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On Mixed Joint Discrete Universality for a Class of Zeta-functions: One

More Case

Roma Kačinskaitė*, Kohji Matsumoto and  Lukasz Pańkowski

Abstract. We prove a new case of mixed discrete joint universality theorem on approxi-

mation of certain target couple of analytic functions by the shifts of a pair consisting of

the function φ(s) belonging to wide class of Matsumoto zeta-functions and the perio-

dic Hurwitz zeta-function ζ(s, α;B). We work under the condition that the common

difference of arithmetical progression h > 0 is such that exp{2π/h} is a rational

number and the parameter α is a transcendental number. The essential difference

from the result in our previous article [10] is that here we do not study the class of

partial zeta-functions φh(s), but work with the class of the original functions φ(s).

1. Introduction with statement of new result

As usual, let s = σ + it be a complex variable, and by P, N, N0, Z, Q and C denote the

sets of all primes, positive integers, non-negative integers, integers, rational numbers and

complex numbers, respectively.

Let B = {bm : m ∈ N0} be a periodic sequence of complex numbers bm with a minimal

period k ∈ N, and suppose that α is a fixed real number, 0 < α ≤ 1. The periodic Hurwitz

zeta-function is defined by the Dirichlet series

ζ(s, α;B) =

∞∑
m=0

bm
(m + α)s

in the half-plane σ > 1 (see [12]). In view of the periodicity of the sequence B, for σ > 1,

the function ζ(s, α;B) can be expressed as a linear combination of classical Hurwitz zeta-

functions ζ(s, α) :=
∑∞

m=0
1

(m+α)s . More precisely, we have

ζ(s, α;B) =
1

ks

k−1∑
l=0

blζ

(
s,

l + α

k

)
.
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222 Roma Kačinskaitė, Kohji Matsumoto and  Lukasz Pańkowski

From this we deduce that the function ζ(s, α;B) can be analytically continued to the

whole s-plane except for a possible simple pole at the point s = 1 with residue
b0+···+bk−1

k .

The polynomial Euler products φ̃(s) or so-called Matsumoto zeta-functions are given

by the formula

(1.1) φ̃(s) =
∞∏

m=1

g(m)∏
j=1

(
1 − a

(j)
m

p
sf(j,m)
m

)−1

for m ∈ N, g(m) ∈ N, j ∈ N, 1 ≤ j ≤ g(m), f(j,m) ∈ N, a
(j)
m ∈ C and the mth prime

number pm (see [15]). Suppose that, for non-negative constants α0 and β0, the inequalities

g(m) ≤ C1p
α0
m and |a(j)

m | ≤ pβ0
m

hold with a positive constant C1. In view of this assumption, the right-hand side of the

equality (1.1) converges absolutely for σ > α0 +β0 + 1, and in this half-plane the function

φ̃(s) can be presented by the Dirichlet series

φ̃(s) =
∞∑
k=1

c̃k
ks

,

where the coefficients c̃k satisfy an estimate c̃k = O(kα0+β0+ε) with every positive ε if all

prime factors of k are large (for the comments, see [7]). For brevity, we denote the shifted

version of the function φ̃(s) by

φ(s) := φ̃(s + α0 + β0) =
∞∑
k=1

ck
ks

,

where ck := c̃k
kα0+β0

, or as a polynomial Euler product by

φ(s) :=

∞∏
m=1

g(m)∏
j=1

(
1 − a

(j)
m

p
(s+α0+β0)f(j,m)
m

)−1

.

Then φ(s) is absolutely convergent for σ > 1. Also, let the function φ(s) be such that

(i) it can be continued meromorphically to σ ≥ σ0, 1/2 ≤ σ0 < 1, and all poles in this

region are included in a compact set which has no intersection with the line σ = σ0,

(ii) for σ ≥ σ0, the estimate φ(σ + it) = O(|t|C2) holds with a positive constant C2,

(iii) it holds the mean-value estimate∫ T

0
|φ(σ0 + it)|2 dt = O(T ), T → ∞.

We denote the set of all such functions φ(s) by M.



Discrete Case of Mixed Joint Universality 223

Both of the functions defined above are the functions under our interest in the present

paper. The main aim of the article is to give one more option of the solution of the problem

on discrete approximation of certain pair of analytic functions by the shifts of the pair

consisting of an element of the class M and the periodic Hurwitz zeta-function ζ(s, α;B),

or in other words, the mixed joint discrete universality property for (φ(s), ζ(s, α;B)). To

apply the standard method to the proof of universality for the mentioned pair, we need

further assumption for the function φ(s), i.e., it belongs to the Steuding class S̃.

We recall that the function φ(s) belongs to the class S̃ if the following conditions are

satisfied:

(a) there exists a Dirichlet series expansion

φ(s) =

∞∑
m=1

a(m)

ms

with a(m) = O(mε) for every ε > 0;

(b) there exists σφ < 1 such that φ(s) can be meromorphically continued to the half-

plane σ > σφ, and is holomorphic except for a pole at s = 1;

(c) for every fixed σ > σφ, there exists a constant C3 ≥ 0 such that φ(σ+it) = O(|t|C3+ε)

for any ε > 0;

(d) there exists the Euler product expansion over primes, i.e.,

φ(s) =
∏
p∈P

l∏
j=1

(
1 − aj(p)

ps

)−1

;

(e) there exists a constant κ > 0 such that

lim
x→∞

1

π(x)

∑
p≤x

|a(p)|2 = κ,

where π(x) counts the number of primes p not exceeding x.

Denote by σ∗ the infimum of all σ1 such that

1

2T

∫ T

−T
|φ(σ + it)|2 dt ∼

∞∑
m=1

|a(m)|2

m2σ

holds for any σ ≥ σ1. Then 1/2 ≤ σ∗ < 1. This implies that S̃ ⊂ M.

Throughout this paper we use the following notation and definitions. By H(G) we

denote the space of holomorphic functions on a region G with the uniform convergence
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topology, where G is any open region in the complex plane. Let K ⊂ C be a compact set.

Denote by Hc(K) the set of all C-valued continuous functions on K and holomorphic in

the interior of K, and by Hc
0(K) the subset of elements of Hc(K) which are non-vanishing

on K, respectively. Let D(a, b) = {s ∈ C : a < σ < b} for every a < b. Denote by

meas{A} the Lebesgue measure of the measurable set A ⊂ R, and by B(S) the set of all

Borel subsets of a topological space S, while #{A} means the cardinality of the set A. By

h we mean a positive number, which satisfies certain conditions.

In 2017, the first result related to the mixed joint discrete universality property for

the pair (φ(s), ζ(s, α;B)) was obtained by the first two authors (see [6]) under a condition

that the elements of the set

L(P, α, h) :=
{

(log p : p ∈ P), (log(m + α) : m ∈ N0), 2π/h
}

are linearly independent over Q.

Theorem 1.1. [6, Theorem 3] Suppose that φ(s) belongs to the Steuding class S̃, and the

above linear independence condition is satisfied. Let K1 be a compact subset of D(σ∗, 1),

K2 be a compact subset of D(1/2, 1), both with connected complements. Then, for any

f1(s) ∈ Hc
0(K1), f2(s) ∈ Hc(K2) and every ε > 0, it holds that

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|φ(s + ikh) − f1(s)| < ε,

sup
s∈K2

|ζ(s + ikh, α;B) − f2(s)| < ε

}
> 0.

Later this result was extended to the cases, when one periodic Hurwitz zeta-function

ζ(s, α;B) was replaced by the collection of such functions (assuming some extra rank

conditions), the set L(P, α, h) being modified (see [8,9]). It is necessary to mention that in

general the arithmetic nature of the number h plays a crucial role in the proof of discrete

universality type theorems.

In [10], we consider one more case of mixed joint discrete universality for the func-

tions under our interest. More precisely, we prove the universality for a class of partial

zeta-functions φh(s) (defined below) under the condition that α is transcendental and

exp{2π/h} ∈ Q. Therefore, the arithmetic nature of h differs from that in Theorem 1.1.

Suppose that exp{2π/h} ∈ Q. Then we may write

(1.2) exp

(
2π

h

)
=

a

b
, a, b ∈ N, (a, b) = 1.

We write the decompositions of a and b into prime divisors as

(1.3) a =
∏
p∈P1

pαp for αp > 0 and
1

b
=
∏
p∈P2

pαp for αp < 0
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with P1 ∩ P2 = ∅. Put P0 = P1 ∪ P2. Then

(1.4) exp

(
2π

h

)
=

a

b
=
∏
p∈P0

pαp .

Let Ph := P\P0. Denote the set of all m ∈ N such that pm ∈ P0 by N0, and let Nh := N\N0.

Under the above notation, for σ > 1, we define a partial Matsumoto zeta-function

φh(s) by the formula

φh(s) =
∏

m∈Nh

g(m)∏
j=1

(
1 − a

(j)
m

p
(s+α0+β0)f(j,m)
m

)−1

.

Note that the difference between φh(s) and φ(s) is only finitely many Euler factors. Since

the function φh(s) satisfies the properties (i), (ii) and (iii) also, then φh(s) ∈ M, and, if

φ(s) ∈ S̃, then φh(s) ∈ S̃.

Theorem 1.2. [10, Theorem 2.1] Suppose that α is transcendental, h > 0, and exp{2π/h}
is a rational number. Let φh(s) ∈ S̃. Suppose K1, K2, f1(s) and f2(s) satisfy the condi-

tions of Theorem 1.1. Then, for every ε > 0, it holds that

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|φh(s + ikh) − f1(s)| < ε,

sup
s∈K2

|ζ(s + ikh, α;B) − f2(s)| < ε

}
> 0.

The novelty of the present paper is as follows: we prove a new case of mixed joint

discrete universality theorem for the tuple (φ(s), ζ(s, α;B)) under the same conditions as

in the statement of Theorem 1.2, but instead of the class of partial zeta-functions φh(s),

we study the class of φ(s) itself. The full statement of our new result is as follows.

Theorem 1.3. Suppose that α is transcendental number, for h > 0, exp{2π/h} is a

rational number, and φ(s) belongs to the Steuding class S̃. Let K1 be a compact subset of

D(σ∗, 1), K2 be a compact subset of D(1/2, 1), both with connected complements. Then, for

any f1(s) ∈ Hc
0(K1), f2(s) ∈ Hc(K2) and every ε > 0, it holds the universality inequality

of the form

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|φ(s + ikh) − f1(s)| < ε,

sup
s∈K2

|ζ(s + ikh, α;B) − f2(s)| < ε

}
> 0.

In the next sections, we will give auxiliary results with proofs, like joint mixed discrete

functional limit theorem in the space of analytic functions (Section 2), and the statement

on the support of a certain probability measure (Section 3). Finally, in Section 4, we prove

Theorem 1.3. The method of the proof is inspired by the argument in [14].
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2. A new mixed joint discrete limit theorem

Hereafter we assume that α is transcendental and exp{2π/h} is rational.

The proof of universality theorems is based on the limit theorems for weakly convergent

probability measures in the space of analytic functions. Therefore, our first task is to prove

such a theorem for the couple of functions (φ(s), ζ(s, α;B)). In this section, we assume

that φ(s) ∈ M.

2.1. Two key lemmas

Let γ = {s ∈ C : |s| = 1}. Define two tori

Ω1 :=
∏
p∈P

γp and Ω2 :=

∞∏
m=0

γm

with γp = γ for all p ∈ P and γm = γ for all m ∈ N0, respectively.

By the Tikhonov theorem (see [11, Theorem 5.1.4]), with the product topology and

pointwise multiplication both tori Ω1 and Ω2 are compact topological Abelian groups.

Therefore, on (Ω1,B(Ω1)) and (Ω2,B(Ω2)), there exist the probability Haar measures

mH1 and mH2, respectively, which gives us the probability spaces (Ω1,B(Ω1),mH1) and

(Ω2,B(Ω2),mH2). Denote by ω1(p) the projection of ω1 ∈ Ω1 to γp for all p ∈ P and

by ω2(m) the projection of ω2 ∈ Ω2 to γm for all m ∈ N0. Taking into account the

factorization of n into primes, we extend the function ω1(p) to the set N by the formula

ω1(n) =
∏
pγ ∥n

ωγ
1 (p),

where pγ ∥ n means that pγ | n but pγ+1 ∤ n.

Now let us define ΩN
1h as the subgroup of Ω1 generated by

(
p−ih : p ∈ P

)
. Note that

ΩN
1h is different from our original Ω1h in [10]. Moreover, in what follows, we use the letter

N to distinguish the notion in the present paper from that in [10].

Lemma 2.1. ΩN
1h = {ω1 ∈ Ω1 : ω1(a) = ω1(b)}, where a, b are defined in (1.2).

Proof. This result originally was proved in [1] (for the comments and the proof, see [14,

Lemma 1]).

In what follows, the elements of the set ΩN
1h we write as ωN

1h.

Let us define

ΩN
h := ΩN

1h × Ω2.

Since, by the construction, the torus ΩN
1h is a closed subgroup of Ω1, it is a compact topolog-

ical Abelian group also, and the probability Haar measure mN
H1h exists on (ΩN

1h,B(ΩN
1h)),
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which leads to the probability space (ΩN
1h, B(ΩN

1h),mN
H1h). Finally, we construct the Haar

measure mh,N
H of ΩN

h as the product of measures mN
H1h and mH2, and the probability

space (ΩN
h ,B(ΩN

h ),mh,N
H ). By an element ωN

h of ΩN
h , we mean the tuple (ωN

1h, ω2) with

ωN
1h ∈ ΩN

1h and ω2 ∈ Ω2.

Now we consider the discrete limit theorem on torus ΩN
h . Note that it occupies the

most important place in the proof of our mixed joint discrete limit theorem, and also

contains one of the main novelties of the present paper.

On (ΩN
h ,B(ΩN

h )), define the probability measure

QN
Nh(A) :=

1

N + 1
#
{

0 ≤ k ≤ N :
(
(p−ikh : p ∈ P), ((m + α)−ikh : m ∈ N0)

)
∈ A

}
for A ∈ B(ΩN

h ).

Lemma 2.2. The probability measure QN
Nh converges weakly to the Haar measure mh,N

H

as N → ∞.

Proof. We use the notation given by (1.2), (1.3) and (1.4). The characters of the group

ΩN
1h, for some l ∈ Z, are of the form

(2.1) χ(ωN
1h) =

∏
p∈P\P0

ω
kp
1 (p)

∏
p∈P0

ω
kp+lαp

1 (p)

as a representation in the dual group of Ω1, where only a finite number of integers kp are

non-zero (see [14, (3.1)]).

In view of the definition of the measure QN
Nh, its Fourier transform, for (k, l) = ((kp :

p ∈ P), (lm : m ∈ N0)) (here only a finite number of kp and lm are not zero), is given by

gNNh(k, l) =

∫
ΩN

h

χ(ωN
h ) dQN

Nh

=
1

N + 1

N∑
k=0

∏
p∈P\P0

p−ikhkp
∏
p∈P0

p−ikh(kp+lαp)
∏

m∈N0

(m + α)−ikhlm

=
1

N + 1

N∑
k=0

exp(−ikhX),

where

X =
∑

p∈P\P0

kp log p +
∑
p∈P0

(kp + lαp) log p +
∑
m∈N0

lm log(m + α), l ∈ Z.

Now we consider the condition

(2.2)


kp = 0 for any p ∈ P \ P0,

lm = 0 for any m ∈ N0,

there exists r ∈ Z such that kp = rαp for any p ∈ P0.
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Claim 1. If condition (2.2) holds, then gNNh(k, l) = 1.

Proof. Condition (2.2) implies that

gNNh(k, l) =
1

N + 1

N∑
k=0

∏
p∈P0

p−ikh(r+l)αp .

Using (1.4) we see that

∏
p∈P0

p−ikh(r+l)αp =

∏
p∈P0

pαp

−ikh(r+l)

=
(
e2π/h

)−ikh(r+l)
= e−2πik(r+l) = 1,

hence the claim.

Claim 2. Suppose that (2.2) does not hold. Then we claim that

exp{−ihX} ≠ 1.

Proof. If exp(−ihX) = 1, then there exists l0 ∈ Z such that −ihX = −2πil0. Therefore,

X = 2π
h l0, and so expX = exp

(
2π
h l0
)

=
(
a
b

)l0 . That is,

(2.3)
∏

p∈P\P0

pkp
∏
p∈P0

pkp+lαp
∏

m∈N0

(m + α)lm =
(a
b

)l0
is rational. If there exists lm ̸= 0, then the equality (2.3) contradicts with the assumption

that α is transcendental. Therefore, all lm = 0, and∏
p∈P\P0

pkp
∏
p∈P0

pkp+lαp =
(a
b

)l0
.

But, by (1.4), this right-hand side is equal to
(∏

p∈P0
pαp
)l0 , so we have∏

p∈P\P0

pkp
∏
p∈P0

pkp+(l−l0)αp = 1.

In view of the uniqueness of decomposition into prime divisors, this implies that

kp =

0 for any p ∈ P \ P0,

(l0 − l)αp for any p ∈ P0.

Therefore, putting l0 − l = r, we find that the condition (2.2) holds. This implies that, if

(2.2) does not hold, then exp(−ihX) ̸= 1.
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From the Claims 1 and 2, now we obtain

lim
N→∞

gNNh(k, l) =

1 if the assumption (2.2) holds,

0 if the assumption (2.2) does not hold.

Then the assertion of the lemma follows from a continuity theorem for probability measures

on compact groups (see [4]), since the right-hand side of the last relation is the Fourier

transform of the Haar measure mh,N
H .

The next point, where the conditions of Theorem 1.3 again play an essential role, is

the ergodicity of a certain transformation on the probability space (ΩN
h ,B(ΩN

h ),mh,N
H ).

Let

fN
h =

(
(p−ih : p ∈ P), ((m + α)−ih : m ∈ N0)

)
∈ ΩN

h ,

and, for ωN
h ∈ ΩN

h , define ΦN
h : ΩN

h → ΩN
h by

ΦN
h (ωN

h ) = fN
h · ωN

h .

Lemma 2.3. The transformation ΦN
h is ergodic.

Proof. As it was already mentioned in the proof of Lemma 2.2, the characters of the group

ΩN
1h are defined by the formula (2.1). Therefore, we see that the characters of the group

ΩN
h are of the form

(2.4) χ(ωN
h ) =

∏
p∈P\P0

ω
kp
1 (p)

∏
p∈P0

ω
kp+lαp

1 (p)
∏

m∈N0

ωlm
2 (m),

where only a finite number of integers kp and lm are distinct from zero. Therefore,

χ(fN
h ) = exp

−ih

 ∑
p∈P\P0

kp log p +
∑
p∈P0

(kp + lαp) log p +
∑
m∈N0

lm log(m + α)

 .

Claim 2 in the proof of Lemma 2.2 asserts that, if the assumption (2.2) does not hold,

then χ(fN
h ) ̸= 1.

Suppose that the assumption (2.2) holds. Then, by (2.4), χ(ωN
h ) ≡ 1 for any ωN

h ∈ ΩN
h ,

because applying the same argument as in the proof of Claim 1 we see that
∏

p∈P0
ω
kp+lαp

1 (p)

= 1. This implies that character χ should be trivial. Therefore, if χ is a non-trivial char-

acter of ΩN
h , then (2.2) does not hold, and hence

(2.5) χ(fN
h ) ̸= 1.

The remaining part of the proof is standard (see the proof of [10, Lemma 3.5]). Let A

be an invariant set of the transformation ΦN
h . Denote by IA and ĝ the indicator function

of A and the Fourier transform of function g, respectively. Then we find that

ÎA =

∫
ΩN

h

χ(ωN
h )IA(ωN

h )mh,N
H (dωN

h ) = χ(fN
h )ÎA(χ),
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because the measure mh,N
H is invariant and IA(fN

h ·ωN
h ) = IA(ωN

h ) for almost all ωN
h ∈ ΩN

h .

This and (2.5) show that

(2.6) ÎA(χ) = 0

for non-trivial χ.

Now suppose that χ0 is the trivial character of ΩN
h (that is χ0(ωN

h ) = 1 for all ωN
h ∈

ΩN
h ) and ÎA(χ0) = u. Then, using the orthogonality property of characters and noting

(2.6), we have that, for every character χ of group ΩN
h ,

ÎA(χ) = u

∫
ΩN

h

χ(ωN
h )mh,N

H (dωN
h ) = û(χ).

Hence, we deduce that IA(ωN
h ) = 0 or IA(ωN

h ) = 1 for almost all ωN
h ∈ ΩN

h . From this we

find that mh,N
H (A) = 0 or mh,N

H (A) = 1. Therefore, the transformation ΦN
h is ergodic.

2.2. The discrete mixed joint limit theorem

By the condition (i), the function φ(s) has only finitely many poles. Denote them by

s1(φ), . . . , sl(φ), and put

Dφ := {s ∈ C : σ > σ0, σ ̸= ℜsj(φ), j = 1, . . . , l}.

Then φ(s) and its vertical shift φ(s + ikh) are holomorphic in Dφ. While the functions

ζ(s, α;B) and ζ(s + ikh, α;B) are holomorphic in

Dζ :=

{s ∈ C : σ > 1/2} if ζ(s, α;B) is entire,

{s ∈ C : σ > 1/2, σ ̸= 1} if s = 1 is a pole of ζ(s, α;B)

(for the arguments, see [5]).

For s1 ∈ C and ωN
1h ∈ ΩN

1h, define

φ(s1, ω
N
1h) :=

∞∑
k=1

ckω
N
1h(k)

ks1
=

∞∏
k=1

g(k)∏
j=1

(
1 −

a
(j)
k ωN

1h(pk)f(j,k)

p
(s1+α+β)f(j,k)
k

)−1

.

Since ΩN
1h is a subgroup of Ω1, then φ(s1, ω

N
1h) coincides with the restriction of φ(s1, ω1)

to the set ΩN
1h (see [5]). Therefore, this converges uniformly almost surely on any compact

subset of D1, where D1 is a fixed open subset of Dφ. Hence φ(s1, ω
N
1h) is an H(D1)-valued

random element defined on (ΩN
1h,B(ΩN

1h),mN
H1h). While, for s2 ∈ C and ω2 ∈ Ω2, define

ζ(s2, α, ω2;B) =
∑
m∈N0

bmω2(m)

(m + α)s2
.
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This is H(D2)-valued random element defined on (Ω2,B(Ω2),mH2), where D2 is an open

region on Dζ (more detailed explanation can be found in [12]). Moreover, on the proba-

bility space (ΩN
h ,B(ΩN

h ),mh,N
H ), define the H-valued random element Z(s, ωN

h ) by the

formula

Z(s, ωN
h ) :=

(
φ(s1, ω

N
1h), ζ(s2, α, ω2;B)

)
(here H := H(D1) × H(D2), s = (s1, s2) with s1 ∈ D1, s2 ∈ D2). Let PZ be the

distribution of random element Z(s, ωN
h ), i.e., let PZ be a probability measure given by

PZ(A) := mh,N
H

{
ωN
h ∈ ΩN

h : Z(s, ωN
h ) ∈ A

}
, A ∈ B(H).

Now, for brevity, we write

Z(s + ikh) := (φ(s1 + ikh), ζ(s2 + ikh, α;B))

with s1 ∈ D1, s2 ∈ D2 and s + ikh := (s1 + ikh, s2 + ikh).

In the proof of our main result (Theorem 1.3), the functional limit theorem will be

used. Therefore, in this section we show the following mixed discrete joint limit theorem in

the sense of weakly convergent probability measures in the space of holomorphic functions.

Theorem 2.4. Suppose that α is transcendental number, and, for h > 0, exp{2π/h} is a

rational number. Then the measure

PN (A) :=
1

N + 1
#
{

0 ≤ k ≤ N : Z(s + ikh) ∈ A
}
, A ∈ B(H),

defined on (H,B(H)), converges weakly to PZ as N → ∞.

Before the proof of Theorem 2.4, we state other intermediate results as lemmas with

remarks to their proofs. (Then the differences from our result of [10] will become clearer.)

First we show mixed joint discrete limit theorems for absolutely convergent series. Let

σ∗
1 > 1/2 be fixed, and put

v1(m,n) = exp

{
−
(m
n

)σ∗
1

}
for m,n ∈ N

and

v2(m,n, α) = exp

{
−
(
m + α

n + α

)σ∗
1

}
for m ∈ N0, n ∈ N.

For n ∈ N, define the functions

φn(s) :=
∞∑
k=1

ckv1(k, n)

ks
and ζn(s, α;B) :=

∞∑
m=0

bmv2(m,n, α)

(m + α)s
,

and, for brevity, put

Zn(s) := (φn(s1), ζn(s2, α;B)).
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Next, for a fixed ω̂N
h = (ω̂N

1h, ω̂2) ∈ ΩN
h , let

φn(s, ω̂N
1h) :=

∞∑
k=1

ckω̂
N
1h(k)v1(k, n)

ks
and ζn(s, α, ω̂2;B) :=

∞∑
m=0

bmω̂2(m)v2(m,n, α)

(m + α)s
,

and, for brevity, put

Zn(s, ω̂N
h ) := (φn(s, ω̂N

1h), ζn(s, α, ω̂2;B)).

Then it is known that all series given above are absolutely convergent in the region when

the real parts of the complex variable is larger than 1/2 (see [5]).

Now we consider the weak convergence of measures, for A ∈ B(H), defined by

PN,n(A) :=
1

N + 1
#
{

0 ≤ k ≤ N : Zn(s + ikh) ∈ A
}

and

P̂N,n(A) :=
1

N + 1
#
{

0 ≤ k ≤ N : Zn(s + ikh, ω̂N
h ) ∈ A

}
.

Lemma 2.5. For all n ∈ N, PN,n and P̂N,n both converge weakly to a certain probability

measure (say Pn) on (H,B(H)) as N → ∞.

Proof. The proof goes in an analogous way as [5, Lemma 3.2]. Here we consider the

function un : ΩN
h → H(D1) ×H(D2) defined by formula

un(ωN
h ) =

( ∞∑
k=1

ckω
N
1h(k)v1(k, n)

ks1
,

∞∑
m=0

bmω2(m)v2(m,n, α)

(m + α)s2

)
.

Then, using Lemma 2.2, the fact on the invariance of the Haar measure, and [2, Theo-

rem 5.1], we find that, on (H,B(H)), there exists a probability measure (say Pn) such

that the measures PN,n and P̂N,n both converge to Pn as N → ∞.

The next task is to pass from Zn(s) to Z(s) and from Zn(s, ωN
h ) to Z(s, ωN

H ), respec-

tively. To solve this problem, we introduce a metric on H and apply Lemma 2.5.

For f = (f1, f2) and g = (g1, g2), both belonging to H(D1) ×H(D2), define

ϱ(f, g) = max{ϱD1(f1, g1)ϱD2(f2, g2)}

with a standard metric ϱ(G) given on the space H(G) for ϱ(D1) := ϱD1 and ϱ(D2) := ϱD2

(for the details, see [10]). This is a metric ϱ(f, g) on the space H(D1) × H(D2) which

induces the topology of uniform convergence on compacta.
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Lemma 2.6. We have that

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

ϱ
(
Z(s + ikh), Zn(s + ikh)

)
= 0

and, for almost all ωN
h ∈ ΩN

h ,

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

ϱ
(
Z(s + ikh, ωN

h ), Zn(s + ikh, ωN
h )
)

= 0.

Proof. Since ΩN
h ⊂ Ω1 × Ω2, this lemma is a special case of [6, Lemma 3].

On (H,B(H)), for A ∈ B(H) and ωN
h ∈ ΩN

h , we define one more probability measure

P̂N (A) :=
1

N + 1
#
{

0 ≤ k ≤ N : Z(s + ikh, ωN
h ) ∈ A

}
.

Lemma 2.7. Let the conditions of Theorem 2.4 be satisfied. Then PN and P̂N both

converge weakly to a certain probability measure (say P ) on (H,B(H)).

Proof. From Lemmas 2.5 and 2.6 together with [2, Theorem 4.2], it follows that the

measures PN and P̂N both converge weakly to same probability measure P as N → ∞.

Note that this proof is similar to the proof of [3, Lemma 5].

Proof of Theorem 2.4. In view of Lemma 2.7, the only remaining task is to show that

P = PZ . This we obtain using Lemma 2.3 together with the classical Birkhoff–Khintchine

ergodicity theorem. For the details, we refer to [11,17].

3. The support of PZ

For the proof of Theorem 1.3, we need to have an explicit form of the support for measure

PZ . To get it, the so-called positive density method is used (for the details, see [13]).

Moreover, here it is necessary to assume that the function φ(s) is included in the Steuding

class S̃ (for the comments, see [5, Remark 4.4]).

Suppose that φ(s), K1, K2, f1(s) and f2(s) are as in the statement of Theorem 1.3.

Then there exist a real number σ0 such that σ∗ < σ0 < 1 and a positive number M > 0

such that K1 is included in the open rectangle

DM = {s ∈ C : σ0 < σ < 1, |t| < M},

which is an open subset of Dφ. Also we can find T > 0 such that K2 is included in the

open rectangle

DT = {s ∈ C : 1/2 < σ < 1, |t| < T}.
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Hence, in Theorem 2.4 we can take D1 = DM and D2 = DT , to get the support of measure

PZ .

Let Sφ := {f ∈ H(DM ) : f(s) ̸= 0 for all s ∈ DM , or f(s) ≡ 0}.

Theorem 3.1. The support of the measure PZ is the set S := Sφ ×H(DT ).

Proof. For the proof and comments, see [5, Lemma 4.3].

4. Proof of Theorem 1.3

The main result (Theorem 1.3) we get as a consequence of Theorems 2.4 and 3.1 with

the aid of the Mergelyan theorem (see [16]) on approximation of analytic functions by

polynomials. Since it goes in a standard way, we give only a sketch.

By Mergelyan’s theorem, there exist polynomials p1(s) and p2(s) such that

sup
s∈K1

|f1(s) − exp(p1(s))| < ε

2
and sup

s∈K2

|f2(s) − p2(s)| < ε

2

for any ε > 0. Define the set G ⊂ H by

G =

{
(g1, g2) ∈ H : sup

s∈K1

|g1(s) − exp(p1(s))| < ε

2
, sup
s∈K2

|g2(s) − p2(s)| < ε

2

}
.

In view of Theorem 3.1, G is an open subset of the space H and an open neighbourhood

of the element
(

exp(p1(s)), p2(s)
)

of the support for PZ . Hence, PZ(G) > 0. Moreover,

by Theorem 2.4 and an equivalent statement of the weak convergence in terms of open

sets, it is shown that

(4.1) lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : Z(s + ikh) ∈ G
}
≥ PZ(G) > 0

or, by the definition of the set G,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|φ(s + ikh) − exp(p1(s))| < ε

2
,

sup
s∈K2

|ζ(s + ikh, α;B) − p2(s)| < ε

2

}
> 0.

Combining the last inequality and (4.1), we obtain the assertion of Theorem 1.3.
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