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Maximal Functions Along Convex Curves with Lacunary Directions

Haixia Yu

Abstract. In this paper, we obtain the Lp(R2)-boundedness of the maximal functions

MI,γf(x1, x2) := sup
j∈Z

sup
ε>0

1

2ε

∫ ε

−ε
|f(x1 − t, x2 − 2jγ(t))|dt

and

MII,γf(x1, x2) := sup
i,j∈Z

sup
ε>0

1

2ε

∫ ε

−ε
|f(x1 − 2it, x2 − 2jγ(t))|dt,

where p ∈ (1,∞] and γ is a convex curve satisfying some suitable curvature conditions.

1. Introduction

The maximal function Mγ along the curve (t, γ(t)) is defined by

Mγf(x1, x2) := sup
ε>0

1

2ε

∫ ε

−ε
|f(x1 − t, x2 − γ(t))|dt.

The question of whether this operator Mγ is bounded on Lp(R2) has received much atten-

tion in the last few decades. In particular, for γ(t) := t2, Nagel, Riviere and Wainger [22]

established the Lp(R2)-boundedness of Mγ for all p ∈ (1,∞]. For the cases of homogeneous

curves and smooth curves, we refer to Stein [27] and Stein and Wainger [28], respectively.

Later, Stein and Wainger [29] obtained the Lp(R2)-boundedness, p ∈ (1,∞], of Mγ for

“well-curved” curves, they also pointed out that this boundedness is false for arbitrary C∞

curves. Therefore, for more general curves obeying some curvature conditions, obtaining

the Lp(R2)-boundedness of the associated maximal function Mγ has become a classical

problem in harmonic analysis.

For the case of γ ∈ C2(R) is either odd or even, γ(0) = γ′(0) = 0, and convex on

(0,∞), let h(t) := tγ′(t)− γ(t), if h satisfies the doubling condition, i.e.,

(D) There exists 1 < ε0 <∞ so that h(ε0t) ≥ 2h(t) for all 0 < t <∞,
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Nagel, Vance, Wainger and Weinberg [25] showed the L2(R2)-boundedness of Mγ . Later,

Carlsson, Christ, Córdoba et al. [7] extended this boundedness to all p ∈ (1,∞] if γ′

satisfies the doubling condition (D). Furthermore, Carbery, Christ, Vance et al. [4] also

obtained the Lp(R2)-boundedness of Mγ for all p ∈ (1,∞] by replacing this doubling

condition (D) about γ′ with the following infinitesimally doubling condition about h, i.e.,

(ID) There exists 0 < ε1 <∞ so that h′(t) ≥ ε1
h(t)

t
for all 0 < t <∞.

Note that both of γ′ satisfies the doubling condition (D) and h satisfies the infinitesimally

doubling condition (ID) imply that h satisfies the doubling condition (D). For more dis-

cussion in the case of γ is convex, we refer to [8, 10, 33], but a necessary and sufficient

condition for the Lp(R2)-boundedness of Mγ is still not known. There are many other

cases of the curves γ in obtaining the Lp(R2)-boundedness of Mγ ; see, for example, non-

convex curves [1,31], flat curves [5,6], highly monotone curves [26], oscillating curves [32].

The immediate consequence of the Lp(R2)-boundedness of Mγ is obtaining the Lebesgue

differentiation theorem along the curve (t, γ(t)), i.e., for any f ∈ Lp(R2),

lim
ε→0

1

2ε

∫ ε

−ε
f(x1 − t, x2 − γ(t)) dt = f(x1, x2) a.e. (x1, x2) ∈ R2.

In this paper, we consider two different kind of maximal functions analogue of Mγ ,

which are modelled on the maximal function Mγ in lacunary direction introduced by

Nagel, Stein and Wainger in [23]. The first one is the maximal function MI,γ along the

curve (t, γ(t)) with the dyadic lacunary direction (1, 2j),

MI,γf(x1, x2) := sup
j∈Z

sup
ε>0

1

2ε

∫ ε

−ε
|f(x1 − t, x2 − 2jγ(t))| dt.

The second one is the maximal function MII,γ along the curve (t, γ(t)) with the dyadic

lacunary direction (2i, 2j), which allow dyadic scaling along this dyadic lacunary direction

(1, 2j) in MI,γ ,

MII,γf(x1, x2) := sup
i,j∈Z

sup
ε>0

1

2ε

∫ ε

−ε
|f(x1 − 2it, x2 − 2jγ(t))| dt.

Remark 1.1. Indeed, both of MI,γ and MII,γ are a special case of the following maximal

function MII,γ along the curve (t, γ(t)) with the direction (a, b),

MII,γf(x1, x2) := sup
a,b∈R

sup
ε>0

1

2ε

∫ ε

−ε
|f(x1 − at, x2 − bγ(t))|dt.

Note thatMII,γ arise in connection with Stein’s and Bourgain’s circular maximal function.

In [21], Marletta and Ricci obtained that MII,γ is bounded on Lp(R2) if and only if



Maximal Functions Along Convex Curves with Lacunary Directions 547

p ∈ (2,∞], where γ(t) := tr with r ∈ R and r 6= 0, 1. If γ(t) := t, a counter-example

based on a construction of the Besicovitch–Kakeya set shows that we can not expect any

Lp(R2)-boundednesss of MII,γ for all p ∈ (1,∞). More related works can be found in

Bourgain [2], Iosevich [16], Marletta [20], Guo, Hickman, Lie and Roos [12] and Li [19].

Here, we also want to introduce another operator, which is closely related toMII,γ , i.e., the

corresponding maximal Hilbert transform HII,γ along the curve (t, γ(t)) with the direction

(a, b),

HII,γf(x1, x2) := sup
a,b∈R

∣∣∣∣P.V.∫ ∞
−∞

f(x1 − at, x2 − bγ(t))
dt

t

∣∣∣∣.
From a straightforward modification of Karagulyan’s counter-example in [17], we will find

that the Lp(R2)-boundedness of HII,γ fails for all p ∈ (1,∞] even in the case of γ(t) := t2

or γ(t) := t. Therefore, instead of considering the Lp(R2)-boundedness of HII,γ , we always

consider a new operatorHU,γ constructed by replacing supa,b∈R with supa,b∈U inHII,γ , and

calculate the operator norm ‖HU,γ‖Lp(R2)→Lp(R2), where U ⊂ R is an arbitrary nonempty

set. This is also a hot topic in harmonic analysis, see Demeter and Di Plinio [11],  Laba,

Marinelli and Pramanik [18], Guo, Roos, Seeger and Yung [13] and the references therein.

In this paper, we are not going to calculate the Lp(R2)-norm of this maximal singular

integral operator HU,γ , and our results of the Lp(R2)-boundedness of MI,γ and MII,γ will

provide an inspiration for obtaining the Lp(R2)-boundedness ofMII,γ for some p ∈ (1,∞)

and more general class of curves γ.

We now state our results.

Theorem 1.2. Let γ ∈ C2(R) be either odd or even, γ(0) = γ′(0) = 0, and convex on

(0,∞), and satisfying

(i) there exists a positive constant C1 such that γ′(2t)
γ′(t) ≤ C1 for any t ∈ (0,∞);

(ii) there exists a positive constant C2 such that tγ′′(t)
γ′(t) ≥ C2 for any t ∈ (0,∞).

Then for any given p ∈ (1,∞], there exists a positive constant C such that

‖MI,γf‖Lp(R2) ≤ C‖f‖Lp(R2)

for any f ∈ Lp(R2).

Theorem 1.3. Let γ ∈ C2(R) be either odd or even, γ(0) = γ′(0) = 0, and convex on

(0,∞), and satisfying

(i) there exists a positive constant C ′1 such that tγ′(t)
γ(t) ≤ C

′
1 for any t ∈ (0,∞);

(ii) there exists a positive constant C2 such that tγ′′(t)
γ′(t) ≥ C2 for any t ∈ (0,∞).
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Then for any given p ∈ (1,∞], there exists a positive constant C such that

‖MII,γf‖Lp(R2) ≤ C‖f‖Lp(R2)

for any f ∈ Lp(R2).

Remark 1.4. The conditions of Theorem 1.2 imply the conditions of Theorem 1.3. Indeed,

from (2.1), as in [24, Lemma 2], we have

γ′(2t)

γ′(t)
≥ eC2/2 =⇒ h(t) ≥ λtγ′(t) =⇒ h

(
2

λ
t

)
≥ 2h(t) for any t ∈ (0,∞),

where h(t) = tγ′(t)− γ(t) and λ := 1−e−C2/2

2 . Furthermore, as in [24, Lemma 1], we have

h

(
2

λ
t

)
≥ 2h(t) =⇒ 2

λ
t
(
γ′(s)− γ′(t)

)
≥ h(t) with s ≥ 2

λ
t

=⇒ γ

(
4

λ
t

)
≥ 4

λ
tγ′(t) for any t ∈ (0,∞).

This, combined with Theorem 1.2(i), implies that tγ′(t)
γ(t) ≤ (C1)log2

4
λ for any t ∈ (0,∞).

Therefore, we obtain Theorem 1.3(i) with C ′1 := (C1)log2
4
λ .

From this fact, it is easy to see that Theorem 1.2 can be covered by Theorem 1.3.

However, the method of proving Theorem 1.2 is totally different from the method applied

in proving Theorem 1.3. Therefore, we will retain Theorem 1.2.

Example 1.5. Let us list some examples of curves satisfying the conditions in Theo-

rems 1.2 and 1.3. Since γ(t) is odd or even, and γ(0) = 0, we write only the part for

t > 0.

(1) for any t > 0, γ(t) := tα, where α > 1;

(2) for any k ∈ N and t > 0, γ(t) :=
∑k

i=1 t
αi , where αi > 1 for all i = 1, 2, . . . , k;

(3) for any t > 0, γ(t) := tα ln(1 + t), or γ(t) := tα arctan t, where α > 1;

(4) for any t > 0, γ(t) := (t sin t)1{0<t<ε0}(t), or (t − sin t)1{0<t<ε0}(t), or (t − ln(1 +

t))1{0<t<ε0}(t), where ε0 is small enough.

It is easy to see that, for the case of γ(t) := td under d ∈ N, the Lp(R2)-boundedness

of MI,γ and MII,γ are equivalent. But for more general curves, this equivalence relation

does not hold. Therefore, we consider MI,γ and MII,γ , respectively. The history of these

operators goes back to the case of γ(t) := t. Córdoba and Fefferman [9] and Strömberg [30]

used a suitable geometric argument to obtain the Lp(R2)-boundedness of MII,γ for all

p ∈ [2,∞]. Later, Nagel, Stein and Wainger [23] extended this result to all p ∈ (1,∞]
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by using a Littlewood–Paley decomposition. Furthermore, Carbery [3] extended these

two-dimensional results [9,23,30] to arbitrary dimension. For the case of γ(t) := t2, Guo,

Roos, Seeger and Yung [13, Lemma 5.1] obtained the Lp(R2)-boundedness of MI,γ for all

p ∈ (1,∞], and the same boundedness for the case of γ(t) := [t]α can also been obtained

with some standard modifications, where [t]α stands for either |t|α or sgn(t)|t|α, α > 0

and α 6= 1. There are also some other types of MII,γ ; see, for example,

MQ
IIf(x1, x2) := sup

i,j∈Z
sup
ε>0

1

2ε

∫ ε

−ε
|f(x1 − 2iQ(t), x2 − 2jQ(t))|dt,

where Q is a real polynomial with Q(0) = 0. Hare and Ricci [14] obtained the Lp(R2)-

boundedness of MQ
II for all p ∈ (1,∞]. More recently, Hong, Kim and Yang [15] extended

MQ
II to more general polynomial curves and arbitrary dimension.

Our proofs of Theorems 1.2 and 1.3 rely on the non-stationary phase method in Carls-

son, Christ, Córdoba et al. [7], the Littlewood–Paley theory, and a bootstrapping argument

similar that of Nagel, Stein and Wainger [23]. In Section 2, we prove Theorem 1.2 by com-

paring it with a smoother operator. Theorem 1.3 is proved in Section 3, we split it as the

low-frequency part and the high-frequency part. The low-frequency part can be viewed

as a one-dimensional convolution type operator, and the high-frequency part is proved by

interpolating between a decay estimate under p ∈ [2,∞) and a non-decay estimate under

p ∈ (1, 2).

Throughout this paper, we use “C” to denote a positive constant that is independent

of the main parameters involved but whose value may vary from line to line. The positive

constants with subscripts, such as C1 and C2, are the same in different occurrences. For

two real functions f and g, we use f . g or g & f to denote f ≤ Cg and, if f . g . f , we

then write f ≈ g. We use Z to denote the set of integers, and N := {1, 2, 3, . . .}. We also

use a⇒ b to denote that a implies b. For any set E, we use 1E to denote the characteristic

function of E.

2. Proof of Theorem 1.2

We start by introducing some simple properties of the curve γ which we need in the course

of proof. Indeed, let G(t) := ln γ′(t) for any t ∈ (0,∞), by Theorem 1.2(ii), we then have

G′(t) ≥ C2
t for any t ∈ (0,∞). By the Lagrange mean value theorem, there exists a

constant θ ∈ [1, 2] such that G(2t)−G(t) = G′(θt)t ≥ C2
2 , which further leads to

(2.1)
γ′(2t)

γ′(t)
≥ eC2/2 for any t ∈ (0,∞).

On the other hand, since γ(0) = γ′(0) = 0, by the Cauchy mean value theorem, there

exists T ∈ (0, t) such that tγ′(t)
γ(t) = tγ′(t)−0γ′(0)

γ(t)−γ(0) = γ′(T )+Tγ′′(T )
γ′(T ) for any t ∈ (0,∞). Thus, we
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apply Theorem 1.2(ii) to conclude that

(2.2)
tγ′(t)

γ(t)
≥ C2 + 1 for any t ∈ (0,∞).

We will make use of some ideas from Carlsson, Christ, Córdoba et al. [7] to prove

our theorem. Indeed, it is naturally to consider the L2(R2)-boundedness fristly, and also

should control supj,k∈ZM
j,k
I,γf(x1, x2) by

∑
j,k∈ZM

j,k
I,γf(x1, x2). From Plancherel’s theo-

rem, it is sufficient to bound the corresponding multiplier
∑

j,k∈Zm
j,k
I,γ(ξ1, ξ2). Further-

more, by applying van der Corput’s lemma, we may bound the multiplier mj,k
I,γ(ξ1, ξ2)

by |(ϕj,kI,γ)′(t)|−1 or |(ϕj,kI,γ)′′(t)|−1/2, where ϕj,kI,γ(t) is the corresponding phase function of

the multiplier mj,k
I,γ(ξ1, ξ2), but it is not enough to bound

∑
j,k∈Zm

j,k
I,γ(ξ1, ξ2). Therefore,

to bound this sum, we want to bound the multiplier mj,k
I,γ(ξ1, ξ2) by |ϕj,kI,γ(t)|. Note that∣∣eiϕj,kI,γ(t) − 1

∣∣ ≤ ∣∣ϕj,kI,γ(t)
∣∣, this implies that we should define a new multiplier mj,k

I,γ(ξ1, ξ2)

to compare our multiplier mj,k
I,γ(ξ1, ξ2), it is also the reason of defining the operator σk

in [7]. For the general Lp(R2)-boundedness, as in Nagel, Stein and Wainger [23], the

bootstapping argument is a useful tool, and our proof also relies on this argument.

We now begin the proof of Theorem 1.2. Since MI,γ is a positive operator we may

assume that f is non-negative. Furthermore, we can bound MI,γf by

sup
j∈Z

sup
ε>0

1

2ε

∑
k: 2k≤ε

2k
1

2k

∫
2k<|t|≤2k+1

f(x1 − t, x2 − 2jγ(t)) dt

. sup
j,k∈Z

1

2k

∫
2k<|t|≤2k+1

f(x1 − t, x2 − 2jγ(t)) dt =: sup
j,k∈Z

M j,k
I,γf(x1, x2).

Therefore, it suffices to prove the Lp(R2)-boundedness of the operator supj,k∈ZM
j,k
I,γ . As

in [7], we define a smoother operator M
j,k
I,γ by

M
j,k
I,γf(x1, x2) :=

1

22k

∫
2k<|t|≤2k+1

∫
2k<|τ |≤2k+1

f(x1 − t, x2 − 2jγ(τ)) dtdτ,

which keeps many the same characteristics from M j,k
I,γ . More importantly, from (2.2) and

the fact that (γ−1)′(t)γ′(γ−1(t)) = 1 where γ−1 is the inverse function of γ, by letting

s := 2jγ(τ), we can bound M
j,k
I,γf(x1, x2) by

1

22k

∫
2k<|t|≤2k+1

∫
2jγ(2k)<|s|≤2jγ(2k+1)

f(x1 − t, x2 − s)
∣∣∣∣ γ(γ−1(2−js))

γ′(γ−1(2−js))γ−1(2−js)

∣∣∣∣
×
∣∣∣∣γ−1(2−js)2−j

γ(γ−1(2−js))

∣∣∣∣ dtds.
Furthermore, from (2.2) and Theorem 1.2(i), by simple calculation, one has

1

22k
2k+12jγ(2k+1)

∣∣∣∣ γ(γ−1(2−js))

γ′(γ−1(2−js))γ−1(2−js)

∣∣∣∣ · ∣∣∣∣γ−1(2−js)2−j

γ(γ−1(2−js))

∣∣∣∣ . 1,
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which further implies that M
j,k
I,γf can be bounded by M (1)M (2)f . Here and hereafter,

we use M (1) and M (2) denote the Hardy–Littlewood maximal operators applied in the

first variable and the second variable, respectively. This implies the following pointwise

estimate

sup
j,k∈Z

M
j,k
I,γf(x1, x2) .M (1)M (2)f(x1, x2).

From the Lp(R2)-boundedness of M (1) and M (2), we have

(2.3)

∥∥∥∥ sup
j,k∈Z

M
j,k
I,γf

∥∥∥∥
Lp(R2)

.
∥∥M (1)M (2)f

∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞]. Therefore, it suffices to prove

(2.4)

∥∥∥∥ sup
j,k∈Z

∣∣(M j,k
I,γ −M

j,k
I,γ

)
f
∣∣∥∥∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞].

2.1. L2(R2)-boundedness

For p = 2 in (2.4), it is naturally to consider the multipliers of M j,k
I,γ and M

j,k
I,γ by

Plancherel’s theorem. Indeed, a calculation gives that the multiplier of M j,k
I,γ can be

written as

mj,k
I,γ(ξ1, ξ2) :=

∫
1≤|t|<2

e−i2
ktξ1−i2jγ(2kt)ξ2 dt

and the multiplier of M
j,k
I,γ can be written as

mj,k
I,γ(ξ1, ξ2) :=

∫
1≤|t|<2

∫
1≤|τ |<2

e−i2
ktξ1−i2jγ(2kτ)ξ2 dtdτ.

We now bound the left-hand side of (2.4) by

∥∥∥∥[ ∑
j,k∈Z

∣∣(M j,k
I,γ −M

j,k
I,γ

)
f
∣∣2]1/2∥∥∥∥

L2(R2)

.

Because the l2(Z2) and L2(R2) norms commute, from Plancherel’s theorem, it is enough

to show that

(2.5)
∑
j,k∈Z

∣∣mj,k
I,γ(ξ1, ξ2)−mj,k

I,γ(ξ1, ξ2)
∣∣2 . 1
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for all (ξ1, ξ2) ∈ R2. Furthermore, let us set ξ1 := 2M ξ̃1 and ξ2 := 2N ξ̃2, where M,N ∈ Z
and |ξ̃1|, |ξ̃2| ∈ [1, 2), then the left-hand side of (2.5) is equal to

∑
j,k∈Z

∣∣∣∣ ∫
1≤|t|<2

e−i2
k+M tξ̃1−i2j+Nγ(2kt)ξ̃2 dt−

∫
1≤|t|<2

∫
1≤|τ |<2

e−i2
k+M tξ̃1−i2j+Nγ(2kτ)ξ̃2 dtdτ

∣∣∣∣2

=
∑
j,k∈Z

∣∣∣∣ ∫
1≤|t|<2

e−i2
ktξ̃1−iCM2jΓM (2kt)ξ̃2 dt−

∫
1≤|t|<2

∫
1≤|τ |<2

e−i2
ktξ̃1−iCM2jΓM (2kτ)ξ̃2 dtdτ

∣∣∣∣2
=:

∑
j,k∈Z

∣∣mj,kI,γ(ξ̃1, ξ̃2)−mj,kI,γ(ξ̃1, ξ̃2)
∣∣2,

where ΓM (t) := γ(2−M t)
γ(2−M )

, CM ∈ [1, 2) is a constant depending only on M .

By the fact that∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ ≤ ∑

j,k∈Z

∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣,

it suffices to prove

(2.6)
∑
j,k∈Z

∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ . 1

for all |ξ̃1|, |ξ̃2| ∈ [1, 2), where the implicit constant is independent of M .

We now define the phase function of mj,k
I,γ by

ϕj,kI,γ(t) := 2ktξ̃1 + CM2jΓM (2kt)ξ̃2.

Then

(2.7)
(
ϕj,kI,γ

)′
(t) = 2kξ̃1 + CM2jΓ′M (2kt)2kξ̃2

and (
ϕj,kI,γ

)′′
(t) = CM2jΓ′′M (2kt)22kξ̃2.

To establish (2.6), we consider the following seven cases according to the values of k and

j. More precisely, for any given k ≥ 0, we split R as a union of the following four intervals:

(−∞, 1/8], (1/8,Γ′M (2k+1)],
(
Γ′M (2k+1), 1

8(2C1)2kΓ′M (1)
]

and
(

1
8(2C1)2kΓ′M (1),∞

)
, and

divide (2.6) into four cases according to whether or not 1
82−j belong to one of these

intervals. For k < 0, similarly, we will divide (2.6) into three cases.

Case 1: k ≥ 0 and 1
82−j ≤ 1

8 (i.e., j ≥ 0). From Theorem 1.2(ii), this implies that

∣∣(ϕj,kI,γ)′′(t)∣∣ =

∣∣∣∣CM2j
Γ′′M (2kt)2kt

Γ′M (2kt)

Γ′M (2kt)

2kt
22kξ̃2

∣∣∣∣ & 2j2kΓ′M (2k).

By van der Corput’s lemma, we obtain∣∣mj,k
I,γ(ξ̃1, ξ̃2)

∣∣ . (2j2kΓ′M (2k)
)−1/2

.
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The same estimate also holds for mj,k
I,γ(ξ̃1, ξ̃2), by (2.2), we then have∑

Case 1

∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ . ∑

Case 1

(
2j2kΓ′M (2k)

)−1/2
.
∑

Case 1

(
2j2k

)−1/2
. 1

for all |ξ̃1|, |ξ̃2| ∈ [1, 2).

Case 2: k ≥ 0 and 1
8 < 1

82−j ≤ Γ′M (2k+1). By Remark 1.4 and Theorem 1.2(i), we

have − log2(8C1C
′
1)−k log2C1 ≤ j < 0 and 2jΓ′M (2k) ≥ 1

8C1
. As in Case 1, it follows that∑

Case 2

∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ . ∑

Case 2

(
2j2kΓ′M (2k)

)−1/2
.
∑

Case 2

2−k/2

.
∑
k≥0

(
log2(8C1C

′
1) + k log2C1

)
2−k/2 . 1

for all |ξ̃1|, |ξ̃2| ∈ [1, 2).

Case 3: k ≥ 0 and Γ′M (2k+1) < 1
82−j ≤ 1

8(2C1)2kΓ′M (1). From Γ′M (2k+1) < 1
82−j and

(2.7), this implies that∣∣(ϕj,kI,γ)′(t)∣∣ ≥ 2k
(
|ξ̃1| − CM2j |Γ′M (2kt)ξ̃2|

)
≥ 2k.

This, by van der Corput’s lemma and the fact that (ϕj,kI,γ)′(t) is monotonic on [1, 2) or

(−2,−1], leads to ∣∣mj,k
I,γ(ξ̃1, ξ̃2)

∣∣ . 2−k.

For mj,k
I,γ(ξ̃1, ξ̃2), by van der Corput’s lemma, it is easy to see that

∣∣ ∫
1≤|t|<2 e

−i2ktξ̃1 dt
∣∣ .

2−k. This, combined with
∣∣ ∫

1≤|τ |<2 e
−iCM2jΓM (2kτ)ξ̃2 dτ

∣∣ . 1, further implies that∣∣mj,k
I,γ(ξ̃1, ξ̃2)

∣∣ . 2−k.

Note that |j| . k, we have∑
Case 3

∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ . ∑

Case 3

2−k .
∑
k≥0

k2−k . 1

for all |ξ̃1|, |ξ̃2| ∈ [1, 2).

Case 4: k ≥ 0 and 1
8(2C1)2kΓ′M (1) < 1

82−j . The method of establishing (2.6) in this

case is different from these cases above. Here, mj,k
I,γ(ξ̃1, ξ̃2) plays a key role in this method,

and we should consider
∣∣mj,k

I,γ(ξ̃1, ξ̃2) − mj,k
I,γ(ξ̃1, ξ̃2)

∣∣, instead of considering
∣∣mj,k

I,γ(ξ̃1, ξ̃2)
∣∣

and
∣∣mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ separately. Indeed, we can rewrite mj,k

I,γ(ξ̃1, ξ̃2)−mj,k
I,γ(ξ̃1, ξ̃2) as∫

1≤|t|<2
e−i2

ktξ̃1
(
e−iCM2jΓM (2kt)ξ̃2 − 1

)
dt

−
∫

1≤|t|<2
e−i2

ktξ̃1

∫
1≤|τ |<2

(
e−iCM2jΓM (2kτ)ξ̃2 − 1

)
dτdt.
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By (2.2), Remark 1.4 and Theorem 1.2(i), we have∣∣e−iCM2jΓM (2kt)ξ̃2 − 1
∣∣ ≤ ∣∣CM2jΓM (2kt)ξ̃2

∣∣ ≤ 8C1

C2 + 1
C ′12j(2C1)k,∣∣e−iCM2jΓM (2kτ)ξ̃2 − 1

∣∣ ≤ ∣∣CM2jΓM (2kτ)ξ̃2

∣∣ ≤ 8C1

C2 + 1
C ′12j(2C1)k.

Furthermore, an application of
∑

j:2j.(2C1)−2k 2j . (2C1)−2k then shows that∑
Case 4

∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ . ∑

Case 4

2j(2C1)k .
∑
k≥0

(2C1)−k . 1

for all |ξ̃1|, |ξ̃2| ∈ [1, 2).

Case 5: k < 0 and (2eC2/2)k/2 ≤ 2−j . As in Case 4, we may then apply (2.1), (2.2)

and Remark 1.4 to conclude that∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ . 2j

(
2eC2/2

)k
.

Therefore, by
∑

j:2j.(2eC2/2)−k/2 2j . (2eC2/2)−k/2, it follows that∑
Case 5

∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ . ∑

Case 5

2j
(
2eC2/2

)k
.
∑
k<0

(
2eC2/2

)k/2
. 1

for all |ξ̃1|, |ξ̃2| ∈ [1, 2).

Case 6: k < 0 and (2C1)2k < 2−j < (2eC2/2)k/2. In this case, we should rewrite

mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2) as∫
1≤|t|<2

(
e−i2

ktξ̃1 − 1
)
e−iCM2jΓM (2kt)ξ̃2 dt

−
∫

1≤|τ |<2
e−iCM2jΓM (2kτ)ξ̃2

∫
1≤|t|<2

(
e−i2

ktξ̃1 − 1
)

dtdτ.

From
∣∣e−i2ktξ̃1 − 1

∣∣ ≤ ∣∣2ktξ̃1

∣∣ . 2k, this implies
∣∣mj,k

I,γ(ξ̃1, ξ̃2) − mj,k
I,γ(ξ̃1, ξ̃2)

∣∣ . 2k. Thus,

noting the fact that |j| . |k|, we have∑
Case 6

∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ . ∑

Case 6

2k .
∑
k<0

|k|2k . 1

for all |ξ̃1|, |ξ̃2| ∈ [1, 2).

Case 7: k < 0 and 2−j ≤ (2C1)2k. As in Case 1, by
∑

j:2−j≤(2C1)2k 2−j/2 . (2C1)k and

(2.2), we have∑
Case 7

∣∣mj,k
I,γ(ξ̃1, ξ̃2)−mj,k

I,γ(ξ̃1, ξ̃2)
∣∣ . ∑

Case 7

(
2j2kΓ′M (2k)

)−1/2
.
∑

Case 7

(
2j(2C1)k

)−1/2

.
∑
k<0

(2C1)k/2 . 1

for all |ξ̃1|, |ξ̃2| ∈ [1, 2).

Altogether, we obtain (2.4) with p = 2.
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2.2. Lp(R2)-boundedness

In Subsection 2.1, we have obtained the L2(R2)-boundedness of supj,k∈Z
∣∣(M j,k

I,γ−M
j,k
I,γ)f

∣∣.
Therefore, the Lp(R2)-boundedness, p ∈ (2,∞), of supj,k∈Z

∣∣(M j,k
I,γ −M

j,k
I,γ)f

∣∣ in (2.4) can

be followed by interpolating with the trivial L∞(R2)-boundedness. The purpose of this

subsection is to prove (2.4) for all p ∈ (1, 2) in terms of the method of bootstrapping an

iterated interpolation argument in the spirit of Nagel, Stein and Wainger in [23].

As in Carlsson, Christ, Córdoba et al. [7], we should first describe a Littlewood–Paley

decomposition. Let us set

αk := γ′(2k) and P̂kf(ξ1, ξ2) := Φk(ξ1, ξ2)f̂(ξ1, ξ2),

where

supp Φk ⊆
{

(ξ1, ξ2) ∈ R2 : αk−1 ≤ |ξ1/ξ2| ≤ αk+1

}
.

From [7], we also have

(2.8)
∑
k∈Z

Pkf = f

and

(2.9)

∥∥∥∥(∑
k∈Z
|Pkf |2

)1/2∥∥∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞).

On the other hand, for any given k ∈ Z, let us define a function ψk(j) satisfying

(2.10) 2jγ′(2k) = γ′(2k+ψk(j)).

It is easy to see that ψk is monotonic and ψk(0) = 0, which leads to the fact that there

exists the inverse function (ψk)
−1 of ψk. From (2.8), we write

sup
j,k∈Z

∣∣(M j,k
I,γ −M

j,k
I,γ

)
f
∣∣ = sup

j,k∈Z

∣∣∣∣(M j,k
I,γ −M

j,k
I,γ

)(∑
l∈Z

Pl+k+ψk(j)f

)∣∣∣∣.
Therefore, for (2.4), by the triangle inequality, it is enough to prove that there exists a

positive constant α such that∥∥∥∥ sup
j,k∈Z

∣∣(M j,k
I,γ −M

j,k
I,γ

)
(Pl+k+ψk(j)f)

∣∣∥∥∥∥
Lp(R2)

. 2−α|l|‖f‖Lp(R2)

for all p ∈ (1, 2), which is equivalent to∥∥∥∥ sup
j,k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pjf)

∣∣∥∥∥∥
Lp(R2)

. 2−α|l|‖f‖Lp(R2).
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Furthermore, by (2.9), it suffices to obtain∥∥∥∥[∑
j∈Z

sup
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pjf)

∣∣2]1/2∥∥∥∥
Lp(R2)

. 2−α|l|
∥∥∥∥(∑

j∈Z
|Pjf |2

)1/2∥∥∥∥
Lp(R2)

for all p ∈ (1, 2). By interpolation, we need to establish only the following estimates∥∥∥∥[∑
j∈Z

sup
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pjf)

∣∣2]1/2∥∥∥∥
L2(R2)

. 2−α|l|
∥∥∥∥(∑

j∈Z
|Pjf |2

)1/2∥∥∥∥
L2(R2)

(2.11)

and ∥∥∥∥[∑
j∈Z

sup
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pjf)

∣∣2]1/2∥∥∥∥
Lp(R2)

.

∥∥∥∥(∑
j∈Z
|Pjf |2

)1/2∥∥∥∥
Lp(R2)

(2.12)

for all p ∈ (1, 2).

Proposition 2.1. We have

(1) (2.11) followed from

(2.13)∥∥∥∥ sup
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pjf)

∣∣∥∥∥∥
L2(R2)

. 2−α|l|‖Pjf‖L2(R2).

(2) (2.12) followed from

(2.14)

∥∥∥∥ sup
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pjf)

∣∣∥∥∥∥
Lp(R2)

. ‖Pjf‖Lp(R2)

for all p ∈ (1,∞).

Proof. For (2.13) ⇒ (2.11), which comes from the commutative property between l2(Z)

and L2(R2) norms. For (2.14) ⇒ (2.12), we first consider the more general estimate∥∥∥∥[∑
j∈Z

sup
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pjf)

∣∣q1]1/q1
∥∥∥∥
Lq2 (R2)

.

∥∥∥∥(∑
j∈Z
|Pjf |q1

)1/q1
∥∥∥∥
Lq2 (R2)

(2.15)
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for certain q1 ∈ (1,∞] and q2 ∈ (1,∞).

For the case of q1 =∞ and q2 = 2, by (2.9), it follows that∥∥∥∥ sup
j∈Z
|Pjf |

∥∥∥∥
Lp(R2)

≤
∥∥∥∥(∑

l∈Z
|Pjf |2

)1/2∥∥∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞). Recall that in Subsection 2.1, we have obtained∥∥∥∥ sup
j,k∈Z

M
(ψk)−1(j−l−k),k
I,γ f

∥∥∥∥
L2(R2)

. ‖f‖L2(R2)

for all f ∈ L2(R2). Therefore,∥∥∥∥ sup
j,k∈Z

M
(ψk)−1(j−l−k),k
I,γ (Pjf)

∥∥∥∥
L2(R2)

.

∥∥∥∥ sup
j,k∈Z

M
(ψk)−1(j−l−k),k
I,γ

(
sup
j∈Z
|Pjf |

)∥∥∥∥
L2(R2)

.

∥∥∥∥ sup
j∈Z
|Pjf |

∥∥∥∥
L2(R2)

.

(2.16)

From (2.3), we also have∥∥∥∥ sup
j,k∈Z

M
(ψk)−1(j−l−k),k
I,γ (Pjf)

∥∥∥∥
L2(R2)

.

∥∥∥∥M (1)M (2)

(
sup
j∈Z
|Pjf |

)∥∥∥∥
L2(R2)

.

∥∥∥∥ sup
j∈Z
|Pjf |

∥∥∥∥
L2(R2)

.

(2.17)

Thus, from (2.16) and (2.17), we obtain (2.15) in the case of q1 =∞ and q2 = 2.

For the case of q1 = q2 and q1, q2 ∈ (1,∞), because the lp(Z) and Lp(R2) norms

commute, we have that (2.15) is equivalent to (2.14). Then, by the interpolation argument,

we may obtain that (2.12) holds for all p ∈ (4/3, 2). Repeating the interpolation argument

and using q1 = ∞ and q2 ∈ (4/3, 2), we may also obtain that (2.12) holds for all p ∈
(8/7, 2). Reiterating this process sufficiently many times we can show that (2.12) holds

for all p ∈ (1, 2). Hence, we obtain (2.14) ⇒ (2.12).

Therefore, it is enough to prove (2.13) and (2.14). Indeed, since the Lp(R2)-boundedness

of supj,k∈Z
∣∣(M j,k

I,γ −M
j,k
I,γ)f

∣∣ has been obtained for all p ∈ [2,∞], we can restrict p ∈ (1, 2)

in (2.14). We first bound the left-hand side of (2.14) by∥∥∥∥[∑
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pjf)

∣∣2]1/2∥∥∥∥
Lp(R2)

,

and define a finer frequency decomposition operator Pj,−k+m by restricting the frequency

region to {
(ξ1, ξ2) ∈ R2 : 2−k+m−1 ≤ |ξ1|, γ′(2j)|ξ2| ≤ 2−k+m+1

}
.
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Furthermore, we can write

Pjf =
∑
m∈Z

Pj,−k+mf.

Thus, for (2.14), by the triangle inequality, it suffices to prove that there exists a positive

constant β such that∥∥∥∥[∑
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pj,−k+mf)

∣∣2]1/2∥∥∥∥
Lp(R2)

. 2−β|m|‖Pjf‖Lp(R2)

(2.18)

for all p ∈ (1, 2). As a result, we obtain (2.18) ⇒ (2.14).

Proposition 2.2. We have that (2.13) and (2.18) can be followed from∥∥∥∥[∑
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pj,−k+mf)

∣∣2]1/2∥∥∥∥
L2(R2)

. 2−α|l|2−β|m|‖Pjf‖L2(R2)

(2.19)

for some positive constants α and β.

Proof. For (2.19) ⇒ (2.13), which can be proved as (2.18) ⇒ (2.14). For (2.19) ⇒ (2.18),

by interpolation and the Littlewood–Paley theory, it suffices to obtain∥∥∥∥[∑
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pj,−k+mf)

∣∣2]1/2∥∥∥∥
Lp(R2)

.

∥∥∥∥(∑
k∈Z
|Pj,−k+mf |2

)1/2∥∥∥∥
Lp(R2)

(2.20)

for all p ∈ (1, 2). Similarly, we consider the more general estimate∥∥∥∥[∑
k∈Z

∣∣(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pj,−k+mf)

∣∣q1]1/q1
∥∥∥∥
Lq2 (R2)

.

∥∥∥∥(∑
k∈Z
|Pj,−k+mf |q1

)1/q1
∥∥∥∥
Lq2 (R2)

(2.21)

for certain q1 ∈ (1,∞] and q2 ∈ (1,∞).

As in (2.16) and (2.17), we have that (2.21) can be established for the case of q1 =∞
and q2 = 2. On the other hand, for the case of q1 = q2 and q1, q2 ∈ (1,∞), it is easy to

see that (2.21) is equivalent to∥∥(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pj,−k+mf)

∥∥
Lq2 (R2)

. ‖Pj,−k+mf‖Lq2 (R2)

for all q2 ∈ (1,∞), which is a trivial consequence of Minkowski’s inequality. Therefore, as

in (2.12), we obtain (2.20), which leads to (2.19) ⇒ (2.18).
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In conclusion, we will only prove (2.19). For this aim, it is sufficient to show the

following estimate∥∥(M (ψk)−1(j−l−k),k
I,γ −M (ψk)−1(j−l−k),k

I,γ

)
(Pj,−k+mf)

∥∥
L2(R2)

. 2−α|l|2−β|m|‖f‖L2(R2).

This, by Plancherel’s theorem, can be followed from

(2.22)
∣∣m(ψk)−1(j−l−k),k

I,γ (ξ1, ξ2)−m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)

∣∣ . 2−α|l|2−β|m|

for all (ξ1, ξ2) ∈ R2 satisfying

αj−1 ≤ |ξ1/ξ2| ≤ αj+1 and 2−k+m−1 ≤ |ξ1|, γ′(2j)|ξ2| ≤ 2−k+m+1.

On the other hand, we may assume that |l| and |m| large enough, since we have the

following trivial estimates∣∣m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)

∣∣ . 1 and
∣∣m(ψk)−1(j−l−k),k

I,γ (ξ1, ξ2)
∣∣ . 1

for all (ξ1, ξ2) ∈ R2.

To prove (2.22), we consider the following five cases according to the values of m and

l.

Case I: m ≥ 0 and l ≤ m
2 log2 C1

. From Theorem 1.2(ii) and (2.10), this implies that

∣∣(ϕ(ψk)−1(j−l−k),k
I,γ

)′′
(t)
∣∣ =

∣∣∣∣2(ψk)−1(j−l−k)γ
′′(2kt)2kt

γ′(2kt)

γ′(2kt)

2kt
22kξ2

∣∣∣∣ & 2m
γ′(2j−l)

γ′(2j)
.

By Theorem 1.2(i) and (2.1), we obtain(C1)−l ≤ γ′(2j−l)
γ′(2j)

≤ e−
C2
2
l for l > 0,

e−
C2
2
l ≤ γ′(2j−l)

γ′(2j)
≤ (C1)−l for l < 0,

which leads to ∣∣(ϕj,kI,γ)′′(t)∣∣ &
2m(C1)−l for l > 0,

2me−
C2
2
l for l < 0.

By van der Corput’s lemma, we obtain

∣∣m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)

∣∣ .
2−m/2(C1)l/2 for l > 0,

2−m/2e
C2
4
l for l < 0.

This boundedness can also be obtained for m
(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2). Therefore,

∣∣m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)−m(ψk)−1(j−l−k),k

I,γ (ξ1, ξ2)
∣∣ .

2−m/2(C1)l/2 for l > 0,

2−m/2e
C2
4
l for l < 0.

To obtain (2.22) in this case, two different situations can arise.
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♦ For l > 0, since 2−m/2(C1)l/2 = 2−m/82−3m/8(C1)l/2 ≤ 2−m/8(C1)−1/4, we have

(2.22) established with α := 1
4 log2C1 and β := 1/8.

♦ For l < 0, we have (2.22) established with α := C2
4 log2 e and β := 1/2.

Case II: m ≥ 0 and m
2 log2 C1

< l < 4m
C2 log2 e

. From Theorem 1.2(i) and (2.10), we may

conclude that∣∣(ϕ(ψk)−1(j−l−k),k
I,γ

)′
(t)
∣∣ ≥ 2k|ξ1| −

∣∣2(ψk)−1(j−l−k)γ′(2kt)2kξ2

∣∣ ≥ 2m
(

1

2
− 2C1e

−C2
2
l

)
& 2m

for l and m large enough. Notice the fact that (ϕ
(ψk)−1(j−l−k),k
I,γ )′(t) is monotonic on [1, 2)

or (−2,−1], by van der Corput’s lemma, we may obtain∣∣m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)

∣∣ . 2−m.

On the other hand, we also have that
∣∣m(ψk)−1(j−l−k),k

I,γ (ξ1, ξ2)
∣∣ can be bounded by 2−m.

Therefore,∣∣m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)−m(ψk)−1(j−l−k),k

I,γ (ξ1, ξ2)
∣∣ . 2−m ≤ 2−m/22−

C2 log2 e
8

l,

which proves (2.22) with α := C2 log2 e
8 and β := 1/2.

Case III: m ≥ 0 and l ≥ 4m
C2 log2 e

, or m < 0 and m
2 log2 C1

≤ l. As in Case 4 in

Subsection 2.1, by (2.2) and Theorem 1.2(i), we see that

∣∣m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)−m(ψk)−1(j−l−k),k

I,γ (ξ1, ξ2)
∣∣ . 2m

γ′(2j−l)

γ′(2j)
.

2me−
C2
2
l for l > 0,

2m(C1)−l for l < 0.

For obtaining (2.22) in this case, we consider the following three cases.

♦ For the case of m ≥ 0 and l ≥ 4m
C2 log2 e

, note that 2me−
C2
2
l = 2me−

3C2
8
le−

C2
8
l ≤

2−m/2e−
C2
8
l, we then establish (2.22) with α := C2 log2 e

8 and β := 1/2.

♦ For the case of m < 0 and l > 0, it is easy to see that (2.22) established with

α := C2 log2 e
2 and β := 1.

♦ For the case of m < 0 and m
2 log2 C1

≤ l ≤ 0, we may take |l| and |m| large enough.

Noting that 2m(C1)−l = 2
m
4 2

3m
4 (C1)−l ≤ 2

m
4 (C1)l/2, we then establish (2.22) with

α := log2 C1

2 and β := 1/4.

Case IV: m < 0 and 4m
C2 log2 e

≤ l ≤ m
2 log2 C1

. As in Case 6 in Subsection 2.1, we have

∣∣m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)−m(ψk)−1(j−l−k),k

I,γ (ξ1, ξ2)
∣∣ . 2m ≤ 2m/2e

C2
8
l.
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We then establish (2.22) with α := C2 log2 e
8 and β := 1/2.

Case V: m < 0 and l < 4m
C2 log2 e

. From Theorem 1.2(i) and (2.10), this implies that∣∣(ϕ(ψk)−1(j−l−k),k
I,γ

)′
(t)
∣∣ ≥ ∣∣2(ψk)−1(j−l−k)γ′(2kt)2kξ2

∣∣− 2k|ξ1|

≥ 2m
(
e−

C2
2
l

2
− 2

)
& 2me−

C2
2
l

for |l| and |m| large enough. We notice that (ϕ
(ψk)−1(j−l−k),k
I,γ )′(t) is monotonic on [1, 2) or

(−2,−1], van der Corput’s lemma yields∣∣m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)

∣∣ . 2−me
C2
2
l.

On the other hand, we also have
∣∣m(ψk)−1(j−l−k),k

I,γ (ξ1, ξ2)
∣∣ can be bounded by 2−me

C2
2
l,

which further leads to∣∣m(ψk)−1(j−l−k),k
I,γ (ξ1, ξ2)−m(ψk)−1(j−l−k),k

I,γ (ξ1, ξ2)
∣∣ . 2−me

C2
2
l ≤ 2m/2e

C2
8
l.

We then establish (2.22) with α := C2 log2 e
8 and β := 1/2.

In total, we obtain (2.22) with α := C2 log2 e
8 and β := 1/8. This finishes the proof of

Theorem 1.2.

3. Proof of Theorem 1.3

For MII,γ , the method applied in MI,γ is no longer available, and therefore we must find

a different method to prove Theorem 1.3. We first restrict p ∈ (1,∞) based on the trivial

L∞(R2)-boundedness of MII,γ , and also introduce some simple properties of the curve γ.

Indeed, from Theorem 1.3(i) and (2.2), we have

(3.1) C2 + 1 ≤ tγ′(t)

γ(t)
≤ C ′1 for any t ∈ (0,∞).

As in (2.1), if consider F (t) := ln γ(t) for any t ∈ (0,∞), by (3.1), we have

(3.2) e(C2+1)/2 ≤ γ(2t)

γ(t)
≤ eC′1 for any t ∈ (0,∞).

As in MI,γ , we may assume that f is non-negative. Let φ : R → R be a smooth

function supported on {t ∈ R : 1/2 ≤ |t| ≤ 2} with the properties that 0 ≤ φ(t) ≤ 1 and∑
l∈Z φl(t) = 1 for any t 6= 0, where φl(t) := φ(2−lt). Here and hereafter, for any l ∈ Z,

we denote P
(1)
l and P

(2)
l as the Littlewood–Paley projection corresponding to φl in the first

variable and the second variable, respectively,

P
(1)
l f(x1, x2) :=

∫ ∞
−∞

f(x1 − w, x2)φ̌l(w) dw,

P
(2)
l f(x1, x2) :=

∫ ∞
−∞

f(x1, x2 − w)φ̌l(w) dw.
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For any given l ∈ Z, set

M i,j
II,lf(x1, x2) :=

∫ ∞
−∞

f(x1 − 2it, x2 − 2jγ(t))φl(t)
dt

|t|
.

Then, as inMI,γ , it suffices to prove the Lp(R2)-boundedness of the operator supi,j,l∈ZM
i,j
II,l.

Furthermore, for simplicity, we let z := (x1, x2), iz := i(x1, x2), jz := j(x1, x2) and

lz := l(x1, x2) be measurable functions. By linearization, it suffices to prove the Lp(R2)-

boundedness of the operator M iz ,jz
II,lz

.

Note that γ is strictly increasing on R+ with γ(R+) = R+. For these jz, lz ∈ Z, we

denote by kz : R2 → R the measurable function satisfying

(3.3) 2kz2jzγ(2lz) = 1.

We then write M iz ,jz
II,lz

f =
∑

k∈ZM
iz ,jz
II,lz

P
(2)
k f , and further split it as the sum of the following

low-frequency part M iz ,jz
IIa,lz

f and the high-frequency part M iz ,jz
IIb,lz

f , where

M iz ,jz
IIa,lz

f :=
∑
k≤kz

M iz ,jz
II,lz

P
(2)
k f and M iz ,jz

IIb,lz
f :=

∑
k>kz

M iz ,jz
II,lz

P
(2)
k f.

Consider M iz ,jz
IIa,lz

f . We compare it with the following operator

Miz ,jz
IIa,lz

f(x1, x2) :=
∑
k≤kz

∫ ∞
−∞

P
(2)
k f(x1 − 2iz t, x2)φlz(t)

dt

|t|
.

It is easy to see that
∣∣Miz ,jz

IIa,lz
f
∣∣ can be bounded by M (1)

(∑
k≤kz P

(2)
k f

)
. Note that the

operator
∑

k≤kz P
(2)
k f is bounded on Lp(R2) for any given p ∈ (1,∞) by multiplier theory,

then we can use the Lp(R2)-boundedness of M (1) to get

(3.4)
∥∥Miz ,jz

IIa,lz
f
∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞). The difference between M iz ,jz
IIa,lz

f(z) and Miz ,jz
IIa,lz

f(z) can be written as

(3.5)
∑
k≤kz

∫ ∞
−∞

∫ ∞
−∞

f(x1 − 2iz t, x2 − w)
(
φ̌k(w − 2jzγ(t))− φ̌k(w)

)
dwφlz(t)

dt

|t|
.

By the Lagrange mean value theorem, we have

(3.6)
∣∣φ̌k(w − 2jzγ(t))− φ̌k(w)

∣∣ . 2jz |γ(t)|22k2−2n

if 2jz |γ(t)| ≤ 2−k and w is in the annulus 2−k+n−1 ≤ |w| ≤ 2−k+n for n ∈ N. For n = 0

the above estimate holds for all |w| ≤ 2−k. For t ∈ suppψlz , from k ≤ kz, (3.2) and (3.3),



Maximal Functions Along Convex Curves with Lacunary Directions 563

we have 2jz |γ(t)| ≤ 2−k, which further implies (3.6). Noting γ(t)
t is increasing on R+, (3.2)

and (3.3), we then bound (3.5) by∑
n∈N

∑
k≤kz

∫ ∞
−∞

∫
|w|≤2−k+n

|f(x1 − 2iz t, x2 − w)| · 2jz |γ(t)|22k2−2n dwφlz(t)
dt

|t|

.
∑
n∈N

2−n
∑
k≤kz

2k2jzγ(2lz)
1

2lz

∫
|t|.2lz

1

2−k+n

∫
|w|≤2−k+n

|f(x1 − 2iz t, x2 − w)| dwdt

.M (1)M (2)f(x1, x2).

From the Lp(R)-boundedness of M (1) and M (2), which trivially leads to the estimate∥∥M iz ,jz
IIa,lz

f −Miz ,jz
IIa,lz

f
∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞). This, combined with (3.4), leads to∥∥M iz ,jz
IIa,lz

f
∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞).

Consider M iz ,jz
IIb,lz

f . We rewrite

M iz ,jz
IIb,lz

f =
∑
k>0

M iz ,jz
II,lz

P
(2)
k+kz

f =
∑
m∈Z

∑
k>0

M iz ,jz
II,lz

P (1)
m P

(2)
k+kz

f.

For these iz, lz ∈ Z, we let mz : R2 → R be a measurable function satisfying

2mz2iz2lz = 1.

Then, we can split

M iz ,jz
IIb,lz

f =
∑
m≤mz

∑
k>0

M iz ,jz
II,lz

P (1)
m P

(2)
k+kz

f +
∑
m>mz

∑
k>0

M iz ,jz
II,lz

P (1)
m P

(2)
k+kz

f

=: M iz ,jz
II1b ,lz

f +M iz ,jz
II2b ,lz

f.

Consider M iz ,jz
II1b ,lz

f . As in M iz ,jz
IIa,lz

f , we will compare it with

Miz ,jz
II1b ,lz

f(x1, x2) :=
∑
m≤mz

∑
k>0

∫ ∞
−∞

P (1)
m P

(2)
k+kz

f(x1, x2 − 2jzγ(t))φlz(t)
dt

|t|
.

After changing of variable 2jzγ(t) =: w, we use (3.1) and the fact that (γ−1)′(t)γ′(γ−1(t)) =

1 to establish

1

γ′
(
γ−1(w/2jz)

) =
γ
(
γ−1(w/2jz)

)
γ′
(
γ−1(w/2jz)

)
γ−1(w/2jz)

γ−1(w/2jz)

w/2jz
.
γ−1(w/2jz)

w/2jz
.
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Then we have the following pointwise estimate∣∣Miz ,jz
II1b ,lz

f(x1, x2)
∣∣ .M (2)

( ∑
m≤mz

∑
k>0

P (1)
m P

(2)
k+kz

f

)
(x1, x2),

which trivially leads to

(3.7)
∥∥Miz ,jz

II1b ,lz
f
∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞). As the difference between M iz ,jz
IIa,lz

f(z) and Miz ,jz
IIa,lz

f(z), we can bound∣∣M iz ,jz
II1b ,lz

f(z) − Miz ,jz
II1b ,lz

f(z)
∣∣ by M (1)M (2)

(∑
k>0 P

(2)
k+kz

f
)
(z), which further implies the

Lp(R)-boundedness of the difference between M iz ,jz
II1b ,lz

f(z) and Miz ,jz
II1b ,lz

f(z). Hence, from

(3.7), we get ∥∥M iz ,jz
II1b ,lz

f
∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞).

Consider M iz ,jz
II2b ,lz

f . We rewrite

M iz ,jz
II2b ,lz

f =
∑
m>0

∑
k>0

M iz ,jz
II,lz

P
(1)
m+mzP

(2)
k+kz

f.

By interpolation, it suffices to prove that there exists a positive constant δ such that

(3.8)
∥∥M iz ,jz

II,lz
P

(1)
m+mzP

(2)
k+kz

f
∥∥
Lp(R2)

. 2−δ(m+k)‖f‖Lp(R2)

for all p ∈ [2,∞), and

(3.9)
∥∥M iz ,jz

II,lz
P

(1)
m+mzP

(2)
k+kz

f
∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1, 2).

Proof of (3.8). The expression inside the Lp(R2)-norm on the left-hand side of (3.8) can

be dominated by ( ∑
M,K∈Z

∣∣M iz ,jz
II,lz

P
(1)
m+MP

(2)
k+Kf

∣∣p)1/p

,

where 2M2iz2lz = 1 and 2K2jzγ(2lz) = 1. Noting that∥∥∥∥( ∑
M,K∈Z

∣∣P (1)
m+MP

(2)
k+Kf

∣∣p)1/p∥∥∥∥
Lp(R2)

.

∥∥∥∥( ∑
M,K∈Z

∣∣P (1)
m+MP

(2)
k+Kf

∣∣2)1/2∥∥∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ [2,∞), and the lp(Z2) and Lp(R2) norms commute, we prove only

(3.10)
∥∥M iz ,jz

II,lz
P

(1)
m+MP

(2)
k+Kf

∥∥
Lp(R2)

. 2−δ(m+k)‖f‖Lp(R2)
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for all p ∈ [2,∞). Furthermore, if we bound the expression inside the Lp(R2)-norm on the

left-hand side of (3.10) by (∑
l∈Z

∣∣M i,j
II,lP

(1)
m+MP

(2)
k+Kf

∣∣p)1/p

,

where 2M2i2l = 1 and 2K2jγ(2l) = 1, it is enough to show

(3.11)
∥∥M i,j

II,lP
(1)
m+MP

(2)
k+Kf

∥∥
Lp(R2)

. 2−δ(m+k)‖f‖Lp(R2)

for all p ∈ [2,∞). By Minkowski’s inequality, then the following identity is valid,

(3.12)
∥∥M i,j

II,lP
(1)
m+MP

(2)
k+Kf

∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞). Therefore, by interpolating with (3.12), to prove (3.11) we need to show

the following estimate

(3.13)
∥∥M i,j

II,lP
(1)
m+MP

(2)
k+Kf

∥∥
L2(R2)

. 2−δ(m+k)‖f‖L2(R2).

To get (3.13), let us set Γl(t) := γ(2lt)
γ(2l)

, and rewrite

M i,j
II,lP

(1)
m+MP

(2)
k+Kf(x1, x2) =

∫ ∞
−∞

P
(1)
m+MP

(2)
k+Kf(x1 − 2i2lt, x2 − 2jγ(2l)Γl(t))φ(t)

dt

|t|
.

Furthermore, let

T lf(x1, x2) :=

∫ ∞
−∞

f(x1 − t, x2 − Γl(t))φ(t)
dt

|t|
,

and for any given real numbers a, b, define

∆a,bf(x1, x2) := f(2ax1, 2
bx2).

Therefore, it is easy to see that

M i,j
II,lP

(1)
m+MP

(2)
k+Kf = ∆−i−l,−j−log2 γ(2l)T

l∆i+l,j+log2 γ(2l)P
(1)
m+MP

(2)
k+Kf.

Note that 2M2i2l = 1 and 2K2jγ(2l) = 1, then

∆i+l,j+log2 γ(2l)P
(1)
m+MP

(2)
k+Kf = P

(1)
m+M+i+lP

(2)

k+K+j+log2 γ(2l)
∆i+l,j+log2 γ(2l)f

= P (1)
m P

(2)
k ∆i+l,j+log2 γ(2l)f.

So we can write

M i,j
II,lP

(1)
m+MP

(2)
k+Kf = ∆−i−l,−j−log2 γ(2l)T

lP (1)
m P

(2)
k ∆i+l,j+log2 γ(2l)f.
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Since conjugation by ∆a,b is an Lp(R2) isometry, we then have∥∥M i,j
II,lP

(1)
m+MP

(2)
k+Kf

∥∥
L2(R2)

=
∥∥T lP (1)

m P
(2)
k f

∥∥
L2(R2)

.

Let the multiplier of T lP
(1)
m P

(2)
k f be

m(ξ1, ξ2) := ψm(ξ1)ψk(ξ2)

∫ ∞
−∞

e−iξ1t−iξ2Γl(t)φ(t)
dt

|t|
,

and the corresponding phase function be Φ(t) := −ξ1t− ξ2Γl(t), so

Φ′(t) = −ξ1 − ξ2Γ′l(t) and Φ′′(t) = −ξ2Γ′′l (t).

We now consider the following two cases:

? If |ξ1| ≥ 4C ′1e
C′1 |ξ2|, from (3.1) and (3.2), this implies |Γ′l(t)| ≤ 2C ′1e

C′1 with a

bound independent of l, which further leads to |Φ′(t)| ≥ |ξ1| − |ξ2Γ′l(t)| ≥
|ξ1|
2 .

Noting that ξ1 ∈ suppψm, we have |Φ′(t)| & 2m. This, by van der Corput’s lemma

and the fact that Φ′(t) is monotonic, implies |m(ξ1, ξ2)| . 2−m. Furthermore, by

ξ2 ∈ suppψk and |ξ1| ≥ 4C ′1e
C′1 |ξ2|, we have |m(ξ1, ξ2)| . 2−

1
2

(m+k). Applying

Plancherel’s theorem, we obtain (3.13) with δ = 1/2.

? If |ξ1| ≤ 4C ′1e
C′1 |ξ2|, from Theorem 1.3(ii), (3.1) and (3.2), we have |Γ′′l (t)| ≥

C2(C2+1)

4eC
′
1
|ξ2| with a bound independent of l. This, combined with the fact that

ξ2 ∈ suppψk, leads to |Φ′′(t)| & 2k. We then apply van der Corput’s lemma to

obtain |m(ξ1, ξ2)| . 2−k/2. As in the first case, by Plancherel’s theorem again, we

obtain (3.13) with δ = 1/4.

Putting things together, we obtain (3.13) with δ = 1/4, this finishes the proof of

(3.8).

Proof of (3.9). It suffices to show

(3.14)∥∥∥∥( ∑
M,K∈Z

∣∣M iz ,jz
II,lz

P
(1)
m+MP

(2)
k+Kf

∣∣2)1/2∥∥∥∥
Lp(R2)

.

∥∥∥∥( ∑
M,K∈Z

∣∣P (1)
m+MP

(2)
k+Kf

∣∣2)1/2∥∥∥∥
Lp(R2)

for all p ∈ (1, 2), where 2M2iz2lz = 1 and 2K2jzγ(2lz) = 1. We consider the more general

estimate

(3.15)∥∥∥∥( ∑
M,K∈Z

∣∣M iz ,jz
II,lz

P
(1)
m+MP

(2)
k+Kf

∣∣p1)1/p1
∥∥∥∥
Lp2 (R2)

.

∥∥∥∥( ∑
M,K∈Z

∣∣P (1)
m+MP

(2)
k+Kf

∣∣p1)1/p1
∥∥∥∥
Lp2 (R2)

for certain p1 ∈ (1,∞] and p2 ∈ (1,∞).
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For the case of p1 =∞ and p2 = 2, by linearization, we have that the expression inside

the Lp2(R2)-norm on the left-hand side of (3.15) can be bounded by MII,γ

(
supM,K∈Z

|P (1)
m+MP

(2)
k+Kf |

)
. It is clear that (3.8) implies the L2(R2)-boundedness of MII,γ . Therefore,

(3.15) holds for p1 =∞ and p2 = 2.

For the case of p1 = p2 and p1, p2 ∈ (1,∞), by replacing f by P
(1)
m+MP

(2)
k+Kf , we have

that (3.15) is equivalent to

(3.16)
∥∥M iz ,jz

II,lz
P

(1)
m+MP

(2)
k+Kf

∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞). We admit it first, which proof will be submit later. Then the interpo-

lation argument implies that (3.14) holds for all p ∈ (4/3, 2). Repeating the interpolation

argument and using p1 = ∞ and p2 ∈ (4/3, 2), we can prove that (3.14) holds for all

p ∈ (8/7, 2). Reiterating this process sufficiently many times we can show that (3.14)

holds for all p ∈ (1, 2).

Therefore, it suffices to show (3.16). Furthermore, note that M iz ,jz
II,lz

P
(1)
m+MP

(2)
k+Kf can

be bounded by MII,γM
(1)M (2)f , and the Lp(R2)-boundedness of MII,γ , M (1) and M (2)

for all p ∈ [2,∞), thus we may restrict p ∈ (1, 2) in the proof of (3.16). This further

reduces to showing∥∥∥∥(∑
l∈Z

∣∣M i,j
II,lP

(1)
m+MP

(2)
k+Kf

∣∣2)1/2∥∥∥∥
Lp(R2)

.

∥∥∥∥(∑
l∈Z

∣∣P (1)
m+Mf

∣∣2)1/2∥∥∥∥
Lp(R2)

for all p ∈ (1, 2), where 2M2i2l = 1 and 2K2jγ(2l) = 1. Repeating the method of

bootstrapping an iterated interpolation argument above, it suffices to prove∥∥M i,j
II,lP

(1)
m+MP

(2)
k+Kf

∥∥
Lp(R2)

. ‖f‖Lp(R2)

for all p ∈ (1,∞), which can be followed from Minkowski’s inequality. We then obtain

(3.9) and complete the proof of Theorem 1.3.
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