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Japanese Dedekind Domains Are Excellent

Chia-Fu Yu

Abstract. The well-known fundamental identity in number theory expresses the degree

of an extension of global fields in terms of local information. In this article we show a

generalized fundamental identity for arbitrary Dedekind domains. As an application,

we show that any Japanese Dedekind domain is excellent.

1. Introduction

Let A be an S-ring of integers of a global field K, where S is a nonempty finite set of

places of K containing all Archimedean ones. The well-known fundamental identity in

number theory states that for any finite field extension L/K and any nonzero prime ideal

p of A, one has

(1.1)
r∑
i=1

eifi = [L : K],

where ei and fi are the ramification index and residue class degree of the prime ideals Pi

lying over p (for 1 ≤ i ≤ r), respectively. If A is an arbitrary Dedekind domain, then

the fundamental identity is no longer true but instead one has the fundamental inequality∑
i eifi ≤ [L : K] in general. It is well known that when the integral closure B of A in L is

a finitely generated A-module, the equality holds; on the other hand the strict inequality

can occur; see [19, Remark, p. 15].

One can rephrase the statement in terms of valuation theory, cf. [15, Chap. II, Propo-

sition 8.5, p. 165]. In this reformation, Cohen and Zariski [6] proved a fundamental

inequality for extensions of an arbitrary valuation v of a field K to a finite field extension

L/K. Earlier Schmidt [18] constructed a valuation ring A in K which is non-Japanese,

that is, the integral closure B of A in some finite extension L/K is not finite over A. Fur-

thermore, Schmidt’s example realizes the strict inequality in the fundamental inequality,

cf. [6].

In this paper we show a modified fundamental identity for arbitrary Dedekind domains

as follows.
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Theorem 1.1. Let A be a Dedekind domain with quotient field K, L a finite extension

field of K with integral closure B of A. For any nonzero prime ideal p of A one has the

equality

(1.2)
∑
P|p

ePfP = [(L⊗K K∗p )ss : K∗p ],

where K∗p denotes the completion of K at p and (L⊗KK∗p )ss denotes the semi-simplification

of L⊗K K∗p .

We apply Theorem 1.1 and prove the following new result.

Theorem 1.2. Let A be a Dedekind domain with quotient field K. Then the following

statements are equivalent.

(1) A is excellent.

(2) A is quasi-excellent.

(3) A is a Nagata ring.

(4) A is universally Japanese.

(5) A is a Japanese ring.

We shall recall (quasi-)excellent rings, Nagata rings and (universally) Japanese rings,

and some properties in Section 2 and refer to [12] for more details. In particular, one has

the following well-known relations:

(excellent rings) =⇒ (quasi-excellent rings) =⇒ (Nagata rings)

⇐⇒ (Noetherian universally Japanese rings) =⇒ (Japanese rings).

By Theorem 1.2, when A is a Dedekind domain, the above classes of rings are actually

the same. In particular, excellent Dedekind domains are the same as Japanese Dedekind

domains, while the definition of the latter is much simpler. We remark that excellent

Dedekind domains play a subtle role in the construction of moduli spaces: particularly in

Artin’s approximation theorem [2] and the existence of Néron models [3, 10.2, Theorem 2,

p. 297]. Thus, for some arithmetic applications Theorem 1.2 provides a simpler way to

access excellent Dedekind domains.

For a property P of commutative rings, we say A is locally P if the localization Ap at

p for every p ∈ SpecA satisfies the property P. Applying Theorem 1.2 to the case where

A is a discrete valuation ring, we obtain the following

Corollary 1.3. Let A be a Dedekind domain with quotient field K. Then the following

statements are equivalent.

(1) A is locally excellent.

(2) A is locally quasi-excellent.

(3) A is a locally Nagata ring.

(4) A is locally universally Japanese.

(5) A is a locally Japanese ring.
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R. Heitmann shows that there is a locally Nagata principal ideal domain that is not

Nagata. Therefore, the equivalent classes of rings in Theorem 1.2 are strictly stronger

than the equivalence classes of rings in Corollary 1.3. Note that when the equality in (1.1)

holds, Theorem 1.1 gives a direct connection between G-rings and locally Japanese rings;

see Proposition 4.3. This is how Theorem 1.2 is proved.

We explain where (1.2) comes from. Let us fix a nonzero prime ideal p of A. On B we

have two linear topologies induced by two systems of the subgroups {pnΛ}n and {pnB}n,

respectively, where Λ is a free finite A-submodule of full rank in B, and they agree if the

localization Bp at p is finite over Ap (and as we will see from Theorem 1.1 that this is

actually “if and only if”). The completion of B for the first topology gives B⊗AA∗p, which

has rank [L⊗KK∗p : K∗p ] = [L : K] over A∗p. The completion for the second topology gives

B∗p =
∏

P|pB
∗
P, which has rank

∑
P|p ePfP, cf. the proof of Lemma 4.1. It is clear that

there is a surjective map from B ⊗A A∗p to B∗p , and using the valuation theory (see [5],

also see Section 3) we show that B∗p is exactly the reduced ring of B ⊗A A∗p. The rank of

the latter one is equal to [(L⊗K K∗p )ss : K∗p ].

This paper is organized as follows. In Section 2 we recall several rings mentioned above

and their relations. The proofs of Theorems 1.1 and 1.2 are given in Section 4.

2. Japanese, Nagata, (quasi-)excellent and G-rings

In this section we recall the definition of several fundamental rings in Introduction and their

relations. Our references are Matsumura [12], and EGA IV [8, 9], also cf. [20, Section 2].

All rings and algebras in this section are commutative with identity.

2.1. Japanese, universally Japanese and Nagata rings

Definition 2.1. Let A be an integral domain with quotient field K.

(1) We say that A is N-1 if the integral closure A′ of A in its quotient field K is a finite

A-module.

(2) We say that A is N-2 if for any finite field extension L over K, the integral closure

AL of A in L is a finite A-module.

The first non-N-1 one-dimensional integral domain was constructed by Akizuki [1],

cf. [16]. K. Schmidt [18] and respectively Nagata (Appendix: Examples of bad Noetherian

rings of [14]) constructed different Dedekind domains which are not N-2.

Definition 2.2. A ring A is said to be Nagata if

(1) A is Noetherian, and (2) A/p is N-2 for any prime ideal p of A.
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Nagata rings are the same as what are called Noetherian universally Japanese rings in

EGA IV [8, 23.1.1, p. 213].

Definition 2.3. (1) An integral domain A is said to be Japanese if it is N-2.

(2) A ring A is said to be Japanese if for any minimal prime ideal p of A, the quotient

domain A/p is N-2.

(3) A ring A is said to be universally Japanese if any finitely generated integral domain

over A is Japanese.

We clarify two notions of local finiteness of modules as follows.

Definition 2.4. Let M be a module over a commutative ring A.

(1) We say that M is Zariski-locally finitely generated if for any prime p ∈ SpecA, there

is an element f ∈ A such that f 6∈ p and Mf is a finite Af -module.

(2) We say that M is locally finitely generated if for any prime p ∈ SpecA, the localiza-

tion Mp at p is a finite Ap-module.

One easily shows that if M is Zariski-locally finitely generated, then M is finitely

generated. Indeed, for each maximal ideal m of A there is an element f ∈ A such that

m 6∈ f and Mf is a finite Af -module. Since SpecA is quasi-compact, there exist elements

f1, . . . , fn ∈ A such that (f1, . . . , fn)A = A and each Mfi is a finite Afi-module. Let

Si ⊂ M is a finite set of generators of Mfi over Afi . Then the union of all Si is a finite

set of generators of M over A.

Lemma 2.5. If for any maximal ideal m ∈ Max(A), there exists an element f ∈ A such

that f 6∈ m and Af is Japanese, then A is Japanese.

Proof. Replacing A by A/p for each minimal prime p, we may assume that A is an integral

domain. Let L/K be a finite field extension with integral closure B of A in L. Since the

construction of normalization commutes with localization, our assumption implies that

for any m ∈ Max(A), there exists an element f ∈ A such that f 6∈ m and that Bf is a

finite Af -module. That is, B is Zariski-locally finitely generated and hence B is finitely

generated.

Remark 2.6. The proof of Lemma 2.5 does not show that any locally Japanese ring (that

is, its localization at every prime is Japanese) is Japanese. The following is an example,

due to Nagata, of a locally finitely generated module which is not finitely generated. Let k

be a field of characteristic p > 0 such that [k : kp] =∞. Let R := kp[[x, y]][k], where x and

y are indeterminates. Then the completion R∗ of R at the maximal ideal (x, y) is equal
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to k[[x, y]] and R ( R∗. Let b1, . . . , bn, . . . be a sequence of p-independent elements in k,

and p1, . . . , pm, . . . be mutually non-associative prime elements (i.e., (pi) 6= (pj) for i 6= j).

Put qn := p1 · · · pn. Let c :=
∑∞

i=1 biqi ∈ R∗ and let T := R[1/x][c] whose normalization is

denoted by T ′. Then for every prime ideal p of T , the localization T ′p is a finite Tp-module

while T ′ is not finite over T ; see [14, A1.Example 8, p. 211] for more details.

2.2. G-rings, closedness of singular loci and excellent rings

Definition 2.7. [12, §33, p. 249]

(1) Let A be a Noetherian ring containing a field k. We say that A is geometrically

regular over k if for any finite field extension k′ over k, the ring A⊗k k′ is regular [12,

p. 78]. This is equivalent to say that the local ring Am has the same property for all

maximal ideals m of A.

(2) Let φ : A → B be a homomorphism (not necessarily of finite type) of Noetherian

rings. We say that φ is regular if it is flat and for each p ∈ SpecA, the fiber ring

B ⊗A k(p) is geometrically regular over the residue field k(p).

(3) A Noetherian ring A is said to be a G-ring if for each p ∈ SpecA, the natural map

φp : Ap → (Ap)
∗ is regular, where (Ap)

∗ denotes the completion of the local ring Ap.

Note that the natural map φp : Ap → (Ap)
∗ is faithfully flat. The fibers of the natural

morphism Spec(Ap)
∗ → SpecAp are called formal fibers. To say a Noetherian ring A is a

G-ring then is equivalent to saying that all formal fibers of the canonical map φp for each

prime ideal p of A are geometrically regular. It is clear that, if A is a G-ring, then any

localization S−1A of A and any homomorphism image A/I of A are G-rings.

Lemma 2.8. Let K/k be any field extension. Then K is geometrically regular over k if

and only if K/k is separable.

The field extension K/k is separable if and only if for any finite field extension k′/k,

the tensor product k′⊗kK is reduced or equivalently that k′⊗kK is regular. This proves

the lemma.

For a Noetherian scheme X, let Reg(X) denote the subset of X that consists of regular

points, which is called the regular locus of X.

Definition 2.9. Let A be a Noetherian ring.

(1) We say that A is J-0 if Reg(SpecA) contains a nonempty open set of SpecA.

(2) We say that A is J-1 if Reg(SpecA) is open in SpecA.
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Theorem 2.10. [12, Theorem 73, p. 246] For a Noetherian ring A, the following condi-

tions are equivalent:

(a) any finitely generated A-algebra B is J-1;

(b) any finite A-algebra B is J-1;

(c) for any p ∈ SpecA, and for any finite radical extension K ′ of k(p), there exists a

finite A-algebra A′ satisfying A/p ⊆ A′ ⊆ K ′ which is J-0 and whose quotient field

is K ′.

Definition 2.11. A Noetherian ring A is said to be J-2 if it satisfies one of the equivalent

conditions in Theorem 2.10.

Lemma 2.12. Any Noetherian Japanese ring A of dimension one is J-2.

Proof. For each p ∈ SpecA, the quotient domain A/p is either a field or a Noetherian

Japanese domain of dimension one. In the first case, the condition (c) holds trivially by

taking A′ = K ′. In the second case, the integral closure A′ of A in K ′ is finite over A and

is a Dedekind domain, which particularly is J-0. Therefore, A is J-2.

Theorem 2.13. (1) Any complete Noetherian local ring is a G-ring.

(2) If for any maximal ideal m of a Noetherian ring A, the natural map Am → (Am)∗ is

regular, then A is a G-ring.

(3) Let A and B be Noetherian rings, and let φ : A→ B be a faithfully flat and regular

homomorphism. If B is J-1, then so is A.

(4) Any semi-local G-ring is J-1.

Proof. (1) See [12, Theorem 68, p. 225 and p. 250]. (2) See [12, Theorem 75, p. 251]. (3)

and (4) See [12, Theorem 76, p. 252].

Theorem 2.14. (1) Let A be a G-ring and B a finitely generated A-algebra. Then B

is a G-ring.

(2) Let A be a G-ring which is J-2. Then A is a Nagata ring.

Proof. (1) See [12, Theorem 77, p. 254]. (2) See [12, Theorem 78, p. 257].

Definition 2.15. [12, §34, p. 259] Let A be a Noetherian ring.

(1) We say that A is quasi-excellent if the following conditions are satisfied:

(i) A is a G-ring;
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(ii) A is J-2.

(2) We say that A is excellent if it satisfies (i), (ii) and the following condition

(iii) A is universally catenary [12, p. 84].

Remark 2.16. If A is catenary, then so are any localization of A and any homomorphism

image of A. To show a Noetherian ring A is universally catenary, it then suffices to

show that every polynomial ring A[X1, . . . , Xn], for n ≥ 1, is catenary. If A is Cohen–

Macaulay, then A is catenary and A[X] is again Cohen–Macaulay, cf. [7, Proposition 18.9

and Corollary 18.10]. Therefore, any Cohen–Macaulay ring is universally catenary. Since

every regular ring is Cohen–Macaulay, every regular ring is universally catenary.

Remark 2.17. (1) Each of the conditions (i), (ii), and (iii) is stable under the localization

and passage to a finitely generated algebra (see Theorems 2.10(1) and 2.14(1)).

(2) Note that (i), (ii), (iii) are conditions depending only on A/p, for p ∈ SpecA. Thus

a Noetherian ring A is (quasi-)excellent if and only if so is Ared.

(3) The conditions (i) and (iii) are of local nature (in the sense that if they hold for Ap

for all p ∈ SpecA, then they hold for A), while the condition (ii) is not.

(4) Theorem 2.14(2) states that any quasi-excellent ring is a Nagata ring.

(5) It follows from Theorems 2.10 and 2.13(4) that any Noetherian local G-ring is quasi-

excellent.

(6) Nagata’s example of a 2-dimensional Noetherian local ring that is catenary but not

universally catenary [12, (14.E), p. 87] is a G-ring, and is also a J-2 ring as any

local G-ring is a J-2 ring. So it is a quasi-excellent catenary local ring that is not

excellent.

(7) Rotthaus [17] constructed a regular local ring R of dimension three which contains

a field and which is Nagata, but not quasi-excellent.

3. Valuations, completions and extensions

In this section, a group will mean an abelian group unless stated otherwise.

3.1. Valuations and valuation rings

For a totally ordered abelian group Γ written additively, we denote by Γ∞ = Γ∪{∞} the

totally ordered commutative monoid with γ ≤ ∞ for all γ ∈ Γ and γ +∞ =∞+ γ =∞
for all γ ∈ Γ∞.
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Definition 3.1. (1) An integral domain A with quotient field K is called a valuation

ring or a valuation ring of K if for any x ∈ K× either x ∈ A or x−1 ∈ A.

(2) A valuation of a field K is a group homomorphism v : K× → Γ, where Γ is a totally

ordered abelian group, such that

(3.1) v(x+ y) ≥ min{v(x), v(y)}, ∀x, y ∈ K×.

We extend v to a function v : K → Γ∞ by putting v(0) = ∞. Clearly, the condi-

tion (3.1) holds for all x, y ∈ K. The homomorphism image v(K×) is called the

value group of the valuation v. Clearly, A := {x ∈ K : v(x) ≥ 0} is a valuation ring

and m := {x ∈ A : v(x) > 0} is its maximal ideal. We call A and κ := A/m the

valuation ring and residue field of v, respectively.

(3) A valuation v of K is said to be discrete if its value group is isomorphic to Z
compatible with the orders.

(4) Two valuations v1 and v2 of K with value groups Γ1 and Γ2 are said to be equivalent

if there is an isomorphism α : Γ1
∼−→ Γ2 of ordered groups such that v2 = α ◦ v1.

The construction v 7→ A gives rise to a map from the set of equivalence classes of

valuations of K to the set of valuation rings of K. The reverse construction is as follows:

For a given valuation ring (A,m), define Γ := K×/A× and P := m/A× the set of positive

elements, then Γ is a totally ordered group and the natural projection v : K× → Γ is a

valuation of K so that the valuation ring of v is equal to A. It is easy to see the above

map is bijection, cf. [5, VI, §3.2, Proposition 3].

Proposition 3.2. Let A be a valuation ring of a field K.

(1) The set of primes ideals of A is totally ordered by the order of inclusion.

(2) If B ⊃ A is a subring of K, then B is a valuation ring and the maximal ideal m(B) of

B is a prime ideal of A. Moreover, the map B 7→ m(B) is a order-reversing bijection

between the totally ordered set of subrings of K containing A and the totally ordered

set of prime ideals of A. The inverse map is given by p 7→ Ap, the localization of A

at p.

Proof. (1) See [5, VI, §1.2, Theorem 1(e)]. (2) See [5, VI, §4.1, Proposition 1 and Corol-

lary].

Definition 3.3. A subgroup H of an ordered group G is said to be isolated if the relation

0 ≤ y ≤ x with x ∈ H implies y ∈ H.
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Proposition 3.4. Let G be an ordered group and P the set of its positive elements.

(1) The kernel of an increasing homomorphism of G to an ordered group is an isolated

subgroup of G.

(2) Conversely, let H be an isolated subgroup of G and g : G→ G/H the canonical ho-

momorphism. Then g(P ) is the set of positive elements of an ordered group structure

on G/H. Moreover, if G is totally ordered, so is G/H.

If G is totally ordered, then the set of isolated subgroups of G are totally ordered by

the order of inclusion. For otherwise, there is a positive element x in one isolated subgroup

H but not in H ′, and a positive element x′ ∈ H ′ \H. Suppose for example x ≤ x′, then

x ∈ H ′, a contradiction.

Definition 3.5. (1) Let G be a totally ordered group. If the number of isolated sub-

groups of G distinct from G is finite and is equal to n, G is said to be of height n. If

this number is infinite, G is said to be of infinite height. Denote by h(G) the height

of G.

(2) The height of a valuation v of K is defined as the height of its value group.

The height of the groups Z and R are of height 1. If G is a totally ordered group

and H is an isolated subgroup, then h(G) = h(H) + h(G/H). In particular, if G is the

lexicographic product of two totally ordered groups H and H ′, then h(G) = h(H)+h(H ′).

Thus, the lexicographic product Z× Z is of height 2.

Fix a valuation ring of A of K with the canonical valuation vA : K× → ΓA := K×/A×.

For subring B of K containing A, B is a valuation ring and A× ⊂ B×. Let λ : ΓA → ΓB

be the natural projection. As A ⊂ B, λ maps the positive elements of ΓA to positive

elements of ΓB. Thus, λ is a morphism of ordered groups and the kernel HB of λ is an

isolated subgroup of ΓA. The mapping B 7→ HB is an increasing bijection of the set of

subrings of of K containing A onto the set of isolated subgroups of ΓA, cf. [5, VI, §4.3,

Proposition 4]. Combining with Proposition 3.2, these two sets are in deceasing bijection

with the set of primes ideals of A. In particular, h(ΓA) = ht(m(A)) = dimA, cf. [5, VI,

§4.4, Proposition 5].

A totally ordered group G is of height ≤ 1 if and only if it is isomorphic to a subgroup

of R, cf. [5, VI, §4.5, Proposition 8].

3.2. Topological fields and completions

We first discuss the notion of completeness of a Hausdorff commutative topological group

and its completion. Our references are [4] and [11, Chap. 10].
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Definition 3.6. Let X be a nonempty set.

(1) A filter of X is a nonempty subset F ⊂ P (X) of the power set of X satisfying

(F1) If A,B ∈ F, then A ∩B ∈ F;

(F2) If A ∈ F and A ⊂ A′ ⊂ X, then A′ ∈ F;

(F3) ∅ 6∈ F.

(2) A filter base of X is a nonempty subset B ⊂ P (X) satisfying

(FB1) If A,B ∈ F, then there exists C ∈ B such that C ⊂ A ∩B;

(FB2) ∅ 6∈ B.

Condition (F3) implies that any finite intersection of members in F is nonempty. For

a filter base B, the set F := {F ⊂ X : ∃B ∈ B, B ⊂ F} is a filter of X, called the filter

generated by B, and B is called a base of F. A filter F′ is called a refinement of F if

F ⊂ F′.

Example 3.7. Let {xk}∞k=1 be a sequence in X. Let F be the set consisting of all subsets

E such that there exists N ≥ 1 such that xk ∈ E for all k ≥ N . Then F is a filter. Let

B be the set consisting of all subsets {xk, xk+1, . . .} for some k. Then B is a filter base

which generates F.

Example 3.8. Let X be a topological space. For every point x ∈ X, let Nx denote the

collection of all neighborhoods E of x (there exists an open subset U 3 x contained in E).

Then Nx is a filter. Any fundamental system of neighborhoods of x is a filter base of Nx.

Definition 3.9. Let X be a topological space. We say a filter base F converges to a point

x ∈ X, denoted by F → x, if every E ∈ Nx contains a member F ∈ F. In this case, by

(FB1), x is in the closure of every member F ∈ F. If F is a filter, this is equivalent to say

that F is a refinement of Nx.

A topological space X is Hausdorff if and only if every filter converges to at most one

point. Let f : X → Y be a map of topological spaces and F a filter of X. Set

fF := {F ⊂ Y : ∃E ∈ F, f(E) ⊂ F},

which is a filter as f(A ∩B) ⊂ f(A) ∩ f(B). Then the map f is continuous if and only if

for every x ∈ X one has (F→ x) =⇒ (fF→ f(x)).

Definition 3.10. Let (A,+) be a Hausdorff commutative topological group.
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(1) A filter F of X is called a Cauchy filter if for any neighborhood U ∈ N0 there exists

E ∈ F such that

E − E := {x− y : x, y ∈ E} ⊂ U.

(2) A is said to be complete if every Cauchy filter converges.

(3) A completion of A is pair (A∗, ι), where A∗ is a complete topological abelian group

and ι : A → A∗ is a morphism of topological groups, satisfying the following condi-

tions.

(a) ι : A→ ι(A) is a homeomorphism.

(b) ι(A) ⊂ A∗ is dense.

The condition (a) says that ι is injective and topology of A is the same as the topology

induced by A∗. It is proved [4, III, §3.5, Theorem 2 and §3.4, Proposition 8] that a

completion (A∗, ι) exists and satisfies the functorial property: for any pairing (B, f) where

B is a complete topological abelian group and f : A → B is a morphism of topological

groups, then there exists a unique morphism g : A∗ → B such that g ◦ ι = f . In particular,

a completion (A∗, ι) is unique up to a unique isomorphism; such a pair (A∗, ι) is called the

completion of A. If A is a Hausdorff topological ring, then the completion A∗ of (A,+)

is a complete topological ring (complete for the underlying topological group (A∗,+)),

cf. [4, III, §6].

Let v be a valuation of a field K with value group G. For all α ∈ G, let

Vα := {x ∈ K : v(x) > α} and V≥α := {x ∈ K : v(x) ≥ α}

which are clearly additive subgroups of K. There exists a unique linear topology Tv on

K for which the sets Vα form a fundamental system of neighborhoods of 0. If v is trivial,

then Tv is the discrete topology. Equipped with this topology K is a Hausdorff topological

field.

Let K∗ be the completion of K, which is a complete topological ring. Note that if v is of

height 1, or more generally, there exists a countable fundamental system of neighborhoods

of 0. Then the notion of completeness and the construction of completion can be made

by the usual Cauchy sequences, which is similar to the classical construction of R from Q.

Proposition 3.11. Let v be a valuation of a field K with value group G and equip G with

the discrete topology.

(1) The complete ring K∗ of K is a topological field.

(2) The continuous map v : K → G∞ can be extended uniquely to a continuous map

v∗ : K∗ → G∞ which is a valuation of K∗.
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(3) The topology on K∗ is the topology defined by the valuation v∗.

(4) For all α ∈ G, the closures V α and V ≥α of Vα and V≥α are the subsets of K∗ defined

by v∗(x) > α and v∗(x) ≥ α, respectively.

(5) The valuation ring of v∗ is the completion A∗ of A; its maximal ideal is the comple-

tion m∗ of the maximal ideal m of A.

(6) A∗ = A+ m∗; the residue field of v∗ is canonically identified with that of v.

Proof. See [5, VI, §5.3, Proposition 5].

3.3. Extensions of valuations and the fundamental inequality

Let v be a valuation of a field K, A the valuation ring of v, m its maximal ideal, and Γv

the value group. Let L/K be a finite field extension and w be a valuation of L which

extends v. Denote by Γw the value group, A′ the valuation ring and m′ the maximal ideal

of w, respectively. Write κ(v) and κ(w) for the residue fields of v and w, respectively. The

completion of K at v (resp. of L at w) is denoted by K∗ (resp. L∗w). The valuation of K∗

extending v is denoted by v∗.

Definition 3.12. (1) The ramification index of w over v is defined as e(w/v) := [Γw :

Γv].

(2) The residue class degree of w over v is defined as f(w/v) := [κ(w) : κ(v)].

Lemma 3.13. Let K, v, L and w be as above.

(1) The inequality e(w/v)f(w/v) ≤ [L : K] holds. In particular, e(w/v) and f(w/v) are

finite.

(2) The height of w is equal to that of v.

(3) The valuation w is trivial (resp. discrete) if and only if so is v.

Proof. See [5, VI, §8.1].

Definition 3.14. [5, VI, §7.2] Two valuations v and v′ of K are said to be independent

if the subring generated by their valuation rings is equal to K; and dependent otherwise.

The trivial valuation is independent of any valuation of K. Two valuations are depen-

dent if and only if there is a relation A ⊂ A′ ( K among their valuation rings A and A′.

If two non-trivial valuations v and v′ are of same finite height, then they are dependent if

and only if they are equivalent. Indeed, if v and v′ are equivalent, then A = A′ ( K and
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they are dependent. Conversely if they are dependent then up to switching the order one

has A ⊂ A′ ( K. Therefore, A = A′ for otherwise ht(v′) < ht(v), contradiction.

Let Σv be a complete set of representatives of equivalence classes of extensions of a

valuation v of K on L. If v is trivial then Σv consists of the trivial valuation of L. Also

write w|v if w ∈ Σv. If w1, w2 ∈ Σv with w1 6= w2 (this implies that v must be non-trivial),

then there is no inclusion relation for their valuation rings, cf. [6, (A), p. 2]. Thus, every

two distinct valuations in Σv are independent.

Proposition 3.15. Let v be a valuation of K and L/K a finite field extension.

(1) For every w ∈ Σv, one has e(w∗/v∗) = e(w/v), f(w∗/v∗) = f(w/v), [L∗w : K∗] ≤
[L : K] and e(w/v)f(w/v) ≤ [L∗w : K∗].

(2) Every set of pairwise independent valuations of L extending a non-trivial valuation

v is finite. Let {w1, . . . , wr} be a maximal set of pairwise independent valuations of

L extending a non-trivial valuation v. Then the canonical mapping φ : K∗ ⊗K L→∏r
i=1 L

∗
wi

(extending by continuity the diagonal map L →
∏r
i=1 L

∗
wi

) is surjective,

its kernel is the Jacobson radical of K∗ ⊗K L and

r∑
i=1

[L∗wi
: K∗] ≤ [L : K].

Proof. See [5, VI, §8.2, Proposition 2].

Corollary 3.16 (The fundamental inequality). Let v be a valuation of K and L/K a

finite extension. We have

(3.2)
∑
w|v

e(w/v)f(w/v) ≤ [L : K].

Proof. If v is trivial, then w is trivial and one has Γv = Γw = {0}, κ(v) = K and

κ(w) = L. Therefore,
∑

w|v e(w/v)f(w/v) = [L : K]. Suppose that v is non-trivial.

By the remark above Proposition 3.15, Σv is a maximal set {w1, . . . , wr} of pairwise

independent valuations of L extending v. Then (3.2) follows from Proposition 3.15.

Definition 3.17. [5, VI, §3.5, §8.4]

(1) Let G be an ordered set. A subset M of G is called major if the relations x ∈ M
and y ≥ x imply y ∈M .

(2) Let G be a totally ordered commutative group and H a subgroup of finite index.

Denote by G>0 ⊂ G the subset of strictly positive elements. The initial index of

H in G, denoted by ε(G,H), is the number of major subsets M of G such that

H>0 ⊂M ⊂ G>0.
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If G = Z and H = mZ with m > 0, letting M(x) := {y ∈ G : y ≥ x}, then

M(1),M(2), . . . ,M(m) are all major subsets of G satisfying the property in Definition 3.17

and ε(G,H) = m.

Proposition 3.18. Let G be a totally ordered commutative group and H a subgroup of

finite index.

(1) If the set G>0 has no least element, then ε(G,H) = 1;

(2) If the set G>0 has the least element x0, then ε(G,H) = [G0 : (G0 ∩H)], where G0

is the cyclic subgroup generated by x0.

In particular, ε(G,H) divides [G : H].

Proof. See [5, VI, §8.4, Proposition 3].

Definition 3.19. Let v be a valuation of K and w|v a valuation of a finite extension L/K

with value groups Γv and Γw, respectively. The initial ramification index of w with respect

to v (or w over v) is defined as ε(w/v) := ε(Γw,Γv).

Theorem 3.20. Let L/K be a and let v a valuation of K with valuation ring A and

maximal ideal m. Let L/K be a finite field extension with integral closure B of A in L.

The following conditions are equivalent:

(a) B is a finite A-module;

(b) B is a free A-module;

(c) [B/mB : κ(m)] = [L : K];

(d)
∑

w|v ε(w/v)f(w/v) = [L : K].

Proof. See [5, VI, §8.5, Theorem 2].

Remark 3.21. (1) The fundamental inequality (Corollary 3.16) was first proved by Co-

hen and Zariski for an arbitrary valuation v [6].

(2) The condition (d) is equivalent to (d’)
∑

w|v e(w/v)f(w/v) = [L : K] and ε(w/v) =

e(w/v) for all w|v. When v is discrete, one has ε(w/v) = e(w/v) and the con-

dition (d) is equivalent to
∑

w|v e(w/v)f(w/v) = [L : K]. In this special case,

Theorem 3.20 was first proved by Cohen and Zariski [6].

4. Proofs of Theorems 1.1 and 1.2

4.1. Proof of Theorem 1.1

Theorem 1.1 follows from Lemma 4.1 and Proposition 4.2.
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Lemma 4.1. Let A be a Dedekind domain with quotient field K, and L a finite field

extension of K of degree n with integral closure B of A in L. For each nonzero prime

ideal p of A, one has
r∑
i=1

eifi = dimk(p)B/pB ≤ n,

where P1, . . . ,Pr are the prime ideals of B over p, ei and fi are the ramification index

and the residue class degree of Pi over p. Moreover, if B is a finite A-module, then the

equality holds.

Proof. This is well-known (cf. [19]); we include a proof for the reader’s convenience. We

localize the Dedekind domains A and B at p and get a discrete valuation ring Ap and a

semi-local Dedekind domain Bp with same number of maximal ideals PiBp. Then Bp is

the integral closure of Ap in L and the numerical invariants r, ei, fi remain the same.

Therefore, after replacing A by Ap, we can assume that A is a discrete valuation ring with

uniformizer π. By the Chinese Remainder Theorem, B/pB '
∏r
i=1B/P

ei
i . We filter each

k(p)-vector space B/Pei
i by the decreasing subspaces Pj

i/P
ei
i and obtain

(4.1) dimk(p)B/pB =

r∑
i=1

ei−1∑
j=0

dimk(p)P
j
i/P

j+1
i .

The ideal Pj
i/P

j+1
i generated by one element aj as the quotient ring B/J for any nonzero

ideal J is a principal ideal ring. The map 1 7→ aj induces an isomorphismA/Pi ' Pj
i/P

j+1
i

and hence dimk(p)P
j
i/P

j+1
i = fi. It follows from (4.1) that dimk(p)B/pB =

∑r
i=1 eifi.

We prove the inequality in (4.1) by showing that if x1, . . . , xs are k(p)-linearly inde-

pendent, then their liftings x1, . . . , xs are K-linearly independent. Suppose not, then

a1x1 + a2x2 + · · ·+ asxs = 0

for some nonzero element ai in K. Multiplying a suitable power of π, we can assume

that ai ∈ A for all i but ai 6∈ p for some i. Modulo p we get a non-trivial linear relation

a1x1 + a2x2 + · · ·+ asxs = 0, a contradiction.

Suppose B is a finite A-module. Since B is torsion free and A is a principal ideal

domain, B is a free A-module of rank s. Then one has dimK L = rankAB = dimk(p)B/pB.

This proves the desired equality.

Proposition 4.2. Let the notation be as in Lemma 4.1. Then

dimk(p)B/pB =
r∑
i=1

rankA∗
p
B∗Pi

=
r∑
i=1

dimK∗
p
L∗Pi

= [(L⊗K K∗p )ss : K∗p ],

where K∗p and A∗p (resp. L∗Pi
and B∗Pi

) denote the completion of K and A (resp. L and

B) at p (resp. Pi), respectively.
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Proof. The ramification index and residue class degree remain the same after the com-

pletion, that is, e(Pi/p) = e(P∗i /p
∗) and f(Pi/p) = f(P∗i /p

∗), where p∗ = pA∗p and

P∗i = PiB
∗
Pi

. Since K∗p is complete and L∗Pi
is a finite field extension of K∗p , we have

eifi = e(P∗i /p
∗)f(P∗i /p

∗) = [L∗Pi
: K∗p ] [19, Chap. II, §2, Corollary 1]. Note that B∗Pi

is

the integral closure of A∗p in L∗Pi
. Since B∗Pi

is a finite free A∗p-module say of rank m,

we have L∗Pi
= B∗Pi

⊗A∗
p
K∗p ' (K∗p )m and rankA∗

p
B∗Pi

= [L∗Pi
: K∗p ] = eifi. This and

Lemma 4.1 prove the first two equalities. The last equality follows from the isomorphism∏r
i=1 L

∗
Pi
' (L⊗K K∗p )ss; see Proposition 3.15.

4.2. Proof of Theorem 1.2

Theorem 1.2 will follow immediately from Theorem 4.4.

Proposition 4.3. Let A be a Dedekind domain with quotient field K. Then the following

statements are equivalent:

(1) For any finite field extension L/K and any nonzero prime ideal p of A, one has∑
P|p ePfP = [L : K].

(2) For any finite field extension L/K and any nonzero prime ideal p of A, the tensor

product L⊗K K∗p is a semi-simple K∗p -algebra.

(3) A is a G-ring.

(4) For every nonzero prime ideal p of A, the localization Ap is Japanese.

Proof. The equivalence of (1) and (2) follows from Theorem 1.1.

We prove the equivalence of (2) and (3). To show A is a G-ring, one needs to show

that every formal fiber of φp : Ap → A∗p is geometrically regular. If p = 0, the formal fiber

K → K∗ = K is clearly geometrically regular. Suppose p is a nonzero prime ideal. The

special formal fiber k(p) → k(p∗) = k(p) is clearly geometrically regular and the generic

formal fiber is given by K → K∗p . By Lemma 2.8, K∗p/K is geometrically regular if and

only if it is separable. Thus, A is a G-ring if and only if for any nonzero prime ideal p of A,

the field extension K∗p/K is separable. This is equivalent to that for any finite extension

L/K and for any nonzero prime ideal p of A, the tensor product L⊗K K∗p is semi-simple.

We prove the equivalence of (1) and (4). The direction (4) ⇒ (1) follows from

Lemma 4.1 and we show the other direction. For each nonzero prime ideal p, since∑r
i=1 eifi = [L : K], by Theorem 3.20 the integral closure Bp of Ap in L is a finite Ap-

module. Thus, for any finite field extension L/K the integral closure of Ap in L is a finite

A-module, and hence Ap is Japanese. This completes the proof of the proposition.

Theorem 4.4. Any Japanese Dedekind domain A is excellent.
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Proof. It follows immediately from Proposition 4.3 and Lemma 2.12 that A is quasi-

excellent. It is well-known that any Dedekind domain is universally catenary (cf. Re-

mark 2.16). Therefore, A is excellent.
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