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Analysis and Approximation of Hemivariational Inequality for a Frictional

Thermo-electro-visco-elastic Contact Problem with Damage

Zakaria Faiz, Othmane Baiz, Hicham Benaissa®™ and Driss E1 Moutawakil

Abstract. The aim of this paper is to investigate a contact problem involving thermo-
electro-visco-elastic body with damage and a rigid foundation. The friction is modelled
with a subgradient of a locally Lipschitz mapping, and the contact is described by
the Signorini’s unilateral contact condition. A parabolic differential inclusion for the
damage function is used to include the damaging effect in the model. We establish the
model’s variational formulation using four systems of three hemivariational inequalities
and a parabolic equation, we prove an existence and uniqueness result of this problem.
The proof is based on a fixed point argument and a recent finding from hemivariational
inequality theory. Finally, by employing the finite element approach, we investigate
a fully discrete approximation of the model and we derive error estimates on the

approximate solution.

1. Introduction

Hemivariational inequalities theory has recently played an important role in the study of
nonlinear problems arising in Contact Mechanics, Physics, Economics, and Engineering
[17,[19]. Panagiotopouls [21,22] introduced the notion of hemivariational inequalities as
a useful generalization of variational inequalities in the 1980s. It is based on Clarke’s
subdifferential of locally Lipschitz function, see for example [3,14]. The damage function
was first introduced in [10/11] to quantify the material’s damage. Here, we also consider
the damage of the material. This is described by an interval variable, which is modelled
by a parabolic differential inclusion. Moreover, for contact problems involving damage
phenomena, we refer to [13,/15/16,24] and the references therein.

The contact problem between a nonlinear thermo-electro-visco-elastic body and a stiff
foundation is studied in this paper using a mathematical model in the form of a hemi-
variational inequality, describing both visco-piezoelectric and thermal effects. We can

see [12,[20L[23,26, 28] for piezoelectric and visco-piezolectric contact problems. On the

Received March 12, 2022; Accepted July 11, 2022.

Communicated by Cheng-Hsiung Hsu.

2020 Mathematics Subject Classification. T4AM15, 74Fxx, T4A45, 7AM10, 47J22, 74S05.

Key words and phrases. thermo-electro-visco-elastic materials, frictional contact problem, damage, hemi-
variational inequalities, finite element method, error estimate.

*Corresponding author.

81



82 Zakaria Faiz, Othmane Baiz, Hicham Benaissa and Driss El Moutawakil

other hand, we use the references [1}/6,7,|18] to describe thermo-visco-piezolectric materi-
als. The friction law is given in the form of a subdifferential condition, and the material’s
damage is factored in. Here, T > 0 and [0,77] is the time interval of interest, and dots
above a variable represent time derivatives, that is @ = du/dt. Then, we shall deal with
a thermo-electro-visco-elastic materials for which the constitutive laws are given, with-
out indicating explicitly the dependence of various functions on the independent variables
z € QUT, as follows:

(L.1) o B(e(u(t)), C(t)) = PTE(p(t)) - CO(2),
+BE(<P(t))+ go(t),

(1.3) 0(t) — div KC(VO(t)) = Me(u)(t) — NE(p(t)) + ho(t),

in which o denotes the stress tensor, u is the displacement field, ( is the damage field, ¢
is the electric potential field and 6 is the temperature. The extension of the thermo-visco-
elastic constitutive laws with damage employed in [24] is represented by a constitutive
equation of the type f. They generalize the thermo-piezoelectric and thermo-
electro-visco-elastic constitutive equations employed in [2,25]. As in [10], we suppose that

the damage evolution is governed by the following differential inclusion

C(t) = AL + 0Tjo,11(¢(1)) > le(u(t)), (1)),

where k > 0 is the micro-crack diffusion coeflicient and ¢ is the mechanical cause of
damage growth. The damage function ¢ takes its values in [0, 1], the value { = 1 indicates
that the material is undamaged, the value ¢ = 0 indicates that the material is totally
damaged, and when 0 < ¢ < 1, there is partial damage and the system’s load carrying
capability is lowered.

From a mathematical point of view, models characterizing thermo-electro-visco-elastic
are recent, see for example, |2,25], and the first novelty of the current paper is to extend
such models to thermo-electro-visco-elastic contact problems with damage and to the
hemivariational case. We shall provide an existence and uniqueness of a fractional solution
for the Signorini’s contact problem with non-monotone boundary conditions described by
the Clarke subdifferential. Moreover, up to date, no work has dealt with numerical analysis
of a hemivariational inequalities arising in thermo-electro-visco-elastic contact problems
with damage, and that represents the second novelty of this paper. In the study of a
fully discrete scheme for the numerical solutions, a finite element approach is used to
approximate the spatial variable and finite differences are used for the time derivatives,
and as result, we obtain some error estimates on the approximate solutions. For further
information on numerical aspects of elastic and electro-elastic contact problems, we refer
[4.15L18,19.,27] .
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The paper is organized as follows. Section [2] is devoted to study the existence and
uniqueness of the unique solution of a quasi-static frictional unilateral contact problem
with damage between a thermo-electro-visco-elastic material’s body and a conductive
foundation. Moreover, we derive the variational formulation of this problem, as a coupled
system of three hemivariational inequalities and a parabolic equation. Finally, in Section [3]
we investigate a fully discrete approximation of the relate model, and we derive error

estimates and convergence results.

2. Contact problem for thermo-electro-visco-elastic with damage

In this section, we discuss a static contact problem for a nonlinear thermo-electro-visco-
elastic with damage body which is described by an unilateral constraints with multi-
valued normal compliance function, and non-monotone multi-valued friction condition
with slip dependent coefficient. We describe the physical setting of the problem and we
provide its classical variational-hemivariational formulation using four systems of three
hemivariational inequalities and a parabolic equation. Next, we study the existence and
uniqueness of solution for this coupled system.

We consider a thermo-visco-piezoelectric body that occupies the domain Q € R? with
d = 2,3, which is supposed to be an open, bounded and connected subset of R%, and with
a Lipschitz boundary I" = 0€2. The body is acted upon by body forces fy, a volume free
electric charge qg, a surface electric charge ¢, and heat source h,. It is also constrained
mechanically and electrically on I', and to describe these constraints, we consider three
open and measurable parts I'y, I's and I's such that 'y UT9 UT3 = I' and meas(I';) > 0,
on the one hand, and a partition of I'; Ul's into two open measurable parts I'; and I'y such
that meas(I';) > 0. Let v be the outer normal to I' and throughout this paper i, j, k run
from 1 to d. The summation over repeated indices is implied and the index that follows a
comma represents the partial derivative with respect to the corresponding component of
the variable.

Let S? denote the space of second order symmetric tensors on R? while - and || - ||
represent both the inner product and the associated Euclidean norm on R% and S¢, defined
by

U v = uv;, lv]| = (v - v)/2, Yu,v € RY,

o-T=0y5mj, |l =12 Voresh

The normal and tangential components of the displacement vector v € R? and the stress

tensor o € S on the boundary T' are given by

Vy = V-V, Vyr =V — Uy,

oy = (ov) - v, Or =0V — oyU.
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From the two orthogonality relations v, - v = 0 and o, - v = 0, we derive the following
important result

oV -V =0,U,+ 07" Us.

Then, the classical formulation of our frictional thermo-electro-visco-elastic contact prob-

lem with damage, is as follows.

Problem 2.1. Find a displacement u:  x [0,7] — R%, a stress field o: Q x [0,T] — S%,
an electric potential p: Q x [0,T] — R, an electric displacement D: Q x [0,7] — R%, a
temperature 6:  x [0,7] — R and a damage field such that ¢: Q x [0,7] — R:

(2.1) o(t) = As(a(t)) + B(e(u(t), (1) = PTE(p)(t) - CO(t)  in Qx[0,T],
(2.2) D(t) = BE(p(t)) + Pe(u(t)) + GO(t) in Q x [0, 7],
(2.3) 0(t) — div K(VO(t)) = Me(u(t)) — NE(@(t)) + ho(t) in Q x [0, 7],
(24)  C(t)— KA+ 0l 1]<<< ) 3 oe(u(®)), <) in 0 x [0,7),
(25)  Divo(t) + folt) = in Q% [0,7),
(2.6) div D(t) — qo(t) =0 in Q x [0, 7],
(2.7) u(t) =0 on I'y x [0,T7,
(2.8) o(t) =0 on Iy, x [0,7],
(2.9) 0(t)=0 on I'; x [0,7],
(2.10) % =0 on I'y x [0,T7,
(2.11) o(t)v = fa(t) on I'y x [0, 77,
(212)  D@)-v =) on Ty x [0, 7],
(213)  qt)-v = hat) on T x 0,7,
(214)  —ou(t) € Oju(w(t), —or(t) € Ojr(ir(t)) on I's x [0, 77,
(215)  D(t) v € ho(un ()0 (5(t) — g0) on T x [0,7],
(2.16) —K(VO(t)) - v € Djg(0(1)) on I's x [0, 77,
(2.17) u(0) =up, 6(0) =46y, <(0)=7<p in Q.

Here, conditions f represent the thermo-electro-visco-elastic constitutive laws
with damage, see [2,9,|1324] for more details, where A € L*>°(Q2) and B € L>°(2) are the
viscous and the elastic tensors, P = (e;;,) € L™(2) is the piezoelectric tensor, 8 = (5;;)
is the symmetric and coercive electric permittivity tensors, G is the pyroelectric tensor,
M = (m;;) is the thermal expansion tensor, N' = (n;) is the pyroelectric tensor, K = (ki;)
is the thermal conductivity tensor and ¢ is the mechanical source of damage growth. In
addition, e(u) = (Vu+(Vu)T)/2 is the linearized strain tensor, F(p) = —V is the electric
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field, PT = (Pyy;) is the transpose tensor of P, Ijg ] is the indicator function of the interval
[0,1] and OIjp ) denotes its subdifferential. Relations [2.9), are the equilibrium
equations for the stress and the electric displacement fields where Div and div denote the
divergence operator for tensors and vector valued functions. Moreover, f are
the mechanical, electrical, thermal and damage boundary conditions. The relations
represent the normal stress and normal velocity satisfying the non-monotone damped
response condition and the friction law in which j,, j; are locally Lipschitz functions
and 0j,, Jj, denotes the Clarke generalized gradient of the functions j, and j,. The
condition represents a regularized condition for the electrical contact on I's in
which g is the electric potential of the foundation and he, j. are given functions. The
relation represents the heat exchange between I's and the foundation. Finally
denotes the initial displacement, temperature and damage conditions.

Next, to derive the variational-hemivariational formulation of Problem we have
to recall some necessary definitions and notations that we will use later. We consider the

following spaces

H=1I1*Q)¢ 2Z=H'Q)Y Zy=L*Q),
H={r=(mj) | mj=15 € L*(Q)}, Hi={o€H|Dive e H},

which are real Hilbert spaces for the following inner products and their associated norms
(o = [ wwide,  (0)z = () + () @)
Q

(o,7)y = / 0ijTij dx, (0,7)3, = (0,7)3 + (Divo, Div 7).
Q

Furthermore, according to the boundary conditions, we introduce the following variational

subspaces

V={veH Q) v=00nT},
W={yecH(Q)|¢Y=0o0nT,}
Q={cH'(Q)|0=00nT4},

and the following set of admissible damage functions
K={eZ|£€|0,1] ae. in Q}.

The spaces V', W and @ are Hilbert spaces for the following Euclidean norms

lullv = (w,u)/?, (u,0)y = (e(u), e(v))n,
(2.18) lellw = (0,01t (00w = (Ve Vi),

(2.19) l6llg = (0.0)5°,  (0,mq = (V0,Vn).
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Since V' is a closed subspace of Z and meas(I';) > 0, the Korn’s inequality holds and there
exists a constant ¢; > 0 depending only on €2 and I'y such that

[ollz < cklle()lln, VveV.

Hence, the norms || - ||z and || - ||y are equivalent on V' and then (V, || -||y/) is a real Hilbert
space. Moreover, by the Sobolev trace theorem, there exists ¢y > 0 depending only on €2,
I's and I'y such that

lollzzye < ollolv, Yo e V.

Since meas(I'y) > 0 the Friedrichs—Poincaré inequality holds and thus we have
(2.20) [l < crllVYlln, Yy eWw,

where cp > 0 is a constant which depends only on 2 and I',. It follows from (2.18]) and
(2.20) that the norms || - [l and || - || z1(q) are equivalent on W, and thus (W, || - [lw) is a
real Hilbert space. In addition, the Sobolev trace theorem implies that there exists ¢; > 0

depending on €2, I', and I's such that

1€llz2rs) < callllw, VE€W.
Moreover, since meas(I';) > 0, the Friedrichs—Poincaré inequality holds and thus we have
(2.21) 1011z () < crlVOln, VO€Q,

where cg > 0 is a constant which depends only on © and I'y. It follows from (2.19)) and
(2.21), that the norms || - |lg and || - | g1 () are equivalent on @, and thus (@, || - [lg) is a
real Hilbert space. In addition, the Sobolev trace theorem implies that there exists co > 0

depending on €2, I'1 and I's such that

Inllr2rs) < c2lnlle, Vi€ Q.
Next, in the study of the solvability of Problem we need the following hypotheses.
(H1) The tensor A: Q x S — S is such that

(a) A(-,e) is measurable on  for all £ € S¢,

(b) there exist L4 > 0 such that for all £1,e9 € S? and 2 € Q, we have
(2.22) [A(z, 1) — Az, e2)[| < Laller — e,
(c) there exist ay > 0 such that for all £1,e9 € S? and = € Q, we have

(2.23) (.A(:L’,a?l) — .A(l‘,€2)) . (51 — 62) Z OéA||€1 — 52”2,
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(d) A(z,0) =0 for all z € Q.
(Hs) The tensor B: Q x S x R — S? is such that

(a) B(-,e,r) is measurable on Q for all ¢ € S? and r € R,

(b) there exist Lg > 0 such that for all e1,e2 € S%, 71,79 € R and z € 2, we have
(2.24) |B(z,e1,7m1) — B(x,e2,72)|| < Lg(|ler — e2|| + |r1 — r2|),
(¢) B(x,e,0) =0 for all x € Q.
(H3) The tensor of piezoelectric P = (e;x): @ x ST — R? is such that

(a) €ijk € LOO<Q),

(b) there exist Lp > 0 such that for all £1,e0 € S? and 2 € 2, we have
(2.25) [Pz, e1) = Plx, p2, 2)|| < Lpller — eal],
(¢) P(x,0) =0 for all x € Q.
(H4) The permittivity tensor B = (B;;): Q x R? — R? is such that

(a) Bij = Bji € L*(Q),
(b) there exist Lg > 0 such that for all &,& € R? and = € Q, we have

(2.26) 18(, 1) = B, &)l < Lgll€r — &l
(c) there exist ag > 0 such that for all £1,& € R? and z € Q, we have
(2:27) (B(x,&1) = B(z,&)) - (&1 — &) > agll& - &,
(d) B(x,0) =0 for all z € Q.
(Hs) The functions j,: I's x R = R, j,;: I's x R* — R and 7., jo: I's x R — R satisfy

(I)(a) ju(-,r) is measurable on I's for all r € R,
(b) ju(z,-) is locally Lipschitz on R for all x € I's,

(c) there exist cgy, 1, > 0 such that for all € R and x € I's, we have
lajl,(:c,r)\ < cov + Clu|7a‘>
(d) there exist cj, > 0 such that for all 1,72 € R and « € I'3, we have

(2.28) Jo(z,risre — 1) + o, rsry — o) < ajylry — ro|%.
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(I)(a) j,(-,&) is measurable on I's for all £ € R?,
(b) jr(x,-) is locally Lipschitz on R? for all x € T's,

(c) there exist co,,c1, > 0 such that for all £ € R? and 2 € I's, we have
1047 (, )| < cor + crr [l Ira,
(d) there exist a;jr > 0 such that for all £1,& € R? and = € T's, we have
(229)  JP@ €56 — &) + 5@ &6 — &) < ajrllér — Lallga

(III)(a) je(-,r) is measurable on I's for all r € R,
(b) je(z,-) is locally Lipschitz on R for all x € T's,

(c) there exist cge, c1e > 0 such that for all » € R and = € I's, we have
|8je($, T)| < cpe + Cle‘r|a
(d) there exist aje > 0 such that for all ri,ry € R and € I's, we have
(230) je(a,rizre — 1) + jo(x, roim1 — 12) < ajelry — ol

(IV)(a) jo(-,r) is measurable on I's for all r € R,
(b) jo(zx,-) is locally Lipschitz on R for all 2 € T's,

(c) there exist cgg, c19 > 0 such that for all » € R and = € I's, we have
|aj9(l’,7")‘ S Coo + 019|T|7
(d) there exist a9 > 0 such that for all r1,ry € R and x € I's, we have
(2.31) jg(z:,rl;rg —71) —l—jg(:r,rg;rl — 1) < aglry — 7“2\2.
(Hg) The function h.: I's x R — R satisfy

(a) he(-,7) is measurable on I's for all r € R,
(b) he(x,-) is continuous on R for all z € T's,

(c) there exists h, > 0 for all r € R and = € I's, we have
0 < he(w,7) < he.
(H7) The thermal operator C:  x R — S? is such that

(a) C(-,r) is measurable on Q for all r € R,
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(b) there exist L¢ > 0 such that for all 71,79 € R and x € ), we have
(2.32) IC(x,m1) = C(x,r2)|| < Lelry — 72l
(¢) C(x,0) =0 for all x € Q.
(Hg) The function M: Q x RY — R is such that

(a) M(-,€) € L=(Q),
(b) there exist Ly > 0 such that for all £1,& € R? and 2 € Q, we have

(2.33) Mz, &) — M(z,&)|| < Lpmllér — &

Ho) The piezoelectric tensor N': © x RY — R is such that
( p

(a) N( ag) € LOO(Q)a
(b) there exist Ly > 0 such that for all &,& € R? and 2 € Q, we have

(2.34) N (2, &1) = N (2, &) < Lyllé — &,
(¢) N(x,0) =0 for all x € Q.
(H10) The pyroelectric tensor G: Q x R — R? is such that

(a) G(-,r) € L>(Q) for all r € R,

(b) there exist Lg > 0 such that for all 1,79 € R and z € Q, we have
(2.35) 1G (1) = G(2,r2)|| < Lglre — ral.

H11) The thermal conductivity operator K: Q x R% — R? is such that
( y op

(a) K(-,&) is measurable on € for all £ € R?,

(b) there exist L > 0 such that for all £;,& € R? and z € Q, we have
1K (2, &) — K(z,&)I| < Lellér — &ll,
(c) there exist ax > 0 such that for all &,& € R? and z € Q, we have
(2.36) (K(x,&1) = K(,62)) - (&1 — &2) > ax|lér — &%,

(d) K(z,0) =0 for all x € Q.

(H12) The damage source function ¢: Q x S x R — R is such that

89
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(a) ¢(-,e,r) is measurable on Q for all ¢ € S? and r € R,
(b) there exist Ly > 0 such that for all 1,5 € S?% ri,m9 € R and z € Q, we have

(2.37) lo(x,e1,C1) — (€2, Q)| < Lg(ller — eall + [r1 — ral),
(¢) ¢(x,0,0) =0, for all z € Q.

(H13) The forces, tractions, volume and surface charge densities gap and initial functions

satisfy
(i) foe L2 ()%, f2 € L*(T2)%, qo € L*(), gy € L*(T), ho € L*(Q), hy, € L*(T'9),
(ii) wo € LOO(Fg), k>0, ug € V, 00 c Q, Co c K.

Using Riesz’s representation theorem, we consider the elements f € V, ¢ € W and
h € @ defined by

<f,’U>V = <f0, 'U)L2(Q)d + <f2, U>L2(F2)d for all v € V,
<q7¢>W = <CI07 ¢>L2(Q) - <Qb7 ¢>L2(Fb) for all w € W7
<h,§>Q = <h07§>L2(Q) — <hn7§>L2(F2) for all £ € Q.
We consider the following bilinear form a: H; X H; — R given by
além) =n [ VE-Vads, Vene H
Q
Then, by standard arguments, the variational formulation of Problem is as follows.

Problem 2.2. Find a displacement u: [0,7] — V, an electric potential ¢: [0,7] — W, a
temperature 0: [0,7] — W and a damage field ¢: [0,7] — Z such that for all ¢ € [0,T],

we have
(Ae(i(t)), e(v — (D)) + (Ble(t)), (1) + PTV() — COE),e(v — ult)))n
CEUNEY (0050~ 06 520 7 — (1)) o
> (F(t),v— D)y, YveV,
(BY (p(1)) — Pe(u(t)) — GO(1), V(¥ — (1)
(2.39) + [ he(u(®)£(p(0) o5t~ (1) da
2 (b)Y —)w, VY eW,
— 0t
(2.40) ~ (Me(ult) = NVg(t). A= 60 + [ B0():) ~ 6(1)) do
> (h(H) A= (). V€ Q.
(1), € = C0) 2 + alC(8),€ — (1) = ($e(u(t), (1), € — (1), VE € K.

(0(t), A = 0(t)n + (KVO(t), V(A
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Under these considerations, we have the following existence and uniqueness result.

Theorem 2.3. Assume hypotheses (H1)—(H13) and the following smallness condition are
satisfied.

(2.41) as > (e, + aj,)y/meas(Ts),
ax > cjaj,/meas(T'3),
ap > heaj, ¢ y/meas(T3),
ax — caaj,\/meas(T3) > LaT/2.

Then, Problem has a unique solution (u,,,¢) such that

ue L*0,T;V), ¢elL?0,T;W), 6€L*0,T;Q),
¢ € HY(0,T; L*(Q)) N L*(0,T; H'()).

The proof will be done in several claims, and it is based on fixed point and hemivari-

ational inequalities arguments.

Claim 1. Let n € L?(0,T;H), z € L?>(0,T;Q) and w € L?(0,T; L?(Q2)) supposed given.

Then, we consider the following auxiliary problems.

Problem 2.4. Find u,: [0,7] — V such that for all ¢ € [0,T], we have

(Ae (i) (t),e(v — iy (t)) 2 + (n(t), e(v — iy (1)) 2
+ /F3 jg(unu(t)Q Uy — unu(t)) da + /1‘3 jg(am(t)WT - un‘f(t))) da
= (f(),v—iy@)y, YvelV.

Problem 2.5. Find ¢, .: [0,7] — W such that for all ¢ € [0,7] and all ©) € W, we have
(BV(#n,2(1)), V(¢ = @2 (8)))1 = (Pe(uy(t))) + Gby.2(1), V(Y — 2 (1)))n
[ e = 00— (1) do
> (q(t), % — enz(t))w-
Problem 2.6. Find 6, .: [0,7] — W such that for all ¢ € [0,7] and all A € @, we have

<9.7772(t), A= 0n ()1 + (KVO, 2 (1), VA = 0, 2(1))) 1 — (Me(uy(t)), A — 0 (1)) n

+(2(8), A = b2 (1)) + g 38 (O, (1); X = 0y (1)) da

> (h(t), A — 0, .(t))g-
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Problem 2.7. Find (: [0,7] — Z such that for all ¢t € [0,7] and all £ € K, we have

(o), € = Co(®)) L2(@) + a(Cu(t), € = Cult) = (w(t),€ = Cu(t))-

Lemma 2.8. Problem 2.4] has a unique solution. Moreover, there exists a constant ¢ > 0
such that

(2.42) s (£) — g (B2 < / l71(s) — ma(s) |2 ds,

where u,, denotes the solution of Problem [2.4 H corresponding to n; with 1 =1, 2.

Proof. Using similar techniques as in [25, Lemma 4.5], we prove the existence part of
Lemma For the estimate (2.42)), let u,, be the solution of Problem corresponding
to n; € L?(0,T;H) with i = 1,2. Then, for all ¢ € [0,7] and all v € V, we write

(Ae (g, )(t),€(0 = o, (£)) )3 + (M1 (t), €(v — g, (£))) 20
(2.43) + /rg 39 (Cgy (£); 0y — iy () da + /F3 32 (g7 (£); 07 — iy - () da
2 (f(t),v =ty (1)) v,
(Ae (i, ) (£), (0 — iy (£)) )31 + (12(t), €(v — iy () 20
(2.44) + /1“3 39 (G (£); 0y — iy (1)) da + /F3 32 (yr (£); 07 — Ty () da
2 (f(t), v =ty (1)) v-

Taking v = 1, (t) in (2.43) and v = 1, (t) in , we add the obtained inequalities to
obtain

(Ae (i, ) () — Ae (i, ) (£), € (o, () — iy (£))) 1
< (m(t) = ma(t), &ty () = iy, (1))

+ . ]z/ gy () Uy (8) = Ty (£)) + ) (g (£); gy () — Uiy (1))] da

+ /F (77 (g (8); oy (8) = iy (£)) + 52 (G (8)3 gy 7 () — iy (2))] da.
3
Then, we combine the inequalities (2.23)), (2.28) and (2.29)) to deduce

(oa = cfley, + oy, )v/meas(D's)) [, (8) — i (115 < (m1(8) — ma(t), &ty (£) — iy, (1)) 30

Remembering u,, (0) = u,,(0) = wug, we integrate by part the previous inequality over
(0,T) to find

(04 = (e, + ) vmeas(T) [ i, (5) = iy ()] s
o [ i) = ) s+ - [ mGs) = o)l .
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Thus, from the previous inequality, we conclude
t
(04 = (e, + g )/meas(T3) =) [ i (5) = i ()]}

< [ ) - mis) - as.

Finally, we use the condition (2.41)) and the Cauchy inequality to get the wanted estimation
(2.42)). O

Lemma 2.9. Problem has a unique solution. Moreover there exists a constant ¢ > 0
such that

t
(2.45) 16,21 (2) = Ona,20 (D1 < C/O In1(s) = ma(s)l[3+ + llz1(s) — 22(s)l[- ds,

where O, ..(t) denotes the solution of Problem corresponding to (n;,z;) with i =1,2.

Proof. For the existence part, we follow the same steps as in |25, Lemma 4.6]. For the
estimate ([2.45)), let us denotes 6,), ., the solution of Problem corresponding to n;, z; €
L?(0,T;H x Q) with i = 1,2. Hence, for all ¢ € (0,7 and all A € Q, we find that
<9'm721 (t)7 A— 9771721 (t)>'H + <Kven17z1 (t)a VO‘ - 0771,21 (t))>7'l
- (Mg(um (t))a A— 97]1,2’1 (t)>’H + <Zl (t)7 A— 0171,21 (t)> + /F Jo (9771,21 (t); A— 9771,21 (t)) da
3
> <h(t)7 A— 0771,21 (t)>Qa
<9n2722 (t)7 A— 9772722 (t)>'H + <Kven27z2 (t)a VO‘ - 0772,22 (t))>7'l
- (Mg(unz (t))a A— 97]2,2’2 (t)>’H + <22(t)7 A— 0172,22 (t)> + /F jg(em,?& (t); A— 9772,22 (t)) da
3
> (h(t), A — Ongz,zo (t)>Q'

After taking A\ = 60y, ., (t) in the first inequality, A = 6, ., (¢) in the second inequality, we
add the two obtained inequalities to obtain that for all ¢ € [0, T, the following inequality
holds:

<9n1,21 (t) - én2,22 (t)a ‘9771,21 (t) 772722( )>7—l
+ <ICV9771,21 (t) - KV0W2,Z2 (t) ( 1,21 (t) 9772,22( ))>'H
< <M‘€<um (t)) - M‘S(unz (t))a 0771731 <t> 772722 ( )> <Zl (t> — 22 (t)v 0771731 <t> - 6772722 (t)>

+ /F (jg(9n1,Z1 (t); 9772,22 (t) — 9171,21 (1)) + j3(9n2,22 (t); ‘9771721 (t) — 9772,22 (t))) da.
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Proceeding in the same way as in the proof of Lemma we exploit (2.31)), (2.33)) and

(2.36) to get

<éﬂ1,21 (t) - ém,m (t)v 0771721 (t) - 9772,22 (t»'H + O‘ICHQTH,Zl (t) - 6772722 (t)HEQ
(2.46) < Lpllu, (t) — o () [V 101,20 () = Oa.z0 (D)l
+ <Zl (t) - ZQ(t)’ 0771721 (t) - 9772722 + C()aje \% meas 113 Hem Z1 772722 (t)||2Q

Remembering 6,, ., (0) = 6,, .,(0) = 6y, we integrate by part the above inequality to

deduce
[ s8) = )., () = O
(o = B VmeasT3]) [ 101 5) = s Ol
< Lt [y 5) = ) W (9 O

" /O (21(5) — 22(5), O 22 (5) — Oy 2 (5))-

By using the Cauchy inequality, there exists ¢ > 0 such that for all ¢t € (0,7"), we have

1 t
5”‘9771,21 (S) - 97]2722 (S)Hé + (alC - C%aje \% meaS(F3)) /0 ||0771,21 (S) - 97]2,22 (S)Hé

t
(247) < / it (5) — un (3)][3 + 224 / 161 21 (5) — Oy 2o (5113
e / 2 (s) — z(s)|f3e + / 16121 (5) = O za (5112

Next, we keep in mind the inequality (2.42]) to deduce the following estimate

1

5”0771,21 (5) - 0772,Z2 (5)||2Q

a9+ (- dag Ve - 2 - 1) [0 06 - 0ol
! 2 2
< C/o (my () = Mo ($)1[0+ + [l21(5) — 22(5) [l ) ds
Finally, we conclude that the estimation ([2.45)) is verified. O

Lemma 2.10. Problem has a unique solution. Moreover there exists a constant ¢ > 0
such that

t
(249)  llena(t) = raz (DIl < 0/0 In1(s) = m2() [+ + ll21(s) — 22(s) - s,

where @y, -, (t) denotes the solution of Problem corresponding to (n;,z;) with i = 1,2.
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Proof. We use the same techniques as in [25, Lemma 4.8] to prove the existence part
of Problem To prove the previous estimate (2.49)), let ¢y, ., denotes solutions to
Problem corresponding to the elements 7;,z; € L2(0,T;H x Q) with i = 1,2. Then,

for all 1 € W, we have

(2.50)

(BE

+ / e it (87 (P o2 () — 003 — oy 22 (1)) di
> <Q(t)7 Q)D - P,z (t)>W7

(2.51)

(BE

+ / e 1ty (67 (P s () — 903 — P s (1)) dit

> <Q(t)»¢ - Qpnz,zz(t»w‘

(n1,21 (1)), V(& = om0 () )3 — (P (s (1)) + GOy 21 (1), V(Y = 0y 20 () )3
r

(90772722 (t))a VW — P2,z (t))>7'l - <P(€(u772( ))) + g9ﬂ2,22( ) (sz) 4,0772,22( ))>7—L
r

We take 1 = @y, ., (1) in 2.50), ¥ = ¢y, 2 (t) in (2.51). Then we add the obtained

inequalities to get

</8E(§0771,21 (t)) - BE(‘PW,Zz (t))v V(90n1,31 (t> — Pnz,z2 (t))>7'l
< (P(e(u, (1)) = P(e(uny (1)), V(ny,z1 (£) = P,z (1))
+ <g0771,z1 (t) - g0n2,22 (t)v v(@m,zl (t) — P,z (t))>7-l

+ Ee /F jg(@m,m (t) — P05 Pna,z2 (t) - Pm,z (t)) da
3

T /F 5P (8) — 003 P (8) — s () da, Yt € [0, T
3

Remembering the estimations (2.25)), (2.27)), (2.30]) and (2.35)), we obtain

(g — heaj, cfv/meas(T's)) ||, 2, () = P .o (8) I3
< LPHum (t) - um(t)HVH‘PULZl (t) — Pna,za (t)HW
+ LQ||9771,21 (t) — 9772,22 (t)HQH‘Pm,n (t) — ¥n2,22 ()|l

Using the Cauchy inequality, there exists ¢ > 0 such that for all ¢ € [0, T], we have

(045 - Eeo‘je Cg meas(I's) — 20) [on1,21 (8) — Prpa 20 (t)||12xv

Lp Lg
< =2 () — ums DI} + @nem,zl (8) = O ()2

Finally, applying the inequalities (2.42)) and ([2.45) -, we deduce

(2.52)

O
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Lemma 2.11. Problem [2.7 has a unique solution. Moreover, there exists ¢ > 0 such that

t
(2.53) 16y () = G (1) 720 < C/O et (5) = w2(8) 172 ds,
where (, is a solution of Problem corresponding to w; with i =1,2.

Proof. Using the same arguments as in |24, Theorem 3| to prove the unique solvability
of Problem It remains to show the estimate (2.53). To this end, let (,, denotes the
solution to Problem corresponding to w; € L?(0,T; L?(£2)) with i = 1,2. Then, for all
t € (0,T), we have

(2'54) <Cw1 (t)7 g - Cw1 (t)>L2(Q) + a(coﬂ (t)a { - Cwl (t>) > <w1 (t),f - Cw1 (t)>,

(2’55) <Cw2 (t)7§ - <w2 (t)>L2(Q) + Q(Cw (t), §— <w2 (t)) > <w2(t)7€ - sz (t)>

Taking £ = (,,,(¢) in (2.54)), £ = (,, (¢) in (2.55)), and then adding the obtained inequalities

to obtain

<éw1 (t) - éw2 (t)’ Cwl (t) - sz (t)>L2(Q) + a’(Cwl (t) - COJQ (t)v Cw1 (t) - sz (t))
< <OJ1 (t) — w2 (t)a Cu.n (t) - sz (t»

Remembering (., (0) = (u,(0) = (o, we integrate by part the previous inequality over
(0,T) to get

1 t

316 (8 = Gl < [ 61(6) = a(6), G (5) = G5
Then, using the Holder inequality, we conclude that

2 ! 2 2
161 () = G (D) |72 () < 0/0 lwi(s) = wa(s)ll72(q) + 16w (8) = Gz (8)[ 2 () -
Moreover, the Gronwall’s inequality leads to the following estimate
2 ! 2
161 (0) = Gon () < € Tlon(s) = (o) oy s

Finally, the desired estimate (2.53)) holds. O

Claim 2. To complete the proof of Theorem we consider the following operator

A: L2(0,T;H x Q* x LA(Q)) — L*(0,T; H x Q* x L*(Q))

(2.56)
A(”? 2, w) = (Al (777 Z, w)? A2(777 Z)? A3(777 w))?
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where Ay, Ag and Ajg are given for all (n,z,w) € L?(0,T;H x Q* x L*(Q)) and ¢ € [0,T]
by

(2.57) (A, 2,0),6(0))n = (Bt e(uy (1)), Co(t)) + PT By s (t) = Cy 2 (1), (0)) e,
(2.58) (M2(,w), €)@ x@ = (N'Vey (1), ),

(2.59) Az(n, w) = d(e(un(t)), Cu(t)),

where w,, ¢y, -, 0y, . and &, are, respectively, the solution of Problems and
Next, we state the following lemma which shows that the operator A has a fixed point.

Lemma 2.12. The operator A defined by (2.56|)—(2.59) has a unique fixed point.

Proof. Consider (1, z1,w1), (12, 22, wa) € L2(0,T; H x Q* x L2(R)), from the definition of
A, we get
1A G, 21, 01) () = A2, 22, w2) (D)3 0 x £2(0)
= | A1, 21, 01) (1) = Ax (2, 22, 02) () |30 22(0)
+ [ A2 (1, 20)(8) = Ao (12, 22) ()T e + A3 (01, 1) () — Az, w2) ()13 120
< |IB(t, (g, (1)), Gy (1) = Bt ety (8)), Con ONF + 1PT Eipy 21 () = PT By (8) 1y
H[[COy 2 (1) = COny 2y (DG + N By 1 (8) = N By 2, (1)
+ ([ @ty (£))s Cun (1)) = Bl (s (1), Cuon ()1

Using the relations (2.24)), (2.25)), (2.32), (2.34]) and (2.37), we find that for all ¢t € (0,7,

we have

1A (71, 21, 01)(1) = A(n2, 22, 02) (D) F e £2()
< (LE + L3) (lugy () = gy O + 116wy (1) = G (D)l 2(0))
+ (Lp + L) om0 (8) = 0,0 (O + LEN Gy 21 (8) = Oz (D 1-
Hence, by applying the previous lemmas, we deduce that
1A (1, 21, 001) () = A2, 22, w2) (D) 31 0 x £2(0)
< C/ lm1(s) = m2(8)[I* + |21(5) — 22(8)II* + [|wn (5) — wa(s) ]| ds.
Thus, for a.e. t € [0,T1], there exists a constant ¢ > 0 such that
[A (1, 21, w1)(t) — A2, 22, w2) (1) |3 Q= x L2 ()
<o [ 0m 2100 = (22000 ey

Finally, it comes from [25, Lemma 2.1] that operator A has a unique fixed point. [
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Claim 3. Let (7%, 2*,w*) € L*(0,T;H x Q* x L?*(Q)) be the unique fixed point of operator
A.

Proof. We move to prove Theorem For that, let u = u,«, ¢ = @y .+, 0 = O« .+ and
¢ = (., be solutions of Problems and respectively. Hence (u, ¢, 0,() is a
solution of Problem [2.2] and the uniqueness of the fixed point of A leads to the uniqueness

part of Theorem. 0

3. Numerical analysis of Problem

In this section, we present a fully discrete approach for Problem and we derive an
approximate solution error estimate. To start, we use the finite-difference method to
approximate the derivative of function. We consider the uniform partition 0 =ty < 1 <
-« <ty =T of [0,T] with a time step-size k = T'/N, and for each continuous function v,

we denote
Un — Un—-1

k

Moreover, we apply the finite element method for the spatial discretization. Let ) be a

v(tn) = vp, Ovp =

polygonal domain, then we consider a regular family of partitions {7"} of Q into triangles
that are compatible with the partition of the boundary 02 into I' = I'1 UT's UT's and
I'ul'y, =T, UTIY%. Here, h > 0 denotes the discretization parameter, and ¢ denotes a
generic positive constant which does not depend on the discretization parameters h and
k. To approximate the spaces V, W and @, respectively, we introduce the following linear

finite element spaces corresponding to 7.

Vi ={o"eC@)| v eP(T) for T € T",v" =0 on T},
Wh = {y" e C(Q) | ¥f. € PUT) for T € T", 9" =0 on T4},
Q"={0"cC@)|6} eP(T) for TeT" 6" =0o0nTs}.

We introduce the following piecewise constant finite element space for the stress field
H = {Th €H | Tlfé e R for T Th},
and the following linear finite element space for the damage field
Zh={ec@) | ¢! ePy(T)! for T € T"}.
Then, we define the following constrained subset of Z":

K'={¢hezh|¢ 0, for T e T"}.
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Let ugk = ug eVl «96”“ = 08 € Q" and C(’}k = Cé‘ € Z" be an appropriate approximation

of the initial conditions ug, 89 and (y, respectively, i.e., such that
(3.1) luo = ugllv < ch, 60— 05l < ch, [1Go—Cllz < ch.

Hence, the discrete scheme for Problem is given as follows.

RN VP, an electric potential {piF}N - C

W a temperature {07%}N . C Q" and a damage field {¢"*}_, c K" such that for

n

Problem 3.1. Find a displacement {u
n=1,...,N, we have

(Ae(wh), £(ol —w))p + (Ble(ul¥), k) + PTIGEE — COME 2(ul — wl))
B2+ [ i, — )+ Rl ol —ulh) do
> (fu ol —wlh), vl eV,
BVt = Pe(un) = GORF, V(¥ — i)
(3.3) - Rl — eosl = ) do

> {q(t), ¥ — on)w, Y e W
(562 NP — 1R )+ (OVORE T (A — 61F))

(3.4) — (Me(ul®) + NV phk NP _ghky, 4 /F 7901k N ghRY L) da
3
> (hn, Ay — 01%), VAL € Q"
<6C£Lka€2 - T}LLk>H +CL( gk’gﬁ - T}LLk) 2 <¢(5(uﬁk)a gk)’gz - gk>Za vﬁg € Khv
upt =ug, 65" =05 and (G =g

hk\N hk\N

Here the sequences {u,"}*_, and {w;"},*_, are related by the following equalities

n
hk hk hk h hk
n. = O0u,” and wu uo—i—kg wi®, n=1,...,N.

w n —

Jj=1

From assumptions (H1)-(#H13), we derive by using the same arguments as for Prob-
lem that Problem [3.1| has a unique solution (u?*, h* ghk (hky c V* x Wh x Q* x K"

For error estimations, it will be derived using the Céa inequalities.

Theorem 3.2. Let assumption of Theorem still hold and the condition (3.1)) satisfied.
Consider (u,p,0,() the solution to Problem and (ul® whk ok ghk (I the solution

n *Yn
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to Problem [3.1] Then for n=1,...,N, the following error estimate hold:

(3.5)
lglax {llwn — Wl |1 + llun — w13 + llon — 2517 10n — 02118 + 116n — CH¥ 1%}
n<N
+ kZ 1Co = CIF13
n=1
< clglng{uwn — A1+ o — U0 + o — o8l + lon — ¥l

N-—1

+ CZ 167, — )‘ZH% + 10n — )‘ZHLQ(F;;) tc Z 1(0n — AZ) = (Ont1 — )‘Z+1)H
n=1

+ (160 — 05115 + 1161 — ALIIS) + c(h® + k).
Proof. First, the following equality holds:
(Ae(wn) — Ae(wp?), e(wn — wi¥))x
(3.6) = (Ae(wn) — Ae(wpF), e(wp — v}}))3 + (Ae(wn), (v — wa))u
+ (Ae(wn), e(wn — wi))p + (Ae(wn®), e(wi®) — e(v)) u-
Furthermore, by taking t = ¢, and v = w!* in the inequality (2.3 -7 we get

(Ae(wn), e(wn — wy"))

3.7) < (Ble(un): Ga), e(Wl" —wp))a + (PTVpn, (Wi —wy,)) — (COp, e (Wi —wy))y

+ / J'B(wny;wﬁ]ﬁ — Wny) +jg(wn7§ wZ]; — Wny) da + { fr, Wy — WZ'“>V~
s

Remembering the inequality (3.2)), it follows from the previous inequality that

(3.8)
(Ae(w)®), e(wi* — v}))a
< (Ble(up®), ¢, e(vl — wi))a + (PTV @Rk, e (v —wﬁ’“» <C€hk e(vp — wlF))

b [ Bttt = wlk) + 2tk ol = wl) dat (fuvul — ol
I's

We now combine hypothesis and inequalities f to deduce
aalwn — wiF|F
< (Ae(wn) — Ae(wph), (wn — o))+ (Ae(wn), £V = wn)) o + (f, w0 — U0V
+ (B(e(un), Gu), e(wit — wn))a + (Ble(ul), ¢iF), e (vl — wi))y
+ (PTV o, e(wi® — wn))a + (PTVERE, e(v) — wi*))y — (COn, e(wh® — wn))a

(COF (ol — )+ / FO (s 0 — ) + 10w v, — ) da
I's
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-0 ... hk -0/, hk._ h hk
+ / ]T(wnTv Wy — wm/) + ]T(wTLT7 Uny — wm/) da
I's

< (Ae(wn) — As(wph), e(wn — vi))a + (Ae(wn), e(vy — wa))n
+ (B(e(un®), ¢, e (vl — wa))u + (Ble(un), Ga) = Ble(up®), (hF), e(wl — wp))n
+ (PTVon — PTVGIE, e(wh® —wn)) + (PTVR e (vl — wn))n
— (COn — COE e (W) — wn))a — (CONF, (vl — wn))a + (fn, wn — v}y

n

+/ jg(wm/;whk wm/)"‘]u( Zﬁavﬁy—wzlﬁ)da
s
T /F 72w W — ) + 70w vk, — whk) da
3
+ [ bl —w)dat [ Blkiol — ) do.
3 3

Next, we use hypotheses (2.22)), (2.24)), (2.25), (2.28), (2.29) and (2.32) to find

o wn — kaH%/

< Lallwn = wiF|lv[wn = vpllv + Lpllen — o lw (llwn = wiFllv + llwn = vpllv)
+ L (un = up* v + 160 = G 112) (o = wiF v + [lwn = v l[v) + Si(un, s bn)
+ 11 (on"s ns ) + Laall0n = 035l (lwn — wiF(lv + [[wn = vp]lv)
+cv meas(I's) (o, + ajzr)|[wn — w13,

where the quantities S7 and I; are given by
S1(tts s ) = (Ae(uwn), (0] = wn)) + (Ble(un), Gu), (0l — w0
+ (PTVn, e(vyy — wn))p — (COn, (v — wn)) 3 + {fry w0 — vp)v
and

Bt ) = [ 3Bt — wa)dat [ 2lkied — wn) da.
Fg 1—‘3

We further assume that j,(z,-) and j,(z,-) are c-Locally Lipschtiz on R and R? respec-
tively for a.e. x € I's, where the Lipschitiz constant ¢ > 0 is independent of . Hence, we

have

(i vn, — wiw) < cllwn — vl 2y and G2 (whis v — war) < cllwn — vpllL2(ry)-

Then, it should be concluded that
Il(wzkvwm n) < CHwn —v ||L2(F3

We next multiply (2.5) by an arbitrary element v € V' to find that

/0V~6(U)da—/f-vda:/ o-vda and ove L*(I'3;RY).
Q Q I's
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Thus, we conclude that the following inequalities hold:

(3.9) Si(un,n,0n) = /F ov - (v —wn) da < clloflw, — vpll2ry) < ellwn = vl 2(ry)-
3
Moreover, by applying Cauchy inequality with ¢ > 0, we find
(ca — §v/meas(Ty)(aj, + ajr) = 5e) w — w]*[IF
(3.10) < cf{llwn = vpllY + lun — I3 + llon — ont Il

hk hk h
1100 — 025118 + 160 — "M% + llwn = vnll2,) }-

Hence, using same arguments as in [13], we deduce

n
(3.11) lun — un 3 < c(h? + k%) + ck > lwi — w}*||F,
i=1
n n—1
(3.12) G0 = ChFI% + R Y 16— G5 < e(h® +K2) + ek D [l — ul¥[[5.
i=1 =1

So, it follows from the two previous inequalities (3.11)) and (3.12) that

n—1

(3.13) 16 = G 17— < e(h? + &%) + ¢k Y lwi — wi*|}.
i=1

Next, we combine (3.10)), (3.11]) and (3.13) to find

(3.14)
hk h hk hk h
lwn = w1 < efllwn =Rl + llen — @RF IR + 10 — 625113 + llwn — villL2eey) }
n—1
+o(h® + k%) + ck > [lw; — w3
i=1
Then, by applying the Gronwall inequality, the inequality (3.14) leads to
(3.15)
hk h hk hk h
lwn = Wit 1Y < efllwn = vpll + llon — @n* Iy + 10 — 02511G + llwn — vpllL2(rs) }

+ c(h? + k?).

We now combine (3.11]), (3.12)) and (3.15)) to get that there exist a constant ¢ > 0 such
that

n
o = w15+ llun — M I+ 160 — GFIIZ, + D 16— C1%
i=1

h hk h h
< e{llwn = vplY + lon — @3 Iy + 1100 = 03518 + lwn — vpllz2r,) }

n
+e(h? k) ek Y (llwi = wf*I5 + llus — af* 13 + 16— (%)
i=1
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To simplify the notations, let us consider

n
hk hk hk hk
en = [lwn = wiF % + llun = up® 5 + 116 = M IZ, + kD16 — ¢¥I2,
i=1

9n = llwn = vulle + llon = @RF 15y + 1160 — 02818 + lwn — vill2qry) + 22 + k2.

Then, we find that there exists a constant ¢ > 0 such that

n
en < cgn+cZej with ¢ > 0.
j:

Hence, using again Gronwall inequality, we get

n
hk hik hk hk
lwn = w15 + llun — wp® I3 + 160 = ¥ 1% + kD 16— 4%
i=1

h hk hk h
< efllwn =R 1% + llon = RF 1 + 100 = 035113 + llwn — vl L2rs) }
+ c(h* + k).

(3.16)

Moreover, it comes from the assumption (2.27)) that

agllen — @fFI3y < (BVen — BV, V(e —wﬁ>>a+<6wm (Wh — on)hn
+ (BV¢n, V(on — @) g + (BVIE Y (pF — )y

(3.17)
Taking t = ¢, and ¢ = @Zk in the relation to get
(BVon, V(on = h")a < (Pe(un), Vieon = o1 u + (Gn, V(on — 3"
(3.18) + /F he (tnw )3 (n — 05 ¥ — pn) da
3
+ {dns o0 — 0w
Remembering the inequality , we obtain
BVt V(ent = vm)u < (Peun®), V(W — on)w +(GOF, V(W — 1))
(3.19) + /F he(UZ’i)jS(@Zk — po; ¥ — @) da
3
+ {an, " — myw
Then, we combine the previous inequalities f to find
agllen — on* iy

< (BVon — BYGRE Y (on — U0 + (BVon, V(i — on))a — (Pe(un), V(sof;’“ — on))n
— (Pe(uF), V(! — bR )3 — (GO, V(0hF — o)) + (GOMF, V() — 0iF))n
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+ /F Red0(pn — ©0; 1F — o) da +/ hegd (el — os ¥l — o) da + (gn, o0 — Y)W
3

I's

< (BVpn — BYGEE Y (0n — Y))a + (BV o, V(0 — 0n))n
+ (Pe(uy) — Pe(ul®), V("% — )3 + (Pe(ul®), V(@ — vn))u
+ <g0n - Q9Zka V(‘sz - Spn» < ehk (¢h )>7—[ + <Qna ®n — wZ>W

+ /F hed2(0n — @o; 1 — on) + hedl (O2F — 005 0n — @F) + R (O1F — o3k — i) da.
3

We now use (2.25)), (2.26)), (2.30) and (2.35) to deduce

hk hk h hk hk
agllen — e Ify < Lallon — enfllwllen — vnllw + Lpllun — ul|lv len — opFllw
hk h hk hk
+ Lpllun — up"[|v [[¥n — enllw + Lgll0n — 37 [lQllon — @5 lw
) Q—Hhk |h_ h .2| o hk|2
+ Lgll0n — 05" llltn — @nllw + heaj cgllon — o’ lw
+ SZ(Um ©n,y Hn) + IQ(‘PZka ©n, wn)a

where the quantities Sy and Iy are defined as follows:

So(tn, s 0n) = (BVen, V(¢Z — ©n))H — (Pe(un), V(@bﬁ — On))H
- <g0n7 V(Wﬁ - @n))’H + <Qn> Pn — ¢Z>W

and

L(™*, oy ) = / Pd(o" — oo vl — o) da.

I's

We now multiply the equation (2.6) by an arbitrary element 1 € W to get

/wa::—son)dx—/qo(w son>dx+/ (6 — gn)dT = [ D (gl — pn)dr.
Q Iy

I's
We have D -v € L?(0,T; L?(T3)), then we find
S2(un, Pny On) < cllon — 7/’Z||L2(F3)-

We assume that je(x, - ) is locally Lipschitz on R with Lipschitz constant ¢ > 0 independent
of z. Thus,

1—2(()02]67 Pns ¢n) < CHSDTL - wZHL2(F3)'
So, applying the Cauchy inequality with ¢ > 0, we obtain the following estimation
hk h hk hk h
lpn — @ntlf < e{llen — nllfy + llun — wg® I + 160 — 63518 + llon — Yl 2y }-
On the other hand, it comes from assumption ([2.36]) that

ac||0n — ORFIIZ) < (VO — KVOIF Y (05 — A2)) 3 + (KV 0, V(AL — 0)) 1
+ (KV0,, V(0 — 01%)) 3 + (KKVOI* V(0% — Ny,
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Taking t = t, and A = 7% in the inequality (2.40)), we get
(KVOp, V(0n, — 93’“»% < <‘9n7 GZk — On)n — (Me(up), sz = ) + NVey, sz —n)n

+ / 38 (003 01% — 0,,) da + (hy, 0, — 0"F) 0.
I's
Furthermore, it follows from (3.4) that

(KVORF 7 (1F — M)y
< (OOMF N — 01FY S — (Me(ulF), N — 0%y, NVl AL — gltFy

nor’m

+ [ BN = 0 dat (8 = N
3
Thus, from the previous inequalities, we conclude

aic||0n — 03* 13

<KV, — KVO™* N (0, — NV + (KVO,, VN = 6,)) 5 + (60, — 661F 07% — 6,)
+ (6007, Nl — On)ag — (Me(un) — Me(up®), 008 — 0n)3 + (Me(u?), X — 0n)
— (NVpn = NVEIF 005 — 0,) 1 + NV, Xy = 025 )31 + (B, 00 — N

4 / J9(0n: 1% — 6,) + JO(67% 6, — 0% da + / JYOM N~ 0, da.
F3 FS

So, we can deduce the following estimation

ok ||0n — ez% + (660, — 501% 6, — o1k)
(3.20) < c{110n = ALNG + llun — w13 + lon — ¥ 113}
+ (008F — 50,0, A — 0,)20 + S5(tn, on, On) + I3(00F, 0, A1),

where the quantities Ss and I3 are given by the expressions below

S3(Uns Py ) = (O, Al — O )30 + (KV O, VL — 00)) 3¢ — (Me(un), Ni — )3
+ <NV<,0n, AZ - 9n>7—[ + <hna en - AZ)H

and
I3(07% 9, \M :/ Jo(Ok N 9, da.

FS n n
In the same way as for (3.9), we get that for A\? € Q", we have
/ KV v\ —6,)dz — / ho(A! — 6,,) dx +/ (A —6,)dr
Q Q )

= [ KVO-v-v(\'—6,)dl.
s
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Then, since we have KV -v € L*(0,T; L?*(I's)), we can deduce that
(3.21) S3(tn, Pns On) < cll0n — A2l L2(ry)-

We assume additionally that jg(z, - ) is locally Lipschitz on R for a.e. x € I'3 for Lipschitz-

constant ¢ > 0 independent of . Then, the following estimations holds:

(3.22) 13(92’“, 9, )\Z) < CHQn — /\ZHL2(F3)'

We next use the inequalities (3.20)), (3.21f) and (3.22)) to find

a0 — O3F (3 + (060 — 662F, 0, — 01F) 1)
(3.23) < {10 — NI + i — w2+ o — G52 + [0 — A2 e}
+ (501% — 560, A — 0,,)4,.
Using formula 2(a — b,a) = ||a — b||?> + ||a||* — ||b||? for a = 6,, — 9,};]“‘ and b=0,_1 — 92’31,

we get,

1
(324) (100 = 021G — 1001 — 035111%) < (90n — 301%,0 — 02%) 10y

Then, by combining (3.23)) and (3.24]), we deduce the following majoration

1
a6 — 03717 + 57 (16 — OnEl1E — 1161 — 32113
< {116 = AlIG + llun = wi 1% + llon — R 1% + 1160 — Nl L2rs) }
+ (607F — 50, A — 0,,) .
Replacing n by j in the above relation, and summing up from j = 1 to n, we deduce that

n
16 — ¥ 17 + 2k D 116; — 07113
j=1

n
<k Y {116 = MG + lug — w15 + lles — @218 + 165 — Al zaes }
j=1

+ 2k (8605 — 660;, M — 0,3 + (160 — 053
j=1

Now, as done [5], we derive the following majoration

2k > (860 — 60, Nt — 6)n
j=1
< |0 — 0% + cl|0n — ALIIE + cllfo — 0511 + cll6r — A}B

n—1 n—1
k 2
515 = O+ = S 165 — X = (81 = X gy
i=1 i=1
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For the sake of simplification, we note

n
en = [0 — 03" 113 + 2kax Y 165 — 65*1%
j=1

and

n
hk hk h
gn = ’fz {06 = X% + lug — I3 + Moy — €55 1G + 165 = X7 2y }

Z (6 — )\ — (041 — A?+1)||%2(Q) + |60 — 93”22
=1

- ||61 — A + 100 — ALIIZ.

Then, the previous majorations imply that there exists a constant ¢ > 0 such that

n
en <cgnted e
J=

We now use the Gronwall inequality to establish that

16, — %113 + > 16; — 63*11%
=1
(3.25) <k Y {187 = NG + llus — w3 I3 + s — 517 + 165 — bl 2y }

1
e 0 = X)) = (0501 = X)) + 160 — 6617 + 101 — M-

From the previous estimations (3.11]), (3.12)), (3.15)) and (3.25)), we deduce

hk:H

lwn —wib I} + llun — g™} + llon — onF iy + 1160 — 6371

h h h
< C{Hwn = opll¥ + llen = VRl + llwn = villzaeg) + lon = whll2qr)

n n—1
(3.26) ) (110 = MG + 105 = Mllreqry)) + D10 = AF) = (0541 — M)z
' j=1 j=1

n
3 (llwy — wlM B + llug — w2513 + oy — 2513 + 116; — 62%]3)
j=1

+ |60 — 08”% + 1|61 — )\?Hé} + ¢(h?® + k2).
Let us consider the two following quantities

hk hk hk
en = llwn —wp® I + lun — up¥ I3 + llon — onF i + 160 — 0351
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and

h h h h
9n = llwn = villy + llen = Upllfy + llwn = vpllzay) + lon = ¥nllrawy)

n n—1
+ (185 = AHIE + 105 = Xellzay) + 105 = XD) = O541 = M) 132
j=1 j=1

+ (160 — 00113 + 1161 — A}||Z + h® + k2.

Then, according to these new notations, the inequality (3.26)) can be written as follows:

n
en <cgnted e
J=

Hence, by applying the Gronwall inequality, it comes from the previous inequality that
Rk 2 Rk 2 Rk 2 Rk 2
[wn = wp" IV + [Jun = uy" [l + llon = 3" [l + 160 — 02711

h h h h
< C{Hwn — vl + llon = ¥nllfy + llwn — vpllzas) + llon — ¥nllzry)

(3.27) n n-!
+ > (118 = NG + 1185 = AHllz2rs) + D 1165 = A1) = (B41 = ) 172
j=1 j=1

+ (|60 — 06‘“% + |61 — )\’fH%} +c(h® + k?).

Finally, we combine (3.16)) and (3.27)) to derive the estimation (3.5)), and this establishes
Theorem [3.2] O

Keeping now in mind the standard finite element approximation theory (see [2,5,13]),

we derive from Theorem the following error estimate result.

Corollary 3.3. Assume the assumptions of Theorem [2.3] hold, as well as the following

conditions

we L*([0,T]; V)N CH([0,T); H*()), w e C([0,T]; H*(Q)) N L*([0, T]; H*(T'3)),
0 e C(0,T]; H3(), 6eC(0,T); H*(Q)) N L3(0,T; H*(T3)), 0 e L*(0,T; H*()),
¢ e HY0,T; L*(Q)) N L*(0,T; HY(Q)),

we have the following order error estimate

. hk . hk _ hk
(max flwn —wylly + max lun —uptllv + max len = enlw

N 1/2
EY NG - Cﬁkllz]
n=1

__phk _ ~hk
+1£I7I%XNH971 0, HQ—Flg%XN”Cn G llz +

<c(h+k).
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