead of the problem (1.1), we consider the following Cauchy problem

(1.2)


∆u = 0 in B1 \Bρ∗ ,

u = φ on ∂B1,

∂u
∂ν = ψ on ∂B1.

We give a strict definition of a solution to the problem (1.2) in Definition 2.6.

1ρ∗

Γ∗

Γ0

Ω∗

ρ∗

Ω∗

ρ

Γ1

Ω

Figure 1.2: The relationship of annulus Ω∗, Ω
∗ and Ω.

Throughout this paper, we impose the following assumption.
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Assumption 1.1. Given positive numbers M0 and M . We suppose that φ and ψ are

real-valued functions with

(1.3) ∥φ∥2L2(∂B1)
+ ∥ψ∥2L2(∂B1)

≤M2
0 .

We assume that there exists a solution u to the Cauchy problem (1.2) in B1 \Bρ∗ and its

restriction on ∂Bρ∗ be in L2. We suppose that

(1.4) ∥u∥L2(∂Bρ∗ )
≤M.

We apply the iterative method in [1] to construct a sequence of approximate solutions

to the problem (1.2). As we describe in Section 2.2, in the iterative method, we solve the

boundary value problem in B1\Bρ at each iteration step. We now state our main theorem.

We here remark that, in Sections 2.2 and 2.5, we introduce an approximate solution u(ℓ)

which appears in the following theorem.

Theorem 1.2. Let Assumption 1.1 hold. Let u(ℓ) be an approximate solution obtained

by the iterative procedure with η(0) = 0 and γ = ρ. Then, for ℓ ≥ 2 and ρ ∈ [ρ∗, ρ
∗], the

following estimate holds:

(1.5) ∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

≤ C

(
log ℓ

ℓ

)min
{

log(ρ∗/ρ∗)
log(1/ρ)

,1
}

where a positive constant C depends only on M0, M , ρ∗ and ρ∗.

Remark 1.3. We have

min

{
log(ρ∗/ρ∗)

log(1/ρ)
, 1

}
=


log(ρ∗/ρ∗)
log(1/ρ) for ρ∗ ≤ ρ ≤ ρ∗

ρ∗ ,

1 for ρ∗
ρ∗ < ρ ≤ ρ∗.

In addition, there exists no ρ such that ρ∗/ρ
∗ < ρ ≤ ρ∗ in the case where

√
ρ∗ > ρ∗.

Namely, we have

∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

≤ C

(
log ℓ

ℓ

) log(ρ∗/ρ∗)
log(1/ρ)

for any ρ in this case.

The larger ρ we choose, the larger the power log(ρ∗/ρ∗)
log(1/ρ) on the right-hand side of the

estimate (1.5) is. This means that we obtain the better stability as we choose ρ larger.

Moreover, with regard to the optimality of the estimate (1.5), we have the following

theorem.

Theorem 1.4. Let ε > 0 be given. Under the assumptions in Theorem 1.2, there exists

no positive constant Ĉ depending only on M0, M , ρ∗ and ρ∗ such that

∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

≤ Ĉ

(
log ℓ

ℓ

) log(ρ∗/ρ∗)
log(1/ρ)

+ε

holds for any ℓ ≥ 2 and ρ ∈ [ρ∗, ρ
∗].
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By Theorem 1.4, we know that the estimate (1.5) is optimal in the case where ρ∗ ≤
ρ ≤ ρ∗/ρ

∗. Furthermore, the estimate (1.5) is always optimal especially in the case where
√
ρ∗ > ρ∗.

Since the Landweber iteration works with inexact data, the iterative method proposed

in [1] also works. We next consider the case where we know only approximations φδ and

ψδ to the exact data with error δ in L2(∂B1)-norm.

Assumption 1.5. We suppose that φδ and ψδ are real-valued functions with

(1.6) ∥φδ − φ∥L2(∂B1) ≤ δ, ∥ψδ − ψ∥L2(∂B1) ≤ δ.

Theorem 1.6. Let Assumptions 1.1 and 1.5 hold. Let u(ℓ),δ be an approximation obtained

by the iterative procedure with η(0) = 0 and γ = ρ for Cauchy data φδ and ψδ. Then, for

0 < δ ≤ 1/e3 and ρ ∈ [ρ∗, ρ
∗], we have

∥u(ℓ(δ,ρ)),δ − u∥2
L2(B1\Bρ∗ )

≤ C̃


(
δ2 log 1

δ

) log(ρ∗/ρ∗)
log(1/ρ)+log(ρ∗/ρ∗) for ρ∗ ≤ ρ ≤ ρ∗

ρ∗ ,(
δ2 log 1

δ

)1/2
for ρ∗

ρ∗ < ρ ≤ ρ∗,

where ℓ(δ, ρ) is the minimum integer satisfying ℓ(δ, ρ) ≥ ℓ0(δ, ρ) with

ℓ0(δ, ρ) :=


(
1
δ

) 2 log(1/ρ)
log(1/ρ)+log(ρ∗/ρ∗)

(
log 1

δ

) log(ρ∗/ρ∗)
log(1/ρ)+log(ρ∗/ρ∗) for ρ∗ ≤ ρ ≤ ρ∗

ρ∗ ,

1
δ

(
log 1

δ

)1/2
for ρ∗

ρ∗ < ρ ≤ ρ∗,

and a positive constant C̃ depends only on M0, M , ρ∗ and ρ∗.

The rest of this paper is organized as follows. In Section 2, we introduce the iterative

procedure presented by Bastay, Kozlov and Turesson [1] and its properties. In Section 3,

we give the explicit solution formulae to respective problems. In Section 4, we prove the

estimate (1.5) in Theorem 1.2. Section 5 is devoted to the proof of Theorem 1.4. Finally,

we show Theorem 1.6 in Section 6.

2. The iterative method for the Cauchy problem

In this section, we introduce the iterative method proposed by Bastay, Kozlov and Tures-

son [1]. In [1], they proposed the iterative method for the Cauchy problems for parabolic

problems and mentioned that their methods can be also applied to elliptic equations.

In Section 2.1, we prove lemmas from which it follows that the boundary value prob-

lem we solve in the algorithm is well-posed. This section corresponds to [1, Sec. 2]. In

Section 2.2, we state the iterative procedure for the Cauchy problem (1.2). It is an analogy

to the iterative procedure in [1, Sec. 3.1.1]. In the iterative method, we solve the corre-

sponding boundary value problems repeatedly. Since we now consider the problem (1.2)
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in the annulus, we can obtain the explicit solution formula to the boundary value problem

by introducing the polar coordinates. Then, Section 2.3 is devoted to giving the explicit

solution formula to the boundary value problem. We describe its properties in Section 2.4.

Finally, in Section 2.5, we state iterative method for the problem (1.2) more concisely.

2.1. A well-posedness for the boundary value problem

At each step in the algorithm, we solve the boundary value problem

(2.1)


∆u = 0 in B1 \Bρ,

u = η on ∂Bρ,

∂u
∂ν = ψ on ∂B1.

In this case, we observe that the adjoint equation to the Laplace equation is the same as

the Laplace equation.

We can define a weak solution u ∈ L2(B1 \ Bρ) to the problem (2.1) for η ∈ L2(∂Bρ)

and ψ ∈ L2(∂B1).

Definition 2.1 (Weak solution). Assume that η ∈ L2(∂Bρ) and ψ ∈ L2(∂B1). Then,

u ∈ L2(B1 \Bρ) is a weak solution to the problem (2.1) if u satisfies

(2.2)

∫
B1\Bρ

u∆g dx+

∫
∂B1

ψg dσ −
∫
∂Bρ

η
∂g

∂ν
dσ = 0

for every g ∈ H2(B1 \Bρ) subject to

(2.3)

g = 0 on ∂Bρ,

∂g
∂ν = 0 on ∂B1.

Here, ν is the outward unit vector normal of ∂(B1 \ Bρ). We remark that ν on ∂Bρ

points toward the center of Bρ, whereas ν on ∂B1 points outward.

We next show the problem (2.1) is well-posed, that is, it has a unique solution that

depends continuously on the data. This proof is presented in Appendix A.

Theorem 2.2. The problem (2.1) has a unique solution u that satisfies

(2.4) ∥u∥L2(B1\Bρ)
≤ C ′(∥η∥L2(∂Bρ) + ∥ψ∥L2(∂B1)

)
.

Finally, using the Green function, we shall show that the restriction u
∣∣
∂B1

exists and

is in L2(∂B1). We now give a definition of the Green function.
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Definition 2.3 (Green function). A function G(x, y) is called the Green function for the

problem 
∆w = f in B1 \Bρ,

w = η on ∂Bρ,

∂w
∂ν = ψ on ∂B1

if G(x, y) satisfies 
∆xG(x, y) = −δ(x− y), x ∈ B1 \Bρ,

G(x, y) = 0, x ∈ ∂Bρ,

∂G
∂νx

(x, y) = 0, x ∈ ∂B1.

Then, we have the following lemma.

Lemma 2.4. The solution to the problem (2.1) is given by

(2.5) u(x) =

∫
∂B1

ψ(y)G(x, y) dσ(y)−
∫
∂Bρ

η(y)
∂G

∂νy
(x, y) dσ(y).

It is also well-known that the Green function G(x, y) has the estimates

(2.6) 0 < G(x, y) ≤ C ′′max
{
1,
∣∣ log |x− y|

∣∣}
and

(2.7) |∇G(x, y)| ≤ C ′′′

|x− y|
.

We remark that the Green function G(x, y) is smooth for x ̸= y. The second term of (2.5)

has enough smoothness near ∂B1 since ∂G
∂νy

(x, y) is smooth for x near ∂B1 and y ∈ ∂Bρ.

On the other hand, if η = 0, then the solution to the problem (2.1) is given by

u(x) =

∫
∂B1

ψ(y)G(x, y) dσ(y),

which has enough smoothness near ∂Bρ since the Green function G(x, y) is smooth for x

near ∂Bρ and y ∈ ∂B1. Thus, using the solution formula (2.5) and estimates (2.6) and

(2.7), we obtain the following lemma.

Lemma 2.5. Let u be the solution to the problem (2.1). Then, the restriction u
∣∣
∂B1

is in

L2(∂B1). Moreover, in the case where η = 0, the restriction ∂u
∂ν

∣∣
∂Bρ

is in L2(∂Bρ).

We now give a strict definition of a solution to the Cauchy problem (1.2).

Definition 2.6. A solution u to the problem (1.2) is a weak solution to the problem (2.1)

for some η ∈ L2(∂B1) such that u
∣∣
∂B1

= φ.
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2.2. Description of the iterative method

We now state the iterative procedure.

- Choose an arbitrary function η(0) ∈ L2(∂Bρ).

- The first approximation u(0) to the weak solution u is obtained by solving the bound-

ary value problem (2.1) with η = η(0) on ∂Bρ.

- Then, we find the auxiliary function v(0), which is given by the weak solution to the

problem (2.1) with η = 0 and ψ = ζ(0), where ζ(0) = u(0) − φ on ∂B1.

- When the solutions u(ℓ−1) and v(ℓ−1) have been constructed, the approximation u(ℓ)

is the weak solution to the problem (2.1) with η = η(ℓ) on ∂Bρ, where

η(ℓ) = u(ℓ−1) + γ
∂v(ℓ−1)

∂ν

and γ is a fixed positive number.

- The auxiliary function v(ℓ) is the weak solution to the problem (2.1) with η = 0 and

ψ = ζ(ℓ), where ζ(ℓ) = u(ℓ) − φ on ∂B1.

Remark 2.7. It follows from Lemma 2.5 that the functions η(ℓ) and ζ(ℓ) are well-defined.

Moreover, we obtain η(ℓ) ∈ L2(∂Bρ) and ζ
(ℓ) ∈ L2(∂B1).

2.3. The solution formula to the boundary value problem

Introducing the polar coordinates, we give the explicit solution formula to the boundary

value problem (2.1). We now make the change of variables

x1 = r cos θ, x2 = r sin θ.

Let

η̃(θ) := η(ρ cos θ, ρ sin θ) for η ∈ L2(∂Bρ)

and

ψ̃(θ) := ψ(cos θ, sin θ) for ψ ∈ L2(∂B1).

They are periodic functions which repeat at intervals of 2π radians. Hence, they can be

expressed through Fourier series expansions as

η̃(θ) =
∑
k∈Z

ηke
ikθ, ψ̃(θ) =

∑
k∈Z

ψke
ikθ

and we have the following lemma.
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Lemma 2.8. The solution to the problem (2.1) is given by

(2.8) ũ(r, θ) =
∑
k ̸=0

{
kηk + ψkρ

−k

k(ρk + ρ−k)
rk +

kηk − ψkρ
k

k(ρk + ρ−k)
r−k
}
eikθ + η0 + ψ0 log

r

ρ
,

where ũ(r, θ) = u(r cos θ, r sin θ).

Proof. Introducing the polar coordinates, the problem (2.1) is equivalent to
(
∂2

∂r2
+ 1

r
∂
∂r +

1
r2

∂2

∂θ2

)
ũ(r, θ) = 0, ρ ≤ r ≤ 1, 0 ≤ θ < 2π,

ũ(ρ, θ) = η̃(θ), 0 ≤ θ < 2π,

∂ũ
∂r (1, θ) = ψ̃(θ), 0 ≤ θ < 2π.

Then, we have the solution formula to the problem (2.1).

2.4. Reduction to the Landweber iteration

In accordance with [1, Sec. 3.1.2], we define operators in order to show that u(ℓ) constructed

above converges to the solution u to the Cauchy problem (1.2).

We first introduce the operator K : L2(∂Bρ) → L2(∂B1) through

(2.9) (Kη)(cos θ, sin θ) =
∑
k∈Z

2ηk
ρk + ρ−k

eikθ.

By (2.8), we know that (2.9) corresponds to

(2.10) Kη = z1
∣∣
∂B1

for η ∈ L2(∂Bρ),

where z1 is the solution to the boundary value problem (2.1) with ψ = 0. It follows from

Lemma 2.5 that z1
∣∣
∂B1

is in L2(∂B1). Similarly, we define the operator K1 : L
2(∂B1) →

L2(∂B1) by

(2.11) (K1ψ)(cos θ, sin θ) =
∑
k ̸=0

ψk(ρ
−k − ρk)

k(ρk + ρ−k)
eikθ − ψ0 log ρ.

Then, using (2.8), we know that (2.11) corresponds to

(2.12) K1ψ = z2
∣∣
∂B1

for ψ ∈ L2(∂B1),

where z2 is the solution to the problem (2.1) with η = 0.

We here consider the equation

(2.13) Kη = φ−K1ψ.
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We remark that solving the equation (2.13) is equivalent to solving the problem (1.2).

Indeed, if η is a solution to the equation (2.13), the solution to the problem (2.1) satisfies

u = φ on ∂B1 and thus solves the problem (1.2). Conversely, if u solves the problem (1.2),

then η = u
∣∣
∂Bρ

is a solution to the equation (2.13).

Correspondingly to [1, Sec. 3.1.2], we next see properties of the operator K.

Lemma 2.9. The operator K is injective.

Proof. We suppose that Kη = 0. Then, the solution to the problem (2.1) with ψ = 0 also

solves the Cauchy problem 
∆u = 0 in B1 \Bρ,

u = 0 on ∂B1,

∂u
∂ν = 0 on ∂B1.

Using the uniqueness theorem (see [5, Theorem 3.2.1], for example), we have u = 0. Hence,

from the problem (2.1) with ψ = 0, we obtain η = 0.

Lemma 2.10. The adjoint K∗ : L2(∂B1) → L2(∂Bρ) to the operator K is given by

(2.14) (K∗ζ)(ρ cos θ, ρ sin θ) =
∑
k∈Z

2ζk
ρ(ρk + ρ−k)

eikθ.

Proof. We first show that we have

(2.15) K∗ζ = −
(
∂v

∂ν

)∣∣∣
∂Bρ

for ζ ∈ L2(∂B1),

where v is the solution to the problem (2.1) with η = 0 and ψ = ζ. The formula (2.15) is

equivalent to

(K∗ζ, η)L2(∂Bρ) =

(
−∂v
∂ν
, η

)
L2(∂Bρ)

for all η ∈ L2(∂Bρ). Since we have

(K∗ζ, η)L2(∂Bρ) = (ζ,Kη)L2(∂B1),

it is enough to show

(2.16)

∫
∂B1

ζKη dσ = −
∫
∂Bρ

∂v

∂ν
η dσ

instead of showing (2.15). Moreover, we remark that it is sufficient to prove (2.16) for

η ∈ C∞(∂Bρ) and ζ ∈ C∞(∂B1). Now, let u be the solution to the problem (2.1) with

ψ = 0. We here remark that we have∫
B1\Bρ

(∆u)v dx−
∫
B1\Bρ

u∆v dx

=

∫
∂B1

∂u

∂ν
v dσ −

∫
∂B1

u
∂v

∂ν
dσ +

∫
∂Bρ

∂u

∂ν
v dσ −

∫
∂Bρ

u
∂v

∂ν
dσ

(2.17)
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by using the divergence theorem. Then, using (2.17) and equations which u and v satisfy,

we have

(2.18) 0 =

∫
∂B1

uζ dσ +

∫
∂Bρ

η
∂v

∂ν
dσ.

Substituting (2.10) into the first term on the right-hand side of (2.18), we get (2.16).

Moreover, it follows from (2.16) that the relationship (2.15) holds. Furthermore, using

(2.8) and (2.15), we obtain the formula (2.14).

Finally, using the Green function, we obtain the lemma about compactness.

Lemma 2.11. The operators K, K1 and K∗ are compact.

Proof. Using the solution formula (2.5) and the relationships (2.10) and (2.12), we have

Kη(x) = −
∫
∂Bρ

η(y)
∂G

∂νy
(x, y) dσ(y)

∣∣∣∣
∂B1

,(2.19)

K1ψ(x) =

∫
∂B1

ψ(y)G(x, y) dσ(y)

∣∣∣∣
∂B1

and

(2.20) K∗ζ(x) = −
∫
∂B1

ζ(y)
∂G

∂νx
(x, y) dσ(y)

∣∣∣∣
∂Bρ

.

We first see ∂G
∂νy

(x, y) in (2.19). Since ∂G
∂νy

∈ L2(∂B1 × ∂Bρ), see [4, (2.35) Claim], K is a

Hilbert–Schmidt integral operator. Hence, K is compact, see [4, (0.45) Theorem]. Similar

to ∂G
∂νx

(x, y) in (2.20), K∗ is compact. Finally, by the estimate (2.6), we know that K1 is

compact in the same way as the proof of [4, (3.11) Proposition].

Similar to [1, Theorem 3.1], we have the following theorem.

Theorem 2.12. Let u ∈ L2(B1 \ Bρ) be the solution to the problem (1.2). We suppose

that γ satisfies 0 < γ < 2
∥K∥2

L2(∂Bρ)→L2(∂B1)

. Let u(ℓ) be the ℓ-th approximate solution in

the iterative procedure. Then, we have

∥u(ℓ) − u∥L2(B1\Bρ)
→ 0 as ℓ→ ∞

for every initial data function η(0) ∈ L2(∂Bρ).

Proof. From the algorithm described in Section 2.2 and (2.15), we obtain

η(ℓ) = u(ℓ−1)
∣∣
∂Bρ

+ γ

(
∂v(ℓ−1)

∂ν

)∣∣∣
∂Bρ

= η(ℓ−1) + γ(−K∗ζ(ℓ−1))

= η(ℓ−1) + γ
{
−K∗(u(ℓ−1) − φ)

∣∣
∂B1

}
= η(ℓ−1) − γK∗(Kη(ℓ−1) +K1ψ − φ)

= (1− γK∗K)η(ℓ−1) + γK∗(φ−K1ψ).

(2.21)
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Since the linear operator K is injective and compact from Lemmas 2.9 and 2.11, we know

that (2.21) is the Landweber iteration for the equation (2.13). Hence, we have

∥η(ℓ) − η∥L2(∂Bρ) → 0 as ℓ→ ∞.

We now remark that u satisfies (2.1). Using (2.4), we obtain

∥u(ℓ) − u∥L2(B1\Bρ)
≤ C ′∥η(ℓ) − η∥L2(∂Bρ) → 0 as ℓ→ ∞.

The proof is completed.

We remark that our aim is to show the order of this convergence.

2.5. Reformulation of the iterative method

Based on above discussions, we would like to reformulate the iterative method. A function

η(ℓ) in the iterative procedure is defined on ∂Bρ; thus, let

η̃(ℓ)(θ) := η(ℓ)(ρ cos θ, ρ sin θ).

We express it as

η̃(ℓ)(θ) =
∑
k∈Z

η
(ℓ)
k eikθ

by the Fourier expression.

We first give the explicit formula of ũ(ℓ)(r, θ), where ũ(ℓ) is an approximate solution

obtained by the iterative procedure. From the algorithm described in Section 2.2, we

remark that u(ℓ) is the solution to the boundary value problem (2.1) with η = η(ℓ) on ∂Bρ.

Lemma 2.13. An approximate solution u(ℓ) obtained by the iterative procedure is given

by

(2.22) ũ(ℓ)(r, θ) =
∑
k ̸=0

{
kη

(ℓ)
k + ψkρ

−k

k(ρk + ρ−k)
rk +

kη
(ℓ)
k − ψkρ

k

k(ρk + ρ−k)
r−k

}
eikθ + η

(ℓ)
0 + ψ0 log

r

ρ
.

Proof. Using (2.8), we have (2.22).

We next state the reformulated procedure for the Cauchy problem (1.2).

- Fix a positive constant γ and choose an arbitrary function η(0) ∈ L2(∂Bρ).

- Using (2.21), η(1) ∈ L2(∂Bρ) is defined.

- Then, we get the first approximation u(1) ∈ L2(B1 \Bρ) by (2.22).

- When η(ℓ−1) has been defined, we find η(ℓ) ∈ L2(∂Bρ) by using (2.21).
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- Using (2.22), we obtain the approximation u(ℓ) ∈ L2(B1 \Bρ).

Remark 2.14. Since we now consider the annulus as a domain, it follows from the formu-

lae (2.9), (2.11) and (2.14) that the linear operators

K : Hα(∂Bρ) → Hα(∂B1), K1 : H
α(∂B1) → Hα+1(∂B1)

and

K∗ : Hα(∂B1) → Hα(∂Bρ)

are bounded for each α ≥ 0. If φ ∈ H1/2(∂B1) and ψ ∈ L2(∂B1), we get the approximation

u(ℓ) ∈ H1(B1 \Bρ) by choosing η(0) ∈ H1/2(∂Bρ) since each η(ℓ) obtained by the iterative

procedure is in H1/2(∂Bρ). Indeed, the solution u to the problem (2.1) is in H1(B1 \Bρ)
for φ ∈ H1/2(∂B1) and ψ ∈ L2(∂B1).

3. Solution formulae

Since we consider the annulus as a domain, we can obtain the explicit solution formulae

to the problems by introducing the polar coordinates. In addition to η̃(θ) and ψ̃(θ) in

Section 2.3, let φ̃(θ) := φ(cos θ, sin θ). Hence, it can be expressed through Fourier series

expansions as

φ̃(θ) =
∑
k∈Z

φke
ikθ.

We then have the following lemma.

Lemma 3.1. The solution to the Cauchy problem (1.2) is given by

(3.1) ũ(r, θ) =
∑
k ̸=0

(
kφk + ψk

2k
rk +

kφk − ψk
2k

r−k
)
eikθ + φ0 + ψ0 log r,

where ũ(r, θ) = u(r cos θ, r sin θ).

Proof. Introducing the polar coordinates, the problem (1.2) is equivalent to
(
∂2

∂r2
+ 1

r
∂
∂r +

1
r2

∂2

∂θ2

)
ũ(r, θ) = 0 ρ∗ < r < 1, 0 ≤ θ < 2π,

ũ(1, θ) = φ̃(θ) 0 ≤ θ < 2π,

∂ũ
∂r (1, θ) = ψ̃(θ) 0 ≤ θ < 2π.

Then, we have the solution formula to the problem (1.2).

We now assume η(0) = 0. From (2.9), (2.11), (2.14) and (2.21), we obtain the recurrence

relation

(3.2) η
(ℓ)
k =

{
1− 4γ

ρ(ρk + ρ−k)2

}
η
(ℓ−1)
k + η

(1)
k .

Solving (3.2), we have the following lemma.
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Lemma 3.2. The Fourier coefficients η
(ℓ)
k are given by

(3.3) η
(ℓ)
k = −ρ(ρ

k + ρ−k)2

4γ
η
(1)
k

[{
1− 4γ

ρ(ρk + ρ−k)2

}ℓ
− 1

]
,

where

η
(1)
k =


γ
ρ (φ0 + ψ0 log ρ) if k = 0,

2γ
ρ(ρk+ρ−k)

{
φk +

ψk(ρ
k−ρ−k)

k(ρk+ρ−k)

}
if k ̸= 0.

By Theorem 2.12, we have to choose 0 < γ < 2
∥K∥2

L2(∂Bρ)→L2(∂B1)

in order for η(ℓ) to

converge. We now find ∥K∥L2(∂Bρ)→L2(∂B1).

Lemma 3.3. ∥K∥L2(∂Bρ)→L2(∂B1) =
1√
ρ .

Proof. Since we have

∥Kη∥2L2(∂B1)
=
∑
k∈Z

8π|ηk|2

(ρk + ρ−k)2
≤ 2π

∑
k∈Z

|ηk|2 =
1

ρ
∥η∥2L2(∂Bρ)

from (2.9), we obtain

∥K∥L2(∂Bρ)→L2(∂B1) ≤
1
√
ρ
.

On the other hand, since we have

∥K1∥2L2(∂B1)
= 2π, ∥1∥2L2(∂Bρ)

= 2πρ

from (2.9), we know that the equality holds.

We here give the explicit formula of ũ(ℓ)(r, θ), where ũ(ℓ) is an approximate solution

obtained by the iterative procedure with η(0) = 0.

Lemma 3.4. An approximate solution u(ℓ) obtained by the iterative procedure with η(0) = 0

is given by

ũ(ℓ)(r, θ)

= −1

2

∑
k ̸=0

{
φk +

ψk(ρ
k − ρ−k)

k(ρk + ρ−k)

}[{
1− 4γ

ρ(ρk + ρ−k)2

}ℓ
− 1

]
(rk + r−k)eikθ

+
∑
k ̸=0

ψk
k(ρk + ρ−k)

(ρ−krk − ρkr−k)eikθ

− (φ0 + ψ0 log ρ)

{(
1− γ

ρ

)ℓ
− 1

}
+ ψ0 log

r

ρ
.

(3.4)

Proof. Substituting (3.3) into (2.22), we obtain (3.4).
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We now give the explicit formula of ∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

.

Lemma 3.5. Let u be a solution to the problem (1.2) for real-valued Cauchy data φ and

ψ, and u(ℓ) be an approximation obtained by the iterative procedure with η(0) = 0. Then,

we have

∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

= π

(
1− γ

ρ

)2ℓ

|φ0 + ψ0 log ρ|2
{
1− (ρ∗)2

}
+ π

{
1− 4γ

ρ(ρ+ ρ−1)2

}2ℓ ∣∣∣∣φ1 +
ψ1(ρ− ρ−1)

ρ+ ρ−1

∣∣∣∣2
×
[
5

4
− log ρ∗ − (ρ∗)2

{
1 +

1

4
(ρ∗)2

}]
+ π

∞∑
k=2

{
1− 4γ

ρ(ρk + ρ−k)2

}2ℓ ∣∣∣∣φk + ψk(ρ
k − ρ−k)

k(ρk + ρ−k)

∣∣∣∣2

×

{
(ρ∗)−2(k−1) − 1

2(k − 1)
+ 1− (ρ∗)2 +

1− (ρ∗)2(k+1)

2(k + 1)

}
.

(3.5)

Proof. Using (3.1) and (3.4), we have

ũ(ℓ)(r, θ)− ũ(r, θ) =
∑
k ̸=0

wk(r
k + r−k)eikθ − (φ0 + ψ0 log ρ)

(
1− γ

ρ

)ℓ
,

where

wk = −1

2

{
φk +

ψk(ρ
k − ρ−k)

k(ρk + ρ−k)

}{
1− 4γ

ρ(ρk + ρ−k)2

}ℓ
.

Then, we have

∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

=

∫
B1\Bρ∗

|u(ℓ)(x)− u(x)|2 dx

=

∫ 2π

0

∫ 1

ρ∗

∣∣ũ(ℓ)(r, θ)− ũ(r, θ)
∣∣2r drdθ

= 2π
∑
k ̸=0

|wk|2
∫ 1

ρ∗
(rk + r−k)2r dr + 2π

∣∣∣∣∣(φ0 + ψ0 log ρ)

(
1− γ

ρ

)ℓ∣∣∣∣∣
2 ∫ 1

ρ∗
r dr

= 2π
∑
k ̸=0

∣∣∣∣∣12
{
φk +

ψk(ρ
k − ρ−k)

k(ρk + ρ−k)

}{
1− 4

(ρk + ρ−k)2

}ℓ∣∣∣∣∣
2 ∫ 1

ρ∗
(rk + r−k)2r dr

+ π

(
1− γ

ρ

)2ℓ

|φ0 + ψ0 log ρ|2
{
1− (ρ∗)2

}
.

Since φ and ψ are real-valued functions, we have the formula (3.5).
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Substituting γ = ρ into (3.5), we have the following corollary.

Corollary 3.6. Under the assumptions in Lemma 3.5, if γ = ρ, then we have

∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

= π

{
1− 4

(ρ+ ρ−1)2

}2ℓ ∣∣∣∣φ1 +
ψ1(ρ− ρ−1)

ρ+ ρ−1

∣∣∣∣2
×
[
5

4
− log ρ∗ − (ρ∗)2

{
1 +

1

4
(ρ∗)2

}]
+ π

∞∑
k=2

{
1− 4

(ρk + ρ−k)2

}2ℓ ∣∣∣∣φk + ψk(ρ
k − ρ−k)

k(ρk + ρ−k)

∣∣∣∣2

×

{
(ρ∗)−2(k−1) − 1

2(k − 1)
+ 1− (ρ∗)2 +

1− (ρ∗)2(k+1)

2(k + 1)

}
.

(3.6)

Remark 3.7. We have

(3.7) 1− 4

(ρk + ρ−k)2
=

(
ρ−k − ρk

ρ−k + ρk

)2

=

{
tanh

(
k log

1

ρ

)}2

and the hyperbolic tangent function is monotone increasing. Moreover, we have

(3.8) 0 ≤
{
1− 4

(ρk + ρ−k)2

}ℓ
≤ 1.

Finally, we rewrite the conditions imposed in Assumption 1.1.

Lemma 3.8. If real-valued functions φ and ψ satisfy (1.3), then we have

(3.9)

∞∑
k=1

(
|φk|2 + |ψk|2

)
≤ M̃0

2
,

where M̃0 =
M0

2
√
π
. Moreover, we have

(3.10)
∞∑
k=1

∣∣∣∣φk2 ± ψk
2k

∣∣∣∣2 ≤ 1

2
M̃0

2
.

Proof. Since φ and ψ are real-valued functions, we have

∥φ∥2L2(∂B1)
= 2π

∑
k∈Z

|φk|2 = 2π

(
2

∞∑
k=1

|φk|2 + |φ0|2
)

and

∥ψ∥2L2(∂B1)
= 2π

∑
k∈Z

|ψk|2 = 2π

(
2

∞∑
k=1

|ψk|2 + |ψ0|2
)
.

Then, using (1.3), we have

4π
∞∑
k=1

(
|φk|2 + |ψk|2

)
≤M2

0 .
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Hence, we obtain (3.9). Moreover, using (3.9), we have

∞∑
k=1

∣∣∣∣φk2 ± ψk
2k

∣∣∣∣2 ≤ 2
∞∑
k=1

(∣∣∣φk
2

∣∣∣2 + ∣∣∣∣ψk2k
∣∣∣∣2
)

≤ 1

2

∞∑
k=1

(
|φk|2 + |ψk|2

)
≤ 1

2
M̃0

2
.

Therefore, the lemma follows.

Lemma 3.9. If Assumption 1.1 holds, then we have

(3.11)

∞∑
k=1

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2 ρ−2k
∗ ≤ M̃2,

where M̃2 = M2

2πρ∗
+ M̃0

2
.

Proof. Since we have

∥u∥2L2(∂Bρ∗ )
= 2πρ∗

(
2

∞∑
k=1

∣∣∣∣kφk + ψk
2k

ρk∗ +
kφk − ψk

2k
ρ−k∗

∣∣∣∣2 + |φ0 + ψ0 log ρ∗|2
)

by (3.1), from (1.4), we remark that we get

(3.12)
∞∑
k=1

∣∣∣∣kφk + ψk
2k

ρk∗ +
kφk − ψk

2k
ρ−k∗

∣∣∣∣2 ≤ M2

4πρ∗
.

Hence, using (3.10) and (3.12), we obtain

∞∑
k=1

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2 ρ−2k
∗ ≤ 2

∞∑
k=1

∣∣∣∣kφk + ψk
2k

ρk∗ +
kφk − ψk

2k
ρ−k∗

∣∣∣∣2 + 2
∞∑
k=1

∣∣∣∣kφk + ψk
2k

ρk∗

∣∣∣∣2
≤ M2

2πρ∗
+ M̃0

2
= M̃2.

We complete the proof.

4. Proof of Theorem 1.2

We would like to estimate ∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

, which is given by (3.6). Since

(ρ∗)−2(k−1) − 1

2(k − 1)
+ 1− (ρ∗)2 +

1− (ρ∗)2(k+1)

2(k + 1)
≤ (ρ∗)−2(k−1)

2
+ 1 +

1

6
≤ 5

3
(ρ∗)−2(k−1)

holds for k ≥ 2, we get

∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

≤ C1

∞∑
k=1

{
1− 4

(ρk + ρ−k)2

}2ℓ ∣∣∣∣φk + ψk(ρ
k − ρ−k)

k(ρk + ρ−k)

∣∣∣∣2 (ρ∗)−2(k−1),
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where

C1 := πmax

{
5

4
− log ρ∗ − (ρ∗)2

{
1 +

1

4
(ρ∗)2

}
,
5

3

}
.

We now remark that we have∣∣∣∣φk + ψk(ρ
k − ρ−k)

k(ρk + ρ−k)

∣∣∣∣2 = 4

∣∣∣∣(φk2 +
ψk
2k

)
ρk +

(
φk
2

− ψk
2k

)
ρ−k

∣∣∣∣2 1

(ρk + ρ−k)2

≤ 8

(∣∣∣∣φk2 +
ψk
2k

∣∣∣∣2 ρ2k + ∣∣∣∣φk2 − ψk
2k

∣∣∣∣2 ρ−2k

)
1

(ρk + ρ−k)2
.

Moreover, since we have

(ρ∗)−2(k−1)

(ρk + ρ−k)2
≤ (ρ∗)2

(
ρ

ρ∗

)2k

≤ 1,
ρ−2k

(ρk + ρ−k)2
≤ 1,

we can estimate

(4.1) ∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

≤ 8C1(I1 + I2),

where

I1 :=

∞∑
k=1

{
1− 4

(ρk + ρ−k)2

}2ℓ

(ρ∗)−2(k−1)

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2
and

I2 :=
∞∑
k=1

{
1− 4

(ρk + ρ−k)2

}2ℓ ∣∣∣∣φk2 +
ψk
2k

∣∣∣∣2 ρ2k.
Our proof is based on the idea in [9].

We first evaluate I1. Let 0 < λ < M̃ be given. Let N1 be the minimum integer

satisfying (ρ∗/ρ
∗)N1M̃ ≤ λ, namely

(4.2) N1 − 1 <
log(λ/M̃)

log(ρ∗/ρ∗)
≤ N1.

We now divide I1 into two parts:

I1 =

N1−1∑
k=1

{
1− 4

(ρk + ρ−k)2

}2ℓ

(ρ∗)−2(k−1)

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2
+

∞∑
k=N1

{
1− 4

(ρk + ρ−k)2

}2ℓ

(ρ∗)−2(k−1)

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2
=: I11 + I12.

(4.3)

We can estimate

I12 ≤
∞∑

k=N1

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2 (ρ∗)−2k =

∞∑
k=N1

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2 ρ−2k
∗

(
ρ∗
ρ∗

)2k

≤
(
ρ∗
ρ∗

)2N1 ∞∑
k=N1

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2 ρ−2k
∗ ≤

(
ρ∗
ρ∗

)2N1

M̃2 ≤ λ2
(4.4)



594 Akari Ishida

by (3.8), (3.11) and (4.2). On the other hand, using (3.7), (3.10) and (4.2), we have

I11 =

N1−1∑
k=1

{
tanh

(
k log

1

ρ

)}4ℓ

(ρ∗)−2(k−1)

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2

≤
{
tanh

(
(N1 − 1) log

1

ρ

)}4ℓ

(ρ∗)−2(N1−1)
N1−1∑
k=1

∣∣∣∣φk2 − ψk
2k

∣∣∣∣2
≤ 1

2
M̃0

2
(ρ∗)−2(N1−1)

{
tanh

(
(N1 − 1) log

1

ρ

)}4ℓ

<
1

2
M̃0

2
(

1

ρ∗

)2
log(λ/M̃)
log(ρ∗/ρ∗)

[
tanh

(
log(λ/M̃)

log(ρ∗/ρ∗)
log

1

ρ

)]4ℓ

= C2

(
1

ρ∗

)− 2 log λ
log(ρ∗/ρ∗)

{
tanh

(
b log

M̃

λ

)}4ℓ

= C2λ
−µ{tanh(a− b log λ)}4ℓ = C2λ

−µ
(
eaλ−b − e−aλb

eaλ−b + e−aλb

)4ℓ

,

(4.5)

where

C2 :=
1

2
M̃0

2
(

1

ρ∗

) 2 log M̃
log(ρ∗/ρ∗)

, µ :=
2 log(1/ρ∗)

log(ρ∗/ρ∗)
> 0, b :=

log(1/ρ)

log(ρ∗/ρ∗)
> 0, a := b log M̃.

Combining (4.3), (4.4) and (4.5), we obtain

(4.6) I1 ≤ F (λ),

where

(4.7) F (λ) := C2λ
−µ
(
eaλ−b − e−aλb

eaλ−b + e−aλb

)4ℓ

+ λ2.

Now, let us choose λ such that F (λ) is as small as possible. We choose λ0 satisfying

(4.8)

(
eaλ−b0 − e−aλb0
eaλ−b0 + e−aλb0

)4ℓ

= ℓ−ω1 ,

that is, we define

(4.9) λ0 =

{
e2a
(
1− ℓ−

ω1
4ℓ

)
1 + ℓ−

ω1
4ℓ

}1/(2b)

= M̃

(
1− J1
1 + J1

)1/(2b)

,

where we put J1 := ℓ−
ω1
4ℓ for short and define ω1 > 0 later. Moreover, we remark that J1

tends to 1 as ℓ→ ∞ and J1 < 1 for large enough ℓ. We shall see the order of 1−J1. Since

1− J1
log ℓ
ℓ

=
1− ℓ−

ω1
4ℓ

log ℓ
ℓ

→ ω1

4
as ℓ→ ∞,
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we have

J1 = 1− ω1

4

log ℓ

ℓ
+ o

(
log ℓ

ℓ

)
as ℓ→ ∞.

Then, we get

(4.10)
1− J1
1 + J1

=
1

2 + o(1)

{
ω1

4

log ℓ

ℓ
+ o

(
log ℓ

ℓ

)}
=
ω1

8

log ℓ

ℓ
{1 + o(1)}.

Therefore, using (4.9) and (4.10), we obtain

(4.11) λ0 = M̃
(ω1

8

)1/(2b)( log ℓ

ℓ

)1/(2b)

{1 + o(1)}1/(2b).

Thus, using (4.7), (4.8) and (4.11), we get

F (λ0) = C2λ
−µ
0 ℓ−ω1 + λ20

= C2M̃
−µ
(ω1

8

)−µ/(2b)( log ℓ

ℓ

)−µ/(2b)
{1 + o(1)}−µ/(2b)ℓ−ω1

+ M̃2
(ω1

8

)1/b( log ℓ

ℓ

)1/b

{1 + o(1)}1/b

= C2M̃
−µ
(ω1

8

)−µ/(2b)
ℓ−ω1+µ/(2b)(log ℓ)−µ/(2b){1 + o(1)}

+ M̃2
(ω1

8

)1/b( log ℓ

ℓ

)1/b

{1 + o(1)}.

(4.12)

Since we can choose sufficiently large ω1, by using (4.6) and (4.12), we obtain

(4.13) I1 ≤ F (λ0) ≤ C3

(
log ℓ

ℓ

)1/b

for ℓ ≥ 2, where C3 depends only on M , M0, ρ
∗ and ρ∗. We here remark that C3 can be

chosen independently of ρ due to the observation

0 <
log(1/ρ∗)

log(ρ∗/ρ∗)
< b =

log(1/ρ)

log(ρ∗/ρ∗)
<

log(1/ρ∗)

log(ρ∗/ρ∗)
.

We next evaluate I2. Let 0 < κ < 1 be given. LetN2 be the minimum integer satisfying

ρN2 ≤ κ, namely

(4.14) N2 − 1 <
log κ

log ρ
≤ N2.

We now divide I2 into two parts:

I2 =

N2−1∑
k=1

{
1− 4

(ρk + ρ−k)2

}2ℓ ∣∣∣∣φk2 +
ψk
2k

∣∣∣∣2 ρ2k
+

∞∑
k=N2

{
1− 4

(ρk + ρ−k)2

}2ℓ ∣∣∣∣φk2 +
ψk
2k

∣∣∣∣2 ρ2k
=: I21 + I22.

(4.15)
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Then, using (3.8), (3.10) and (4.14), we have

(4.16) I22 ≤ ρ2N2

∞∑
k=N2

∣∣∣∣φk2 +
ψk
2k

∣∣∣∣2 ≤ 1

2
M̃0

2
ρ2N2 ≤ 1

2
M̃0

2
κ2.

On the other hand, by (3.7), (3.10) and (4.14), we obtain

I21 =

N2−1∑
k=1

{
tanh

(
k log

1

ρ

)}4ℓ ∣∣∣∣φk2 +
ψk
2k

∣∣∣∣2 ρ2k
≤
{
tanh

(
(N2 − 1) log

1

ρ

)}4ℓ N2−1∑
k=1

∣∣∣∣φk2 +
ψk
2k

∣∣∣∣2
≤ 1

2
M̃0

2
{
tanh

(
(N2 − 1) log

1

ρ

)}4ℓ

<
1

2
M̃0

2
{tanh(− log κ)}4ℓ = 1

2
M̃0

2
(
κ−1 − κ

κ−1 + κ

)4ℓ

.

(4.17)

Combining (4.15), (4.16) and (4.17), we obtain

(4.18) I2 ≤ G(κ),

where

(4.19) G(κ) :=
1

2
M̃0

2

{(
κ−1 − κ

κ−1 + κ

)4ℓ

+ κ2

}
.

Now, let us choose κ such that G(κ) is as small as possible. We choose κ0 satisfying

(4.20)

(
κ−1
0 − κ0

κ−1
0 + κ0

)4ℓ

= ℓ−ω2 ,

that is, we define

(4.21) κ0 =

(
1− J2
1 + J2

)1/2

,

where we put J2 := ℓ−
ω2
4ℓ for short and define ω2 > 0 later. Then, we remark that J2

behaves like J1. Therefore, from (4.21), we have

(4.22) κ0 =
(ω2

8

)1/2( log ℓ

ℓ

)1/2

{1 + o(1)}.

Thus, using (4.19), (4.20) and (4.22), we get

G(κ0) =
1

2
M̃0

2
(ℓ−ω2 + κ20)

=
1

2
M̃0

2
[
ℓ−ω2 +

ω2

8

log ℓ

ℓ
{1 + o(1)}

]
.

(4.23)
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Since we can choose sufficiently large ω2, by using (4.18) and (4.23), we obtain

(4.24) I2 ≤ G(κ0) ≤ C4
log ℓ

ℓ

for ℓ ≥ 2, where C4 depends only on M0.

In the case where ρ∗ ≤ ρ ≤ ρ∗/ρ
∗, we remark that we have 0 ≤ 1/b ≤ 1. Hence, using

(4.1), (4.13) and (4.24), we obtain

∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

≤ C

(
log ℓ

ℓ

)1/b

for ℓ ≥ 2, where C > 0 depends only on M , M0, ρ∗ and ρ∗. On the other hand, in the

case where ρ∗/ρ
∗ < ρ ≤ ρ∗, we remark that we have 1/b > 1. Hence, using (4.1), (4.13)

and (4.24), we obtain

∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

≤ C
log ℓ

ℓ

for ℓ ≥ 2, where C > 0 depends only on M , M0, ρ∗ and ρ∗.

5. Proof of Theorem 1.4

As the Cauchy data, we especially choose

φ̃(θ) = φs(e
isθ + e−isθ), ψ̃(θ) = 0,

where s ̸= 0,±1 and φs is a positive number. Then, we have

(5.1) ∥φ∥2L2(∂B1)
= 4π|φs|2.

Moreover, using (3.1), we obtain the explicit solution formula to the Cauchy problem (1.2).

It is given by

(5.2) ũ(r, θ) =
φs
2
(rs + r−s)(eisθ + e−isθ)

and we have

(5.3) ∥u∥2L2(∂Bρ∗ )
= π|φs|2ρ∗(ρs∗ + ρ−s∗ )2.

Furthermore, an approximate solution u(ℓ) obtained by the iteration procedure with η(0) =

0 and γ = ρ is given by

(5.4) ũ(ℓ)(r, θ) = −φs
2

[{
1− 4

(ρs + ρ−s)2

}ℓ
− 1

]
(rs + r−s)(eisθ + e−isθ).
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We now choose s such that

(5.5) s ≥ max

{
2,

log 2M
M0

√
ρ∗

log 1
ρ∗

}
.

Then, we remark that we have

(5.6)
M2

πρ∗(ρs∗ + ρ−s∗ )2
≤ M2

0

4π

by using (5.5). We here put

(5.7) φs :=
M

√
πρ∗(ρs∗ + ρ−s∗ )

.

Then, using (5.1), (5.3), (5.6) and (5.7), we know that conditions (1.3) and (1.4) are

satisfied.

On the other hand, since we have

φs ≥
M

2
√
π
ρ
s−1/2
∗ ,

using (5.2) and (5.4), we obtain

∥u(ℓ) − u∥2
L2(B1\Bρ∗ )

= πφ2
s

(
1− ρ2s

1 + ρ2s

)4ℓ
{
(ρ∗)−2(s−1) − 1

2(s− 1)
+ 1− (ρ∗)2 +

1− (ρ∗)2(s+1)

2(s+ 1)

}

> πφ2
s

(
1− ρ2s

1 + ρ2s

)4ℓ
(ρ∗)−2(s−1) − 1

2(s− 1)

≥ M2

4
ρ2s−1
∗

(
1− ρ2s

1 + ρ2s

)4ℓ
(ρ∗)−2(s−1){1− (ρ∗)2}

2s

=
M2(ρ∗)2

8ρ∗
{1− (ρ∗)2}1

s

(
ρ∗
ρ∗

)2s(1− ρ2s

1 + ρ2s

)4ℓ

.

Since M2(ρ∗)2

8ρ∗
{1−(ρ∗)2} is independent of s, in order to see the optimality, it is sufficient

to show the following lemma.

Lemma 5.1. There exists no Ĉ > 0 such that

(5.8)
1

s

(
ρ∗
ρ∗

)2s(1− ρ2s

1 + ρ2s

)4ℓ

≤ Ĉ

(
log ℓ

ℓ

) log(ρ∗/ρ∗)
log(1/ρ)

+2ε

for any s satisfying (5.5), ℓ ≥ 2 and ρ ∈ [ρ∗, ρ
∗].

Proof. By taking the logarithm of both sides, (5.8) is equivalent to

X(ℓ, s) ≤ log Ĉ,
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where

X(ℓ, s) := − log s+ 2s log
ρ∗
ρ∗

+ 4ℓ
{
log(1− ρ2s)− log(1 + ρ2s)

}
−
(
log(ρ∗/ρ∗)

log(1/ρ)
+ 2ε

)
log

log ℓ

ℓ
.

We now show that

(5.9) X(ℓ, ĉ log ℓ) → ∞ as ℓ→ ∞

holds by taking ĉ such that

(5.10)
1

2 log(1/ρ)
< ĉ <

1

2 log(1/ρ)
+

ε

log(ρ∗/ρ∗)

for any ε > 0. Since we have

log(1− t)− log(1 + t) ≥ −3t for 0 ≤ t ≤ 1√
3
,

we get

X(ℓ, ĉ log ℓ) ≥ − log(ĉ log ℓ) + 2ĉ log ℓ log
ρ∗
ρ∗

− 12ℓρ2ĉ log ℓ

−
{
log(ρ∗/ρ∗)

log(1/ρ)
+ 2ε

}
log

log ℓ

ℓ

= − log ĉ+ log
ℓ
2
{
ĉ log ρ∗

ρ∗+
log(ρ∗/ρ∗)
2 log(1/ρ)

+ε
}

(log ℓ)
1+

log(ρ∗/ρ∗)
log(1/ρ)

+2ε
− 12ℓρ2ĉ log ℓ

= − log ĉ+ log
ℓ
2
{
ĉ log ρ∗

ρ∗+
log(ρ∗/ρ∗)
2 log(1/ρ)

+ε
}

(log ℓ)
1+

log(ρ∗/ρ∗)
log(1/ρ)

+2ε
− 12ℓ1+2ĉ log ρ

(5.11)

for 0 ≤ ρ2ĉ log ℓ ≤ 1√
3
, that is, ℓ ≥ 3

1
4ĉ log(1/ρ) . Since

1 + 2ĉ log ρ < 0

holds by (5.10), the third term on the right-hand side of (5.11) tends to zero as ℓ → ∞.

On the other hand, the second term on the right-hand side of (5.11) diverges to positive

infinity as ℓ→ ∞ since

ĉ log
ρ∗
ρ∗

+
log(ρ∗/ρ∗)

2 log(1/ρ)
+ ε > 0

holds by (5.10). Hence, we obtain (5.9).

Strictly speaking, both ℓ and s are natural numbers now. Then, let us take a natural

number m such that

m >

(
ρ∗

ρ∗

)1/ε

.
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Let ℓ = mq, where q is a natural number. We remark that (5.10) is equivalent to

(5.12)
logm

2 log(1/ρ)
< ĉ logm <

logm

2 log(1/ρ)
+

ε logm

log(ρ∗/ρ∗)
,

where ε logm
log(ρ∗/ρ∗)

> 1 holds. Hence, there exists ĉ satisfying (5.12) such that ĉ logm is a

natural number. Then, both ℓ = mq and s = ĉ log ℓ = ĉq logm are natural numbers, and

X(mq, ĉq logm) → ∞ as q → ∞.

Therefore, the lemma follows.

6. Proof of Theorem 1.6

We first remark that the condition (1.6) is equivalent to

(6.1) 2π|φδ0 − φ0|2 + 4π
∞∑
k=1

|φδk − φk|2 ≤ δ2

and

(6.2) 2π|ψδ0 − ψ0|2 + 4π
∞∑
k=1

|ψδk − ψk|2 ≤ δ2

when we express

φδ(cos θ, sin θ) =
∑
k∈Z

φδke
ikθ, ψδ(cos θ, sin θ) =

∑
k∈Z

ψδke
ikθ.

Moreover, using (3.4), an approximate solution u(ℓ),δ obtained by the iteration procedure

with η(0) = 0 and γ = ρ for Cauchy data φδ and ψδ is given by

ũ(ℓ),δ(r, θ)

= −1

2

∑
k ̸=0

{
φδk +

ψδk(ρ
k − ρ−k)

k(ρk + ρ−k)

}[{
1− 4

(ρk + ρ−k)2

}ℓ
− 1

]
(rk + r−k)eikθ

+
∑
k ̸=0

ψδk
k(ρk + ρ−k)

(ρ−krk − ρkr−k)eikθ + φδ0 + ψδ0 log r.

(6.3)

Furthermore, we have

(6.4) ∥u(ℓ),δ − u∥L2(B1\Bρ∗ )
≤ ∥u(ℓ),δ − u(ℓ)∥L2(B1\Bρ∗ )

+ ∥u(ℓ) − u∥L2(B1\Bρ∗ )
.

We now evaluate the first term on the right-hand side of (6.4).
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Lemma 6.1. Under the assumptions in Theorem 1.6, we have

(6.5) ∥u(ℓ),δ − u(ℓ)∥2
L2(B1\Bρ∗ )

≤ C̃0ℓδ
2,

where a positive constant C̃0 depends only on ρ∗.

Proof. Using (3.4) and (6.3), we have

(6.6) ũ(ℓ),δ(r, θ)− ũ(ℓ)(r, θ) =
∑
k∈Z

ŵk(r)e
ikθ,

where

ŵk(r) :=


−1

2

{
φδk − φk +

(ψδ
k−ψk)(ρ

k−ρ−k)

k(ρk+ρ−k)

}[{
1− 4

(ρk+ρ−k)2

}ℓ
− 1

]
(rk + r−k)

+
ψδ
k−ψk

k(ρk+ρ−k)
(ρ−krk − ρkr−k) if k ̸= 0,

φδ0 − φ0 + (ψδ0 − ψ0) log r if k = 0.

Then, using (6.6), we have

(6.7) ∥u(ℓ),δ − u(ℓ)∥2
L2(B1\Bρ∗ )

= 2π
∑
k ̸=0

∫ 1

ρ∗
|ŵk(r)|2r dr + 2π

∫ 1

ρ∗
|ŵ0(r)|2r dr.

We first evaluate |ŵk(r)|2 for k ̸= 0. We have

|ŵk(r)|2

≤ 1

2

{
|φδk − φk|+

|ψδk − ψk|(ρk − ρ−k)

k(ρk + ρ−k)

}2
[{

1− 4

(ρk + ρ−k)2

}ℓ
− 1

]2
(rk + r−k)2

+ 2
|ψδk − ψk|2

k2(ρk + ρ−k)2
(ρ−krk − ρkr−k)2.

(6.8)

Here, since

1− (1− s)ℓ ≤ ℓs

holds for 0 ≤ s ≤ 1, by (3.8), we remark that we have

(6.9) 1−
{
1− 4

(ρk + ρ−k)2

}ℓ
≤ 4

(ρk + ρ−k)2
ℓ.

Moreover, using (3.8) and (6.9), we have

1−
{
1− 4

(ρk + ρ−k)2

}ℓ
≤

√
1−

{
1− 4

(ρk + ρ−k)2

}ℓ
≤

√
4

(ρk + ρ−k)2
ℓ =

2

ρk + ρ−k

√
ℓ.

(6.10)
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Combining (6.8) and (6.10), we obtain

|ŵk(r)|2 ≤ 2

{
|φδk − φk|+

|ψδk − ψk|(ρk − ρ−k)

k(ρk + ρ−k)

}2
ℓ(rk + r−k)2

(ρk + ρ−k)2

+ 2
|ψδk − ψk|2

k2(ρk + ρ−k)2
(ρ−krk − ρkr−k)2

(6.11)

for k ̸= 0. On the other hand, we get

(6.12) |ŵ0(r)|2 ≤ 2
{
|φδ0 − φ0|2 + |ψδ0 − ψ0|2(log r)2

}
.

Then, using (6.7), (6.11) and (6.12), since φ, ψ, φδ and ψδ are real-valued functions, we

obtain

(6.13) ∥u(ℓ),δ − u(ℓ)∥2
L2(B1\Bρ∗ )

≤ Z1 + Z2 + Z3,

where

Z1 := 8πℓ

∞∑
k=2

{
|φδk − φk|+

|ψδk − ψk|(ρk − ρ−k)

k(ρk + ρ−k)

}2
1

(ρk + ρ−k)2

×

{
(ρ∗)−2(k−1) − 1

2(k − 1)
+ 1− (ρ∗)2 +

1− (ρ∗)2(k+1)

2(k + 1)

}

+ 8πℓ

{
|φδ1 − φ1|+

|ψδ1 − ψ1|(ρ− ρ−1)

ρ+ ρ−1

}2
1

(ρ+ ρ−1)2

×
[
5

4
− log ρ∗ − (ρ∗)2

{
1 +

1

4
(ρ∗)2

}]
,

Z2 := 8π

∞∑
k=2

|ψδk − ψk|2

k2(ρk + ρ−k)2

{
(ρ∗)−2(k−1) − 1

2(k − 1)
ρ2k − 1 + (ρ∗)2 +

1− (ρ∗)2(k+1)

2(k + 1)
ρ−2k

}

+ 8π
|ψδ1 − ψ1|2

(ρ+ ρ−1)2

[
1

4ρ2
{
1− (ρ∗)4

}
− 1 + (ρ∗)2 − ρ2 log ρ∗

]
and

Z3 := 2π|φδ0 − φ0|2
{
1− (ρ∗)2

}
+ 2π|ψδ0 − ψ0|2

[
1

2
− (ρ∗)2

{
(log ρ∗)2 − log ρ∗ +

1

2

}]
.

We first evaluate Z1. Since

(ρ∗)−2(k−1) − 1

2(k − 1)
+ 1− (ρ∗)2 +

1− (ρ∗)2(k+1)

2(k + 1)

≤ (ρ∗)−2(k−1)

2
+ 1 +

1

6
≤ 5

3
(ρ∗)−2(k−1)
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holds for k ≥ 2, we have

Z1 ≤ C̃01ℓ
∞∑
k=1

{
φδk − φk +

(ψδk − ψk)(ρ
k − ρ−k)

k(ρk + ρ−k)

}2
(ρ∗)−2(k−1)

(ρk + ρ−k)2

≤ 2C̃01ℓ
∞∑
k=1

(
|φδk − φk|2 + |ψδk − ψk|2

) (ρ∗)2

(ρ∗)2k(ρk + ρ−k)2

≤ 2C̃01ℓ
∞∑
k=1

(
|φδk − φk|2 + |ψδk − ψk|2

)
≤ 2C̃01ℓ

(
δ2

4π
+
δ2

4π

)
=
C̃01

π
ℓδ2

(6.14)

by (6.1) and (6.2), where

C̃01 := 8πmax

{
5

4
− log ρ∗ − (ρ∗)2

{
1 +

1

4
(ρ∗)2

}
,
5

3

}
.

We next evaluate Z2. Since

(ρ∗)−2(k−1) − 1

2(k − 1)
ρ2k − 1 + (ρ∗)2 +

1− (ρ∗)2(k+1)

2(k + 1)
ρ−2k

≤ 1

2(k − 1)
(ρ∗)2

(
ρ

ρ∗

)2k

+ (ρ∗)2 +
1

2(k + 1)
ρ−2k

≤ 1

2
(ρ∗)2 + (ρ∗)2 +

1

6
ρ−2k ≤ 5

3
ρ−2k

holds for k ≥ 2 and we have

1

4ρ2
{
1− (ρ∗)4

}
− 1 + (ρ∗)2 − ρ2 log ρ∗ =

1

ρ2

[
1− (ρ∗)4

4
− ρ2

{
1− (ρ∗)2

}
+ ρ4 log

1

ρ∗

]
≤ 1

ρ2

(
1

4
+ log

1

ρ∗

)
,

we get

Z2 ≤ C̃02

∞∑
k=1

|ψδk − ψk|2

k2(ρk + ρ−k)2
ρ−2k ≤ C̃02

∞∑
k=1

|ψδk − ψk|2
1

(ρ2k + 1)2

≤ C̃02

∞∑
k=1

|ψδk − ψk|2 ≤
C̃02

4π
δ2

(6.15)

by (6.2), where

C̃02 := 8πmax

{
1

4
+ log

1

ρ∗
,
5

3

}
.

Finally, we evaluate Z3. Since we have

(log ρ∗)2 − log ρ∗ +
1

2
=

(
log ρ∗ − 1

2

)2

+
1

4
≥ 1

4
,
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we get

(6.16) Z3 ≤ 2π|φδ0 − φ0|2 + π|ψδ0 − ψ0|2 ≤ δ2 +
1

2
δ2 =

3

2
δ2

by (6.1) and (6.2). Therefore, combining (6.13), (6.14), (6.15) and (6.16), we obtain

∥u(ℓ),δ − u(ℓ)∥2
L2(B1\Bρ∗ )

≤ C̃01

π
ℓδ2 +

C̃02

4π
δ2 +

3

2
δ2 ≤ C̃0ℓδ

2

for ℓ ≥ 1, where

C̃0 :=
C̃01

π
+
C̃02

4π
+

3

2
.

The proof is completed.

Lastly, we prove Theorem 1.6.

Proof of Theorem 1.6. We first consider the case where ρ∗ ≤ ρ ≤ ρ∗/ρ
∗. Using (1.5), (6.4)

and (6.5), we have

∥u(ℓ),δ − u∥2
L2(B1\Bρ∗ )

≤ 2
(
∥u(ℓ),δ − u(ℓ)∥2

L2(B1\Bρ∗ )
+ ∥u(ℓ) − u∥2

L2(B1\Bρ∗ )

)
≤ 2C̃0ℓδ

2 + 2C

(
log ℓ

ℓ

) log(ρ∗/ρ∗)
log(1/ρ)

≤ C̃11H1(ℓ),

(6.17)

where C̃11 := 2max
{
C̃0, C

}
and

H1(ℓ) := ℓδ2 +

(
log ℓ

ℓ

) log(ρ∗/ρ∗)
log(1/ρ)

.

Let ℓ = ℓ(δ, ρ), where the definition of ℓ(δ, ρ) is given in Theorem 1.6. We now remark

that we have

(6.18)
ℓ

2
< ℓ− 1 < ℓ0(δ, ρ) ≤ ℓ

for ℓ ≥ 3, and

(6.19) 0 ≤ log log
1

δ
< log

1

δ
.

We also remark that ℓ0(δ, ρ) is monotone decreasing for 0 < δ < e
log(ρ∗/ρ∗)
2 log(1/ρ) . Hence, we

have

ℓ0(δ, ρ) ≥ ℓ0(e
−3, ρ) = (e3)

2 log(1/ρ)
log(1/ρ)+log(ρ∗/ρ∗) · 3

log(ρ∗/ρ∗)
log(1/ρ)+log(ρ∗/ρ∗) > 3

since we now consider 0 < δ ≤ e−3. Then, we obtain ℓ ≥ 4. Therefore, using (6.18) and

(6.19), we obtain

(6.20) ℓδ2 = 2
ℓ

2
δ2 < 2ℓ0(δ, ρ)δ

2 = 2

(
δ2 log

1

δ

) log(ρ∗/ρ∗)
log(1/ρ)+log(ρ∗/ρ∗)



A Depth-dependent Stability Estimate 605

and

log ℓ

ℓ
≤ log ℓ0(δ, ρ)

ℓ0(δ, ρ)

<
2 log(1/ρ) + log(ρ∗/ρ∗)

log(1/ρ) + log(ρ∗/ρ∗)

(
δ2 log

1

δ

) log(1/ρ)
log(1/ρ)+log(ρ∗/ρ∗)

< 2

(
δ2 log

1

δ

) log(1/ρ)
log(1/ρ)+log(ρ∗/ρ∗)

.

(6.21)

Using (6.17), (6.20) and (6.21), we have

∥u(ℓ),δ − u∥2
L2(B1\Bρ∗ )

≤ C̃11

(
2 + 2

log(ρ∗/ρ∗)
log(1/ρ)

)(
δ2 log

1

δ

) log(ρ∗/ρ∗)
log(1/ρ)+log(ρ∗/ρ∗)

≤ C̃1

(
δ2 log

1

δ

) log(ρ∗/ρ∗)
log(1/ρ)+log(ρ∗/ρ∗)

,

where

C̃1 := C̃11

(
2 + 2

log(ρ∗/ρ∗)
log(1/ρ∗)

)
.

We next consider the case where ρ∗/ρ
∗ < ρ ≤ ρ∗. Similarly, using (1.5), (6.4) and

(6.5), we have

∥u(ℓ),δ − u∥2
L2(B1\Bρ∗ )

≤ 2
(
∥u(ℓ),δ − u(ℓ)∥2

L2(B1\Bρ∗ )
+ ∥u(ℓ) − u∥2

L2(B1\Bρ∗ )

)
≤ 2C̃0ℓδ

2 + 2C
log ℓ

ℓ
≤ C̃21H2(ℓ),

(6.22)

where C̃21 := 2max
{
C̃0, C

}
and

H2(ℓ) := ℓδ2 +
log ℓ

ℓ
.

Let ℓ = ℓ(δ, ρ). We remark that ℓ0(δ, ρ) is monotone decreasing for 0 < δ <
√
e. Hence,

we have

ℓ0(δ, ρ) ≥ ℓ0(e
−3, ρ) =

√
3e3 > 3

since we now consider 0 < δ ≤ e−3. Then, we obtain ℓ ≥ 4. Therefore, using (6.18) and

(6.19), we obtain

(6.23) ℓδ2 = 2
ℓ

2
δ2 < 2ℓ0(δ, ρ)δ

2 = 2

(
δ2 log

1

δ

)1/2

and

(6.24)
log ℓ

ℓ
≤ log ℓ0(δ, ρ)

ℓ0(δ, ρ)
<

3

2

(
δ2 log

1

δ

)1/2

.
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Using (6.22), (6.23) and (6.24), we have

∥u(ℓ),δ − u∥2
L2(B1\Bρ∗ )

≤ C̃2

(
δ2 log

1

δ

)1/2

,

where

C̃2 :=
7

2
C̃21.

The proof is completed.

A. A solvability of the weak solution

In this appendix, we prove the solvability of the weak solution.

Proof of Theorem 2.2. Let us first assume that η ∈ C∞(∂Bρ) and ψ ∈ C∞(∂B1). Then,

the boundary value problem (2.1) has a solution u ∈ C∞(B1 \Bρ). Moreover, u also

solves the problem (2.1) in the weak sense defined in Definition 2.1. Indeed, multiplying

the equation in the problem (2.1) by g and using (2.3) and the divergence theorem, we

arrive at (2.2).

We first prove the inequality (2.4). Denote by g the solution to the equation

(A.1) ∆g = u in B1 \Bρ

subject to (2.3). This problem has a unique solution g ∈ H2(B1 \Bρ) which satisfies

(A.2) ∥g∥H2(B1\Bρ)
≤ C ′

1∥u∥L2(B1\Bρ)
.

We now take g as a test function in (2.2). By (2.2), we have

(A.3)

∫
B1\Bρ

u∆g dx = −
∫
∂B1

ψg dσ +

∫
∂Bρ

η
∂g

∂ν
dσ.

Moreover, from (A.1), we get

(A.4)

∫
B1\Bρ

u∆g dx =

∫
B1\Bρ

u2 dx = ∥u∥2
L2(B1\Bρ)

.

Using the Cauchy–Schwarz inequality, we have

(A.5)

∫
∂B1

ψg dσ ≤ ∥ψ∥L2(∂B1)∥g∥L2(∂B1)

and

(A.6)

∫
∂Bρ

η
∂g

∂ν
dσ ≤ ∥η∥L2(∂Bρ)

∥∥∥∥∂g∂ν
∥∥∥∥
L2(∂Bρ)

.
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Hence, combining (A.3), (A.4), (A.5) and (A.6), we obtain

(A.7) ∥u∥2
L2(B1\Bρ)

≤ ∥ψ∥L2(∂B1)∥g∥L2(∂B1) + ∥η∥L2(∂Bρ)

∥∥∥∥∂g∂ν
∥∥∥∥
L2(∂Bρ)

.

From the well-known trace inequality for g, we have

(A.8) ∥g∥L2(∂B1) ≤ C ′
2∥g∥H2(B1\Bρ)

and

(A.9)

∥∥∥∥∂g∂ν
∥∥∥∥
L2(∂Bρ)

≤ C ′
3∥g∥H2(B1\Bρ)

.

Therefore, combining (A.7), (A.8) and (A.9), we obtain

(A.10) ∥u∥2
L2(B1\Bρ)

≤ C ′
4

(
∥ψ∥L2(∂B1) + ∥η∥L2(∂Bρ)

)
∥g∥H2(B1\Bρ)

,

where

C ′
4 := max{C ′

2, C
′
3}.

Thus, the inequality (2.4) follows from (A.2) and (A.10), where C ′ := C ′
1C

′
4.

To handle the general case, we approximate η and ψ in the appropriate L2-norm by

smooth functions ηj ∈ C∞(∂Bρ) and ψj ∈ C∞(∂B1), that is,

(A.11) ∥ηj − η∥L2(∂Bρ) → 0 as j → ∞,

and

(A.12) ∥ψj − ψ∥L2(∂B1) → 0 as j → ∞.

Let uj be the solution to the problem (2.1) with data ηj and ψj . We then note that we

have

(A.13) ∥uj∥L2(B1\Bρ)
≤ C ′(∥ηj∥L2(∂Bρ) + ∥ψj∥L2(∂B1)

)
.

Using (A.11), (A.12) and (A.13), we get

(A.14) ∥uj −uk∥L2(B1\Bρ)
≤ C ′(∥ηj − ηk∥L2(∂Bρ)+ ∥ψj −ψk∥L2(∂B1)

)
→ 0 as j, k → ∞.

It follows from (A.14) that {uj}∞j=1 is a Cauchy sequence in L2(B1 \Bρ). Hence, {uj}∞j=1

converges to u ∈ L2(B1 \Bρ). Moreover, we remark that we have

(A.15)

∫
B1\Bρ

uj∆g dx+

∫
∂B1

ψjg dσ −
∫
∂Bρ

ηj
∂g

∂ν
dσ = 0
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for every g ∈ C∞(B1 \Bρ) subject to (2.3). By the Cauchy–Schwarz inequality, we have∣∣∣∣∣
∫
B1\Bρ

(uj − u)∆g dx

∣∣∣∣∣ ≤ ∥uj − u∥L2(B1\Bρ)
∥∆g∥L2(B1\Bρ)

→ 0 as j → ∞.

Evaluating the second and third terms on the left-hand of (A.15) in the same way, we

have (2.2). Furthermore, since {uj}∞j=1 is a Cauchy sequence, we have

(A.16) ∥uj∥L2(B1\Bρ)
→ ∥u∥L2(B1\Bρ)

as j → ∞.

Thus, using (A.11), (A.12), (A.13) and (A.16), we obtain (2.4).

We finally show that the solution to the problem (2.1) is unique. Let u1 and u2 be

solutions to the problem (2.1). We now put u = u1−u2. Then, by linearity, we have (2.1)

with η = ψ = 0. Hence, it suffices to show that if

(A.17)

∫
B1\Bρ

u∆g dx = 0

for all test functions g, then u = 0. Now, let g be the test function that we used earlier.

It follows from (A.17) that

0 =

∫
B1\Bρ

u∆g dx = ∥u∥2
L2(B1\Bρ)

.

Therefore, we obtain u = 0.
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