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On the Exponential Diophantine Equation F xn+1 − F xn−1 = F ym

Carlos Alexis Gómez*, Jhonny Carpediem Gómez and Florian Luca

Abstract. In this paper, we find all the solutions of Diophantine equation written in

our title, where n, m, x and y are positive integers and Fk denotes the kth term of

the Fibonacci sequence.

1. Introduction

Let (Fn)n≥0 be the classical Fibonacci sequence given by

(1.1) Fn+2 = Fn+1 + Fn for all n ≥ 0

and initial values F0 = 0, F1 = 1.

The Fibonacci numbers satisfy numerous identities that have been discovered over

centuries. For instance, in 1876, E. Lucas [12] showed that for all n ≥ 1,

F 2
n + F 2

n+1 = F2n+1,(1.2)

F 2
n+1 − F 2

n−1 = F2n.(1.3)

In the last decade, equation (1.2) has been revisited in the context of exponential Dio-

phantine equation Ax + By = Cz for A, B, C positive integers which are members of

the Fibonacci sequence or generalizations. Indeed, Marques and Togbé [13], investigated

analogues of Diophantine equation (1.2) in higher powers. They proved that if x ≥ 1 is

an integer such that F xn + F xn+1 is a Fibonacci number for all sufficiently large n, then

x ∈ {1, 2}. Later, Luca and Oyono [10] extended the above result on the nonexistence

of positive integer solutions (n,m, x) to the Diophantine equation F xn + F xn+1 = Fm with
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n ≥ 2, m ≥ 1 and x ≥ 3. Subsequently, Chaves and Marques [3] proved that the ana-

logues of the Diophantine equation (1.2), in k-generalized Fibonacci numbers1 instead of

Fibonacci numbers, has no positive integer solution (k, n,m) with k ≥ 3 and n ≥ 1. Then,

Gómez and Luca [8] solved completely the Diophantine equation (F
(k)
n )x+(F

(k)
n+1)x = F

(k)
m

in k-generalized Fibonacci numbers, showing that it has no solutions. In the same direc-

tion, in [2] it was proved that the equation (F
(k)
n )2 + (F

(k)
n+1)2 = F

(l)
m has no solutions in

positive integers with 2 ≤ k < l and n ≥ 2. Similar problems with different recurrent

sequences have been considered in [4, 6, 19–21].

On the other hand, identity (1.2) was studied from the point of view of Diophantine

equations: F xn+F xn+1 = F ym by Luca and Oyono in [9]; F xn+F yn+1 = F xm and F yn+F xn+1 = F xm
by Hirata-Kohno and Luca in [11]; and F xn + F yn+1 = F z2n+1 by Miyazaki in [16], all in

positive integers n, m, x, y and z.

Recently, identity (1.3) was investigated in the form

F xn+1 − F xn = Fm

by Patel and Chaves in [18]. Here, we consider adding an extra exponent y on the right-

hand side, so we study the equation

(1.4) F xn+1 − F xn−1 = F ym

in positive integers n, m, x and y.

Following the argument used in [9], we establish our main theorem.

Theorem 1.1. The only positive integers solutions (n,m, x, y) of Diophantine equa-

tion (1.4) correspond to the trivial ones in Section 3.1.

The proof requires mainly the use of lower bounds for nonzero linear forms in log-

arithms of algebraic numbers as well as reduction methods based on the algorithms of

Baker and Davenport [1] and LLL [5, Section 2.3.5].

2. Preliminary results

2.1. The Fibonacci sequence

Recall that the characteristic equation of the Fibonacci sequence is x2 − x− 1 = 0. Let α

and β to denote its roots, with α := (1 +
√

5)/2. We have the Binet formula

(2.1) Fn =
αn − βn√

5
for all n ≥ 0.

1The k-generalized Fibonacci sequence F (k), for an integer k ≥ 2, satisfies that its first k terms are 0, . . . , 0, 1

and each term afterwards is the sum of the preceding k terms. For k = 2, this reduces to the familiar

Fibonacci numbers, while for k = 3 these are the Tribonacci numbers. They are followed by the Tetranacci

numbers for k = 4, and so on.
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The Fibonacci companion sequence (Ln)n≥0 known as the Lucas sequence, given by L0 = 2,

L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0, has the Binet formula

Ln = αn + βn for all n ≥ 0.

We will make use of some of the several properties and relations that this two sequences

fulfill.

Lemma 2.1. (i) αn−2 ≤ Fn ≤ αn−1 for all n ≥ 1.

(ii) Fn−1/Fn+1 ≤ 2/5 for all n ≥ 3.

(iii) Fk is divisible by a prime which is at least as large as k − 1 for all k ≥ 13.

(iv) L2
n − 5F 2

n = 4(−1)n for all n ≥ 0.

2.2. Linear forms in logarithms

For any nonzero algebraic number γ of degree d over Q, with minimal polynomial over Z
given by a

∏d
j=1

(
X − γ(j)

)
where a ≥ 1, we denote by

h(γ) =
1

d

log a+

d∑
j=1

log max
{

1,
∣∣γ(j)

∣∣}
the usual absolute logarithmic height of γ. With the previous notation, the following

theorem is a result of Matveev from [14].

Theorem 2.2. Let s ≥ 1, γ1, . . . , γs be real algebraic numbers and let b1, . . . , bs be nonzero

integers. Let D be the degree of the number field Q(γ1, . . . , γs) over Q and let Aj be a

positive real number satisfying

Aj ≥ max{Dh(γj), | log γj |, 0.16} for j = 1, . . . , s.

Assume that

B ≥ max{|b1|, . . . , |bs|}.

If γb11 · · · γbss − 1 6= 0, then

|γb11 · · · γ
bs
s − 1| ≥ exp(−1.4 · 30s+3 · s4.5 ·D2(1 + logD)(1 + logB)A1 · · ·As).
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2.3. Reduction methods

The first result is Lemma 5(a) in [7].

Lemma 2.3. Let T be a positive integer, p/q be a convergent of the continued fraction

of the irrational γ such that q > 6T and A, B, µ be some real numbers with A > 0 and

B > 1. Let

ε := ‖µq‖ − T‖γq‖,

where ‖·‖ denotes the distance from the nearest integer. If ε > 0, then there is no solution

of the inequality

0 < |mγ − n+ µ| < AB−k

in positive integers m, n and k with

m ≤ T and k ≥ log(Aq/ε)

logB
.

Note that the above lemma cannot be applied when µ = 0. In this case, we use the

following classical results in the theory of Diophantine approximation, where the item (i)

is the wellknown Legendre criterion (see Theorem 8.2.4 in [17]), while the item (ii) follows

from inequality (3.5) in De Weger’s doctoral dissertation [22].

Lemma 2.4. Let M be a positive integer, p1/q1, p2/q2, . . . the convergents of an irrational

γ, and [a0, a1, . . .] its continued fraction.

(i) Let x and y be integers such that ∣∣∣∣γ − x

y

∣∣∣∣ < 1

2y2
.

Then x/y = pk/qk for some positive integer k.

(ii) If aM := max{at : 0 ≤ t ≤ K+1}, where K is a positive integer such that qK+1 > M .

Then ∣∣∣∣γ − x

y

∣∣∣∣ > 1

(aM + 2)y2

for every rational number x/y with 1 ≤ y < M .

Since there are no methods based on continued fractions to find a lower bound for

linear forms in three variables with bounded integer coefficients, we need to use a method

based on the LLL-algorithm (see Proposition 2.3.20 in [5, Section 2.3.5]).

Let γ1, . . . , γs ∈ R and the linear form

x1γ1 + x2γ2 + · · ·+ xsγs with |xi| ≤ Xi.
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We set X := max{Xi} and C > (sX)s. Let Ω be the integer lattice generated by

bj := ej + bCγjees for 1 ≤ j ≤ s− 1 and bs := bCγsees

with C a sufficiently large positive constant.

Lemma 2.5. With the above notation, we consider {bi} as a reduced basis of Ω and {b∗i }
as its associated Gram–Schmidt basis. We set

c1 := max
1≤i≤s

‖b1‖
‖b∗i ‖

, mΩ :=
‖b1‖
c1

, Q :=

s−1∑
i=1

X2
i and T :=

1

2

(
1 +

s∑
i=1

Xi

)
.

If the integers xi satisfy that |xi| ≤ Xi for i = 1, . . . , t and m2
Ω ≥ T 2 +Q, then we have∣∣∣∣∣

s∑
i=1

xiγi

∣∣∣∣∣ ≥
√

m2
Ω −Q− T
C

.

3. The trivial solutions, nonzero linear forms and relations among indeterminates

3.1. The trivial solutions

Since y = 1 was solved by [18], we may assume that y ≥ 2. Let us take n = 1. Then, we

have

F ym = F x2 − F x0 = 1,

which implies m ∈ {1, 2} for every x ≥ 1 and y ≥ 2. If we take n = 2, then

F ym = F x3 − F x1 = 2x − 1.

For x = 1, we get m ∈ {1, 2} and y ≥ 2. However, there are no solutions for x ≥ 2 by the

solution to Catalan’s conjecture [15]. Now, let us take n = 3. So, we have

F ym = F x4 − F x2 = 3x − 1,

which, according to Catalan conjecture, implies Fm = 2; i.e., m = 3, and, therefore, x = 2

and y = 3. From now on we assume that n ≥ 4.

On the other hand, if x ∈ {1, 2}, then

F ym ∈ {Fn+1 − Fn−1, F
2
n+1 − F 2

n−1} = {Fn, F2n}.

Thus, we are looking for Fibonacci numbers which are perfect powers and the only such

are 1, 8 and 144. So, we have F ym ∈ {1, 8, 144}. Therefore, we get m = 1 and y ≥ 2, or,

m = 3 and y = 3, respectively. Thus, we may assume that x ≥ 3. By Wiles’ solution of

Fermat’s last theorem [23] it follows that x 6= y.
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Finally, if we assume that m ∈ {1, 2}, equation (1.4) implies

1 = F xn+1 − F xn−1 = (Fn + Fn−1)x − F xn−1 ≥ F xn .

Therefore, we have n = 1 with x ≥ 1 or n = 2 with x = 1, that we had already found.

Thus, we may assume that m ≥ 3.

To sum up, the trivial positive integers solutions (n,m, x, y) of equation (1.4) corre-

spond to those in the set:

{(1, 1, x, y), (1, 2, x, y), (2, 1, 1, y), (2, 2, 1, y) : x, y ≥ 1} ∪ {(3, 3, 2, 3), (6, 3, 1, 2)},

along with the parametric ones in {(n, n, 1, 1), (n, 2n, 2, 1) : n ≥ 1} that come from the

identities (1.1) and (1.3).

From now on, we work with n ≥ 4, m ≥ 3, x ≥ 3 and y ≥ 2 with x 6= y.

3.2. Nonzero linear forms

In our work, we apply Theorem 2.2, Matveev’s result, with K := Q or Q(
√

5) (so D := 1 or

2) to the following linear forms in logarithms of algebraic numbers (written in exponential

form):

Λ1 := 1− F−xn+1F
y
m,

Λ2 := FwMα
−Nz5z/2 − 1,

Λ3 := F ymα
−nx((αx − α−x)/5x/2)−1 − 1,

Λ4 := αmy−(n+1)x5(x−2)/2 − 1,

Λ5 := αmy−nx5(x−y)/2(αx − α−x)−1 − 1

with

(3.1) M := min{n+ 1,m} and N := max{n+ 1,m}.

Besides, we denote w, z ∈ {x, y} such that (w,M), (z,N) are the two pairs (x, n + 1),

(y,m). Clearly, M ≥ 3. The notation (3.1) will be used in the rest of this work.

Below, we show that the above linear forms in logarithms are nonzero.

Lemma 3.1. Λj 6= 0 for all j = 1, 2, 3, 4, 5.

Proof. By equation (1.4), it is clear that Λ1 = (Fn−1/Fn+1)x > 0. For the rest of the

linear forms we proceed by contradiction. If Λ2 = 0, then, after squaring, we get α2Nz =

F 2w
M 5z ∈ Z. However, no power of positive integer exponent of α is an integer. Next,

if Λ3 = 0, then α2(n−1)x(α2x − 1)2 = F 2y
m 5x ∈ Z, and by conjugation in Q(

√
5) we get
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α2(n−1)x(α2x−1)2 = β2(n−1)x(β2x−1)2, which, due to the fact that x ≥ 3 and n ≥ 4, is not

possible (the right-hand side is at most 4 and the left-hand side is larger). If Λ4 = 0, then

we get α2my−2(n+1)x = 5x−y ∈ Z, which implies my = (n + 1)x and x = y, but the last

equality is not allowed. Finally, if Λ5 = 0, then we get that αx − α−x = 5(x−y)/2αmx−ny.

Conjugating the above relation in Q(
√

2), we get βx − β−x = 5(x−y)/2βmx−ny. Hence,

multiplying the two previous relations, we get

2(−1)x − (−1)xα2x − (−1)xβ2x

= (αx − α−x)(βx − β−x) = (αβ)my−nx5x−y = (−1)my−nx5x−y,

which implies

(3.2) (−1)x(2− L2x) = (−1)my−nx5x−y.

Since the left-hand side of equation (3.2) is an integer and x 6= y, we get that x > y.

Taking absolute values we obtain

L2x = 2 + 5x−y.

Reducing the above equation modulo 5 we get L2x ≡ 2 (mod 5), so x = 2x1 is even (the

Lucas sequence is periodic modulo 5 with period 4). Thus,

5x−y = L4x1 − 2 = 5F 2
2x1 .

It follows that F2x1 is a power of 5. By the Primitive Divisor Theorem (see Lemma 2.1(iii)),

the only possibilities are x1 = 1 (for which F2x1 = F2 = 1 = 50) which is not convenient

since for us x ≥ 3, or 2x1 = 5, which is impossible since it does not lead to an integer

solution x1.

3.3. A relation between the indeterminates n, m, x, y

Lemma 3.2. If (n,m, x, y) is a solution of (1.4) with n ≥ 4, m ≥ 3, x ≥ 3 and y ≥ 2,

then the inequality

(3.3) |nx−my| < 2 max{x, y}

holds.

Proof. By (1.4) and Lemma 2.1(i), we have

α(m−2)y < F ym = F xn+1 − F xn−1 < F xn+1 < αxn,

and

α(n−2)x < F xn < F xn+1 − F xn−1 = F ym < α(m−1)y,
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which imply

(m− 2)y < nx and (n− 2)x < (m− 1)y.

Therefore

−2y < nx−my and nx−my < 2x− y < 2x,

obtaining inequality (3.3).

3.4. Bounds on x and y in terms of M and N

In this section, we will prove the following lemma.

Lemma 3.3. If (n,m, x, y) is a solution in positive integers of equation (1.4), with n ≥ 4,

m ≥ 2, x ≥ 3 and y ≥ 2, then both inequalities

x < 1.2× 1011MN logN and y < 1.2× 1011MN2 logN

hold.

Proof. To start, by (1.4) and Lemma 2.1(ii), we get

(3.4) Λ1 ≤
1

2.5x

for Λ1 given in Section 3.2. To get a lower bound for Λ1, we apply Matveev’s Theorem 2.2

with the data

s := 2, γ1 := Fm, γ2 := Fn+1, b1 = y, b2 = −x.

Here, we have D = 1, since γ1 and γ2 are integers. Also, we can take A1 := m logα and

A2 := n logα. Now, by Matveev’s result, we have

|Λ1| > exp(−1.4× 305 × 24.5(m logα)(n logα)(1 + log max{x, y}))

> exp(−1.2× 109 ×m× n× log(max{x, y})),
(3.5)

where we have used the fact that 1 + log max{x, y} < 2 log max{x, y} which holds because

max{x, y} ≥ x ≥ 3. Comparing inequalities (3.4) and (3.5), we obtain

(3.6) x < 1.31× 109mn log max{x, y}.

If x > y, the above inequality gives

(3.7) x < 1.31× 109mn log x.

If instead we consider y > x, by Lemma 3.2, we get |my − nx| < 2y. Now, since m ≥ 3,

we obtain

(3.8) y ≤ (m− 2)y < nx < Nx.
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Since x ≥ 3 the case x = y is not possible according to Fermat’s Last Theorem. So, in

this case the inequality (3.6) implies

(3.9) x < 1.31× 109mn log(Nx).

Now, if we assume

(3.10) x ≤ N,

then we have an even better upper bound on x. Therefore, we proceed under the assump-

tion that x > N and inequality (3.9) gives us

(3.11) x < 1.31× 109mn log(Nx) < 2.65× 109mn log x.

Thus, comparing inequalities (3.7), (3.10) and (3.11), we can conclude that (3.11) holds

in all cases. So, we have
x

log x
< 2.65× 109mn.

Due to the fact that, for all x > 2, x/ log x < A implies x < 2A logA, whenever A ≥ 3,

the previous inequality gives us

x < 5.30× 109mn log(2.65× 109N2) < 1.2× 1011mn logN,

where we have used the fact that log(2.65× 109N2) < 22 logN for all N ≥ 3. Finally, by

estimate (3.8), we obtain

y < Nx < 1.2× 1011MN2 logN,

as we wanted to prove.

Due to Section 3.1, to complete the proof of Theorem 1.1, it remains to show that

there are no solutions for equation (1.4) when n ≥ 4, m ≥ 3, x ≥ 3 and y ≥ 2. In order to

do it, we proceed by cases over N .

4. The case N big: N > 1200

4.1. Bounds for the variables in terms of M

First, we need to prove the following lemma which give us some bounds for x, y and N in

terms of M .
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Lemma 4.1. If (n,m, x, y) is a solution to (1.4) with n ≥ 4, x ≥ 3, y ≥ 2 and N > 1200,

then

N < 2.4× 1030M2 log2M,

x < 3.9× 1027M2 log2M,

y < 6.9× 1045M2 log3M,

max{Mw,Nz} < 6.9× 1045M3 log3M.

Proof. From Lemma 3.3, we have

(4.1) max{x, y} < 1.2× 1011N3 logN < αN ,

where the right-hand inequality holds for all N ≥ 84. Clearly, inequality (4.1) implies that

(4.2)
z

α2N
<

1

αN
.

Now, since β = −α−1, by the Binet formula (2.1) we get

F zN =
αNz

5z/2

(
1− (−1)N

α2N

)z
=
αNz

5z/2
exp

(
z log

(
1− (−1)N

α2N

))
.

If we take

εN,z :=

(
1− (−1)N

α2N

)z
− 1,

by the argument in [9], we deduce that

(4.3) F zN =
αNz

5z/2
(1 + εN,z) with |εN,z| <

2

αN
.

Since x ≥ 3 and N > 1200, it is clear from (3.4) and (4.3) that

(4.4)
F ym
F xn+1

,
F zN5z/2

αNz
∈ (1/2,

√
5).

Let us suppose that N = n+ 1. Thus, z = x and

F ym = F xn+1 − F xn−1 =
α(n+1)x

5x/2
+

(
α(n+1)x

5x/2

)
εn+1,x − F xn−1,

so

∣∣F ymα−(n+1)x5x/2 − 1
∣∣ =

∣∣∣∣∣εn+1,x −
F xn−15x/2

α(n+1)x

∣∣∣∣∣ < |εn+1,x|+
(
Fn−1

Fn+1

)x(F xn+15x/2

α(n+1)x

)

<
2

αn+1
+

√
5

2.5x
≤ 5

αλ
,

(4.5)
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where we have used the equation (4.4) and the notation

(4.6) λ := min{x,N}.

We also used the fact that α < 2.5. Let us show that we get a similar inequality when

N = m. In this case we have z = y and

F xn+1 = F ym + F xn−1 =
αmy

5y/2
+

(
αmy

5y/2

)
εm,y + F xn−1,

therefore,

∣∣F xn+1α
−my5y/2 − 1

∣∣ =

∣∣∣∣∣εm,y +
F xn−15y/2

αmy

∣∣∣∣∣
< |εm,y|+

(
Fn−1

Fn+1

)x(F xn+1

F ym

)(
F ym5y/2

αmy

)

<
2

αm
+

2
√

5

2.5x
≤ 7

αλ

(4.7)

with λ given by (4.6). To summarize, by (4.5) and (4.7), we get that

(4.8)
∣∣FwMα−Nz5z/2 − 1

∣∣ < 7

αλ
,

where the expression inside the absolute value corresponds to Λ2 in Section 3.2. Now, we

use Matveev’s result to get a lower bound on |Λ2|. In order to do this, let us take

s := 3, γ1 := FM , γ2 := α, γ3 :=
√

5, b1 := w, b2 := −Nz, b3 := z.

Since γ1, γ2, γ3 belong to the field K = Q(
√

5), we can take D = 2. Besides, since

FM < αM , we can take

A1 = 2M logα > D logFM = Dh(γ1).

Note that h(γ2) = (logα)/2 and h(γ3) = (log 5)/2, so we can take A2 = logα and

A3 = log 5. Even more, by Lemma 3.3, we have

max{Nz, z, w} < (1.2× 1011MN2 logN)×N

= (1.2× 1011 × logN)×MN3

< N4 ×N4 = N8,

where we have used the fact that 1.2 × 1011 logN < N4 for all N > 1200. Thus, we can

take B := N8. Finally, by Matveev’s result, we have

|Λ2| > exp
(
− 5.7× 1011(1 + log 2)(1 + 8 logN)(2M logα)(logα)(log 5)

)
> exp(−6.5× 1012 ×M logN),

(4.9)
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where we used the fact that 1 + 8 logN < 9 logN for all N ≥ 3. Now, we compare (4.8)

and (4.9) to get

(4.10) λ < 1.4× 1013M logN.

Let us use inequality (3.3) to get some bounds on Mw in terms of Nz. To start, if z > w,

then we have

Mw ≤ (N + 2)z ≤ 2Nz,

while if z < w, then, due to the fact that M ≥ 3, we have

Mw

3
≤ (M − 2)w ≤ Nz.

From the above inequalities we conclude that Mw ≤ 3Nz always holds. A similar argu-

ment and the fact that N ≥ 4, allows us to show that

Nz ≤ 2Mw,

therefore we have that

(4.11)
Nz

Mw
∈ (1/3, 2).

At this point we need to proceed by cases according to the different options that we

are making along the way.

Case λ = N . By inequality (4.10), we get

N < 1.4× 1013M logN.

Thus, we get

N < 2× 1.4× 1013M log(1.4× 1013M)

< 2.8× 1013M(30 logM)

< 8.4× 1014M logM.

(4.12)

Therefore, by Lemma 3.3, we get

x < 1.2× 1011MN logN

< 1.2× 1011M(8.4× 1014M logM) log(8.4× 1014M logM)

< 1.1× 1026M2 logM(35 logM)

< 3.9× 1027M2 log2M,

(4.13)

where we have used the fact that logM < M and 8.4× 1014M2 < M35 for all M ≥ 3. So,

if w = x, we have

(4.14) Mw = Mx < 3.9× 1027M3 log2M,
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or, if w = y, then z = x and

Nz = Nx < (8.4× 1014M logM)(3.9× 1027M2 log2M)

< 3.3× 1042M3 log3M.
(4.15)

Thus, by (4.11) and estimates (4.14) and (4.15), we deduce that

(4.16) max{Nz,Mw} < 1043M3 log3M.

Since My ≤ max{Mw,Nz}, it is clear from the previous inequality that

(4.17) y < 1043M2 log3M.

Case λ = x. In this case, from inequality (4.10), we get

(4.18) x < 1.4× 1013M logN,

and we have to consider the following two subcases:

• When N = m. Therefore, we have M = n + 1. If we assume that x > y, then, by

inequality (3.3) and the fact that y ≥ 2, we have

m ≤ my

2
<

(n+ 3)x

2
< (n+ 1)x = Mx,

which, together with inequality (4.18), implies N < 1.4 × 1013M2 logN . If instead we

assume that x < y, then by inequality (3.3) and the fact that, in this case, y ≥ 3, we have

m ≤ my − 2y < (n+ 1)x = Mx,

so, again by inequality (4.18), we get N < 1.4×1013M2 logN . Either way, we can conclude

that

(4.19) N < 1.4× 1013M2 logN.

• When N = n + 1. Let us start by pointing out that, either y > x or x > y holds.

By an argument similar to the one used in the analysis of the previous subcase around

inequality (3.3), we get that inequality

(4.20) y < Nx

holds in this case. Further, observe that z = x. Now, we have

F xn−1 =
α(n−1)x

5x/2

(
1− (−1)n−1

α2(n−1)

)x
,
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and, by (4.2), we also have
x

α2n−1
=

x

α2N−4
<

α4

αN
.

Following the argument to get (4.3), in this case we have

F xn−1 =
α(n−1)x

5x/2
(1 + εn−1,x), where |εn−1,x| <

2α4

αN
.

Next, we rewrite equation (1.4) as follows

F ym = F xn+1 − F xn−1 =
αnx(αx − α−x)

5x/2
+

(
α(n+1)x

5x/2

)
εn+1,x −

(
α(n−1)x

5x/2

)
εn−1,x,

so, we can get∣∣∣∣∣F ymα−nx
(

5x/2

αx − α−x

)
− 1

∣∣∣∣∣ < |εn+1,x|
(

αx

αx − α−x

)
+ |εn−1,x|

(
α−x

αx − α−x

)
,

which, due to the fact that

(4.21) |εn+1,x| <
2

αN
, |εn−1,x| <

2α4

αN
,

αx

αx − α−x
< α,

α−x

αx − α−x
< 1,

with x ≥ 3, implies

(4.22)

∣∣∣∣∣F ymα−nx
(

5x/2

αx − α−x

)
− 1

∣∣∣∣∣ < 2α+ 2α4

αN
<

17

αN
.

Note that, the expression inside the absolute value corresponds to Λ3 defined in Section 3.2.

We now use Matveev’s result to get a lower bound to the expression on the left-hand side

of previous inequality. In order to do this, we take

s := 3, γ1 := Fm, γ2 := α, γ3 := (αx − α−x)/5x/2, b1 := y, b2 := −nx, b3 := −1.

Since γ1, γ2, γ3 ∈ Q(
√

5), we can take D = 2 and as in the previous application we can

take

A1 := 2M logα and A2 := logα.

Concerning γ3, since its conjugate in Q(
√

5) is (−1)x(βx − β−x)/5x/2, it’s minimal poly-

nomial over the integers is a divisor of

a0X
2 + a1X + a2 = 5x

(
X − αx − α−x

5x/2

)(
X − (−1)x

βx − β−x

5x/2

)
= 5xX2 − 5x/2(αx + (−1)xβx − α−x − (−1)xβ−x)X + (2− α2x − β2x).

Thus, we have a0 ≤ 5x,

|γ(1)
3 | = |γ3| =

αx − α−x

5x/2
<

(
α√
5

)x
< 1
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and

|γ(2)
3 | =

|βx − β−x|
5x/2

<
αx + 1

5x/2
< 1.1

(
α√
5

)x
< 1.

Therefore, we can take

A3 = log 5x =
D log 5x

2
≥ D log a0

2
≥ Dh(γ3).

Now, by inequalities (4.18) and (4.20), and the fact that 1.4× 1013 logN < N5 holds for

all N > 1200, we get

max{|b1|, |b2|, |b3|} = max{y, nx, 1} < Nx < N × 1.4× 1013 ×M logN

= (1.4× 1013 logN)×MN < N5 ×N2 = N7.

Finally, by Matveev’s result, we have that

log |Λ3| > −5.73× 1011 × (1 + log 2)(1 + 7 logN)(2M logα)(logα)(x log 5)

> −5.8× 1012Mx logN,

where we have used the fact that 1 + 7 logN < 8 logN holds for all N > 1200. Now, we

use (4.18) to get

log |Λ3| > −5.8× 1012M(1.4× 1013M logN) logN

> −8.2× 1025M2 log2N.
(4.23)

By inequalities (4.22) and (4.23), we get that

(4.24) N < 1.8× 1026M2 log2N.

Clearly, between inequalities (4.19) and (4.24), we can conclude that

N < 1.8× 1026M2 log2N.

Now, we use the fact that t < A log2 t implies t < 4A(logA)2, when A > 100. Since

A = 2× 1026M2, we get that

N < 4× 1.8× 1026M2(log(1.8× 1026M2))2

< 7.2× 1026M2(2 logM)2

(
log(1.8× 1026)

2 log 3
+ 1

)2

< 2.4× 1030M2 log2M.

(4.25)

Also, by inequality (4.18), we get

x < 1.4× 1013M logN

< 1.4× 1013M log(2.4× 1030M2 log2M)

< 1.4× 1013M(4 logM)

(
log(2.4× 1030)

4 log 3
+ 1

)
< 9.5× 1014M logM.

(4.26)
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So, if w = x, then, by the previous inequality

(4.27) Mw = Mx < 9.5× 1014M2 logM,

while if w = y, then z = x and, by (4.25), we get

Nz = Nx < 2.4× 1030M2 log2M(9.5× 1014M logM)

< 2.3× 1045M3 log3M.
(4.28)

Now, taking into account (4.11), we deduce from estimates (4.27) and (4.28),

(4.29) max{Nz,Mw} < 6.9× 1045M3 log3M.

In particular, due to the fact My ≤ max{Mz,Mw}, we have that

(4.30) y < 6.9× 1045M2 log3M.

Finally, between (4.12) and (4.25), (4.13) and (4.26), (4.16) and (4.29), and (4.17) and

(4.30), we conclude that

N < 2.4× 1030M2 log2M, x < 3.9× 1027M2 log2M,

max{Mw,Nz} < 6.9× 1045M3 log3M and y < 6.9× 1045M2 log3M,

respectively.

4.2. The case M small

Since Lemma 4.1 gave us some bounds for the variables of our interest in terms of M ,

allow us to assume M ≤ 750 and to show that there are no solutions of equation (1.4).

Lemma 4.2. If (n,m, x, y) is a solution of equation (1.4) with n ≥ 4, x ≥ 3 and y ≥ 2,

then M > 750.

Proof. Proceeding by contradiction, let us assume M ≤ 750. By Lemma 4.1, we have that

X := max{w,Nz, z} < 1057. Now, let us take

Γ2 := w logFM −Nz logα+ z log(
√

5).

Since |Γ2| ≤ e|Γ2|
∣∣eΓ2 − 1

∣∣, if we assume that λ ≥ 6, then the right-hand side of (4.8) is at

most 1/2, and we get

(4.31)
∣∣w logFM −Nz logα+ z log(

√
5)
∣∣ < 14

αλ
.
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We need to look for a lower bound for |Γ2|. Since F5 = 5, we start by assuming that

M 6= 5 to apply LLL-algorithm. In order to do it, we take C := (30X)3 and consider the

lattice Ω spanned by

γ1 :=
(
1, 0, bC logFMc

)
, γ2 :=

(
0, 1, bC logαc

)
, γ3 :=

(
0, 0, bC log

√
5c
)
.

Now, for each M ∈ [3, 750] \ {5}, we use Mathematica to calculate the parameters Q, T ,

c1 and mΩ = ‖b1‖/c1 from Lemma 2.5. Thus, we obtain

8× 10−119 <
∣∣w logFM −Nz logα+ z log

√
5
∣∣,

which, comparing with inequality (4.31), implies

(4.32) λ ≤ 570.

Next, we take M = 5. Thus, inequality (4.31) is rewritten as∣∣(2w + z) log 5− 2Nz logα
∣∣ < 28

αλ
.

Dividing the previous estimate by Nz log 5, we get

(4.33)

∣∣∣∣2w + z

Nz
− 2 logα

log 5

∣∣∣∣ < 18

αλNz
.

By Lemma 4.1 and our assumption that M ≤ 750, we have

(4.34) Nz < 1046M3 log3M < 1057.

Due to the fact that F275 > 1057, we can use item (ii) of Lemma 2.4 with K = 274. In

this case we get aM = 330. Thus, we conclude

(4.35)
1

332(Nz)2
<

∣∣∣∣2w + z

Nz
− 2 logα

log 5

∣∣∣∣ .
Comparing (4.33) with (4.35), and using (4.34), we get αλ < 5976Nz < 6 × 1060, which

implies

(4.36) λ ≤ 290.

It is clear that, from estimates (4.32) and (4.36), the inequality

λ ≤ 570

holds for all M ∈ [3, 750]. If we suppose that λ = N , then, according to what we

established, we have N ≤ 570, a contradiction with our assumption that N > 1200. Thus,

we can conclude that λ = x and

(4.37) x ≤ 570.
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Next, we proceed to consider whether (N, z) = (n+ 1, x) or (N, z) = (m, y).

Case (N, z) = (n + 1, x). So (M,w) = (m, y). By inequality (4.22) and the fact that

N > 1200, we have

∣∣w logFM − (N − 1)z logα+ log(5x/2/(αx − α−x))
∣∣ < 34

αN
.

Here, we have the expression

|uγM − v + µx| < AB−N

with (u, v) = (w, (N − 1)z) and

γM :=
logFM
logα

, µx :=
log(5x/2/(αx − α−x))

logα
, A := 71

(
>

34

logα

)
, B := α.

We apply the Baker–Davenport reduction method for each x ∈ [3, 570]. Since x ≤ 570

and M ≤ 750, by estimate (4.20) and Lemma 4.1, we get that

u = w < Nx < 3.3× 1040 =: T.

Hence, for each γM with M ∈ [3, 750], we look for the smallest q such that q > 6T and, in

all the cases, we get

ε > 4.7× 10−102 and log(Aq/ε)/ logB < 1157,

the latter being an upper bound for N and, therefore, a contradiction with our assumption

that N > 1200.

Case (N, z) = (m, y). So, (M,w) = (n+ 1, x). Then, by inequalities (3.3), (4.37) and

the fact that M ≤ 750, we have

max{N, y} < (n+ 1)x = Mx < 427500.

Here, due to the previous inequality, we can take

X := max{w,Nz, z} < 1012.

So, we use inequality (4.31) to apply LLL-algorithm for each M ∈ [3, 750]. We get that

x = λ ≤ 144. We repeat this process once more and we obtained x ≤ 134, which allow us

to conclude that (x, n) ∈ [3, 134]× [4, 749]. Then, due to the fact that m = N > 1200, by

inequality (3.3), we get

1198y < (m− 2)y < (n+ 1)x < 100500,
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which implies that (y,m) ∈ [3, 83]× [1201, 2+b100500/yc]. Next, we check the congruence

F xn+1 − F xn−1 ≡ F ym (mod 1020), where (n,m, x, y) is a quadruple of integers in the above

ranges. Again we use the feature PowerMod[A, u,B] in Mathematica to create both lists

L = {F xn+1 − F xn−1 (mod 1020) : (x, n) ∈ [3, 134]× [4, 749]}

and

Ry = {F ym (mod 1020) : m ∈ [1201, 2 + b100500/yc]}.

Finally, we were able to verify that L ∩Ry = ∅ for each y ∈ [3, 83].

We conclude that equation (1.4) have no solutions when M ≤ 750.

4.3. The case M big

Due to Lemma 4.2, here we study the case M > 750 looking for some absolutes bounds

on the variables n, m, x and y.

Lemma 4.3. If (n,m, x, y) is a solution of equation (1.4) with n ≥ 2, x ≥ 3 and y ≥ 2,

then

max{x, y} < 3× 1094.

Proof. Since M > 750, by Lemma 4.1 we have that

max{x, y} < 6.9× 1045M2 log3M < αM−2 ≤ min{αn−1, αm}.

In fact, the middle inequality holds for all M ≥ 256. Hence, all three inequalities

x

α2n−2
≤ 1

αn−1
,

x

α2n+2
≤ 1

αn+3
,

y

α2m
≤ 1

αm

hold, so we may write

(4.38) F xn−1 =
α(n−1)x

5x/2
(1+ζn−1,x), F xn+1 =

α(n+1)x

5x/2
(1+ζn+1,x), F ym =

αmy

5y/2
(1+ζm,y),

where

(4.39) max{|ζn−1,x|, |ζn+1,x|} ≤
2

αn−1
and |ζm,x| ≤

2

αm
.

We also have some additional conditions to (4.4), namely that

(4.40)
F xn−1

α(n−1)x/5x/2
,

F xn+1

α(n+1)x/5x/2
,

F ym

αmy/5y/2
belong to (1/2,

√
5).

Using approximations (4.38) to rewrite equation (1.4) and reordering some terms, we get

(4.41)
αmy

5y/2
− α

(n+1)x

5x/2
+
α(n−1)x

5x/2
=

(
α(n+1)x

5x/2

)
ζn+1,x−

(
α(n−1)x

5x/2

)
ζn−1,x−

(
αmy

5y/2

)
ζm,y,
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which, due to the fact that

(4.42)

(
αmy/5y/2

α(n+1)x/5x/2

)
=

(
αmy/5y/2

F ym

)(
F ym
F xn+1

)(
F xn+1

α(n+1)x/5x/2

)
< 20,

and together with (4.40), implies

∣∣αmy−(n+1)x5(x−y)/2 − 1
∣∣ < |ζn+1,x|+

1

α2x
+
|ζn−1,x|
α2x

+

(
αmy/5y/2

α(n+1)x/5x/2

)
|ζm,y|

<
2

αn−1
+

1

α2x
+
|ζn−1,x|

2
+

20

αm

<
8

αn+1
+

1

αx
+

20

αm
<

29

αλ1
,

(4.43)

where λ1 := min{x,M}, as the λ that we had defined in (4.6). Note also that the

expression inside the absolute value corresponds to Λ4 defined in Section 3.2.

We need to establish the parameters to apply Matveev’s result. So, we take

s := 2, γ1 := α, γ2 :=
√

5, b1 := my − (n+ 1)x, b2 := x− y.

Then, we have D = 2. Here, we take A1 := logα and A2 := log 5. Besides, since x ≥ 3,

the right-hand side in (4.43) is at most 29/α3 < 7, therefore,

α|my−(n+1)x|

5|x−y|/2
< 8,

which implies

|b1| = |my − (n+ 1)x| < log(8× 5|y−x|/2)

logα

=

(
log 5

2 logα

)
|y − x|+ log 8

logα
< 2|y − x|+ 5 < 8|y − x|.

(4.44)

Thus, by Lemmas 4.1 and 4.2, we can take

max{|b1|, |b2|} < 8 max{x, y} < 8× 6.9× 1045M2 log3M

< (5.6× 1046 log3M)M2 < M18 ×M2 = M20 =: B.
(4.45)

Matveev’s theorem tells us that

log |Λ4| > −3.1× 109(1 + log 2)(1 + 20 logM)(logα)(log 5)

> −8.6× 1010 logM.
(4.46)

Comparing estimates (4.43) and (4.46), we get that

(4.47) λ1 < 1.8× 1011 logM.
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Hence, we have to proceed by cases according to various scenarios concerning λ1:

Case λ1 = M . In this case, by (4.47), we get M < 1.8× 1011 logM , so,

(4.48) M < 5.6× 1012.

Case λ1 = x. In this case, by (4.47), we get

(4.49) x < 1.8× 1011 logM.

Next, we rewrite (4.41) as

αmy

5y/2
− αnx(αx − α−x)

5x/2
=

(
α(n+1)x

5x/2

)
ζn+1,x −

(
α(n−1)x

5x/2

)
ζn−1,x −

(
αmy

5y/2

)
ζm,y,

which implies∣∣αmy−nx5(x−y)/2(αx − α−x)−1 − 1
∣∣

<
αx

αx − α−x
|ζn+1,x|+

α−x

αx − α−x
|ζn−1,x|+

(
αx

αx − α−x

)(
αmy/5y/2

α(n+1)x/5x/2

)
|ζm,y|

<
2

αn−2
+

2

αn−1
+

40

αm−1
<

6

αn
+

4

αn
+

65

αm
<

75

αM
,

(4.50)

where we have used estimates (4.21), (4.39) and (4.42). Note that the expression inside

the absolute value corresponds to Λ5 as in Section 3.2.

Now, we indicate the parameters to apply Matveev’s result to the left-hand side of the

inequality (4.50). We have s := 3 and we take

γ1 := α, γ2 := 2
√

2, γ3 := αx − α−x, b1 := my − nx, b2 := x− y, b3 := −1.

Thus, it is clear that D := 2. As in prior application of Matveev’s theorem, we take

A1 := logα, A2 := log 5. As for γ3 := αx − α−x, we have

h(γ3) ≤ h(αx) + h(α−x) + 2 = 2x logα+ 2 < 1.7x,

since x ≥ 3, which allow us to take A3 := 4x. By estimate (4.44), we have

|b1| = |my − nx| ≤ |my − (n+ 1)x|+ x < 8|y − x|+ x < 9 max{x, y}.

Hence, using Lemmas 4.1 and 4.2, we conclude, as at estimate (4.45), that we can take

max{|b1|, |b2|} < 9 max{x, y} < 9× 6.9× 1045M2 log3M

< (6.3× 1046 log3M)M2 < M20 =: B,
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where we have used the fact that 6.3 × 1046 log3M < M18 for all M > 750. Thus, by

Matveev’s result, we have that

log |Λ5| > −5.8× 1011(1 + log 2)(1 + 20 logM)(logα)(log 5)(4x)

> −6.4× 1013x logM.
(4.51)

From estimates (4.50) and (4.51), we get that

(4.52) M < 1.4× 1014x logM.

Inserting estimate (4.49) into (4.52), we get

M < 1.4× 1014(1.8× 1011 logM) logM < 2.6× 1025 log2M.

Therefore, we have

(4.53) M < 1.2× 1029.

Comparing (4.48) and (4.53), we conclude that the inequality (4.53) always holds. Hence,

by Lemma 4.1, we get

N < 2× 1092, x < 3× 1089 and y < 3× 1094.

4.4. Reducing the bound

We need to work some more on inequality (4.43) under the assumption that λ1 > 470.

Then 29/αλ1 < 1/2, so by a classic argument we get that∣∣(my − (n+ 1)x) logα− (y − x) log
√

5
∣∣ < 58

αλ1
.

Thus, since x 6= y, we get

(4.54)

∣∣∣∣∣my − (n+ 1)x

x− y
− log

√
5

logα

∣∣∣∣∣ < 121

|x− y|αλ1
.

By Lemma 4.3, we have that

250|x− y| < 250 max{x, y} < 1097 < α470 < αλ1

which implies that the expression on the right-hand side of (4.54) is smaller than 1/(2|x−
y|2). By Legendre’s criterion, (my − (n + 1)x)/(x − y) is a convergent pk/qk of γ :=

log
√

5/ logα for some nonnegative integer k.

Case k < 100. Since q99 < 4.1× 1046 and max{ak : 0 ≤ k ≤ 99} = 29, then

1

1095
<

1

31q2
99

< min

{∣∣∣∣γ − pk
qk

∣∣∣∣ : k ∈ {0, 1, . . . , 100}
}
≤
∣∣∣∣γ − my − (n+ 1)x

x− y

∣∣∣∣ .
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Therefore, comparing with (4.54) and using the fact that 1 ≤ |x− y|,

λ1 <
log(121× 1095)

logα
< 465,

a contradiction with our assumption that λ1 > 470. Thus, k ≥ 100.

Case k ≥ 100. Since q189 > 3×1094 > |x−y|, we conclude that k ∈ [100, 189]. Besides,

we have that
1

10192
<

1

332× q2
189

<

∣∣∣∣γ − p189

q189

∣∣∣∣ .
Thus, comparing with (4.54), we get that

1

10192
<

∣∣∣∣γ − pk
qk

∣∣∣∣ < 121

|x− y|αλ1
≤ 121

q100αλ1
<

121

1048αλ1
,

which implies

λ1 <
log(121× 10144)

logα
< 700.

If M ≤ x, then we obtain M = λ1 < 700, a contradiction with the fact that M > 750.

Thus, x = λ1, therefore we have x < 700. Now, by estimate (4.52) we get

M < 1.4× 700× 1014 logM < 9.8× 1016 logM,

which gives M < 4.3× 1018. Comparing it with estimate (4.48), we conclude that, in any

case, this last inequality always holds. Hence, Lemma 4.1 yields

(4.55) N < 9× 1070, x < 2× 1068 and y < 2× 1088.

Now, we get that q177 > 2× 1088 > |x− y| and∣∣∣∣γ − p177

q177

∣∣∣∣ > 1

332q2
177

>
1

10180
,

therefore, as we proceeded before, we have

λ1 <
log(121× 10132)

logα
< 642.

Again, since M > 750 and λ1 := min{x,M}, the previous inequality implies that λ = x,

with x ∈ [3, 641].

Now, due to the fact that M > 750, inequality (4.50) implies

(4.56)
∣∣(x− y) log

√
5− (nx−my) logα− log(αx − α−x)

∣∣ < 150

αM
.

Here, we fix x and apply again the Baker–Davenport reduction method. We have

|uγ − v + µx| < AB−M ,
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where (u, v) = (x− y, nx−my) and

γ :=
log
√

5

logα
, µx := − log(αx − α−x)

logα
, A := 312

(
>

150

logα

)
, B := α.

By estimate (4.55), we can take T = 1089 as the bound on |u|. We loop over all values

x ∈ [3, 641]. In all cases we choose q180, i.e., the denominator of the convergent of index

180 of γ, since q180 > 6T , and we obtained

ε > 1.3× 10−90 and log(Aq/ε)/ logB < 1293.

Hence, as before, the latter inequality implies M < 1293. We repeat this reduction process.

By Lemma 4.1, we get

(4.57) N < 3× 1038, x < 4× 1035 and y < 5× 1054.

This time, we get that q115 > 5× 1054 > |x− y| and∣∣∣∣γ − p115

q115

∣∣∣∣ > 1

10114
,

which implies λ1 < 326. Thus, we can conclude that x ∈ [3, 325]. We apply again the

Baker–Davenport reduction method to (4.56) taking into account that, by estimate (4.57),

we can take T = 1055. This time, in all the cases, we get

ε > 1.9× 10−41 and log(Aq/ε)/ logB < 662.

Therefore, we have M < 662, a contradiction with our assumption that M > 750.

What we have done until now allows us to conclude that, no matter whether M > 750

or M ≤ 750, equation (1.4) has no solution when N > 1200.

5. The case N small: N ≤ 1200

5.1. The final computations

Due to the previous section, it remains to study the case N ≤ 1200. Recall that we are

working under the assumption that n ≥ 4, m ≥ 3, x ≥ 3 and y ≥ 2.

Lemma 5.1. Under the previous assumptions over the variables and N ≤ 1200, there are

no non-trivial solutions to the Diophantine equation (1.4).

Proof. By Lemma 3.3 and the fact that M ≤ N , we have

x < 1.3× 1018 and y < 1.5× 1021.
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Now, let us take

Γ1 := y logFm − x logFn+1,

and observe that Γ1 < 0, due to the fact that Λ1 = 1− eΓ1 > 0. Hence, by (3.4), we get

(5.1) 0 < 1− e−|Γ1| ≤ 2.5−x,

which implies

0 <
(
e|Γ1| − 1

)
e−|Γ1| ≤ 2.5−x.

Thus, we get

0 < |Γ1| < e|Γ1| − 1 ≤ 2.5−xe|Γ1|.

However, since x ≥ 3, by (5.1) we get e|Γ1| ≤ 1.2. Thus, the previous inequality implies

0 <
∣∣y logFm − x logFn+1

∣∣ < 1.2

2.5x
.

Now, dividing both sides of the last inequality above by x logFm and taking into account

that Γ1 < 0, we get

(5.2) 0 <
logFn+1

logFm
− y

x
<

1.2

x2.5x logFm
.

Due to the fact that

2.5x logFm ≥ 2.5x log 2 > 3x for all x ≥ 3 and m ≥ 3,

by inequality (5.2), we get

0 <
logFn+1

logFm
− y

x
<

1

2x2
.

By Legendre’s criterion, item (i) in Lemma 2.4, we infer that y/x is a convergent to the

continued fraction of logFn+1/ logFm. Let d := gcd(x, y). Due to Fermat’s last theorem

once again, it follows that d ∈ {1, 2}, otherwise the triple

(X,Y, Z) =
(
F
x/d
n−1, F

y/d
m , F

x/d
n+1

)
would be a positive integer solution to the Fermat equation Xd + Y d = Zd with integer

exponent d ≥ 3 which does not exist. Therefore, since the convergent pk/qk of any

irrational number γ satisfies qk ≥ Fk, where Fk is the kth Fibonacci number, and since

F86 > 3 × 1017, it follows that (x, y) = (qk, pk) or (2qk, 2pk) for some k ≤ 86. Thus, we

have that pk/qk is the kth convergent to logFn+1/ logFm for some m ≥ 3, n ≥ 3, such that

gcd(m,n2 − 1) ≤ 4, and N ≤ 1200. The only issue to justify is that gcd(m,n2 − 1) ≤ 4.

We assume that r = gcd(m,n− 1). Then r divides both m and n− 1, so Fr divides both

F ym and F xn−1. In particular, Fr divides F xn+1. Thus,

Fr | gcd(F xn−1, F
x
n+1) = gcd(Fn−1, Fn+1)x = F xgcd(n−1,n+1) | F

x
2 = 1.
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So, r ∈ {1, 2}. The same argument shows that gcd(m,n+1) ≤ 2, therefore gcd(m,n2−1) ≤
4. Now, we generated the first 86 convergents of logFn+1/ logFm, with m and n satisfying

all of the above conditions, and checked for each pair (x, y) ∈ {(qk, pk), (2qk, 2pk)} with

x ≥ 3, if the congruence

F xn+1 − F xn−1 ≡ F ym (mod 1020)

holds. The computations which took almost three hours used the Mathematica feature

PowerMod[A, u,B] and found no new solutions.

This ends the proof of our Theorem 1.1.

References

[1] A. Baker and H. Davenport, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2, Quart. J.

Math. Oxford Ser. (2) 20 (1969), 129–137.
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