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On RGI Algorithms for Solving Sylvester Tensor Equations

Xin-Fang Zhang and Qing-Wen Wang*

Abstract. This paper is concerned with studying the relaxed gradient-based itera-

tive method based on tensor format to solve the Sylvester tensor equation. From

the information given by the previous steps, we further develop a modified relaxed

gradient-based iterative method which converges faster than the method above. Under

some suitable conditions, we prove that the introduced methods are convergent to the

unique solution for any initial tensor. At last, we provide some numerical examples

to show that our methods perform much better than the GI algorithm proposed by

Chen and Lu (Math. Probl. Eng. 2013) both in the number of iteration steps and

the elapsed CPU time.

1. Introduction

In this paper, we investigate the iterative solutions to the following Sylvester tensor equa-

tion

(1.1) X ×1 A1 + X ×2 A2 + X ×3 A3 = B,

where A1 ∈ RN1×N1 , A2 ∈ RN2×N2 , A3 ∈ RN3×N3 , B ∈ RN1×N2×N3 are given, and

the unknown tensor X ∈ RN1×N2×N3 is required to be determined. The details of the

operators ×i (i = 1, 2, 3) will be described in Section 2. If X ∈ RN1×N2 , that is a matrix

X, (1.1) can reduce to the following Sylvester matrix equation

(1.2) A1X +XAT2 = B.

It was not merely applied to control theory [12, 17, 18, 34, 49], also extensively penetrated

into model reduction [4], image processing [8], quantum information [43], disturbance de-

coupling problem [11] and system identification [15, 33, 44]. Existing methods for solving

(1.2) are classified into two categories: direct methods and iterative methods. From the

Kronecker product or the Hessenberg–Schur form, some direct methods [3,20–24,41] have
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been presented to solve a large linear system. However, the above methods are difficult

to achieve in actual implementations as the dimension of matrices increases. Inspired

by these issues, some researchers are desire to utilize the iterative methods to solve the

matrix equation (1.2). For example, Bai [2] derived a Hermitian and skew-Hermitian

splitting (HSS) iteration method to solve Sylvester matrix equation with non-Hermitian

and positive definite/semi-definite matrices. Zhou et al. [50] introduced a modified ver-

sion to improve the performance of HSS iteration. In [28, 29, 35], some Krylov subspace

methods for obtaining an approximate solution of (1.2) have been proposed. From the

hierarchical identification principle [14,16], some efficient gradient-based iterative methods

for solving Sylvester matrix equation were proposed in [13,19]. Benner et al. [5] presented

a generalization ADI method based on the Cholesky factor to consider the matrix equa-

tion (1.2). Moreover, Niu et al. [38] developed a relaxed gradient-based iterative (RGI)

method to investigate the numerical solutions of (1.2). By using the information provided

by the previous steps, an accelerated gradient-based iterative method [46] was proposed

for searching the iterative solutions of (1.2), which is a promising method.

In recent years, some algorithms and theoretical results involved with (1.1) have been

well developed. Chen and Lu [10] extended the gradient-based iterative (GI) algorithm

and its modification version to find an approximate solution of (1.1). In [9], the GM-

RES method in its tensor format was introduced to solve the Sylvester tensor equation.

Moreover, a nearest Kronecker preconditioner was also proposed for accelerating the con-

vergence of the method mentioned. After that, a residual norm steepest descent method [6]

was proposed for solving the Sylvester tensor equation. Beik et al. [7] derived the conjugate

gradient and nested conjugate gradient methods in their tensor forms for searching the

solutions of (1.1). By using the bidiagonal process, Karimi and Dehghan [30] developed a

global least squares method based on tensor form to approximate the solution of Sylvester

tensor equation. The convergence results of this method were also established. In [47],

Xu and Wang extended the bi-conjugate gradient and bi-conjugate residual methods for

solving nonsymmetric linear system to solve Stein tensor equation. Wang and Xu [42] de-

veloped a class of iterative algorithms for solving some tensor equation under the Einstein

product. Zhang and Wang [48] presented the tensor forms of bi-conjugate gradient and

bi-conjugate residual methods for solving Sylvester tensor equation. Xie and Wang [45]

investigated the existence of the reducible solution to a quaternion tensor equation. Lv

and Ma [37] proposed a modified conjugate gradient algorithm for solving the generalized

coupled Sylvester tensor equations. Also they [36] established a Levenberg–Marquardt

method for solving semi-symmetric tensor equations. Huang and Ma [25–27] developed

some Kryolv subspace methods for solving the generalized Sylvester tensor equations.

The purpose of this paper is to extend the relaxed gradient-based iterative method
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proposed by Niu et al. [38] to solve the Sylvester tensor equation. By introducing two

relaxation parameters, we develop a relaxed gradient-based iterative algorithm to consider

the solution of (1.1). By taking fully advantage of the information given by the previ-

ous steps, we further develop a tensor form of modified relaxed gradient-based iterative

algorithm which can greatly improve the performance of the above method. The detailed

analysis of the convergence for the introduced algorithms is also established.

We organize this paper as follows. In Section 2, we initially recall some preliminary

definitions and conclusions related to tensors. In Section 3, we propose a relaxed gradient-

based iterative algorithm and its modification version in their tensor forms for solving the

Sylvester tensor equation, respectively. Moreover, we also present the convergence analysis

of the introduced methods. In Section 4, we provide several examples to demonstrate that

our algorithms outperform the GI algorithm both in the elapsed time and the number of

iteration steps. Finally, we give some concluding remarks in Section 5.

2. Preliminaries

In this part, we will present several useful definitions and results which are used in the

sequel. Matrices are written as capital letters, e.g., A, tensors are written as Euler script

letters, e.g., A . The symbol In denotes the n × n identity matrix. R denotes the real

number field. For any given matrix A = (aij) ∈ Rm×n, operator Vc(A) stacks the columns

of A to a vector that could be described as

Vc(A) = [a11 a21 · · · am1 a12 a22 · · · am2 · · · a1n a2n · · · amn].

An order m dimension N1 ×N2 × · · · ×Nm tensor X over R is a multidimensional array

with its entries given by

X = (xi1i2···im), xi1i2···im ∈ R, 1 ≤ ij ≤ Nj , 1 ≤ j ≤ m.

Let RN1×N2×···×Nm be the set of all these tensors over R.

Definition 2.1. [31] If X ∈ RN1×N2×···×Nm and A ∈ RJ×Nn , then their n-mode product

defined as

(X ×n A)i1···in−1jin+1···im =

Nn∑
in=1

xi1i2···imajin

is an N1 × · · · ×Nn−1 × J ×Nn+1 × · · · ×Nm tensor.

Definition 2.2. [40] If X ∈ RN1×···×Nm , then its mode-n matricization X(n) defined as

(X(n))inj = xi1i2···im , j = 1 +

m∑
k=1,k 6=n

(ik − 1)Jk, Jk =

k−1∏
p=1,p 6=n

Np

is an Nn ×N1 · · ·Nn−1Nn+1 · · ·Nm matrix.
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For any given tensor X ∈ RN1×···×Nm , operator Vc(X ) is the column stacking form

of the corresponding matrix X(1). Then the inner product of X and Y over RN1×···×Nm

can be defined as

〈X ,Y 〉 = Vc(X )TVc(Y ) =

N1∑
i1=1

N2∑
i2=1

· · ·
Nm∑
im=1

xi1i2···imyi1i2···im .

Particularly, the induced Frobenious norm of X is

(2.1) ‖X ‖2 =

N1∑
i1=1

N2∑
i2=1

· · ·
Nm∑
im=1

x2i1i2···im .

From the above definitions, we have the following results.

Proposition 2.3. [32, 39] Let X and Y be the tensors over RN1×···Nn×···×Nm.

(1) If Y = X ×1 A1 ×2 A2 ×3 · · · ×m Am holds, then

Y(n) = AnX(n)(Am ⊗ · · · ⊗An+1 ⊗An−1 ⊗ · · · ⊗A1)
T ,

where the matrices Ai ∈ RNi×Ni, 1 ≤ i ≤ m.

(2) For any given matrices Ai and Aj, we have

X ×i Ai ×j Aj =

X ×i (AjAi) if i = j,

X ×j Aj ×i Ai if i 6= j.

(3) For any given matrix Ai, we have

〈X ,Y ×i Ai〉 = 〈X ×i ATi ,Y 〉

for 1 ≤ i ≤ m.

(4) 2〈X ,Y 〉 ≤ ‖X ‖2 + ‖Y ‖2, 〈X ,Y 〉 ≤ ‖X ‖‖Y ‖;

(5) ‖X ×i Ai‖ ≤ ‖X ‖‖Ai‖2, where ‖Ai‖2 denotes the spectral norm of matrix Ai.

By using Proposition 2.3, we can easily obtain that (1.1) is equivalent to the following

linear system of equations

(2.2) (IN3 ⊗ IN2 ⊗A1 + IN3 ⊗A2 ⊗ INl +A3 ⊗ IN2 ⊗ IN1)Vc(X ) = Vc(B).

Then Chen [10] gave the following theorem to show the uniqueness of the solution of the

tensor equation (1.1).
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Lemma 2.4. [10] Let λp(A1), λq(A2) and λr(A3) be the eigenvalues of A1, A2 and A3,

respectively. Then X ∗ is a unique solution of (1.1) if and only if λp(A1) + λq(A2) +

λr(A3) 6= 0 for any p, q, and r.

From the hierarchical identification principle, Chen and Lu [10] proposed a gradient-

based iterative (GI) algorithm for searching the solutions of (1.1).

Algorithm 2.1 Gradient-based iterative algorithm for solving (1.1).

Input: Given an initial guess X 0.

Output: X .

For k = 0, 1, 2, . . . until converges

1: Rk = B −X k ×1 A1 −X k ×2 A2 −X k ×3 A3,

2: X k+1
1 = X k + γRk ×1 A

T
1 ,

3: X k+1
2 = X k + γRk ×2 A

T
2 ,

4: X k+1
3 = X k + γRk ×3 A

T
3 ,

5: X k+1 =
(X k+1

1 +X k+1
2 +X k+1

3 )
3 .

The convergence analysis of GI algorithm was investigated in [10].

Lemma 2.5. [10] Suppose that (1.1) has a unique solution X ∗. Then the iterative

sequence {X k} derived by GI algorithm is convergent to X ∗ if and only if

0 < γ <
2

‖A1‖22 + ‖A2‖22 + ‖A3‖22
.

Algorithm 2.2 Modified gradient-based iterative algorithm for solving (1.1).

Input: Given three initial.tensors X 0
1 , X 0

2 , X 0
3 .

Output: X .

For k = 0, 1, 2, . . . until converges

1: Rk = B −X k ×1 A1 −X k ×2 A2 −X k ×3 A3,

2: X k+1
1 = X k + γRk ×1 A

T
1 ,

3: X k =
X k+1

1 +X k
2 +X k

3
3 ,

4: X k+1
2 = X k + γRk ×2 A

T
2 ,

5: X k =
X k+1

1 +X k+1
2 +X k

3
3 ,

6: X k+1
3 = X k + γRk ×3 A

T
3 ,

7: X k+1 =
X k+1

1 +X k+1
2 +X k+1

3
3 .

According to the information provided in the previous steps, Chen and Lu [10] further

derived a modified gradient-based iterative (MGI) algorithm to accelerate the convergence
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rate of GI algorithm. The convergence results of MGI algorithm were also established

in [10].

Lemma 2.6. [10] Suppose that (1.1) has a unique solution X ∗. Then the iterative

sequence {X k} derived by MGI algorithm is convergent to X ∗ if and only if

0 < γ < min

{
1

‖A1‖22
,

1

‖A2‖22
,

1

‖A3‖22

}
.

Compared with GI algorithm, it is easy to see that the RGI algorithm has better

performance in [38]. Therefore, we propose a relaxed gradient-based iterative algorithm

based on tenor form for studying the solutions of (1.1). Unless otherwise specified, we

always suppose that (1.1) has a unique solution X ∗ in the rest of this paper.

3. Tensor forms of relaxed gradient-based algorithm

In this part, we introduce two parameters to propose a relaxed gradient-based iterative

algorithm based on tensor format (RGI−BTF) for solving the tensor equation (1.1). By

using the efficient information given by the previous steps, a modified relaxed gradient-

based iterative algorithm in its tensor form (MRGI−BTF) is also proposed. Now we

present the details of RGI−BTF algorithm as follows.

Define three residual tensors:

W1 = B −X ×3 A3 −X ×2 A2,

W2 = B −X ×3 A3 −X ×1 A1,

W3 = B −X ×2 A2 −X ×1 A1.

(3.1)

It follows from (1.1) that we can attain three fictitious subsystems, respectively,

X ×1 A1 = W1, X ×2 A2 = W2, X ×3 A3 = W3.

If X k is the k-th iterative solution of (1.1), then the relaxed recursive equations are given

by

X k+1
1 = X k

1 + (α− β)βγ(W1 −X k
1 ×1 A1)×1 A

T
1 ,

X k+1
2 = X k

2 + (1− α)βγ(W2 −X k
2 ×2 A2)×2 A

T
2 ,

X k+1
3 = X k

3 + (1− α)(α− β)γ(W3 −X k
3 ×3 A3)×3 A

T
3 ,

(3.2)

where γ is the step length, α and β are the relaxation parameters satisfying 0 < β < α < 1.

We substitute (3.1) into (3.2) such that

X k+1
1 = X k

1 + (α− β)βγ(B −X ×3 A3 −X ×2 A2 −X k
1 ×1 A1)×1 A

T
1 ,

X k+1
2 = X k

2 + (1− α)βγ(B −X ×3 A3 −X ×1 A1 −X k
2 ×2 A2)×2 A

T
2 ,

X k+1
3 = X k

3 + (1− α)(α− β)γ(B −X ×2 A2 −X ×1 A1 −X k
3 ×3 A3)×3 A

T
3 .
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By replacing the unknown tensor X with X k, we have

X k+1
1 = X k

1 + (α− β)βγRk
1 ×1 A

T
1 ,

X k+1
2 = X k

2 + (1− α)βγRk
2 ×2 A

T
2 ,

X k+1
3 = X k

3 + (1− α)(α− β)γRk
3 ×3 A

T
3 ,

(3.3)

where Rk
i = B−X k

i ×1A1−X k
i ×2A2−X k

i ×3A3, i = 1, 2, 3. Since the two relaxation

parameters have been introduced, we update X k+1 as follows:

(3.4) X k+1 = (1− α)X k+1
1 + (α− β)X k+1

2 + βX k+1
3 .

In fact, the above formula is based on the idea of MAOR iteration for solving linear comple-

mentarity problem [1]. It is easy to see that the performance of MAOR algorithm depends

on the chosen parameters. However, the optimal relaxation parameters of RGI−BTF al-

gorithm are very difficult to determine. We will study how to choose these parameters in

the future work.

In what follows, we present the details of the RGI−BTF algorithm for solving (1.1).

Algorithm 3.1 RGI algorithm based on tensor format for solving (1.1).

Input: Given an initial guess X 0.

Output: X .

For k = 0, 1, 2, . . . until converges

1: Rk = B −X k ×1 A1 −X k ×2 A2 −X k ×3 A3,

2: X k+1
1 = X k + (α− β)βγRk ×1 A

T
1 ,

3: X k+1
2 = X k + (1− α)βγRk ×2 A

T
2 ,

4: X k+1
3 = X k + (1− α)(α− β)γRk ×3 A

T
3 ,

5: X k+1 = (1− α)X k+1
1 + (α− β)X k+1

2 + βX k+1
3 .

Remark 3.1. (1) If α = 2/3 and β = 1/3, then (3.4) is equivalent to the one proposed

in [10].

(2) If X ∈ RN1×N2 and α = β or β = 0, then the proposed algorithm is equivalent to

Algorithm 2.2 derived in [38].

(3) Algorithm 3.1 cannot reduce to Algorithm 2.1 because the formulas (3.3) are different

from that of [10].

Now we discuss the convergence conditions of the algorithm mentioned. The following

theorem present a sufficient condition for the convergence of RGI−BTF algorithm.



508 Xin-Fang Zhang and Qing-Wen Wang

Theorem 3.2. Let {X k} be the iterative sequence given by Algorithm 3.1. For any initial

tensor, if the step length γ satisfies

0 < γ <
2

(α− β)β‖A1‖22 + (1− α)β‖A2‖22 + (1− α)(α− β)‖A3‖22
, 0 < β < α < 1,

then the iterative sequence {X k} is convergent to X ∗.

Proof. Firstly, we define the error tensors as:

−→
X k

i = X k
i −X ∗, i = 1, 2, 3

and

Pk =
−→
X k ×1 A1, Qk =

−→
X k ×2 A2, U k =

−→
X k ×3 A3.

It follows from Algorithm 3.1 that we have

−→
X k+1

1 =
−→
X k − (α− β)βγV k ×1 A

T
1 ,

−→
X k+1

2 =
−→
X k − (1− α)βγV k ×2 A

T
2 ,

−→
X k+1

3 =
−→
X k − (1− α)(α− β)γV k ×3 A

T
3 ,

where V k = Pk + Qk + U k. Let

(3.5)
−→
X k+1 = X k+1 −X ∗.

By using (2.1) and (3.5), we have

‖
−→
X k+1‖2

= ‖(1− α)X k+1
1 + (α− β)X k+1

2 + βX k+1
3 −X ∗‖2

= ‖(1− α)
−→
X k+1

1 + (α− β)
−→
X k+1

2 + β
−→
X k+1

3 ‖2

= (1− α)2‖
−→
X k+1

1 ‖2 + (α− β)2‖
−→
X k+1

2 ‖2 + β2‖
−→
X k+1

3 ‖2

+ 2(1− α)(α− β)〈
−→
X k+1

1 ,
−→
X k+1

2 〉+ 2(1− α)β〈
−→
X k+1

1 ,
−→
X k+1

3 〉

+ 2(α− β)β〈
−→
X k+1

2 ,
−→
X k+1

3 〉

≤ (1− α)2‖
−→
X k+1

1 ‖2 + (α− β)2‖
−→
X k+1

2 ‖2 + β2‖
−→
X k+1

3 ‖2

+ (1− α)(α− β)(‖
−→
X k+1

1 ‖2 + ‖
−→
X k+1

2 ‖2) + (1− α)β(‖
−→
X k+1

1 ‖2 + ‖
−→
X k+1

3 ‖2)

+ (α− β)β(‖
−→
X k+1

2 ‖2 + ‖
−→
X k+1

3 ‖2)

= (1− α)‖
−→
X k+1

1 ‖2 + (α− β)‖
−→
X k+1

2 ‖2 + β‖
−→
X k+1

3 ‖2

≤ ‖
−→
X k‖2 − 2(1− α)(α− β)βγ[〈V k,

−→
X k ×1 A1〉+ 〈V k,

−→
X k ×2 A2〉+ 〈V k,

−→
X k ×3 A3〉]

+ (1− α)(α− β)βγ((α− β)βγ‖A1‖22 + (1− α)βγ‖A2‖22 + (1− α)(α− β)γ‖A3‖22)‖V k‖2
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= ‖
−→
X k‖2 − (1− α)(α− β)βγ

[
2− (α− β)βγ‖A1‖22 − (1− α)βγ‖A2‖22
− (1− α)(α− β)γ‖A3‖22

]
‖V k‖2

≤ ‖
−→
X 0‖2 − (1− α)(α− β)βγ

[
2− (α− β)βγ‖A1‖22 − (1− α)βγ‖A2‖22

− (1− α)(α− β)γ‖A3‖22
] k∑
j=0

‖V j‖2.

If 0 < γ < 2
(α−β)β‖A1‖22+(1−α)β‖A2‖22+(1−α)(α−β)‖A3‖22

and 0 < β < α < 1, then

k∑
j=0

‖V j‖2 <∞,

which shows V k → 0 as k → ∞, i.e.,
−→
X k ×1 A1 +

−→
X k ×2 A2 +

−→
X k ×3 A3 → 0. By

Lemma 2.4, X k →X ∗ holds.

To improve the performance of Algorithm 3.1, we take the information given by the

previous steps to develop a tensor form of modified relaxed gradient-based iterative al-

gorithm. It is worth noting that the last iterative solutions X k+1
1 and X k+1

2 have been

calculated in the process of updating X k+1
2 and X k+1

3 , respectively. By taking X k+1
1

and X k+1
2 to update X k, we propose a modified RGI algorithm based on tensor format

(MRGI−BTF) for solving (1.1) as follows.

Algorithm 3.2 MRGI algorithm based on tensor format for solving (1.1).

Input: Given three initial tensors X 0
1 , X 0

2 , X 0
3 .

Output: X .

For k = 0, 1, 2, . . . until converges

1: Rk
i = B −X k

i ×1 A1 −X k
i ×2 A2 −X k

i ×3 A3,

2: X k+1
1 = X k + (α− β)βγRk

1 ×1 A
T
1 ,

3: X k = (1− α)X k+1
1 + (α− β)X k

2 + βX k
3 ,

4: X k+1
2 = X k + (1− α)βγRk

2 ×2 A
T
2 ,

5: X k = (1− α)X k+1
1 + (α− β)X k+1

2 + βX k
3 ,

6: X k+1
3 = X k + (1− α)(α− β)γRk

3 ×3 A
T
3 ,

7: X k+1 = (1− α)X k+1
1 + (α− β)X k+1

2 + βX k+1
3 .

Similar to Algorithm 3.1, we present a sufficient condition for guaranteeing the con-

vergence of the above method as follows.

Theorem 3.3. Let {X k} be the iterative sequence given by Algorithm 3.2. For any initial

tensor, if the step length γ satisfies

0 < γ < min

{
2

(α− β)β‖A1‖22
,

2

(1− α)β‖A2‖22
,

2

(1− α)(α− β)‖A3‖22

}
, 0 < β < α < 1,
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then the iterative sequence {X k} is convergent to X ∗.

Proof. For the sake of convenience, we replace X k with X
k

and X
k

in the third and

fifth iterations of Algorithm 3.2, respectively. Then we define the error tensors as:

X̂ k = X k−X ∗, X̂
k

= X
k−X ∗, X̂

k

= X
k
−X ∗, X̂ k

i = X k
i −X ∗, i = 1, 2, 3.

Let

Pk = X̂ k ×1 A1, P
k

= X̂
k

×1 A1, P
k

= X̂
k

×1 A1,

Qk = X̂ k ×2 A2, Q
k

= X̂
k

×2 A2, Q
k

= X̂
k

×2 A2,

U k = X̂ k ×3 A3, U
k

= X̂
k

×3 A3, U
k

= X̂
k

×3 A3.

Then we can easily obtain that

X̂ k+1
1 = X̂ k − (α− β)βγV k ×1 A

T
1 ,

X̂ k+1
2 = X̂

k

− (1− α)βγV
k ×2 A

T
2 ,

X̂ k+1
3 = X̂

k

− (1− α)(α− β)γV
k
×3 A

T
3 ,

(3.6)

where

V k = Pk + Qk + U k, V
k

= P
k

+ Q
k

+ U
k
, V

k
= P

k
+ Q

k
+ U

k
.

It follows from (2.1) and (3.6) that we have

‖X̂ k+1
1 ‖2 = ‖X̂ k − (α− β)βγV k ×1 A

T
1 ‖2

= 〈X̂ k, X̂ k〉 − 2(α− β)βγ〈X̂ k ×1 A1,V
k〉+ (α− β)2β2γ2‖V k ×1 A

T
1 ‖2

≤ ‖X̂ k‖2 − 2(α− β)βγ〈Pk,V k〉+ (α− β)2β2γ2‖V k‖2‖A1‖22,

‖X̂ k+1
2 ‖2 = ‖X̂

k

− (1− α)βγV
k ×2 A

T
2 ‖2

= 〈X̂
k

, X̂
k

〉 − 2(1− α)βγ〈X̂
k

×2 A
T
2 ,V

k〉+ (1− α)2β2γ2‖V k ×2 A
T
2 ‖2

≤ ‖X̂
k

‖2 − 2(1− α)βγ〈Qk
,V

k〉+ (1− α)2β2γ2‖V k‖2‖A2‖22,

‖X̂ k+1
3 ‖2 = ‖X̂

k

− (1− α)(α− β)γV
k
×3 A

T
3 ‖2

= ‖X̂
k

‖2 − 2(1− α)(α− β)γ〈U
k
,V

k
〉+ (1− α)2(α− β)2γ2‖V

k
×3 A

T
3 ‖2

≤ ‖X̂
k

‖2 − 2(1− α)(α− β)γ〈U
k
,V

k
〉+ (1− α)2(α− β)2γ2‖V

k
‖2‖A3‖22.

Therefore, we have
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‖X̂ k+1‖2 = ‖(1− α)X̂ k+1
1 + (α− β)X̂ k+1

2 + βX̂ k+1
3 ‖2

= (1− α)2‖X̂ k+1
1 ‖2 + (α− β)2‖X̂ k+1

2 ‖2 + β2‖X̂ k+1
3 ‖2

+ 2(1− α)(α− β)〈X̂ k+1
1 , X̂ k+1

2 〉+ 2(α− β)β〈X̂ k+1
2 , X̂ k+1

3 〉

+ 2(1− α)β〈X̂ k+1
1 , X̂ k+1

3 〉

≤ (1− α)2‖X̂ k+1
1 ‖2 + (α− β)2‖X̂ k+1

2 ‖2 + β2‖X̂ k+1
3 ‖2

+ (1− α)(α− β)(‖X̂ k+1
1 ‖2 + ‖X̂ k+1

2 ‖2) + (α− β)β(‖X̂ k+1
2 ‖2 + ‖X̂ k+1

3 ‖2)

+ (1− α)β(‖X̂ k+1
1 ‖2 + ‖X̂ k+1

3 ‖2)

= (1− α)‖X̂ k+1
1 ‖2 + (α− β)‖X̂ k+1

2 ‖2 + β‖X̂ k+1
3 ‖2

≤ (1− α)[‖X̂ k‖2 − 2(α− β)βγ〈Pk,V k〉+ (α− β)2β2γ2‖V k‖2‖A1‖22]

+ (α− β)[‖X̂
k

‖2 − 2(1− α)βγ〈Qk
,V

k〉+ (1− α)2β2γ2‖V k‖2‖A2‖22]

+ β[‖X̂
k

‖2 − 2(1− α)(α− β)γ〈U
k
,V

k
〉+ (1− α)2(α− β)2γ2‖V

k
‖2‖A3‖22]

= (1− α)‖X̂ k‖2 + (α− β)‖X̂
k

‖2 + β‖X̂
k

‖2

− 2(1− α)(α− β)βγ[〈Pk,V k〉+ 〈Qk
,V

k〉+ 〈U
k
,V

k
〉]

+ (1− α)(α− β)2β2γ2(‖V k‖2‖A1‖22) + (1− α)2(α− β)β2γ2(‖V k‖2‖A2‖22)

+ (1− α)2(α− β)2βγ2(‖V
k
‖2‖A3‖22)

≤ (1− α)‖X̂ k‖2 + (α− β)‖X̂
k

‖2 + β‖X̂
k

‖2

− (1− α)(α− β)βγ[2− (α− β)βγ‖A1‖22]‖V k‖2

− (1− α)(α− β)βγ[2− (1− α)βγ‖A2‖22]‖V
k‖2

− (1− α)(α− β)βγ[2− (1− α)(α− β)γ‖A3‖22]‖V
k
‖2

≤ ‖X̂ 0‖2 + (α− β)
k∑
j=0

‖X̂
k

‖2 + β
k∑
j=0

‖X̂
k

‖2

− (1− α)(α− β)βγ[2− (α− β)βγ‖A1‖22]
k∑
j=0

‖V k‖2

− (1− α)(α− β)βγ[2− (1− α)βγ‖A2‖22]
k∑
j=0

‖V k‖2

− (1− α)(α− β)βγ[2− (1− α)(α− β)γ‖A3‖22]
k∑
j=0

‖V
k
‖2.

From the above process, it is not difficult to verify that
∑k

j=0 ‖X̂
j

‖2 <∞ and
∑k

j=0 ‖X̂
j

‖2
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<∞. Then Algorithm 3.2 is convergent to X ∗ if

0 < γ < min

{
2

(α− β)β‖A1‖22
,

2

(1− α)β‖A2‖22
,

2

(1− α)(α− β)‖A3‖22

}
.

Consequently,

k∑
j=0

‖V j‖2 <∞,
k∑
j=0

‖V j‖2 <∞,
k∑
j=0

‖V
j
‖2 <∞.

This fact shows that V k → 0, V
k → 0 and V

k
→ 0 as k → ∞, i.e., X̂ k → 0, X̂

k

→ 0

and X̂
k

→ 0 hold.

4. Numerical experiments

In this part, we provide several examples to test the feasibility and validity of the algo-

rithms proposed. The proposed methods were executed by Matlab R2016b on PC with

Inter(R) Core(TM) i7-4720M@2.2 GHz and 8.00 G memory. Moreover, we implemented

all the operations via the tensor toolbox (version 2.5) [31]. The symbols CPU and IT

denote the elapsed time and the number of iteration steps, respectively. We take the

relative residual error RES = ‖Rk‖/‖R0‖ < 10−10 as the stopping rule for the above four

algorithms, where Rk is the residual tensor at k-th iteration. Besides, the step length

µ involved in GI algorithm and RGI−BTF algorithm is chosen by 1
‖A1‖22+‖A2‖22+‖A3‖22

and
1

(α−β)β‖A1‖22+(1−α)β‖A2‖22+(1−α)(α−β)‖A3‖22
, respectively.

Example 4.1. We reconsider the Example 1 in [10] such that

A1 =

 3 1

−1 2

 , A2 =

 1 1

−1 1

 , A3 =

1 0

1 −2

 ,

B( : , : , 1) =

10 13

15 11

 , B( : , : , 2) =

14 3

3 0

 .

Starting with the chosen tensors X 0
1 = X 0

2 = X 0
3 = 10−6 · tenones(2, 2, 2), we im-

plemented the proposed algorithms and presented the test results in Table 4.1. As shown

in Table 4.1, it is easy to see that RGI−BTF and MRGI−BTF algorithms converge faster

than GI algorithm, where MRGI−BTF algorithm outperforms than other algorithms. The

convergence curves of these algorithms were recorded in Figure 4.1.
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Algorithms IT CPU RES

GI 623 2.7601 9.8923e-11

MGI 136 1.1472 9.6950e-11

RGI−BTF 202 1.4510 9.2056e-11

MRGI−BTF 58 0.5297 7.2931e-11

Table 4.1: Test results for Example 4.1.
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Figure 4.1: Comparison of convergence curves.

Example 4.2. In this example, we reconsider the Example 2 [10] with different parameter

ρ such that

N1 = N2 = N3 = 30;

A1 = triu(rand(N1, N2), 1) + diag(ρ+ diag(rand(N1)));

A2 = triu(rand(N2, N2), 1) + diag(ρ+ diag(rand(N2)));

A3 = triu(rand(N3, N3), 1) + diag(ρ+ diag(rand(N3)));

B = tenrand(N1, N2, N3).

We set the initial tensors

X 0
1 = X 0

2 = X 0
3 = 10−6 · tenones(N1, N2, N3).

Then we tested the proposed algorithms and presented the corresponding results in Ta-

bles 4.2 and 4.3. It follows from these tables that the relative residual error, the elapsed

CPU time and the iteration steps involved with RGI−BTF and MRGI−BTF algorithms

are commonly less than GI algorithm. Besides, the CPU time and the iteration steps

costed by MRGI−BTF algorithm are less than that of MGI algorithm. According to Fig-

ure 4.2, we can easily observe that MRGI−BTF algorithm converges much faster than

MGI algorithm.
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Algorithms IT CPU RES

GI 697 8.7022 9.7943e-11

MGI 170 3.4464 9.2514e-11

RGI−BTF 328 4.0872 9.8076e-11

MRGI−BTF 121 1.9227 9.2225e-11

Table 4.2: Test results for Example 4.2

with ρ = 3.

Algorithms IT CPU RES

GI 223 2.0230 9.6016e-11

MGI 53 0.8519 8.3845e-11

RGI−BTF 120 1.0771 9.8830e-11

MRGI−BTF 39 0.5985 8.2435e-11

Table 4.3: Test results for Example 4.2

with ρ = 5.
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Figure 4.2: Comparison of convergence curves for Example 4.2 with ρ = 3 (left) and ρ = 5

(right).

Example 4.3. We consider the solution of the following convection-diffusion equation [7]

−xΦy + zTΨy = g in Γ = [0, 1]× [0, 1]× [0, 1],

x = 0 on ∂Γ.

According to a standard finite difference discretization on equidistant nodes and a

second order convergent scheme (Fromm’s scheme), we solve the linear system (2.2) with

A1 = A2 = A3

=



2vh−2 + 3
4ch
−1 −vh−2 − 5

4ch
−1 1

4ch
−1

−vh−2 + 1
4ch
−1 2vh−2 + 3

4ch
−1 −vh−2 − 5

4ch
−1 1

4ch
−1

. . .
. . .

. . .
. . .

. . .
. . . −vh−2 − 5

4ch
−1

0 · · · −vh−2 + 1
4ch
−1 2vh−2 + 3

4ch
−1


n×n

.
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If we take h = 1/(n+ 1), then

A1 = A2 = A3 =
v

h2



2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2


+

c

4h



3 −5 1

1 3 −5

. . .
. . .

. . . 1

1 3 −5

1 3


,

B = tenrand(n, n, n).

Let v = c = 1 and X 0
1 = X 0

2 = X 0
3 = 10−6 · tenones(n, n, n). We used the proposed

algorithms to obtain the iterative solutions of (1.1) with n = 3 and n = 6, respectively.

We recorded the convergence curves of these algorithms in Figure 4.3. The recorded

figure demonstrates that the introduced algorithms are feasible and effective, where the

MRGI−BTF algorithm performs at their best.
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Figure 4.3: Comparison of convergence curves for Example 4.3 with n = 3 (left) and n = 6

(right).

5. Conclusion

In this paper, we proposed a relaxed gradient-based iterative algorithm based on tensor

form for solving (1.1). By using the information provided in the previous steps, we further

developed a modified version to improve the RGI−BTF algorithm. Under some appropri-

ate conditions, the convergence analysis shows that the introduced algorithms converge to

the unique solution for any initial value. Finally, the limited numerical results illustrate

that the MRGI−BTF algorithm performs at their best.
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