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Finite Morse Index Solutions of the Fractional Henon—Lane—Emden Equation
with Hardy Potential

Soojung Kim and Youngae Lee*

Abstract. In this paper, we study the fractional Henon—Lane-Emden equation asso-
ciated with Hardy potential

(—A)*u — y|z|"*u = |z|*|u/P " u  in R™.

Extending the celebrated result of |14], we obtain a classification result on finite Morse
index solutions to the fractional elliptic equation above with Hardy potential. In
particular, a critical exponent p of Joseph—Lundgren type is derived in the supercritical

case studying a Liouville type result for the s-harmonic extension problem.

1. Introduction

For given constants 0 < s < 1, n > 2s, a > —2s and p > 1, we consider the following

fractional Henon—Lane—-Emden equation associated with the Hardy potential
(1.1) (—A)u — ylz| "% u = |z|*|ufP " u  in R™.
The fractional Laplacian (—A)? is defined by

(—=A)u(z) = AWP.V./ Wdy for # € R™,

9

which is well-defined in the principal-value sense for u € C29 (R™) N L' (R™; (1+ |x|) " 2%);
refer [17] for instance. In this paper, we are concerned with solutions to (1.1]) which have
finite Morse index assuming v < 7y5q(p) with a critical constant 7, s.(p) defined by
(L.11]).

In recent years, nonlocal diffusion operators such as the fractional Laplacians (—A)*
have drawn a great attention of many mathematicians. Integro-differential operators in-
cluding the fractional Laplacians appear naturally in the study of stochastic processes with

jumps, which allow long-distance interactions and have numerous applications to physics

Received February 1, 2021; Accepted December 14, 2021.

Communicated by Frangois Hamel.

2020 Mathematics Subject Classification. 35B35, 35B33, 35B45, 35B53, 35B65.

Key words and phrases. finite Morse index solution, fractional Henon—-Lane-Emden equations, Hardy
potential, monotonicity formula.

*Corresponding author.

251



252 Soojung Kim and Youngae Lee

and finance. As the order s of the fractional Laplacian tends to 1, the Henon—Lane—Emden

equation with the Hardy potential
(1.2) — Au —v|z|?u = |z|%uP 'y in R"

can be seen as the limit of the equation (|1.1)) (see |17] for instance). In the local case when
s =1 with a = 0 and v = 0, the equation ((1.2) becomes the Lane-Emden equation

(1.3) — Au = [uff"'u  in R"

which arises in the study of stellar structure in astrophysics [6,(9], and the prescribed scalar
curvature problem in conformal geometry [6,47]. During the last few decades, there have
been extensive literatures on the equation . Among them, Gidas and Spruck in the
pioneering work [33] proved no existence of positive solutions to the equation for
1 < p < ps(n,1,0), where pg(n, 1,0) is the so-called classical Sobolev exponent given by

4o ifn <2,

n+2 s

ps(n,1,0) =

Moreover, in the case when p = pg(n, 1,0), it was proved by Caffarelli, Gidas and Spruck
in the remarkable paper [6] that there exists a unique positive solution of up to trans-
lation and rescaling, which is radial and explicit. Regarding finite Morse index solutions
(not necessarily positive solutions), Farina in the seminal paper [25] completely classified

finite Morse index solutions with the Joseph—Lundgren exponent p.(n) which is given by

(1.4) (n) 400 if n <10,
’ Peltt) = n—2)2—4n+8y/n—1 .
( (7’2—2)(n—10) if n > 11,

see also [37]. Farina’s result has been extended to the equation involving the Henon term
|z|*|ulP~ u and the Hardy term v|z| 2u; for instance, we refer to [1}2}/11,[19,20}36, 48]
and the references therein. Moreover, stable and finite Morse index solutions of Gelfand—
Liouville problem —Awu = e* has been also studied in [12,26], and extended to non-local
operators in [27,30}31},35].

This paper concerns the classification of finite Morse index solutions to the fractional
Henon—Lane-Emden equation with the Hardy potential. Throughout this paper, we
always assume that 0 < s < 1, n > 2s, a > —2s and p > 1 unless otherwise stated. We
first recall some definitions and notations regarding fractional Laplacians. The fractional
Laplacian (—A)® on the Schwartz space is defined as a pseudo-differential operator with
the symbol |£]?¢ by the Fourier transform. Associated to the fractional Laplacian (—A)*,
we denote by H*(R") the usual L2-based fractional Sobolev spaces, and by H®(R") its
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homogeneous version defined via the Fourier transform as the completion of Cg°(R™) under

the norm
2 25|~ 2 .
Iy = [ €A

see |17,43] for the details. Here u stands for the Fourier transform of w. Then the fractional
Laplacian (—A)%/2 is defined as a bounded linear operator (—A)*/2: H5(R") — L%(R"),

and
ol oy = /R PR d = | (~A)Pulage), Vu € HRY)

in view of Plancherel’s Theorem. For 0 < s < 1 and v € H® (R™), the following equivalence
of the norms holds (see [17, Propositions 3.4 and 3.6]):

ATLS 2
(1.5) oy =5 [ [ PO deay

Here a constant A, s is given by

o r(e)
/2 |T'(=s)|

(1.6) Aps =

and is of order s(1 — s) as s € (0,1) tends to 0 or 1.
For 0 < s <o < 1, and u € CZ2(R™) N LY(R™; (1 + |z|)~"~2%), the following integral

loc
representation for the fractional Laplacian

(—A)’u(z) = —.An,SP.V./ Mdy

_ pln+2s
1 re |y — 7]
(L7) _Ans u(x +y) + ulx —y) — 2u(z)

PRES dy, VzeR"

2 Jan

is well-defined. Moreover, if u € C?*(R™) N L™°(R") and v € H*(R") N L'(R"), then it
holds that

Ans |u(z (y)|?
(1.8) / (—A)Y’uudr = /n /n |n+28 dady = ||Ju)?. (R")

in light of (1.5 and (1.7)).
It should be noted that any finite Morse index solution w is stable outside some compact
set. Here we say that a solution u to (1.1)) is stable on a set € if

(19) L a6+ 21al 256 do < o1y

for any ¢ € C°(Q2). With regard to stability results on the fractional Laplacian, the
corresponding results of Gidas and Spruck [33] and Caffarelli, Gidas and Spruck [6] have
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been established by Li [3§], and Chen, Li and Ou [10] respectively. Indeed, the following

fractional Lane-Emden equation
(1.10) (=A)*u = |[ufP~ 'y in R"
was studied with the use of the fractional critical Sobolev exponent pg(n,s,0) given by

400 if n < 2s,

n+2s
sy ifn > 2s.

pS(”? S, 0) =

Recently, Davila, Dupaigne and Wei in their remarkable paper [14] provided a complete
classification of finite Morse index solutions for the fractional Lane—-Emden equation .
With the use of the harmonic extension method for the fractional Laplacian developed
by Caffarelli and Silvestre [8], one of main ingredients in studying the supercritical cases
p > ps(n,s,0) in [14] is a monotonicity formula for the extension problem of (.10}, which
enables us to employ a blow-down analysis. A more discussion on various monotonicity
formulas for fractional Laplacian operators can be found in [5,(7,[8,[24,32]. Moreover,
Fazly and Wei in |28/29] extended the result of [14] to the fractional Henon-Lane-Emden
equation, and the fractional Lane-Emden equations of higher order s € (1, 2), respectively.

It would be interesting to study stable solutions to the p-fractional Laplace equation
which has attracted increasing attention in recent years. In the nonlinear case, the s-
harmonic extension approach might not be applicable and it seems crucial to work with
the integral definition of the fractional operator; we refer to |15}(16}/42] for some recent
results of the nonlocal tail for the p-fractional Laplacian. We hope to consider the stability
problem of the p-fractional Laplace equation in future works.

Before stating our main result, we introduce some constants which will play crucial
roles in the classification of finite Morse index solutions to the fractional Henon—Lane—

Emden equation (|1.1)) with Hardy potential. We define

400 if n < 2s,
ps(n,s,a) =
w22 ifn > 2s,
and
(1.11) Yns.a(p) = A0) =: Ans if 1 <p <ps(n,s,a),
: n,s,a =

)\("_TQS - 2;%1“) if p > ps(n,s,a).

Here a function A: [0, (n — 2s)/2) — R is defined by

T ( n+2i+2a ) r ( n+22—2o¢ )

F(n—22—2a ) r ( n—22+2a)

(1.12) AMa) = 2%
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(see [23, Lemma 3.1]). The function Alj (,—2)/2) is continuous and monotone decreasing
with respect to «, and has an asymptotic behavior such that A(a) — 0 as a — (n—2s)/2.
In particular, we note that 0 < v, 5.4(p) < Aps.

Now we state our main result in this paper.

Theorem 1.1. Letn > 25, 0 < s < 0 < 1, a > —2s and v < Ypsa(p). Let u €
C?7(R™) N L™ (R™) be a solution to (1.1)) which is stable outside a compact set, i.e., there
exists a constant Ry > 0 such that the inequality (1.9) holds for any ¢ € C°(R™ \ Bg,).

(a) If 1 < p < ps(n,s,a) and u € L*(R™), then u = 0.
(b) If p=ps(n,s,a) and if u € L*(R™), then u has finite energy, that is,

[l gy < 0.

In this case, if u is stable in R™, then u = 0.

(C) pr > pS(nv S, a) and

An,s -

() b= Yn,s.a(P) =

Y

then v = 0.

We remark that the condition is exactly the inequality (1.6) of [14] when v = a = 0.
In order to prove Theorem we employ the approach used in [14] which is a nonlocal
counterpart of the results [13,49] for the local operators: the classical Laplacian and the
biharmonic operator. Following [14], we introduce the s-harmonic extension @ of u on the
upper half space related to the fractional Laplacian of order s € (0,1) in Theorem [2.1
Based on the extension technique, the problem for the solution u of the equation may
be reduced to the classification problem for the extension w which satisfies the following

local equation on the upper half space with a Neumann boundary condition

L 9gvr— : n+1
~V.- (t%Vu) =0 in R,

(1.13)
— limy0 t120,u = ks (v]7| 2w+ |2|*uP~1u)  on ORYT,

and is stable outside some set in the sense of Lemma 2.4l Then we first obtain suitable
energy estimates for the solution u and its s-harmonic extension w utilizing the following

Hardy inequality (see [34,50]): if n > 2s, then

(1.14) Mo [ el 0%(a) do < ol gy, V0 € HORY)

r(n»t2s
Here the constant A, s = A(0) = 228 % is optimal. The proof for the subcritical
r{==

case follows by applying the Pohozaev identity based on energy estimates. Here for the
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Pohozaev identity, we give a different proof from [14] in order to address the regularity
issue due to the Hardy term. When dealing with the supercritical case, we derive the
monotonicity formula for the extension problem in Theorem which plays a key
role in the blow-down analysis in Section [7} In fact, in light of the monotonicity formula
together with energy estimates, we show that the blow-down limit of the harmonic exten-
sion w is a homogeneous solution to the extension problem which is stable except
the origin. A Liouville type result on such stable, homogeneous solutions is established in
Theorem where the assumptions v < vy, s,.(p) and (]ED are used. Then it is proved that
the extension @ is trivial thanks to the monotonicity formula, and in turn, the solution u
of the original problem is zero. Finally, we notice that the result in Theorem would

be optimal taking into account the following remark.

Remark 1.2. As seen in |14}23], there is an explicit singular solution to (1.1)), provided

that v < vpsa(p) = )\(”_TQS - 2;%1“) For p > ps(n, s,a), let

2s+a
—1
P ’

us(x) = Alx|”

with a constant A satisfying

_ n—2s 2s+a
A=A (BB ) -

Then it can be easily checked that us is a singular solution to ([L.1)). In fact,
(—A)*us(2) = yn,s.a(p)x| *us  in R\ {0}.

In light of the Hardy inequality (T.14]), we see that u is unstable if and only if p|A[P~! +~ >
Ay s, i.e., the condition holds. Here we used the fact that A,, s is the sharp constant
in the Hardy inequality.

The rest of the paper is organized as follows. In Section [2| we prepare some prelim-
inary results. In Section [3] we derive various energy estimates for a finite Mores index
solution u to and its s-harmonic extension. In Section 4| we prove Theorem
for the subcritical and critical case. In Section [5] we obtain the monotonicity formula
for the extension problem. In Section [6], we obtain a Liouville type theorem for stable
homogeneous solutions to the extension problem in the supercritical case. Section [7] is
devoted to the proof of Theorem for the supercritical case. Lastly, in Section [8] we
analyze the asymptotic behavior of our assumption of Joseph—Lundgren type as the
order s € (0,1) tends to 1, the local case.

Notations.

(a) R = {(z,t) e R"* ¢ > 0}.
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(b) Bg:= Bl(qn) (0) € R™ is a ball of radius R centered at the origin in the n-dimensional

space.
(c) Bi =R A BUT(0) = {(2,1) e R™ £ >0, |(z, )| < R}.

(d) For 0 <o <1 and a domain Q in R", a seminorm [u]¢20 () denotes

[U]CO,20(Q) lf 20 S 1,

[u]01,2071(9) if 20 > 1.

A function space C?7 () consists of functions u such that [u]c2e(g) is finite. C27(R™)
stands for a space of functions which belong to C2°(K) for any compact subset K

in R™.

(e) LY(R™;(1+]|z|)~™ %) denotes the L'-space over R™ with measure (1 + |z|)~" "2 du.

Others are similar.

(f) We may extend a function @ defined on R to the function on the whole space
R™*1 still denoted by @, by setting

u(x,t), Ve eR" t>0,

(1.15) u(z,t) =
u(x,—t), YxeR" t<0.

TS Hﬁ)C(RIH; t172%) means that the even extension of u given by (1.15) belongs to
HL (R™1;]¢|172%). The spaces L2 (R #172%) and HL (R%\ {0};4172%) can be

loc loc
understood similarly.

2. Preliminaries

In this section, we collect some known results on the fractional Laplacian operators used in
the paper. First of all, we recall the s-harmonic extension due to Caffarelli and Silvestre [8]
from which the fractional Laplacian can be considered the Dirichlet-to-Neumann map; see
also [39,46].

Theorem 2.1. [8,39,46] Let 0 < s <o < 1 and u € C°

loc(Rn) N Ll(Rn; (1 + |$’)—(n+25))‘
Let

U(z,t) = / Po(z — &, )u()de  for (x,t) € R™HL,

Here the fractional Poisson kernel P, s is defined by

Pos(x,t) = poot™|(a, )| 772
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with the positive constant p, s satisfying
/ P,s(x—¢&t)ds =1 for any (z,t) € RT‘I.
Then @ belongs to C2(R) N (R with t'=2°0;1 € C(R'™), and @ satisfies

1-2sv77) - +1
V.-t 7**Vu) =0 in R,
n=u on GRTFI,

and

N +1
—%g%t ‘04t = ks(—A)*u  on ORYT,

where the constant ks is given by
- I'(1—s)
- 22371I‘(8)'

KRs

In the paper, unless specifically stated, @ denotes the s-harmonic extension of u given
by Theorem Applying Theorem to a solution u of the fractional Henon-Lane—
Emden equation (1.1) with the Hardy potential, the equation for the extension u can be

written as follows:
~V - (t72Va) =0 in R%,

(2.1)
—limy0 t' 20,7 = ks (v]7| 2w+ |2|*uP~lu)  on ORYT,

which will be used in the paper.
In [8], it was shown that if « € H*(R™), then

1
2 — 1-25|v777|2
(2:2) [[ul 1R T /Ri“ t+ 77| Vu|* dxdt.

The next lemma concerns some condition on u, which guarantees that w € H (R #1725,

Lemma 2.2. Let u € C*(R") N L>(Q). For any constant R > 0, there is a constant
Cr > 0 such that

(2.3) / t17%|va|® dedt < Cp.
Bf;

Proof. In view of Theorem we have

) £ {u(€) - u(x)}
u(x,t) = Pn,s /R” (‘x—5’2+t2)(n+28)/2

d& + u(z).
Moreover direct computations show that for (x,t) € Rﬁ“,

Opu(z,t) = —(n+ 28)pn,s/ {u(©) — u@)(e o), d

re (|7 — €|2 + £2)(n+25)/2+1

£
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and

i 251 u() = u(a)
8tu(x,t) = 23pn,s /]R" (’x _ §’g+ t2)(:+l‘25)/2 df

t2s+1 é‘ _
— (n + 2s)pn,s /n (\x — 5‘2{7:_( t)Q)(nqj—(Qf))/}Q—l-l dg.

Then we have

1257 2 1+2s |u(§) — @)z — ¢ ]2
e Y R e

. Ju(€) — u(x)] 2
| [ G dy ]

. Ju(€) — u(z)| 2
e UR (7 — €2 + ) B2z — €2 4 22) df] }
. Ju(€) — u(x)| 2
<o [/Rn (Jz — &|? +t2) (n+2s)/2 dé] ’

where a positive constant C' may vary from line to line. Using a change of variables, it
follows that

lu(tz) — u(z)| 2
72 dz] )

t1_28 — t 2 < Ct_28_1 /
|VU(33, )| = - (|7 _ z\2 + 1)(n+23

and hence

1-2 2 2s5—1 lu(tz) — u(ty)| 2
/ / | Vul® dedt < C/ / A [/ 5 5 dz] dydt.
Br Br re ([y — 22 + 1)(n+28)/2

In order to compute the inner integral above, we divide the space R" into two regions
Dy :={z€R":tly—z| < R} and Dy := {z € R" : tly — z| > R}. Firstly, we assume
that 20 < 1. By applying the condition u € C??(R") to the region D; and the condition

u € L*(R™) to the region Dy, respectively, we obtain that

R
/ / 72| va|? dadt
Br

t20 20 t2cr 20
< C/ / = 2s5—1 |:/ 2|Z ‘ T dz +/ ’Z ng_|28 d»
Bryt r—yl<t (ly — 2 + 1)(n+2s 1<)z—y|<r/t 1Y — 2|

vf  lele d] it
\

amy|> Ry Y — 228

R
< C/ / tn—?s—l(t40' + t4s) dydt < C(Rn+40'—25 + Rn+25).
Bryt

Here we note that ¢ > s > 0, and a positive constant C may vary from line to line
and depend on R > 0. When 20 > 1, one can prove the boundedness similarly by
utilizing the Lipschitz (or Holder) continuity of v and the fact that 0 < s < 1. Here we refer
to [45, Proposition 2.9] for the regularity regarding the fractional Laplacian operators. [J
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Employing the even extension of u as , some results on the weighted Sobolev
spaces with weight [t|* (for a constant —1 < p < 1) on the whole space R"*! can be
used to analyze the s-harmonic extension @ (and a solution w in the fractional Sobolev
space; see (2.2)). Here the weight function [t[* (for |u| < 1) belongs to the class of the
Muckenhoupt weight of order 2, denoted by As. The Muckenhoupt weights have been
extensively studied in the theory of harmonic analysis and partial differential equations;
we refer to [21}22,40,41] for instance.

The following compactness of the weighted Sobolev spaces is a local version of [18,
Lemma 3.1.2], which will be used in the blow-down analysis. The proof involves the

results of the weighted Sobolev spaces in the whole space R"*! for the even extension

given as ((1.15)).

Lemma 2.3 (Compactness). Let R and pu be constants with R > 0 and |u| < 1, and let
{op}32., be a sequence of functions in H'(Bys;t* dxdt) such that

sup/ t(|Vug|* + R 2|vg|?) dadt < C
keN JB;

R

for a constant C > 0. Then there is a convergent subsequence of {vi}7° , in L?(Bj; t" dadt).

In the next, we will explain that the s-harmonic extension 7w of a finite Morse index
solution to the original problem ([1.1]) satisfies the stability in the following sense.

Lemma 2.4 (Stability for the extension problem). Let u be a solution to (1.1 which is
stable on a set Q@ C R™. Then the s-harmonic extension U is stable (on Q) in the following
sense: for any ¢ € C} (Rf_ﬂ) satisfying supp ¢( -,0) € €,

24) [ {plal a1 @, 0) #olol PP 0)bde < [ 07 Voo, o) dadt.
Rn S R’i

Proof. We first recall the following trace inequality. Letting X°® be the completion of
C(RT™) under the norm

o3 = [, 01V, 0 dadt,
R+
it holds from [3, Lemma 2.4] that for any ¢ € X*,

18l1%s = lle (-, 0)[%s + [l — ¢(+, 0)lI%s > ll6(-, 0)|%-.

Here ¢(-,0) is the s-harmonic extension of ¢(-,0) given by Theorem Then in light
of ([2:2)), we see that for ¢ € C°(RH),

(2.5) sl e, 0 gy = 100, 0)lI%s < ll6]1%-
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By the stability of u on € (see (1.9)) and (2.5)), we have that for ¢ € CEO(R’}FH) satisfying
supp ¢(-,0) € &,

aj, [p— —2s 1
[ et 20,0+ ofel 262, 0} di < o0 0y gy < 2 0l
which yields ([2.4)). O

3. Energy estimates

In this section, we give energy estimates following proofs of estimates in Section 2 of [14].

Lemma 3.1. Let0<s<o<1,n>2s,a>—-2s,p>1, andy < Ay 5. Fix a constant
Ro > 1 and let u € C2(R™) N L>®(R™) be a solution to (1.1]), which is stable outside a ball

loc

Bpr, C R™. For a function n € C°(R" \ Bp,), define

2
nx n
Then
1 max(,0) 9 / An s
3.2 <] - —" . p+l 2d < —= 2 d
I o L R L e e

where a constant A, s > 0 is given by (L.6).

Proof. Multiplying (T.1]) by un?, we have

R 2+7I1‘|‘28 ) do= [ (-AVu- o

n

~ A, / ) / B yws -u<x>n2<x> dxdy

An s {u(@) —u(y)} - {ul@)n*(@) —uly)n*(y)}
S = y|n+2s ety
_ % {u(@)n(z) — uly)n(y)}? — {n(z) — n(y) Pu(z)u(y) dedy
n Jrn |:1j _ y|n+2s :

Here we used that u € C29(R™) N L°(R™). Then it follows from ([L.5)) that

loc

/R (2 [aP* 12 + Alz|252?) do

Ans {n(x) = n(y) FPu(@)u(y)

n Jrn |z — y|nt2s

and hence using Young’s inequality, we have

63) gy =~ [ (el kel ) do < 25 [ @)p(e) de
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This combines with the stability of u outside Bg, to obtain

A
(3.4) (p— 1)/ || |ulPTn? de < T2 u?pdx
Rn 2 R
since the stability of v outside Bg, shows that
/ (plal?ul? PR el ) do <l g

Thus, we deduce from (3.3) and (| . ) that

A
2 _ 25,2 2 < D Ans
ol g / el ity dn < LoEe [

On the other hand, in view of the Hardy equality ({1.14] 1.14 , it holds that

—25.2 2 max(y,0) 2
[ el o < PR g

n,s

u?pdz.

Therefore, the two estimates above imply that

max(y, 0) 9 p Ans 9
1— . < — 2 d
{ An’s } ||un|| S(Rn) — p _ 1 2 Rr U p .'E,

which together with (3.4) yields (3.2]). O

We recall from [14] the following estimates for p given by (3.1) with a particular choice
of n.

Lemma 3.2. [14, Lemma 2.2] For m > n/2, let

2
(3.5) nz)=1+z>)™™? and p(z) = - W dy, VzeR"

Then there is a constant C' = C(n,s,m) > 1 such that

n+2s

CH1+ |22 2" < plx) <CA+ |25, VYzeR™

Corollary 3.3. Let m > n/2 and R > Ry > 1. Let n be the function as in (3.5)), and
P € C®(R™) be a function such that 0 < ¢ < 1,9 =0 on By, and ¥ =1 on R™\ By. Let

_(zy [T _ [ {nr(x) —nr@)}? n
77R(x) =1 (R> ’l/] (RO> and PR(J;) - R" |ﬂ§' . y‘n+25 dya V‘T € R™.
Then there is a constant C = C(n,s,m, Ryg) > 0 such that
] < 2 (T —(n+2s) —2s z > ]
(3.6) pr(@) < C{n* (%) I/ +rp (%)}, Vel = 3R,
Moreover,
(3.7) pr(x) > cR"z|" "2 V|z| > R > 3R,

for some constant ¢ = c¢(n,s,m) > 0.
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Proof. The estimate (3.6) follows from [14, Corollary 2.3]. For a lower bound estimate
, direct computation shows that

Ty _ (Y12 z 2
pr(z) > / {U(R> Zi};s)} dy — / R—2s {U(;z) ZELZZ} d=
2R/3<|y|<5R/6 |z -y 2/3<|2|<5/6 |* 2|

> CORn|$|—(n+2s)/ {77(2) _ 2—m/2}2 dz
2/3<2|<5/6
for some constant ¢y > 0 since R > 3Ry. This implies the estimation (3.7]). ]

Now we estimate the right-hand side of the energy estimate ([3.2)).

Lemma 3.4. With the same assumptions as Lemma let pr be the function given as in
Corollary [3.3| with m € (Z, g—}—w). Then there is a constant C = C(n, s, p,a,m, Ry)
> 0 such that for any R > 3Ry,

/ u?ppr dz
p+1 2a

—255 = — a
(3.8) fBg w del"-i-RO b1 -1 4 pn- 25p+1 {1 ifn

SC (n+2) 17 2a

fB;m u?pp dz + Ry

pl’

'+ R 25501 1(10g3R +1) ifn:pf“l.

Proof. The proof is similar to the one for |14, Lemma 2.4] and [28, Lemma 4.3]. For the
reader’s convenience, we will sketch the proof of the case when n # pQT“l since the other is

similar. By using Holder’s inequality, we have

/ wppdr < / uw?pp dx
" Bsr,
o

T 9q PHL __4_ Pl
4 / 2P, de / Bl P )
R\ B3p,, R™\Bsp,,

Utilizing Young’s inequality and Lemma we get that

L“"l _ 4
(3.9) / u’prdr < C / U2PRda7+/ ol 7 T pp g da
n Bsr, R™\ B3R,

for a constant C' > 0 depending on n, s, and p. Here Lemma holds true with n = ng
by an approximation argument. By Lemma and Corollary it holds that pr(x) <
C(|z|~(*25) + R=2) for 3Ry < |z| < R, and hence

-

/ |$!_%,05%177_ﬁ dzx
Br\Bsr, o
R R 2a
(3.10) < C/ Pl (20 P g L oRT / e
Ro 3Ry

n—(n+2s)btl_ 2a n—2s2tl_ 2a _9gktl_ 2a
§C<RO ( )p_1 p—1 +R0 p—1 p—1 +Rn 28;;—1 1



264 Soojung Kim and Youngae Lee

for a constant C' > 0 which may depend on n, s, p, a, m and Ry, and vary from line to line.
Here we note that a > —2s and n — 1% # 0. Similarly, by Lemma and Corollary
if |x| > R > 3Ry, then

n+2s
2\ B 212\ "2
pr() SC{(”‘RL) a2 4 2 <1+|R|2> }

which yields

p+1 2a

. Pl _ 4
(3.11) / \x|_%pglnR”fl de < C <Rn_(n+2s)ﬁ_ﬁ + Rn_QSE_ﬁ> :
>R

Here we used that m < § + W. From (3.9), (3.10) and (3.11)), the estimate ({3.8])
follows. m

For the supercritical case p > ps(n, s, a), we derive energy estimates for the s-harmonic
extension u, which will lead to uniform estimates for scaled solutions in the blow-down

analysis.

Lemma 3.5. With the same assumption as Lemma let p > ps(n,s,a) and u be the s-
harmonic extension which satisfies (2.1)). Then there is a constant C = C(n, s, p,a, Ry, u)
> 0 such that for any R > 3Ry,

p+1 2a

/ =252 dedt < CRVT27 201751,
B

Proof. By Theorem we have that for (z,t) € R,

B t23
u(m,t) = DPn,s /]R" U(Z) ’ (|$ _ Z|2 + t2)(n+2s)/2 dz

and Holder’s inequality implies that

t23

_9 2 .
u (.T,t) < pn,s/nu (Z) (‘x - 2‘2 +t2>(n+25)/2 dz.

Integrating over BE, we get that

/ 172592 dxdt
Bf,

R
t
< Pns u?(z / dt} dzdz
=t /|x|<R,z€R" ( ){ 0 (Jz — 2|2 + t2)(nt2s)/2

_ n42s5—2
<C u?(z) - ’|:1: — | T(n+2572) _ (Jz — 2>+ R?)" 2 ’ dzdz,
|z|<R,z€R™

where we note that n + 2s # 2.
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Now we split the above integral into integrals over {|z — z| < 4R} and {|z — 2| > 4R}.
For the region {|z — z| < 4R}, we have

n+2

5—2
2 ’ dzdx

/ u2(z) . “.I' o Z’—(n+23—2) - (’1‘ - Z’2 +R2)*
{le|<R Ja—z| <R}

_n+42s5—2

(3.12) < 2 }dzdx

/ u2(z) . {\x—z\_("JrQS_z) + (\m—z]Q—&-RQ)
{|z|<R,|z—z|<4R}

< CR*1—) / u?(2) dz
Bsgr

since {|z| < R, |r — z| < 4R} C {|z| < 5R,|r — z| < 4R}. Then Holder’s inequality and
Lemmas and [3.4] yield that

/ u?(z) dz
Bsr
2 p—1

Pl 2a 4 Pl
<[ w@der ([ ) ([ el
Bsg, R™\ B3, Bsr\Bsr,

= /BgR ui(z)dz + CR(H_%)% </nu2(z)PR(z) dz)zj—2H

2a

4s
< CR" v 1 91,

where we used the assumption p > pg(n, s,a), and a constant C = C(n, s, p,a, Ro,u) > 0
may vary from line to line. Thus this estimate combines with (3.12)) to have

n+2s—2

u?(2) - ||x — 2|22 (Jz =2+ R*)™ 2 | dzdz

(3.13) /{x|<R,|x—z|<4R}

_9gbtl_ 2a
SCRn+2 23;;—1 poT.

For the region {|x — z| > 4R}, it follows by the mean-value theorem, Corollary and
Lemma [3.4] that

n+2s—2

/ u2(z) . ‘|CC o Z|f(n+2572) - (|x - Z|2 +R2)_ )
|z|<R,|z—z|>4R

< C'R2/ u?(z)|z — 2|72 dzda
{lz|<R,|z—2|>4R}

dzdx

< CRn+2/ u2(z)’2|7(n+23) dz
{l=|=3R}

p+1 2a

< C'R2/ u?(2)pr(z)dz < CR" %1751,
{lz[=R}

This finishes the proof with the use of (3.13)). O
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Lemma 3.6. With the same assumption as Lemma there is a constant C = C(n, s, p,
a,v, Ro,u) > 0 such that for any R > 3Ry,

p+l_ 2a_

[ ol deder [ (] ) de < CRMERT
Bj\Bjy Br
0

Proof. Let n € C2°(R"/™) be a cut-off function such that n = 1 on B} \ By, R, and 7 =0
on BEO U (]R’}fl \ Bjz). Multiplying ([2.1) by un?, it holds that

s / [l [P 2 (2, 0) + 2|22 (2, 0) } da
oR7 !
_ 1=25T7— . 7 (7,2
(3.14) = /RT’lt Va - V(un®) dedt

— 1-2s — N2 2 2
_/Riﬂt {IV(un)|® —u?|Vn|*} dedt.

Since u is stable outside Bp,, it follows from Lemma the Hardy inequality (1.14]) and
the trace inequality ([2.5]) that

o [ AR, 0) el 2,0} de
OR"

+
1 1
< / 72|V (un)|? dadt + ks (1 - )/ vz 2503 (x, 0) da
P Jrrtt b/ Jorytt
(3.15) 1 1\ max(y,0)
< = 1-2s —\ 2 o AU Y a0 2
<[ i (1-3) ™50 gt 01 e

1 1
< { + <1 - > mx(’“))}/ #1725V () |2 dadt.
p p An,s R+

This combined with (3.14]) implies
(3.16)

1 1
[1 - { - <1 — ) MH / 172V (un) P dadt < / 17202 V| dadt.
b b An,s R’_:_H R2T!

+

Then we have that

/ 72| v dedt < C / 72552 V| dadt
Bp\B3g Ry

(3.17)
<C 172502 dadt + CR™2 172502 dadt.
By, Bip\Bj
By utilizing ([1.14]) and (2.5)), we deduce
(3.18)
—25-2 Ks - 2 1 1-2s 7/~ \|2
. < . , <
Rg aRi“'l |l" u-mn ( 70) dl‘ ~ An7s||un( 70)” S(Rn) = An’s /I\{n-‘-lt ’V(UU)’ d.’[‘dtu

+
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and in light of (3.15)) and (3.18]),

(3.19)
1 1
ES/ (e, 0y de < {1 4 (1 L) max(0) / 25 () |? dadt
BR?_H p p An,s R:‘_“

-,0
y 22x=,0) / 1172 () |? drd.
Ans Rﬁ-’—l

Therefore the result follows from (3.16))—(3.19) and Lemma O

4. Subcritical and critical cases

In this section, we prove Theorem in the case when 1 < p < pg(n,s,a).

Proof of Theorem [L.] in the subcritical and critical cases. Firstly, we may assume that a
solution u to (1.1 is stable outside B, with a constant Ry > 1. By letting R — 400 in
(3.8) and utilizing Lemma we have

lim sup {HunRH2~ s@ny T |H$|a’u‘p+l7ﬁ3“L1(R")} < X
R—o0

and hence it follows from (|1.5)) that

|ugpo () — uto(y)|?
/n/n o — g2 dxdy < 0o

and wibg belongs to H*(R™) N LPH(R™; |z|® dx), where 1y := w(R%O) with ¢ is given in
Corollary Then using the assumption that u € C29(R"), we deduce that

loc

)|2d dy < o0
n n |CU — |n+25 v y OO’

see the proof of Lemma 5.1 of |17] for the estimate of u(l — v9). Here we note that
supp(1 — 1) C Bag,. Thus in light of (LF]), we conclude that u belongs to H*(R") N
LPFYR™; |z|* dz), and the Hardy inequality holds with ¢ = u. By multiplying the
equation by w and integrating, it holds that

(4.1) y / 2|22 da + / 2] uP di = [ful?,
Rn R™ ( )

in view of (T.8)). Here we used the assumption that v € C??(R") N L'(R").
Direct computation shows that for x € R™ \ {0},

Yo ] ufP
2 p+1

n—2s _ n-+a
—< v|z| 2su2+7|z, lu I”“)
p+1

(’y|x|_25u + |x!a|u|p_1u)Vu cx =div (

2
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Here we note that u € C*(R™ \ {0}) from the regularity theory since u € C??(R") N
LY (R™; (1 + |x])~"72%); we refer to [44] for instance. Thus we have

/ (vl #u + |z]*ulP~'u) Vu - z de
Br €

n—2s 95 9 N+a 11
4.2 +/ ( x|+ ——[z]|ul? dx
ap o+ [ (ke e

—2s,,2 al,,|p+1 —2s,,2 al,, |p+1
B (WY g [ (e Y
dBR 2 p+1 dB. 2 p+1

for a small € > 0.
On the other hand, let X = (z,¢). By an argument in the proof of [4, Lemma 3.1]
with the use of the first equation of (2.1)), we have

div {tl—Qs <(X . Vﬂ) Vi — |V21L’X>} + %tl—%’va -0 in Ri—H.

Integrating on BE \ B and using (2.1)) imply that

-2
L / 1725\ Va2 dodt + K, / (Y22 + ||l ) Vu - @ dx
2 Jp{\s!

BR\Bs
- R / t172|0,u)* S,y + ¢ / #1729, S, 4
OBENRY T oBF NR7 !
R 1-25 777 (2 £ 1-25 7772
+ = t |VU’ dSJ;7t - = t ‘V'LL| dS%t
2 Jopfnrytt 2 JoBF Ry

where r = | X| for X = (z,t) € R, Together with (£.2)), this yields that

-2 -2
n—s / 172\ va|? dedt — ms/ (n 87|x\_25u2 + M’$|a|u|p+1> dx
BR\BS Br\B: p+1

2 2
— R t172|9,u|° dS,y + ¢ / 172 0,1| S,
OB{NRY ! OBFNR7 !
R 12572 € 1—25 7|2
+ — t |VU’ de,t - = t |VU| deyt
2 JoBfrrntt 2 JoBtrrrtt

—2s,,2 al,, |p+1 —25,,2 al,, |p+1
nr (ws| w | Jallul )dsxwg/ <le! w | Jalful )dsw_
9BRr 2 p—i—l 9B. 2 p—l—l

Since u € H*(R™), and |z|~2*u? and |z|*|u[Pt! are integrable by (#.1)) and the Hardy
inequality (1.14]) with ¢ = u, we let R — oo and ¢ — 0 (with suitably chosen sequences
using the coarea formula) in order to get

-2 -2
n 8/ t123|Vu\2dxdt:/<;5/ P2 e 4 P e ) da
2 Jrn Rn 2 p+1
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Here we also used the equality (2.2). Then utilizing (2.2 yields the following Pohozaev

identity
n—2s 2 —2s 2 _n+a a), (p+1
3 (W = [ el de) =2 [ ol

This combined with (4.1)) gives that

-2
n—2s_nta / 2| |u[P dx = 0.
2 p—|—1 R™

Therefore we conclude that u = 0 when 1 < p < pg(n, s,a).

In the case when p = pg(n,s,a), suppose that u is a stable solution in R™. Since
u € H*(R"), it follows from the stability (T.9) with a test function ¢ = u and (&.1)) that

p [ el e < ey < [ ol de = [ falful? da
R7 R™ R™

which yields u = 0. O

5. Monotonicity formula

This section is devoted to the proof of the following monotonicity formula.

Theorem 5.1. Let w € C2(RT) N C(RY™) with t1=20,a € C(R™™) be a solution to

(2.1). For A >0, let
E(u; \)

. —2s|77|2 al|77|p+1
_ )\28%-%%—” 1/ tl—?s’vﬂ‘Q drdt — /‘is/ <fY|‘T‘ ”U,‘ + |x’ |u’ ) dx
2 JBf BANOR ! 2 p+1

R o1 2540 / A-2572 45,
2(p = 1) Joptrrn+t ’

Then, E is a nondecreasing function of A, and

dE pHL, 20 2 2
(5.1) Ll A 2/ $i=2s <r8ru—|— S“‘u) Sy 1,
OB nR7H!

dA p—1
where r = | X| for X = (z,t) € R

Proof. The proof is similar to the proof of [14, Theorem 1.4]. For the reader’s convenience,
we will briefly sketch it. Let

_ ogktl 2a
Ei(u;\) ==X\ Sp1tp-1 "

1 —25|77|2 a|77|p+1
" / t1—25|vu’2dxdt_ﬁs/ <7\x! [al” ="l )dm .
2 /ot BnoR?H! 2 ptl

A
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Define @ by
2s+a

7N(X) = Ar1a(AX) for X = (z,t) € RTT.

Then @ also solves the equation (2.1]), and it holds that

Ei(w; \) = E1(a*; 1)
1

== 725\ va? dadt
(5.2) 2/31+ Varl” de

—25|75M |2 a7 |p+1
N e Y
BinoORTH 2 p+1

Differentiating (5.2]) with respect to A and using integration by parts, we get that

OEL (T \)

_ 1-25v7-\ | =\
B\ _/Bl*t Vat - V(0\u") dzdt

- Hs/ ('y]a:|72sﬂ>‘ + ]a:|a]ﬂ>‘|pflﬂ)‘)8>ﬂ)‘ dx
BlﬂaRi+1

= / 17259, 0\u> d Sy 4.
OB nR7H!

Here we used the fact that @ is a solution to (2.1]). Since

2

(5.3) ANTN(z, 1) = 1,7 (2, 8) + L + 1“ N (z,t),
p—

we deduce that

OFEq (u; A 2
M / tl—QS <)\a)\u>\ _ S + au>\> (9,\U>‘ dS‘%t
oA DB ART p—1

/ #1722 (A0ya)° dS,y
oBf NR T

2
S—i‘a/ t1_2S(HA)2dSz7t .
2(p — 1) Jopyrrn+

Utilizing (5.3)) and scaling back, the monotonicity (5.1)) follows.

_ 9
O

6. Homogeneous solution

In order to prove the stability result in the supercritical case, we first derive the follow-

ing Liouville type theorem for stable homogeneous solutions to the s-harmonic extension

problem. Here we impose the conditions v < vy, 5.4(p), p > ps(n, s,a) and , and the

proof uses a similar argument in Section 5 of [14].
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Theorem 6.1. Assume that ¥ < Ynsa(p), p > ps(n,s,a) and (P). Letw € HIIOC(RTrl \
{0} 172 dadt) with u :=u(-,0) € LZ(R™\ {0}) be a homogeneous solution of

loc

_ __ . 1
~V - (t'72Vu) =0 in R

(6.1)
—limy_o t1 7201 = ks (fy]a;\_25u + |x!“|u!7’_1u) on &R’_ﬁ“ \ {0}

in the distributional sense, that is, for any ¢ € C(R'\ {0}),
(6.2) / t2Va - Vo dodt = ﬁs/ (v|z| "% u + [z]*|ulP~'u) é(, 0) dz.
R oR T

Ifw is stable except the origin in the sense of Lemma i.e., for any ¢ € CLRTT\ {0}),
63)  n [ Aplel R w0 +ole w0 < [ VP dua,
R™ R

then u = 0.

Proof. We consider standard polar coordinates in R"*!: X = (x,t) = rf, where r = | X]|
and 0 = % Let 601 = ﬁ denote the component of § in the ¢ direction and ST = {X €
R =1,6; > 0} denote the upper half of the unit sphere.

Step 1. Since u is a homogeneous solution of , we may assume that for some
b H(SY;07%),

_ 2s+4a

(6.4) (X) =7 7=14(0).

gl

Here H'(S% ;601 %) is the completion of C*(S7) with respect to the norm
19 spat-ny = [ O {0%0) + V).
+

Since u solves (6.1)), v satisfies

—divgn (0] *Vgn1h) + 80; 2 =0 on S7,

(65) : 1-2s —1 n
_hm91—>0 91 691'¢ = KRg (’y?ﬂ + ’w‘p w) on 8S+,

where Oy, 1 is the directional derivative of ¢ along the inward unit normal vector to 957,

the boundary of S, and a positive constant 3 is given by

By multiplying (6.5) by ¥ and integrating by parts, we get

(6.6) Lo wst s [ ot —n [ ut e,
+ ¥

S?’L

+



272 Soojung Kim and Youngae Lee

Step 2. We claim that for any ¢ € H'(S7; 0%_23),

— 95\ 2
R R | ei—%\vsm%(" ) 61232,
asn sn 2 s7
¥ +

+

For a small constant € € (0,1), we choose a standard cut-off function 7. € C2°(R) at the
origin and at infinity, i.e., x(c1/6)(1) < Me(r) < X(e/2,2/¢)(r), and let p € Hl(SZ}_;H%*%) N
C*°(S%). Then we use the stability (6.3) with

o(X) = r_("_2s)/2n5(r)cp(9) for X € RT‘I
to obtain that

- 00 |

%s/ (plylP 1+7)<p2-/ —n2(r)dr

osn o T
o0

< [ o Tenel s [ i) ar

sn o T

v [ o [T e - (252) w«)}z &

+

Since
1 [~1, 2
2log — < —ni(r)dr <2log—, V0<e<l1
£ g T €

and fooo r(nQ)Z(r) dr is uniformly bounded for any 0 < & < 1 from the choice of 7., the
inequality holds for any ¢ € C°°(S%) by letting € — 0. Since C*°(S7) is dense in
H'(S7;6;72%), we deduce that holds for any ¢ € H'(S%;60; ). Here we also used
the trace inequality |24, Lemma 2.2] and the Fatou lemma.

Step 3. As in [23, Lemma 3.1] by Fall, for a € [0, (n — 25)/2), let

va(x) = \x|7("725)/2+a, Vo e R"\ {0},

and 7, be its s-harmonic extension given by Theorem Then 7, € C2(RTT)NC(RYH
{0}) satisfies

—V - (t17%VD,) =0 in R,
Vg = Vg on IR\ {0},
—limyy0 17 20,7, = ks A(@)|2|">v,  on IR {0},

where a constant A(«) is given by (1.12). In light of the proof of |23, Lemma 3.1],
we see that a positive function v, is homogeneous, i.e., there exists a function ¢, €
HY(S7;617%) N C(ST) such that

To(X) = r~(72)/2eg (9), VX e RTH.
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Thus it can be checked that ¢, > 0 and 9%_28891 Oa € C(gi), and ¢, satisfies

—divgn (07 Vgnga) + {(”—728)2 - a2} 01 %¢o =0 on ST,
(6.8) Pa =1 on 0S7,

— limg, 0 9}_25691 o = KsA(@) on 057,

see also |24, Lemma 2.1]. By multiplying the equation by ©?/¢s and integrating by
parts, we deduce that for any ¢ € Hl(Si; 9%—25),

2
_ n — 2s _
/ 01 2S|V5n¢|2+{< 5 ) —a2}/ 01 %
st s1

2
@) [ [ orak|ve (£)
st s Pa
where we used the equality

"
¢’ 2 ¢
Vgnga - Vgn . = |Vanip|” = |Visn o

Step 4. We first note that ¢, € C?(S7)NC(ST) for 0 < o < (n — 2s)/2. Since

. _ n—2s\? ,_ n—2s\> _2s n
dlv(ﬁ% 25V5n¢0):< ) 9} 25y > {( ) —aQ}H} 2 ¢o on SV,

(6.9)

)

2
2
Do

2 2
and ¢ = ¢o = 1 on 057, the maximum principle implies that for any a € (0, (n —2s)/2),
(6.10) ¢0 < ¢po on SY.

Step 5. Now let us fix

—2s 2 —2
(6.11) a= 2 8+ae(0," 8).

2 p—1

With this choice of o, we have that

(6.12) <n—25>2_a2 25+a<n 25+a
’ 2

By applying (6.7)) with ¢ = ¥¢g/dq with a as in (6.11), it follows that

p+1 2 1-25 | w%)
wo [, O+ < [ 0|9 (4

+

n—2s\> 1—9s ¢¢)0>2
+< 2 ) /Sf,fel <¢o¢ '

2

(6.13)
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If @ = 0, then the equality leads to

B n—2s 2 _ _
/ 9% 28|VS"Q0’2+ < 2 > / 0% 28902 = HsAn,s/ 902+/ 9% 28(;%
sn sn st sn

+

Using (6.13) and selecting ¢ = 1¢g/dq, this equality yields

2

»

vsn<¢0>
2

v (5:)

v (5)

which combines with (with o =1 and « as in (6.11))) and (6.12)) to obtain that
ko [ G € kA naa )} [ [ 6 eues [ ol
asm sn sn

+

Then in light of , the above estimate implies that

Hs/ (p‘¢|p+1 —|—"yw2) S HSATL,S wQ + 0%—23(1)3
('951 65’1 SJ’:

Then by the comparison (6.10|), we have that

2

Y

K / (P[Pt + yp?) < ksl
a n

St

I

o5y T

asm

(6.14) o=1 [ < (e = maale) [0

asn
On the other hand, by utilizing (6.6]), (with ¢ =1 and « as in (6.11])) and (6.12), it
holds that
(615) [ W2 Gty =) [ 2
s asn

Therefore, by (6.14) and (6.15)), we deduce that

{P(vsal®) =) = Ans+9} | w?<0.
oSy

From the assumption (]E[), it follows that ¢» = 0 on 0S%. Since 1 solves (6.5) with a
positive constant (3, the maximum principle implies that ¢» = 0 in S7 completing the
proof of Theorem O

7. Blow-down analysis

In this section, we are going to prove Theorem for the supercritical case.

Proof of Theorem [[.1, We assume v < Yys4(p), p > ps(n,s,a) and (P). For a solu-
tion u of which is stable outside Bg,, let @ be its s-harmonic extension by Theo-
rem Then w satisfies and the inequality holds for any ¢ € C} (@) with
supp ¢(-,0) € R"\ Bg,. Here we may assume that Ry > 1.
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Step 1. We first claim that

lim E(u;\) < 4o0.
A—+00
Once we have a uniform upper bound of E(u; \) with respect to A > 0, the monotonicity
of FE in Theorem will imply the above claim. In order to prove boundedness of E(u; A),
we decompose E(w; A) into Ey(u; A) + Eo(w; A), where

Ei(@\) = At
1 —25(77(2 a|7|p+1
" / tl—ZS‘VuPdwdt_KS/ (v\xl [al® |zl )dm 7
2 /By ByNOR"H! 2 p+1

B )= XU WAL s,
2(p — 1) Joprrn+t

With the use of Lemma Lemma shows that Fj(w;\) is uniformly bounded for
A > 3Ry. Since E(u; \) is nondecreasing by Theorem it follows that

and

1 2 1 a 2
E@N <+ | B@r)dr<C4 it 2210 / 12552 .
AU 2(p—1) Js \BY

The second integral in the above estimate is uniformly bounded for any A > 3Ry by
Lemma Thus we deduce that FE(w;\) is uniformly bounded from above for any
A > 3Ry.

Step 2. For A > 0, let

TNX) = Ar T a(A\X) for X = (x,t) € R,

Then direct computation shows that @ satisfies , and is stable outside Bpg/y in the
sense of Lemma 2.4

In light of the energy estimates in Lemmas and with Lemma {@* s is
uniformly bounded in H! (]R?FH; 1725 dzdt) since for a given R > 3Ry and any \ > 1,

loc

C9e|_ —n—9249gP+l L 2a 9e_ 9_9gPtl_ 2a_

/ 2@ P dadt = N1 T 172552 dedt < CR™T 2171
BE Bn

(7.1) , )

a a

/ 2|V 2 dadt = AT / £ |V dedt < CR™ 251701,
B Bt

AR

Here we notice that p > pg(n, s,a) and that

/ . 72|\ va|® dedt < Cy

2R
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with some constant Cy > 0 by Lemma [2.2] Then by a diagonal argument, there exist a
sequence {);} and a limit function @> such that \; — 400 and @ converges weakly to
7> in Hﬁ)c(@; t1=25 dadt) as i — co. By Lemmatogether with (7.1)), @t converges
strongly to @ in L? (R’frﬂ;tl_25 dzdt) as i — 00, up to a subsequence. Moreover, by
arguing similarly as for , Lemma implies that

2

loc
+1
/ 29[ (2, )P+ 2] 25, 0) 2 dar < CR™ 25 —55
Br

for any R > 3Ry and any A > 1. This estimate combined with Fatou’s lemma yields that
a limit @™ of {w"} as i — oo (up to a subsequence) satisfies in the distributional
sense, and u™ is stable except the origin in the sense of Lemma That is, the equality
and the inequality (with @ = @) hold true for any ¢ € C®(R7T\ {0}).

Step 3. Now we will prove that ©™ is homogeneous. Firstly, we recall the scaling
property enjoyed by E: for any A > 0 and R > 0, E(u; A\R) = E(u*; R). Utilizing the
convergence of E(u; \) as A\ — oo by Step 1, the scaling property and the monotonicity of
FE from Theorem imply that for any Rs > Ry > 0,

0= lim {E@\Rs) — E(w;\R1)} = lim {E(@";Ry) — E(@";R1)}

i—400 i—+400

2
ptl, 2a _ . _ o 2s+4a_ .
> liminf/ =220 ot 2 <r67«u/\1 + + u’\1> dxdt.
B}, \Bj, 1

1——+00

Thus the convergence of {#*i} as i — oo by Step 2 yields that for any Ry > Ry > 0,

2
/ R e <7‘5ru°° ks au“) dzdt <0,
B, \Bf, !

where we used the lower semicontinuity from the weak convergence of {u"} to ©™ in
HE (R #1725 dzdt). So, it follows that
2s +au™

p—1 r

0 u™ + =0 a.e.in RTFI,

and hence we deduce that ©™(X) = rii%laww) for some function 1 € H'(S%; 601 %).

Step 4. Then we conclude that ©* = 0 by Theorem since u™ satisfies the assump-
tions of Theorem in light of Steps 2 and 3.

Step 5. Now we claim that @* converges strongly to 0 in Hlloc(@\ {0}; #1725 dxdt)
and @*( -, 0) converges strongly to 0 in Lfotl(R” \ {0}) as A — oco. Note that " satisfies
, and @ is stable outside Bry/x- Let R > 1 and 0 < e <1 be any given constants.
Arguing similarly for the estimate , we have that for sufficiently large A > 1 such

+ +
that BRO/A - Be/27

(7.2) / 72|Vt ? dedt < Ce? / =257 dadt + CR™2 / 1721 ? dadt.
Bi\B B B,

2R
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Then this estimate and the strong convergence of {T*i } to 7> = 0 in LlOC(R’}rH; 1728 dxdt)
(RN {0}; 41725 dadt) as
Ai = oo since R > 1 and 0 < € < 1 are arbitrary. By a similar argument as for (3.16|)—

(3.19) and (7.2)), we deduce the strong convergence of {@*i(-,0)} to 0 in Lf’otl(]R" \ {0})
as \; = oo. Furthermore, since a sequence {);} can be arbitrary, the claim follows.

from Steps 2-4 imply that @ converges strongly to 0 in H!

loc

Step 6. Lastly, we will prove that @ = 0. Indeed, direct computation shows that for
any € € (0,1),

Ei(u; \) = Ey(uh1)

1 —92s A|p+1
[ e [ (R B
2 /Bt BiNdR" T 2 p+1

n—>2 p+1 2a

ptl 20 1
=" 1T -1 By (U Ne) + 2/+ +t172S\VH)‘]2dmdt
B\ B

—2s Ap+1
- (A2 B
(B1\Bo)NoR"+1 2 p+1

Let € € (0,1) be given. Since E1(w; Ae) is uniformly bounded for any Ae > 3Ry as seen in
Step 1, we have that

;0+1 2a

ptl_ 1
Ei(w;\) < Ce" 1 01 4 1725\ Va | dadt
2 B+\B+

- (AL Y
S .
(B1\Be)noR"+! 2 p+1

Hence by letting A — +o0 in the estimate above, the strong convergence of {T*} to 0 from
Step 5 (and then letting € — 0) yields that

(7.3) lim Eq(@; ) <0.
A——+o00
Using the monotonicity of E with the use of (7.1)) implies
1 2
E@\) < — E(u;7)dr
AU
1 a
< sup Eq(w;T)+ O = / 17242 dedt
TE[X,2)] BI\BY
= sup Fi(u;7) +/ 17287 ? dadt.
TE[N2)] BI\B;

Thus we deduce that limy_ 1. E(w;A) < 0 by and the strong convergence of {u*}
to 0 in Step 5. On the other hand, by the continuity of @ near the origin, it holds that
liminfy_,o F(u; A) > 0. Then, it follows from the monotonicity of E(u; A) that E(u, A) =0
for any A > 0, and hence % = 0. This combined with the monotonicity formula (5.1
yields that w is homogeneous of the form . Therefore we conclude that @ = 0 by the

continuity of w at the origin, which implies © = 0. This finishes the proof. O
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8. Remark on the condition in the supercritical case

In Theorem we impose an implicit condition on p in the supercritical case
p > ps(n,s,a). This section is devoted to the study of the asymptotic behavior of the
condition (P)) when the order s € (0,1) of the fractional Laplacian tends to 1. We shall
show that as s € (0,1) tends to 1, the condition provides with a Joseph—Lundgren type
exponent given in the results of [1},2,19,125,[36]. Here we suppose that n > 2, a > —2 and
0 <7 < Yn1,a(p) < Ap 1 in the limit in order to compare with the results of [1,2,/19,25,36].

Since the functions I' ) and )\|[07(n_25) /2) are continuous, it can be easily checked

that )
n—2 2+a 2+a
An71 = (4) and "}/n717a(p) :p_l . <n—2—p_1>,

where we used the fact that I'(t+1) = ¢tI'(¢) for ¢ > 0. Hence the limit of the condition
(as s — 1):

An,l -7

Py p>—m 1
(Po) Yn,1,a(P) =

is equivalent to

oo (p2)-(220) (222022

24a (n —2)2 2+4+a (2 +a)?
TR Gt v B = SR RU RS -

Let m:=(2+a)/(p—1) € (0,(n —2)/2). In terms of m, this can be written as

(8.1)

=7

1
B an(m) :=m® — (n — 4 — a)ym? + Z(n —2)(n—10—4a)m+ (24 a)y < 0.

Here we notice that

n—2
2

m < is equivalent to p > pg(n,1,a).

The function hy, ., appears in [1,[2,[19,36] when calculating the explicit value of the

Joseph—Lundgren type exponent. Direct computation shows that

1
hnar(0) = (2+a)y,  hiyg,(0) = (0 —2)(n— 10 — 4a),

(8.2) L, L
hn,a,'y <n > = (2 + a)(_An,l + ’7)7 h{n,a,v <n > =0,

2 2

see also the proof of Lemma 5.2 in [36]. If p > pg(n,1,a) and 0 < v < A, 1, there exists a
unique zero me(n, a,vy) of hpq~ in (0, (n —2)/2). Furthermore, it holds that

-2
hpa~(m) <0 is equivalent to me(n,a,v) <m < nT’
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provided that p > pg(n,1,a) and 0 < v < A, 1. Let p.(n,a,v) be a constant given by

14+ mj:;gﬁ). Then the condition (Pg|) corresponds to

ps(n,1,a) <p <pe(n,a,v),

where p.(n, a, ) is the so-called Joseph—Lundgren type critical exponent in presence of the

Hardy term ~y|z| 2w in the local case [142,1936]. Similarly, if y = 0 and n > 10+4a, in light

of (8.2), there exists a unique zero me(n, a,?) of hp 4 in (0, (n —2)/2), and hence we see

that the condition leads to ps(n, 1,a) < p < pe(n,a,v) = 14+(2+a)/m.(n, a,v). When

~ = 0 and n < 10+4a, the condition is equivalent to pg(n, 1,a) < p < p.(n,a,7y) = co.

So our condition (P]) on p recovers the local result in [11[2}[19,[36] as s € (0,1) tends to 1.
Furthermore, when a = 0, the inequality is equivalent to

83)  0<(=@-17+ nT_2(10 —n)p* + %{(n —2)2 —dn}p— (”;2)2,

refer to [1,[2,|19,25,136]. In particular, assuming n > 11, p > Z—f% and v = 0, the inequal-

ity (8.3) leads to
(n —2)(n —10)p* — 2{(n— 2)% — dn}p+ (n — 2)%2 <0

which yields
n+2 n—2)% —4n 4+ 8y/n —1
<p< ( ) = pc(n).
n—2 (n —2)(n — 10)

Here p.(n) is the Joseph—Lundgren exponent in (1.4)) introduced by Farina [25].
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