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Global L?-boundedness of a New Class of Rough Fourier Integral Operators
Jiawei Dai and Qiang Huang*

Abstract. In this paper, we investigate the L? boundedness of Fourier integral operator
T,o with rough symbol a € L>S]" and rough phase ¢ € L>®? which satisfies |{:1c :
|Veop(z,6) —y| < r}‘ < C(r"=t + ") for any &,y € R™® and r > 0. We obtain that
T is bounded on L? if m < p(n—1)/2—n/2 when 0 < p<1/20orm < —(n+1)/4
when 1/2 < p < 1. When p =0 or n = 1, the condition of m is sharp. Moreover, the
maximal wave operator is a special class of Ty , which is studied in this paper. Thus,
our main theorem substantially extends and improves some known results about the

maximal wave operator.

1. Introduction and main results

A Fourier integral operator (FIO) is defined as
Tyuf(e) = | ¥ 9ate.0)(6) ds.

where a is the symbol and ¢ is the phase function, and fdenotes the Fourier transform
of f. As we can see, all pseudo-differential operators are of this form with ¢(x,&) =z - &.

In the study of FIOs, one usually assume the symbol a(z, ) belongs to Hérmander
class Sg?(; and the phase function ¢ is in the class ®? satisfying the strong non-degeneracy

condition.

Definition 1.1. Let m € R, 0 < p,d < 1. A function a € ;”5, if a € C°(R™ x R™) and

satisfies

sup (€)1 0g a(z, €)] < oo
£eRn

for all multi-indices , 3, where (£) = (1 + |¢]?)Y/2.
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Definition 1.2. A real-valued function ¢(z,&) € ®2, if ¢ € C®(R™ x R™ \ {0}), is
homogeneous of order 1 in the frequency variable £ and

sup €]~ j0g 0l g (2, €)| < o0
(z,£)eR"xR"\{0}

for any |a| + |5 > 2.

Definition 1.3 (Strong non-degeneracy condition). A real-valued function ¢ € C?(R™ x
R™\ {0}) satisfies the strong non-degeneracy condition, if there exists a constant ¢ > 0
such that )

O ¢(, &)

'det <8mj(9§k>‘ >c¢ forall (z,€) € R" x R"\ {0}.

Obviously, when z has compact support, if ¢ € ®? and the mixed Hessian matrix

det ( agg’gk) # 0, then ¢ satisfies the strong non-degeneracy condition.

The local L? boundedness of FIOs with ¢ € ®2 and satisfying the determinant of the
mixed Hessian matrix is non-zero on the support of the symbol was firstly investigated
by Eskin [9] for a € S, and by Hormander [13] for a € 52,17,37 1/2 < p < 1. Later
on, Beals [2] and Greenleaf-Uhlmann [11] extended Hoérmander’s result to the case of
a € S? 2,1/ Meanwhile, there were many studies on the global L? boundedness of FIOs,
such as Fujiwara [10] and Asada-Fujiwara [1]. Recently, Dos Santos Ferreira and Staubach
[8] established the global L? boundedness with a € SZL&’ 0<p<1,0<6<1and
m < min{0,n(p — §)/2}.

For the LP boundedness of FIOs, Seeger-Sogge-Stein [18] proved the local H' — L!

807”)/ 2 by using the well-known “dyadic-parabolic” decomposi-

boundedness when a € S
tion. Moreover, they got the local LP-boundedness when a € ST, m = (1 —n)|1/p—1/2|
and the condition of m is sharp. Later on, Ruzhansky and Sugimoto [17] proved the global
LP boundedness of FIOs with a € STy, m = (1 —n)|1/p — 1/2|. In [3], Castro, Israelsson
and Staubach established the global LP boundedness of FIOs with a € St%’ 0<p<l,
0<d0<1,m=—(n-p)|l/p—1/2] —nmax{0,(5 — p)/2} or a € S}, 0 < p < 1,
m < —n(l — p)max(1/p,1/2) — (n —1)|1/p — 1/2|. Besides, there are many results about
local and global LP bondedness of FIOs, such as [4-6,[8,/15].

In [14], Kenig and Staubach introduced a class of pseudo-differential operators with
the symbol belongs to rough Hormander class was denoted by L*S]", and proved the
sharp L?-boundedness of this class of pseudo-differential operators. The specific definition

of LOOS;” and the result are as follows.

Definition 1.4. Let m € R and 0 < p < 1. A function a belongs to the rough Hérmander

class L>S)", if it satisfies

£s.u]Rp <£)_m+p‘a|H8?a( &)L < oo for all multi index a.
E n
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Theorem 1.5. [14, Proposition 2.3] When a € L>S*, 0 < p < 1, then the pseudo-
differential operator T, is bounded on L? if and only if m < S(p—1).

Inspired by the work of Kenig and Staubach [14], Dos Santos Ferreira and Staubach [8]
defined the rough phase class L>®®? which behaves like an L function in the spatial

variable z and the rough non-degeneracy condition. The specific definitions are as follows.

Definition 1.6. A real-valued function ¢ belongs to the rough phase class L>®®?, if ¢ is

homogeneous of degree 1 in the frequency variable £ and satisfies

sup €Y VEG( -, )| < 00 for all k > 2.
(z,£)eR™ xR\ {0}

Definition 1.7 (Rough non-degeneracy condition). A real valued phase ¢ satisfies the

rough non-degeneracy condition, if there exists a constant ¢ > 0 such that

Ved(z,8) = Ved(y, §)| = clo —y|
for any z,y € R™ and ¢ € R™ \ {0}.

In [§], Dos Santos Ferreira and Staubach established various LP boundedness of FIOs
with a € LS and ¢ € L>®®? satisfying the rough non-degeneracy condition. Here, we
would like to mention the L? boundedness of rough FIOs.

Theorem 1.8. |8, Theorem 2.8] When a € L*SP and ¢ € L>®®? satisfying the rough
non-degeneracy condition, Ty, is bounded on L? if m < n(p—1)/2 — (n —1)/4.

On the other hand, the wave operator defined as

VB f(a) = [ e fe) ag

n

which is a special class of FIO with a(z,§) = 1. It is well-known that for all f € H?,
if s > 1/2, e®™V=Af converges to f almost everywhere as t — 0 (see [7]) and if s < 1/2
the convergence fails (see [12]). The convergence is due to the following estimate of the

maximal wave operator

(1.1)

0<t<1

sup Ie’W‘Af\H < Clflla-
L2

for s > 1/2.
By the definition of Sobolev space, we can see that (1.1)) is equivalent to ||Tg||z2 <
C\gll2, where

(1.2 To(a) = [ DD [R)/2g(6) de



4 Jiawei Dai and Qiang Huang

and t(z) € L=, g(§) = (1+ |§|2)S/2f(§). Moreover, it is easy to prove that (14-[2)~%/2 €
LS C LS and x- £+ t(x)[¢] € L>®®? but does not satisfy the rough non-degeneracy
condition. Motivated by these, we consider the L? boundedness of a class of FIOs which

is generalized of (|1.2)). The following theorem is our main result in this paper.

Theorem 1.9. Let a € L*S]" and ¢ € L>®®? satisfying
(1.3) [{z: |Ved(z,€) —yl <} < OO 1)

for any &,y € R" and r > 0. Then Ty, is bounded on L* if m < p(n —1)/2 —n/2 when
0<p<1/20orm<—(n+1)/4 when1/2 <p<1.

Remark 1.10. The reason why we replace the rough non-degeneracy condition by the
condition is that for all ¢(z) € L, by some direct computations, we can get that
¢(2, &) = x-E+1t(x)|¢| does not satisfy rough non-degeneracy condition but satisfies (1.3)).
Moreover, we can prove that the strong non-degeneracy condition or rough non-degeneracy
condition implies . So, our result extends the existing results substantially. Now, We

show the proof of this conclusion below.

Proof. Since the rough non-degeneracy condition implies the strong non-degeneracy condi-
tion (see |8, Proposition 1.11]), we only need to prove the strong non-degeneracy condition
implies . For this purpose, we consider the map F¢: x — Veo(x,&). Since ¢ satisfies
the strong non-degeneracy condition, setting z = V¢o(z, ) and by the inverse theorem,

we have

Hx:\vgm,s)—my}\:/ dx:/
{z:|Veo(z,8)—y|<r} {z:|z—y|<r}

-1

2

< / et 2228 o / dz
{z:|z—yl|<r} axjafk’ {z:|z—y|<r}

<Crt < O™ ), O

Remark 1.11. According to [12,|16], when p = 0 or n = 1, the bound on m is sharp.

Throughout the paper, we use C, ¢ to denote some positive constants that are inde-
pendent of z, £, f and may vary from line to line. We denote by B, the ball in R"™ with

center 0 and radius 7.

2. Proof of Theorem

Before proving the main theorem, we need the following two lemmas for the low frequency
of T¢7a.
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Lemma 2.1. [8, Lemma 1.17] Suppose that u € C°(B1) and satisfies that
\VFu(z)| < Cylz|*™*  for all k € NT,

then for any 0 < p < 1, we have

/ e Yu(zx) dx

<Cly)y" "

Lemma 2.2. Suppose a and ¢ satisfy the assumptions of Theorem [I.9, then for any
n € C°(By), the following operator

Sogaf (1) = / e a(z, €)n(E) £(€) d

R'n
is bounded on L2.

Proof. By standard dual argument, we have [|Sog.qll72 ;2 = 1150,6,050 0l L2 12, Where
507¢7a53,¢,af($) = fRn k0($7 y)f(y) dy and

bolarg) = [ eO=9-20Da(z, aly, P (€) de.

By Schur’s theorem, to prove the L? boundedness of 50,6,055 b 1t suffices to show that

Sup/ |ko(z,y)|dr < oo and sup/ |ko(z,y)| dy < 0.
Y n x n

By choosing some & € S™ ! and setting h.(¢) = ¢(z,€) — Ved(x,&) - €, hy(€) =
&(y,&) — Ved(y, &) - €, we have

ko(z,y) = / ¢! Veo(m80)=Vedly0)8) ilha(©) =R (, O)a(y, ) (§) dE.
We claim that h, satisfies the following estimate

(2.1) sup || 7R VERG ()] < oo for all k> 1.
gcRn\{0}

Indeed, since ¢ € L®®?, using the mean value theorem, we have
[Veha (§)] = [Ved(x,§) — Ved(w, )| = [Veod(a,£/[€]) — Ved(x, §o)| < oo.

When k > 2, we have
VERL (&) = |VE(x,€)| < Cle'F

as desired. Similarly, hy(§) has the same estimate.
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Applying (2.1)) and the fact a € L*S}", we can get

VE(e M= ©=mE g (2, )aly, E)n*(€))|

<G Y, VRO (a(x, Oaly, )| VER ()]
k1+ko+kz=k

<G Y [Vhreite(©-hy(@)
k1<k

k1
SC Y Y Y IVE(R(&) = hy(€)) - VE (ha(€) = hy(€)))]

k1<k s=1t1+-+ts=k1
t1,...,ts>0

k1
SCR YD D> gt

k1<k s=1t1+-+ts=k1
t1,...,ts>0

k1
0 o

k1<k s=1t1+-+ts=k1
t1,...,ts>0

< Cplg .

Then by Lemma [2.1] for any y € R™ and 0 < p < 1, we have

| @l de <€ [ (14 Veota.é0) = Veolw &) "

<o/ o )
{z:|Ved(z,€0)—Ved(y,€o)|<1} {z:|Ved(2,£0)—Ved(y,&0)[>1}

(1+|Vep(z, &) — V§¢(y,§0)|2)—(n+u)/2
=I1+1I.

For I, by ({1.3)), we have

1< |{JJ |V§¢($,fo) — Vg(ﬁ(y,foﬂ < 1}‘ < 0.

For I1, we have

1 —Z / (1+ [Ved(, &) — Ved(y, &) 2) "2

2:2571<|Ved(x,€0) = Ve d(y:60)[<2°}

<O 2 N (0 [Veole ) - Veoly. )] < 27
s=1

< 0227(571)(n+u)(28(n71) +25n) < c0.
s=1

By the same method, we can also prove sup, Jn lko(z,y)|dy < oo. Then it follows that
S0,4,a s bounded on L2 O
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Now we turn to prove Theorem [I.9]

Proof of Theorem [L.9] First, we write Ty, as Ty q = S¢qF, where
Sealla)= [ e*9a(z,€)1(6)de

and F(f) = f By Plancherel’s theorem, it is enough to prove the L? boundedness of Se.a-

Decomposing Sy, as

Soaf(x) = / e Dala, )xo(€)F(€) de + / e a(a, €)(1 - x0(€)£(€) d
— SO,(i),af(x) + Sl,(i),af(x)a

where xo € C2°(B3) and xo = 1 in Bj.

We can get the L? boundedness of S0,4,a0.f directly from Lemma So, it remains to
prove the L? boundedness of S1,¢,f- By standard dual argument, we only need to prove
L? boundedness of S1,6,057 4.0 Where S14057 4 f(z) = Jzn k1(x,y) f(y) dy and

lg) = [ 020D a(a, ale, (1 - xol€)P

By the well-known Littlewood-Paley decomposition, we can obtain that (1 — xo(£))? =

Zjo'il X] (6)7 Where
Xj € C°(Bai1 \ Bys—1),  |VEx;(€)] < Cu277% for all k € N.

Then k1 (z,y) can be decomposed as

3

k() = / OO0 oz, €)a(r, €)(1 — yo(£))? de

/Rn (0@ O=0WEq(x, )a(x, €)x;(€) de

50

= k ,j(xv y)
j=1
Next, we will show that
(2.2) sup/ |k1(z,y)| dz < oo, Sup/ |k1(z,y)| dy < 0.
Y n x n

Then by (2.2) and Schur’s theorem, we have

1/2
22 = 1160t gall s o

1T1,¢.all 212 = [|S1,¢6,a
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Case1: 0 < p < 1/2. Forany j € N, BY denote a ball B(¢Y,2/07)) with 271 < [¢¥] <
23+l We can observe that there are no more than J = (27" points f}’ € Byj+1 \ Bgj-1
and cut-off functions ¢¥ € C2°(B}) such that

J
(2.3) dour(©) =1, [VEY(©| < Cr27*7) forall k € N.

Then k1 ; can be decomposed as

bs(any) = [ 0ol ale, Or(€) de

J
=y / !SI0 a(x, )al, €)x; (€)Y (6) dé
v=1

J
= Z ij,l,(a;, y).
v=1

By soting u(€) = 65, €) = Ve0(2, )6, B(€) = 00,) = Vol )-€ o (1. 6) =
eihe O~y gz, €)a(x, €)x i (§)¥5(€), we can rewrite ki ;. (z,y) as

k(e y) = / OO a(x, )al, €)x; ()uf (€) de

_ /n ei(Vg¢(%f}’)—v€¢(y7§;’)7@bj?(m’y,g) de.
Since ¢ € L®®?, ¢ € B}’ , using the mean value theorem, we have

(2.4) Veha(€)] < Ol — €] sup [V2(x,¢)| < C20-0277 = 020,
¢eBY

For k > 2, since 0 < p < 1/2, we get
(2.5) VEh.(€)] = \v§¢<x,§>r < 0200 < oIk,

Obviously, h, has the same estimates as and (| .
In addition, since a € L>S]" and w; satlsﬁes , we obtain that

IVE(a(, &)alz, £)x; (€)v5 (9))]
< Y VEa,9lIVEa(, I VE X (OIIVE R (€]

ki14-+ka=k
<C Z 9J(2m—p(k1+k2))9—jks g —i(1-p)ka
ki+-+ka=k
< (i(@m—pk),

In the last inequality, we use the fact 1 —p > p when 0 < p < 1/2.
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Next, we define a self adjoint operator L as
L=1-2"/V;.
For any N € N, by (2.4), (2.5) and (2.6)), we have

|LNY (2,9, )

<C Z QJP(NH-Nz)}Vévl[a(x,f)a(x,§)¢;(§)xj(€)“}vé\fzei(hm(ﬁ)—hy(f))}
Ni+N2<2N

< C Z QJ'P(N1+N2)2j(2m7pN1)
N1+Na<2N

Na
XY VE(a(&) = hy(€)) -+ VE (ha(€) — hy(€))]

t=1 ki+---+kt=N>

k1,...,kt>0
N2
<C E 97 (2m~+pN2) E E o—ikip .. 9—jkip
N1+N2<2N t=1 ki+---+kt=N>2
k1,....,k¢>0
< C2Hm™,

Since L is self adjoint and &-support of b7 is contained in BY, for any N € N, we have

Iy (2, )] = /n ez’(Vg¢(x,5§)—Vg¢(y,£§)7€>bjl{(% y, &) d§’

. 5 2y =N
= (14 2%P|Veop(a,Y) — Ved(y, &)
/ ei(Vg¢(17§?)*V§¢(y:5?)’5>LNbJ’{(x’ y, ) dg‘

X

< C(1+ 2%V, €7) — Veo(y, £1)2) "N oi@mtn(i=p)),

Now, we estimate [p, |k1j.(2,y)| dz. For any y € R, we have

| @+ 29eo(,€)) - Vo)) da

+

(/{931|Vs¢(fﬁ7€}’)—vg¢(y7£}f)l<2jf’} {w:IV5¢(r,€;)—V§¢(y,§;)|z2jp})
(1+2%°|Vep(, ) — Veol(y, &)%) " da

=I+1I.

For I, by (1.3)), we have

I< [z |Ved(,6)) — Veo(y, £)| < 277} < C(277Pn=) 4 97iemy < gg=ieln=1),
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For II, choosing N > n/2, we can get

N

(1+ 2%°|Vep(z, ) — Veo(y,NP) " da

II= /
{a:Ved(2,8))~Vedly,£y)|>277¢}

S j v v -N
N I (14 297|Vo(a,€) ~ Veoly. €)™ de
=1 J{@2971279P< Ve d(2,8Y ) — Ve d(y €Y )| <252797}

<D 2T [Veo (e, ) — Vealy, &) < 22777}
s=1

< O 9 2NED[(gsgminyn=l 4 (299700
s=1

< Co—ir(n=1)

S0 [gu k140 (z,y) dz < C21(Zm+n(1=p))9=ip(n=1) = Therefore, for any y € R", since J =
C27P" when m < p(n —1)/2 — n/2, we obtain

oo J oo J
/ k1 (z,y)| dz < ZZ/ ke o ()| do < CZ ZQJ(?m-‘rn(l—P))Q—jp(n—l)
R™ R™

j=1lv=1 j=1lv=1
00
< CZgj(2m+n—ﬁ(n—1)) < 0.
j=1

By the same method, we also can get sup, [ |k1(z,y)|dy < oo whenm < p(n—1)/2—n/2.
So if m < p(n—1)/2—n/2 when 0 < p < 1/2, Ty, is bounded on L.

Case 2: 1/2 < p < 1. First, let us recall the well-known “dyadic-parabolic” decompo-
sition [18]. For j € N, fix a collection {}}, of unit vectors, that satisfy

(i) 16" = &2 > 27972, v1 # vy;
(ii) if & € S"~L, then there exists an £/ so that [§ — &7 < 279/2,
For each j € N, set 'Y = {£ : |{/[§] —&7] < 2.279/2} Then we can construct an associated

partition of unity given by ¥, such that each 9] is homogeneous of degree 0, supported

in F;-’ and satisfies that

J
(2.7) S UH(€) =1 forall ££0 and [V (E)| < Crl¢ 72772, keN.

v=1

Then we can decompose ki(z,y) as

bi(z,y) = / P60 (e £)a(r, €)(1— yol£))? d

=22 / OO Da(e, e)ale, €)x;(€)v (€) dé
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k1 (z,y)

T Mg i Mg

J
J
Z/ i(Ve(z,Y)— V§¢(y7§j)7§>b‘ljj($, y, &) d€,
where b%(z,y,£) = ei(h’c“)_hy“))a(:ﬁ, §a(z,&)x; (&)} (€) and hy () = d(2, &) — Veo(z, &)
& hy (&) = oy, &) — Veo(y, &7) - €
Without loss of generality, by rotating coordinate axes, we can assume that £ =
(1,0,...,0). If we denote & = (0,&s,...,&,), then we have

Lemma 2.3. (19, pp. 406-407) For ¢ € L®®? and £ € TY N {&: 271 < [¢] < 27+1}, we
have
0NV (ha(€) — hy(€))| < C27INTMD g N M > 0 with N + M > 1,
0NV Y (&) < 02 WMD) i NUM > 0.
By Lemma for any k,1 > 0, we have
wéelvlg,ei(hx(&)—hy(f)),

k+1

<CY Y 08V (ha(§) = hy()) -+ OV (R (€) — By (£))]
t=1  ky+-thi=k
I+l =l
k1+11,...,kt+1:>0

<cy Y it/ gilhet2)

I+l =l
k1411, .kt +1:>0

k+l1
< 022—j(k+l/2) < CQ—j(k-H/Z).
t=1

Now we define an operator as
_ 2jp 52 2
L=1-2%°0; —2'Vg,.
Since a € L*S", 1/2 < p <1, applying (2.7) and ., we have
IRUACKNI]

<C > 2ueNgiNgENigENe (i (OO g, €)a(y, €)x; (€)vY (€)))
Ni1+N2<N
<C Z 92jpN19jN2
N1+No<N
x0T 98 (a(a, €)aly, (€)1 VL (€)

k1+ko+k3=2N;
l1+l2+13=2N>
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<C Z 92jpN19jN2 Z 9—i(k1+11/2) 9 (2m—p(k2+12)) 9—j(ks+13/2)

Ni1+N2<N k1+ko+k3=2N
l1+la+13=2N>

<C Z 92jpN19jNa Z 9d(2m—p(ki+ka+ks)—(li+l2+13)/2) < Ccim,

N1+N2<N k1+ko+k3=2N1
l1+l2+13=2N>

In the second to last line of above estimate, we use the condition 1/2 < p <1 to estimate
the power term. It is easy to see that [{¢ | (2, y,£) € supp b} for some (z,y) € R"xR"}| <
C29(n+1)/2 Then for any N € N, we have

|k1j0 (2, )l
= (1+ 22970, §(, ) — B, 6y, € + 27|V, €7) — Vero(a, €)?)

“ / H(Vedle &)V LN (1 . €) de
(29 <O +29°|9, ¢(x, ) — O, (y, &) + 2 |Ver(a, €5) = Verd(y, €)1 "
S AU
< C(1+ 2270, ¢ (x, ) — O, d(y, € + 2| Verd(, €7) — Verply, €)1
« 93(2m+(n+1)/2)
Now we begin to estimate [, |k1,j. (2, y)| dz. First, we denote
Ey = {x: 06 ¢(2,€]) — 0, 0(y. &) < 2777, [Verd(,€]) — Veod(y, &) < 277/},
Ey = {1 |06,0(,&)) — e, 8y, ) = 2797, [Verd(z, ) — Verd(y, &)| < 27972},
B3 = {0 ¢(2,€) — 0,0(y,€)| <279, [Veo(a, &) - Veoly. &) = 27772,
By = {0, ¢(z, &) — 06, (y, )| = 2777, [Vergp(z, ) — Verd(y, &) > 277/%}
Then
/ (1+22°|0¢, 6 (x, %) — D, ¢y, &) + 27 |Verp(, €) — Verd(y, €0)1%) " da
(L L L L)
(1+2%°|0¢, 6 (x, %) — De, ¢y, &) + 2 |Verd(a, ) — Verd(y, £)%) " da

=L+ 1+ I3+ Iy

Fix y € R", r > 0, we observe that the rectangle {2 : [21 — O, é(y,&7)| < 279, |2 —
Ved(y,&7)| < 277/21} can be covered by no more than €27(»~1(=1/2) halls with radius
277Pr. Then, since ¢ satisfies (I.3]), we obtain that

‘{ ’851 x 5;/) - 8§1¢(y7 5;/)‘ < 2—jp7a7 |V£'¢(IB, 5;/) - V£/¢(y, f;/) < 2_j/27a}}

2.1
(2.10) < 02i(n=1)(p— 1/2)[(271‘/)70)7%1_,_(ijpr)n]_
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By (2.10)), for I;, we have

< ng(n—l)(P—l/Q)(Q—jp(n—l) + Q—jpn) < C2—i(n=1)/2

For 115, since By C |J52, Es, where
Es = {w 125 17IP < ’861(25(1.76;) - 851 ¢(y7§;)| < 2327jp7
Ved(x,&f) — Veo(y, &) <2777},

then when N > n/2, we have
— j v v -N
I < Z/E (1+ 22]p|8£1¢(33a§j) - 8§1¢(y7£j)’2)
s=1 s

— —2N(s—1)
S
s=1

% (¢ 06, 6(a.£) — 9 6(u.£)| < 22797, [Ve(x,€)) — Vero(y. &)| < 2279/}

< CZ 2*2N(5*1)2j(n*1)(P*1/2)[(252*jp)n*1 + (2827jp)n]
s=1

< 022—5(2N—n)2—j(n—1)/2 < 027 in=1)/2,
s=1

The estimate for I3 is similar to I, we omit the details here.
For 14, since Ey C ;2 Ueey Et,s, where
Et,s = {.T 1257 17Ip < |8£1¢($a£;) - a§1¢(y,§;’)\ < 282—jp’
271279 < |Ved(a, &) - Vedly, &) < 22797},

Then when N > n, we get that

I < i i 9~ N(s=1)g=N(t=1)

s=1t=1

x Hw |0 o(z, 65) — De,d(y, )| < 252797 |Verd(x,£Y) — Verd(y, €)| < 21279/2}]
ZZ N(t-1)

s=1 t<s

x |{ - 06, d(w, &Y) — 0, 6y, &) < 2°2797, |Verd(, &) — Verdly, &) < 22772}

i i i 9—N(s—1)9—N(t-1)

s=1t>s

x |{z ¢ |0, ¢(x, €0) — Dey by, EY)| < 2279°, |Verdp(w, &) — Ved(y, &) < 21279/2}]
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< CZ Z 27N(571)27N(t71)2j(n71)(p71/2)[(2527jp)n71 + (2527jp)n71]

s=1 t<s

+ Z Z 2—N(s—1)2—N(t—1)2j(n—1)(p—1/2) [(2t2—jp)n—1 + (2t2—jp)n—1]

s=1t>s

< C2in=1)/2,
Hence
/R (1429010, 6(2,€)) — 00y, I + 2 Vel &) — Veodly. &))" da
(2.11) < C27i(n=1/2,

/ ’k1,j,y(:c,y)] dr < C27(2m+1)
R"

For any y € R", by ([2.9), [2.11) and with the fact J = C2"1/2 then when m <
—(n+1)/4, we can get

oo J 00
/ k1 (2, y)| do < ZZ/ g (2, )| do < €Y 21mHmAD/D) o,
Rn 4
j=1

j=lv=1

By symmetry, it is easy to get that for any z € R”, whenm < —(n+1)/4, [g. [k1(z,y)| dy <
o0. So when 1/2 < p <1, if m < —(n+1)/4, then Ty, is bounded on L. O
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