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Planar Graphs Without Pairwise Adjacent 3-, 4-, 5-, and 6-cycle are

4-choosable

Kittikorn Nakprasit and Pongpat Sittitrai*

Abstract. Xu and Wu proved that if every 5-cycle of a planar graph G is not simul-

taneously adjacent to 3-cycles and 4-cycles, then G is 4-choosable. In this paper, we

improve this result as follows. If G is a planar graph without pairwise adjacent 3-, 4-,

5-, and 6-cycle, then G is 4-choosable.

1. Introduction

Every graph in this paper is finite, simple, and undirected. The concept of choosability

was introduced by Vizing in 1976 [12] and by Erdős, Rubin, and Taylor in 1979 [5],

independently. A k-assignment L of a graph G assigns a list L(v) (a set of colors) with

|L(v)| = k to each vertex v. A graph G is L-colorable if there is a proper coloring f where

f(v) ∈ L(v). If G is L-colorable for any k-assignment L, then we say G is k-choosable.

It is known that every planar graphs is 4-colorable [1, 2]. Thomassen [11] proved that

every planar graph is 5-choosable. Meanwhile, Voight [13] presented an example of non

4-choosable planar graph. Additionally, Gutner [8] showed that determining whether a

given planar graph 4-choosable is NP-hard. Since every planar graph without 3-cycle

always has a vertex of degree at most 3, it is 4-choosable. More conditions for a planar

graph to be 4-choosable are investigated. It is shown that a planar graph is 4-choosable

if it has no 4-cycles [10], 5-cycles [14], 6-cycles [7], 7-cycles [6], intersecting 3-cycles [15],

intersecting 5-cycles [9], or 3-cycles adjacent to 4-cycles [3, 4]. Xu and Wu [16] proved

that if every 5-cycle of a planar graph G is not simultaneously adjacent to 3-cycles and

4-cycles, then G is 4-choosable. In this paper, we improve this result as follows.

Theorem 1.1. If G is a planar graph without pairwise adjacent 3-, 4-, 5-, and 6-cycle,

then G is 4-choosable.
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2. Preliminaries

First, we introduce some definitions and notation.

Let G be a plane graph. We use V (G), E(G), and F (G) for the vertex set, the edge

set, and the face set respectively. We use B(f) to denote a boundary of a face f . A

wheel Wn is an n-vertex graph formed by connecting a single vertex (hub) to all vertices

(external vertices) of an (n − 1)-cycle. A k-vertex (k+-vertex, k−-vertex, respectively) is

a vertex of degree k (at least k, at most k, respectively). The same notations are applied

to faces.

A (d1, d2, . . . , dk)-face f is a face of degree k where vertices on f have degree d1, d2, . . . ,

dk in a cyclic order. A (d1, d2, . . . , dk)-vertex v is a vertex of degree k where faces incident

to v have degree d1, d2, . . . , dk in a cyclic order. Note that some face may appear more

than one time in the order.

An extreme face is a bounded face that shares a vertex with the unbounded face. An

inner face is a bounded face that is not an extreme face. A (3, 5, 3, 5+)-vertex v is called

a flaw 4-vertex if v is incident to a poor inner 5-face and two inner 3-faces. A (3, 5, 3, 5+)-

vertex v is called a pseudo flaw 4-vertex if v is incident to a poor inner 5-face and at least

one extreme 3-face.

We say xy is a chord in an embedding cycle C if x, y ∈ V (C) but xy ∈ E(G)−E(C).

An internal chord is a chord inside C while external chord is a chord outside C. A

triangular chord is a chord e such that two edges in C and e form a 3-cycle. A graph

C(m,n) is obtained from a cycle x1x2 . . . xm+n−2 with an internal chord x1xm.

A graph C(l,m, n) is obtained from a cycle x1x2 . . . xl+m+n−4 with internal chords

x1xl and x1xl+m−2. A graph C(m,n, p, q) can be defined similarly. We use int(C) and

ext(C) to denote the graphs induced by vertices inside and outside a cycle C, respectively.

A cycle C is a separating cycle if int(C) and ext(C) are not empty.

Let L be a list assignment of G and let H be an induced subgraph of G. Suppose

G−H has an L-coloring φ on G−H where L is restricted to G−H. For a vertex v ∈ H,

let L′′(v) be a set of colors used on the neighbors of v by φ. We define the residual list

assignment L′ of H by L′(v) = L(v)−L′′(v). One can see that if G−H has an L-coloring

φ and H has an L′-coloring, then G has an L-coloring.

The following is a fact on list colorings that we use later.

Lemma 2.1. [5] Let L be a 2-assignment. A cycle Cn is L-colorable if and only if n is

even or L does not assign the same list to all vertices.

Let A denote the family of planar graphs without pairwise adjacent 3-, 4-, 5-, and

6-cycle.
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Next, we explore some properties of graphs in A which are helpful in a proof of the

main results.

Lemma 2.2. Every graph G in A does not contain each of the followings:

(1) C(3, 3, 4), (2) C(3, 3, 5), (3) C(3, 4, 4−), (4) C(4, 3, 5),

(5) W5 that shares exactly one edge with a 6−-cycle.

Proof. Let C(l,m, n) be obtained from a cycle x1x2 . . . xl+m+n−4 with internal chords x1xl

and x1xl+m−2.

(1) Suppose G contains C(3, 3, 4). Then we have four pairwise adjacent cycles x1x2x3,

x1x2x3x4, x1x3x4x5x6, and x1x2x3x4x5x6, contrary to G ∈ A.

(2) Suppose G contains C(3, 3, 5). Then we have four pairwise adjacent cycles x1x3x4,

x1x2x3x4, x1x4x5x6x7, and x1x3x4x5x6x7, contrary to G ∈ A.

(3) Suppose G contains C(3, 4, 3). Then we have four pairwise adjacent cycles x1x2x3,

x1x3x4x5, x1x2x3x4x5, and x1x2x3x4x5x6, contrary to G ∈ A. Suppose G contains

C(3, 4, 4). Then we have four pairwise adjacent cycles x1x2x3, x1x3x4x5, x1x2x3x4x5,

and x1x3x4x5x6x7, contrary to G ∈ A.

(4) Suppose G contains C(4, 3, 5). Then we have four pairwise adjacent cycles x1x4x5,

x1x2x3x4, x1x2x3x4x5, and x1x4x5x6x7x8, contrary to G ∈ A.

(5) Let the hub of W5 be q and let external vertices be r, s, u, and v in a cyclic order.

Suppose there is a cycle uvw. Then we have four pairwise adjacent cycles vwu, vwuq,

vwusq, and vwusqr, contrary to G ∈ A. Suppose there is a cycle uvwx. Then we have

four pairwise adjacent cycles usq, usqv, usqrv, and usqvwx, contrary to G ∈ A. Suppose

there is a cycle uvwxy. Then we have four pairwise adjacent cycles uqv, uqrv, uqsrv,

and uqvwxy, contrary to G ∈ A. Suppose there is a cycle uvwxyz. Then we have four

pairwise adjacent cycles uvq, uvqs, uvqrs, and uvwxyz, contrary to G ∈ A.

Lemma 2.3. If C is a 6-cycle with a triangular chord, then C has exactly one chord.

Proof. Let C = tuvxyz with a chord tv. Suppose to the contrary that C has another

chord e. By symmetry, it suffices to assume that e = ux, uy, tx, ty, or xz. If e = ux, then

we have four pairwise adjacent cycles tuv, tuxv, tvxyz, and tuvxyz, contrary to G ∈ A. If

e = uy, then we have four pairwise adjacent cycles tuv, uvxy, tvxyz, and tuvxyz, contrary

to G ∈ A. If e = tx, then we have four pairwise adjacent cycles tuv, tuvx, tvxyz, and

tuvxyz, contrary to G ∈ A. If e = ty, then we have four pairwise adjacent cycles tuv,

tvxy, tvxyz, and tuvxyz, contrary to G ∈ A. If e = xz, then we have four pairwise

adjacent cycles tuv, tvxz, tvxyz, and tuvxyz, contrary to G ∈ A. Thus C has exactly one

chord.
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3. Structure

To prove Theorem 1.1, we prove a stronger result as follows.

Theorem 3.1. If G ∈ A with a 4-assignment L, then each precoloring of a 3-cycle in G

can be extended to an L-coloring of G.

We consider (G,C0) and a 4-assignment L where C0 is a precolored 3-cycle as a minimal

counterexample to Theorem 3.1. Embed G in the plane.

Lemma 3.2. G has no separating 3-cycles.

Proof. Suppose to the contrary that there exists a separating 3-cycle C inG. By symmetry,

we assume V (C0) ⊆ V (C) ∪ int(C). By the minimality of G, a precoloring of C0 can be

extended to V (C) ∪ int(C). After C is colored, then again the coloring of C can be

extended to ext(C). Thus we have an L-coloring of G, a contradiction.

So we may assume that a minimal counterexample (G,C0) has no separating 3-cycles,

and C0 is the boundary of the unbounded face D of G in the rest of this paper.

Lemma 3.3. Each vertex in int(C0) has degree at least four.

Proof. Suppose otherwise that there exists a 3−-vertex v in int(C0). By the minimality

of (G,C0), (G − v, C0) has an L-coloring. One can see that the residual list L′(v) is not

empty. Thus we can color v and thus extend a coloring to G, a contradiction.

Lemma 3.4. For faces in G, each of the followings holds.

(1) The boundary of a bounded 6−-face is a cycle.

(2) If a bounded k1-face f and a bounded k2-face g are adjacent where k1 + k2 ≤ 8, then

B(f) ∪B(g) = C(k1, k2).

(3) If a bounded 4-face f and a bounded 5-face g are adjacent, then B(f) ∪ B(g) is

C(4, 5) or a configuration as in Figure 3.1 where tuy is C0.

(4) If bounded 5-faces f and g are adjacent, then B(f)∪B(g) is C(5, 5) or a configuration

as in Figure 3.2.

Proof. (1) One can observe that a boundary of a 5−-face is always a cycle. Consider a

bounded 6-face f . If B(f) is not a cycle, then a boundary closed walk is in a form of

uvwxywu. By Lemma 3.3, u or x has degree at least 4. Consequently, uvw or xyw is a

separating 3-cycle, contrary to Lemma 3.2.
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(2) It suffices to show that such f and g share exactly two vertices. Let B(f) = uvw

and B(g) = vwx. If u = x, then f or g is the unbounded face, a contradiction.

Let B(f) = uvw and B(g) = vwxy. If u = x or y, then d(w) = 2 or d(v) = 2, contrary

to Lemma 3.3.

Let B(f) = uvw and B(g) = vwxyz. If u = x or z, then d(w) = 2 or d(v) = 2,

contrary to Lemma 3.3. If u = y, then vyz or wxy is a separating 3-cycle, contrary to

Lemma 3.2.

Let B(f) = stuv and B(g) = uvwx. If s = w, then d(v) = 2, contrary to Lemma 3.3.

If s = x, then utx or vwx is a separating 3-cycle, contrary to Lemma 3.2. The remaining

cases are similar.

(3) Let B(f) = stuv and B(g) = uvwxy. It suffices to show that V (B(f))∩V (B(g)) =

{u, v} or {u, v, x} where x = s or t. If t = w, then uvw is a separating 3-cycle, contrary

to Lemma 3.2. If t = x, then tuy is C0, otherwise tuy is a separating cycle, contrary to

Lemma 3.2. If t = y, then d(u) = 2, contrary to Lemma 3.3. The remaining cases are

similar.
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(3) Let B(f) = stuv and B(g) = uvwxy. It suffices to show that V (B(f)) ∩ V (B(g)) = {u, v}
or {u, v, x} where x = s or t. If t = w, then uvw is a separating 3-cycle, contrary to Lemma 3.2.

If t = x, then tuy is C0, otherwise tuy is a separating cycle, contrary to Lemma 3.2. If t = y,

then d(u) = 2, contrary to Lemma 3.3. The remaining cases are similar.

(4) Let B(f) = rstuv and B(g) = uvwxy. It suffices to show that V (B(f)) ∩ V (B(g)) = {u, v}
or {u, v, x = s}. If r = w, then d(v) = 2, contrary to Lemma 3.3. If B(f) ∩ B(g) = {u, v, r = x},

then vwx, uvxy, uvwxy, and stuvwx are four pairwise adjacent cycles, contrary to G ∈ A. If

B(f) ∩ B(g) = {u, v, r = x, s = y}, then rvs, rvus, rvuts, and rstuvw are four pairwise adjacent

cycles, contrary to G ∈ A. then uts or vwx is a separating 3-cycle, contrary to Lemma 3.2.

If B(f) ∩ B(g) = {u, v, r = y}, then ruv is a separating 3-cycle, contrary to Lemma 3.2. If

B(f) ∩ B(g) = {u, v, s = w}, then rvw, tuvw, uvwxy, and rwxyuv are four pairwise adjacent

cycles, contrary to G ∈ A. The remaining cases are similar.
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Figure 1: A graph F is formed by a 4-face and a 5-face with tuy = C0
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Figure 2: A graph H is formed by two adjacent 5-faces but is not C(5, 5)

Lemma 3.5. If a k-vertex v is incident to bounded faces f1, . . . , fk in a cyclic order and di is a

degree of a face fi for each i ∈ {1, . . . , k}, then each of the followings holds.

(1) (d1, d2, d3) ̸= (3, 3, 4).

(2) (d1, d2, d3) ̸= (3, 3, 5).

(3) (d1, d2, d3) ̸= (3, 4, 4−).

(4) (d1, d2, d3) ̸= (4, 3, 5).

(5) Let H be W5 such that a hub and each two vertices of consecutive external vertices form a

Figure 3.1: A graph F is formed by a

4-face and a 5-face with tuy = C0.
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(3) Let B(f) = stuv and B(g) = uvwxy. It suffices to show that V (B(f)) ∩ V (B(g)) = {u, v}
or {u, v, x} where x = s or t. If t = w, then uvw is a separating 3-cycle, contrary to Lemma 3.2.

If t = x, then tuy is C0, otherwise tuy is a separating cycle, contrary to Lemma 3.2. If t = y,

then d(u) = 2, contrary to Lemma 3.3. The remaining cases are similar.

(4) Let B(f) = rstuv and B(g) = uvwxy. It suffices to show that V (B(f)) ∩ V (B(g)) = {u, v}
or {u, v, x = s}. If r = w, then d(v) = 2, contrary to Lemma 3.3. If B(f) ∩ B(g) = {u, v, r = x},

then vwx, uvxy, uvwxy, and stuvwx are four pairwise adjacent cycles, contrary to G ∈ A. If

B(f) ∩ B(g) = {u, v, r = x, s = y}, then rvs, rvus, rvuts, and rstuvw are four pairwise adjacent

cycles, contrary to G ∈ A. then uts or vwx is a separating 3-cycle, contrary to Lemma 3.2.

If B(f) ∩ B(g) = {u, v, r = y}, then ruv is a separating 3-cycle, contrary to Lemma 3.2. If

B(f) ∩ B(g) = {u, v, s = w}, then rvw, tuvw, uvwxy, and rwxyuv are four pairwise adjacent

cycles, contrary to G ∈ A. The remaining cases are similar.
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Figure 1: A graph F is formed by a 4-face and a 5-face with tuy = C0
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Figure 2: A graph H is formed by two adjacent 5-faces but is not C(5, 5)

Lemma 3.5. If a k-vertex v is incident to bounded faces f1, . . . , fk in a cyclic order and di is a

degree of a face fi for each i ∈ {1, . . . , k}, then each of the followings holds.

(1) (d1, d2, d3) ̸= (3, 3, 4).

(2) (d1, d2, d3) ̸= (3, 3, 5).

(3) (d1, d2, d3) ̸= (3, 4, 4−).

(4) (d1, d2, d3) ̸= (4, 3, 5).

(5) Let H be W5 such that a hub and each two vertices of consecutive external vertices form a

Figure 3.2: A graph H is formed by two

adjacent 5-faces with but is not C(5, 5).

(4) Let B(f) = rstuv and B(g) = uvwxy. It suffices to show that V (B(f))∩V (B(g)) =

{u, v} or {u, v, x = s}. If r = w, then d(v) = 2, contrary to Lemma 3.3. If B(f)∩B(g) =

{u, v, r = x}, then vwx, uvxy, uvwxy, and stuvwx are four pairwise adjacent cycles,

contrary to G ∈ A. If B(f) ∩ B(g) = {u, v, r = x, s = y}, then rvs, rvus, rvuts,

and rstuvw are four pairwise adjacent cycles, contrary to G ∈ A, then uts or vwx is a

separating 3-cycle, contrary to Lemma 3.2. If B(f) ∩ B(g) = {u, v, r = y}, then ruv is

a separating 3-cycle, contrary to Lemma 3.2. If B(f) ∩ B(g) = {u, v, s = w}, then rvw,

tuvw, uvwxy, and rwxyuv are four pairwise adjacent cycles, contrary to G ∈ A. The

remaining cases are similar.

Lemma 3.5. If a k-vertex v is incident to bounded faces f1, . . . , fk in a cyclic order and

di is a degree of a face fi for each i ∈ {1, . . . , k}, then each of the followings holds.
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(1) (d1, d2, d3) 6= (3, 3, 4), (2) (d1, d2, d3) 6= (3, 3, 5),

(3) (d1, d2, d3) 6= (3, 4, 4−), (4) (d1, d2, d3) 6= (4, 3, 5),

(5) Let H be W5 such that a hub and each two vertices of consecutive external vertices

form a boundary of an inner 3-face. Then H is not adjacent to a boundary of a

6−-face other than these 3-faces.

Proof. Let F = B1 ∪B2 ∪B3 where Bi denote B(fi).

(1) Suppose (d1, d2, d3) = (3, 3, 4). Let B1 = rsv, B2 = vst, and B3 = vtxy. It follows

from Lemma 3.4(2) that V (B1) ∩ V (B2) = {s, v} and V (B2) ∩ V (B3) = {t, v}. If r = x,

then stx or vxy is a separating 3-cycle, contrary to Lemma 3.2. If r = y, then d(v) = 3,

contrary to Lemma 3.3. Thus V (B1) ∩ V (B3) = {v}. Altogether we have F = C(3, 3, 4),

contrary to Lemma 2.2(1).

(2) Suppose (d1, d2, d3) = (3, 3, 5). Let B1 = rsv, B2 = vst, and B3 = vtxyz. It

follows from Lemma 3.4(2) that V (B1) ∩ V (B2) = {s, v} and V (B2) ∩ V (B3) = {t, v}.
We have C = stxyzv is a 6-cycle with a triangular chord tv. If r ∈ {x, y, z}, then C has

another chord, contrary to Lemma 2.3. Thus V (B1) ∩ V (B3) = {v}. Altogether we have

F = C(3, 3, 5), contrary to Lemma 2.2(2).

(3) Suppose (d1, d2, d3) = (3, 4, 3). Let B1 = rsv, B2 = vstu, and B3 = vuw. It follows

from Lemma 3.4(2) that V (B1) ∩ V (B2) = {s, v} and V (B2) ∩ V (B3) = {u, v}. If r = w,

then d(v) = 3, contrary to Lemma 3.3. Thus V (B1) ∩ V (B3) = {v}. Altogether we have

F = C(3, 4, 3), contrary to Lemma 2.2(3).

Suppose (d1, d2, d3) = (3, 4, 4). Let B1 = rsv, B2 = vstu, and B3 = uvxy. It follows

from Lemma 3.4(2) that V (B1) ∩ V (B2) = {s, v} and V (B2) ∩ V (B3) = {u, v}. If r = x,

then d(v) = 3, contrary to Lemma 3.3. If r = y, then vuy is a separating 3-cycle, contrary

to Lemma 3.2. Thus V (B1) ∩ V (B3) = {v}. Altogether we have F = C(3, 4, 4), contrary

to Lemma 2.2(3).

(4) Suppose (d1, d2, d3) = (4, 3, 5). Let B1 = qrsv, B2 = vst, and B3 = vtxyz. It

follows from Lemma 3.4(2) that V (B1)∩V (B2) = {s, v} and V (B2)∩V (B3) = {t, v}. We

have C = stxyzv is a 6-cycle with a triangular chord tv. If {q, r} and {x, y, z} are not

disjoint, then C has another chord or q = z. The former contradicts Lemma 2.3 and the

latter yields d(v) = 3, contrary to Lemma 3.3. Thus V (B1) ∩ V (B3) = {v}. Altogether

we have F = C(4, 3, 5), contrary to Lemma 2.2(2).

(5) Let v be a hub and let w, x, y, z be external vertices of H in the cyclic order.

Suppose to the contrary that H is adjacent to a face f with B(f) = wxq,wxqr, wxqrs, or

wxqrst. Now we have {w, x} ⊆ V (H) ∩ V (B(f)). By Lemma 2.2(5), V (H) ∩ V (B(f)) 6=
{w, x}. If q = y, then d(x) = 3, contrary to Lemma 3.3. If r = y, then vwxqyz is a

6-cycle with four triangular chords, contrary to Lemma 2.3. If s = y, then vxw, vxwz,
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vxwzy, and vxqryz are four pairwise adjacent cycles, contrary to G ∈ A. If t = y, then

vxw, vxwz, vxwzy, and vxqrsy are four pairwise adjacent cycles, contrary to G ∈ A. The

remaining cases lead to similar contradictions. Thus f is not a 6−-face.

Lemma 3.6. Let C(m,n) in int(C0) be obtained from a cycle C = x1 . . . xm+n−2 with a

chord x1xm and d(x1) ≤ 5. If C has at most one additional chord e and e is not xm−1xm+1

or x1xk where k 6= m, then there exists i ∈ {2, . . . ,m+ n− 2} with d(xi) ≥ 5.

Proof. Suppose to the contrary that G has such C with d(xi) ≤ 4 for each i ∈ {2, . . . ,m+

n− 2}. By minimality, there exists an L-coloring for G−C. Considering the residual list

L′(xi) for each xi ∈ V (C), we have |L′(xm)| ≥ 3 and |L′(xi)| ≥ 2 for each xi ∈ V (C).

Case 1. C has exactly one chord. Assume that {1, 2} ⊆ L′(x1).
Case 1.1. Assume {1, 2} ⊆ L′(xi) for each xi where i 6= m. We can color vertices in

a path C − xm with colors 1 and 2. Finally, we assign an available to xm to complete a

coloring.

Case 1.2. Assume that there are adjacent vertices xk and xk+1 in C − xm such that

{1, 2} ⊆ L′(xk) but {1, 2} * L(xk+1) where k ≤ m. Assign a color in L′(xk) to xk such

that |L′(xk+1)| ≥ 2. Apply L′-coloring to xk−1, xk−2, . . . , x1, xm+n−2, xm+n−3, . . . , xk+2 in

this order. Consequently, |L′(xk+1)| ≥ 1 and thus we can complete an L-coloring.

Case 2. C has exactly one more chord e such that e is not xm−1xm+1 or x1xk where

k 6= m. Let e = xsxt. By symmetry, we may assume that s < t and s < m − 1.

Since |L′(xs)| ≥ 3, we can apply an L′-coloring to xs such that |L′(xs+1)| ≥ 2. Apply

L′-coloring to xs−1, xs−2, . . . , x1, xm+n−2, xm+n−3, . . . , xs+2 in this order. Consequently,

|L′(xs+1)| ≥ 1 and thus we can complete an L-coloring.

Corollary 3.7. If v is a flaw vertex, then we have the followings.

(1) v is incident to exactly one poor 5-face.

(2) Each 3-face that is incident to v is a semi-rich face.

Proof. Let v be incident to inner faces f1, f2, f3, f4 in a cyclic order where f1 and f3 are

inner 3-faces, f2 is an inner poor 5-face, and f4 is a 5+-face. By Lemma 3.4, B(f1)∪B(f2)

and B(f2) ∪ B(f3) are C(3, 5). It follows from Lemmas 3.2 and 3.3 that a 6-cycle C in

such C(3, 5) has at most one external chord and such chord (if it exists) is not a triangular

chord. By Lemma 3.6, some vertex in B(f1) ∪ B(f2) and in B(f2) ∪ B(f3) has degree at

least 5. Since f2 is a poor face, some vertex in B(f1) and in B(f3) has degree at least 5

(1) If f4 is also a poor 5-face, then f1 is a poor face, contrary to the observation above.

(2) By observation above, f1 and f3 are not poor 3-faces. Since f2 is a poor face, we

obtain that f1 and f3 are not rich faces.
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Lemma 3.8. If H in Figure 3.2 is in int(C0) and contains a 5−-vertex v, then there is

another vertex of H with degree at least 5 in G.

Proof. First, we show that H is an induced subgraph. Suppose to the contrary that

there is an edge e joining vertices in V (H) such that e /∈ E(H). If e = ty, then tuy is

a separating 3-cycle. If e = ux, then stu is a separating 3-cycle. If e = sv, then rsv

is a separating 3-cycle. If e = rw, then rvw is a separating 3-cycle. All consequences

contradicts Lemma 3.2. Thus H is an induced subgraph.

Suppose to the contrary that d(v) ≤ 5 but each of remaining vertices has degree at

most 4. By minimality, G−H has an L-coloring where L is restricted to G−H. Consider

a residual list assignment L′ on H. Since L is a 4-assignment, we have |L′(s)| = 4,

|L′(u)| ≥ 3, and |L′(v)|, |L′(r)|, |L′(t)|, |L′(y)|, |L′(w)| ≥ 2. We begin by choosing a color

c from L′(u) such that |L′(y) − c| ≥ 2. Then we choose colors of v, r, w, t, s, and y in

this order, we obtain an L′-coloring on H. Thus we can extend an L-coloring to G, a

contradiction.

Corollary 3.9. Let v be a k-vertex in int(C0) with consecutive incident faces f1, . . . , fk

where k ≤ 5. If f1 and f2 are inner 5−-faces, then there exists w ∈ B(f1) ∪ B(f2) such

that w 6= v and d(w) ≥ 5.

Proof. It follows from Lemmas 3.2 and 3.4 that that B(f1) ∪ B(f2) is a graph H as in

Figure 3.2 or C(s, t) where s = d(f1) and t = d(f2). The former case is proved by

Lemma 3.8. Assume B(f1) ∪B(f2) = C(s, t). It follows from Lemmas 3.2 and 3.3 that a

cycle C in the above C(s, t) has at most one external chord and such chord (if it exists)

is not a triangular chord. Use Lemma 3.6 to complete the proof.

Corollary 3.10. If v is a 5-vertex in which each incident face is a 5−-face, then v is

incident to at least three faces that are rich or extreme.

Proof. Suppose to the contrary that v is incident to three faces that are neither rich nor

extreme. Consequently, v is incident to consecutive inner faces 5−-faces f and g such that

each vertex in B(f) ∪B(g) except v have degree 4. This contradicts Corollary 3.9.

Lemma 3.11. Let C(l1, . . . , lk) in int(C0) be obtained from a cycle C = x1 . . . xm with

k − 1 internal chords sharing a common endpoint x1. Suppose x1 is not incident to other

chords while x2 or xm is not incident to any chord. If d(x1) ≤ k + 2, then there exists

i ∈ {2, 3, . . . ,m} such that d(xi) ≥ 5.

Proof. By symmetry, we assume xm is not an endpoint of any chord in C. Suppose to the

contrary that d(xi) ≤ 4 for each i = 2, 3, . . . ,m. By the minimality of G, the subgraph

G−{x1, . . . , xm} has an L-coloring where L is restricted to G−{x1, . . . , xm}. Consider a
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residual list assignment L′ on x1, . . . , xm. Since L is a 4-assignment, we have |L′(x1)| ≥ 3

and |L′(v)| ≥ 3 for each v ∈ V (C) with an edge x1v and |L′(xi)| ≥ 2 for each of the

remaining vertices xi in V (C). Since xm is not an endpoint of a chord in C, we can choose

a color c from L′(x1) such that |L′(xm) − c| ≥ 2. By choosing colors of x2, x3, . . . , xm in

this order, we obtain an L′-coloring on G′. Thus we can extend an L-coloring to G, a

contradiction.

Corollary 3.12. Let v be a 6-vertex with consecutive inner incident faces f1, . . . , f6 and

let F = B1 ∪ B2 ∪ B3 ∪ B4 where Bi denote B(fi). If f1 . . . f4 are inner faces and

(d(f1), d(f2), d(f3), d(f4)) = (5, 3, 5, 3), then there exists w ∈ V (F )− {v} with d(w) ≥ 5.

Proof. By Lemma 3.11, it suffices to show that F = C(5, 3, 5, 3). Let cycles B1 = vqrst,

B2 = vtu, B3 = vuwxy, and B4 = vyz. Using Lemma 3.4, we have that V (B1)∩V (B2) =

{v, t}, V (B2) ∩ V (B3) = {v, u}, and V (B3) ∩ V (B4) = {v, y}. It suffices to show that

V (B1) ∩ V (B3) = {v} = V (B4) ∩ (V (B1) ∪ V (B2)).

Suppose to the contrary that V (B1) ∩ V (B3) 6= {v}. Consider a 6-cycle vtuwxy with

a triangular chord uv. If s = u,w, x, or y, then vtuwxy has another chord, contrary to

Lemma 2.3. Thus s /∈ V (B1)∩V (B3). Similarly each of q, w, and y is not in V (B1)∩V (B3).

The only remaining possibility is that r = x. Suppose this holds. Then vyz, vyxq, vyxwu,

and vyrstu are four pairwise adjacent cycles, contrary to G ∈ A. Thus V (B1) ∩ V (B3) =

{v} which implies B1∪B2∪B3 = C(5, 3, 5). As a consequence, we have vqrstu and vtuwxy

are 6-cycles with a triangular chord.

If there is a vertex b ∈ V (B4) ∩ (V (B1) ∪ V (B2)) such that b 6= v, then vqrstu or

vtuwxy has another chord, contrary to Lemma 2.3. This completes the proof.

Corollary 3.13. Let v be a 4-vertex incident to four inner 3-faces. If all four neighbors

of v are 5−-vertices, then at least three of them are 5-vertices.

Proof. Let w, x, y, z be neighbor of v in a cyclic order. Let cycles B1 = vwx and B2 = vxy.

Note that w and y are not adjacent, otherwise vwy is a separating 3-cycle, contrary to

Lemma 3.2. Similarly, x and z are not adjacent.

Suppose to the contrary that there are at least two 4-vertices among w, x, y, and z. If

those two 4-vertices are not adjacent, say w and y, then B1 ∪B2 contradicts Lemma 3.6.

Thus we assume that w and x are 4-vertices.

Let H be the graph induced by v and its neighbors. By minimality of G, the graph

G−H has an L-coloring where L is restricted to G−H. Consider a residual list assignment

L′ on H. Since L is a 4-assignment, we have |L′(y)|, |L′(z)| ≥ 2, |L′(w)|, |L′(x)| ≥ 3, and

|L′(v)| = 4. It suffices to assume that equalities holds for these list sizes. We aim to show

that H has an L′-coloring, and thus an L-coloring can be extended to G, a contradiction.
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Case 1. There is a color t in L′(v) − (L′(y) ∪ L′(z)). We begin by choosing t for v.

Each of the residual lists of w, x, y, z now has sizes at least 2. By Lemma 2.1, an even

cycle is 2-choosable, thus H has an L′-coloring.

Case 2. L′(v) − (L′(y) ∪ L′(z)) = ∅. This implies L′(y) ∩ L′(z) = ∅. Choose t ∈
L′(v) − L′(w) for v. If t ∈ L′(y), then t /∈ L′(z) and we can color y, x, z, and w in this

order, otherwise we can color z, y, x, and w in this order. Thus H has an L′-coloring.

This contradiction completes the proof.

4. Proof of Theorem 3.1

Let the initial charge of a vertex u in G be µ(u) = 2d(u) − 6, let the initial charge of a

bounded face f in G be µ(f) = d(f)− 6, and let the initial charge of the unbounded face

D be µ(D) = d(D) + 6. Then by Euler’s formula |V (G)| − |E(G)| + |F (G)| = 2 and by

the Handshaking lemma, we have∑
u∈V (G)

µ(u) +
∑

f∈F (G)

µ(f) = 0.

Now we design the discharging rule transferring charge from one element to another

to provide a new charge µ∗(x) for all x ∈ V (G)∪F (G). The total of new charges remains

0. If the final charge µ∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G) and µ∗(D) > 0, then we get a

contradiction and complete the proof.

Before we establish a discharging rule, some definitions are required.

A 4-vertex is a special 4-vertex if it is incident to two consecutive inner 3-faces. A

graph C(3, 3, 3) in int(C0) is called a trio. A vertex that is not in any trio is called a good

vertex. We call a vertex v incident to a face f in a trio T a bad (worse, worst, respectively)

vertex of f if v is incident to exactly one (two, three, respectively) 3-face(s) in T . We call

a face f in a trio T a bad (worse, worst, respectively) face of a vertex v if v is a bad (worse,

worst, respectively) vertex of f in T . A good face f of a vertex v is a 3-face incident to

v such that f is not in a trio. For our purpose, we regard an external vertex of W5 as a

worse vertex of its incident 3-faces in W5.

Let w(v → f) be the charge transferred from a vertex v to an incident face f . From

now on, a vertex v is in int(C0) unless stated otherwise. The discharging rules are as

follows.

(R1) Let f be an inner 3-face that is not adjacent to another 3-face.

(R1.1) For a 4-vertex v,

w(v → f) =

 9
10 if v is flaw,

1 otherwise.
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(R1.2) For a 5+-vertex v,

w(v → f) =

6
5 if f is a (4, 4, 5+)-face,

1 otherwise.

(R2) Let f be an inner 3-face that is adjacent to another 3-face.

(R2.1) For a 4-vertex v,

w(v → f) =


1
2 if v is incident to four internal 3-faces,

1 if f is a good, bad, or worse face of v,

2
3 if f is a worst face of v.

(R2.2) For a 5-vertex v,

w(v → f) =


1 if f is a good or worst face of v,

5
4 if f is a worse face of v,

3
2 if f is a bad face of v.

(R2.3) For a 6+-vertex v,

w(v → f) =

1 if f is a good or worst face of v,

3
2 if f is a bad or worse face of v.

(R3) Let f be an inner 4-face.

(R3.1) For a 4-vertex v, let w(v → f) = 1
3 .

(R3.2) For a 5+-vertex v,

w(v → f) =

1 if f is a (4, 4, 4, 5+)-face,

2
3 if f is rich.

(R4) Let f be an inner 5-face.

(R4.1) For a 4-vertex v,

w(v → f) =



1
5 if v is flaw and f is a poor 5-face,

1
4 if v is pseudo flaw and f is a poor 5-face,

1
3 if v is incident to at most one 3-face,

0 otherwise.
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(R4.2) For a 5+-vertex v,

w(v → f) =



1 if f is a (4, 4, 4, 4, 5+)-face adjacent to five 3-faces,

2
3 if f is a (4, 4, 4, 4, 5+)-face adjacent to at least one 4+-face

other than f,

1
t if f is a rich face with t incident 5+-vertices.

(R5) Let f be an inner 3-face. If f is adjacent to a 7+-face g, we let w(g → f) = 1
8 .

(R6) The unbounded face D gets µ(v) from each incident vertex.

(R7) Let f be an extreme face.

w(x→ f) =



3 if f is a 3-face incident to a special 4-vertex and x = D,

5
2 if f is a 3-face not incident to a special 4-vertex

such that B(f) shares an edge with C0 and x = D,

2 if f is a 4- or 5-face and x = D,

2 if f is a 3-face not incident to a special 4-vertex

such that B(f) shares exactly one vertex with C0 and x = D,

1
2 if f is a 3-face incident to a vertex x in int(C0)

but x is not a special 4-vertex,

0 otherwise.

(R8) After (R1) to (R7), redistribute the total of charges of 3-faces in the same cluster of

at least three adjacent inner 3-faces (trio or W5) equally among its 3-faces.

It remains to show that resulting µ∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G). Let v be a

k-vertex incident to faces f1, . . . , fk in a cyclic order. By (R6), we only consider v in

int(C0). Consider the following cases.

(1) v is a 4-vertex.

(1.1) A vertex v is incident to a 3-face that is adjacent to another 3-face.

(1.1.1) v is incident to at least two consecutive 3-faces.

Assume v is incident to four 3-faces. If v is not adjacent to a vertex in

V (C0), then v is incident to four inner 3-faces. Thus µ∗(v) ≥ µ(v)−4× 1
2 =

0 by (R2.1). If v is adjacent to exactly one vertex in V (C0), then v is

incident to exactly two inner 3-faces which are good faces of v. Thus
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µ∗(v) ≥ µ(v)− 2× 1 = 0 by (R2.1) and (R7). Observe that two endpoints

of an edge in the boundary of an incident 3-face of v cannot be both in

V (C0) by Lemma 2.2(5). If v is adjacent to at least two vertices in V (C0),

then each incident face of v is an extreme 3-face by the observation above.

Thus µ∗(v) ≥ µ(v)− 4× 1
2 = 0 by (R7).

Assume v is incident to exactly three 3-faces, say f1, f2, and f3, then f4 is

a 6+-face by Lemma 3.5(1), (2). If v is incident to three inner 3-faces, then

µ∗(v) ≥ µ(v) − 3 × 2
3 = 0 by (R2.1). If v is incident to exactly two inner

3-faces and those two are consecutive, then v is a special 4-vertex, and thus

µ∗(v) ≥ µ(v) − 2 × 1 = 0 by (R2.1). If v is incident to exactly two inner

3-faces but they are not consecutive, then µ∗(v) ≥ µ(v)− 1
2 > 0 by (R7). If

v is incident to at most one inner 3-face, then µ∗(v) ≥ µ(v)− 1− 2× 1
2 = 0

by (R2.1) and (R7).

Assume v is incident to exactly two 3-faces, say f1 and f2, then f3 and

f4 are 6+-faces by Lemma 3.5(1), (2). Thus µ∗(v) ≥ µ(v) − 2 × 1 = 0 by

(R2.1) and (R7).

(1.1.2) v has no adjacent incident 3-faces.

Let f1 be a 3-face adjacent to another 3-cycle. It follows from Lemma 3.5(1)

and (2) that f2 and f4 are 6+-faces. Then w(v → f1) ≤ 1 by (R2.1) and

(R7), and w(v → f3) ≤ 1 by (R2.1), (R3.1), (R4.1), and (R7). Thus

µ∗(v) ≥ µ(v)− 2× 1 = 0.

(1.2) v is not incident to a 3-face that is adjacent to another 3-face and v is adjacent

to at most one 3-face.

Using the fact that w(v → fi) ≤ 1 for a 3-face fi by (R1.1) and (R7), and

w(v → fi) ≤ 1
3 for each 4+-face fi by (R3.1), (R4.1), and (R7), we obtain that

µ∗(v) ≥ µ(v)− 1− 3× 1
3 = 0.

(1.3) v is not incident to a 3-face that is adjacent to another 3-face and v is adjacent

to two 3-faces.

Consequently, v is incident to exactly two 3-faces, say f1 and f3. It follows from

Lemma 3.5(3) that f2 and f4 are 5+-faces. Assume v is flaw. Consequently, v

is incident to exactly one poor 5-face, say f2 by Corollary 3.7(1), and f1 and

f3 are semi-rich 3-faces by Corollary 3.7(2). It follows that w(v → fi) = 9
10 for

i = 1 and 3 by (R1.1), w(v → f2) ≤ 1
5 and w(v → f4) = 0 by (R4.1) and (R7).

Thus µ∗(v) ≥ µ(v)− 2× 9
10 − 1

5 = 0.

Assume v is not flaw. If f1 and f3 are inner faces, then each of f2 and f4 is an

extreme 5-face or a 6+-face by the definition. Thus µ∗(v) = µ(v) − 2 × 1 = 0

by (R1.1). If at least one of f1 and f3 is an extreme 3-face, then µ∗(v) =
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µ(v)− 1− 1
2 − 2× 1

4 = 0 by (R1.1), (R4.1), and (R7).

(2) A 5-vertex v is incident to a 3-face that is adjacent to another 3-face.

(2.1) v has at least two consecutive incident 3-faces.

If v is incident to four 3-faces say f1, f2, f3, and f4, then one can see that

B(f1) ∪ B(f2) ∪ B(f3) ∪ B(f4) = C(3, 3, 3, 3). But C(3, 3, 3, 3) contains four

pairwise adjacent cycles that contradict G ∈ A. Thus v is incident to at most

three consecutive 3-faces.

If v incident to consecutive three 3-faces say f1, f2, and f3, then f4 and f5 are

6+-faces by Lemma 3.5(1) and (2). Thus µ∗(v) = µ(v) − 3 × 1 > 0 by (R2.2)

and (R7).

If v incident to exactly two consecutive 3-faces say f1 and f2, then f3 and

f5 are 6+-faces by Lemma 3.5(1) and (2). Consequently, w(v → fi) ≤ 5
4 for

i = 1 and 2, and w(v → f4) ≤ 3
2 by (R2.2), (R3.2), (R4.2), and (R7). Thus

µ∗(v) ≥ µ(v)− 2× 5
4 − 3

2 = 0.

(2.2) v is not incident to consecutive 3-faces.

Let f1 be a 3-face adjacent to another 3-face. It follows from Lemma 3.5(1)

and (2) that f2 and f5 are 6+-faces. By (R2.2) and (R7), w(v → f1) ≤ 3
2 . If

neither f3 nor f4 are 3-faces, then w(v → fi) ≤ 1 for i = 3 and 4 by (R3.2),

(R4.2), and (R7). Thus µ∗(v) ≥ µ(v)− 3
2 − 2× 1 > 0.

Now assume that f3 is a 3-face. By the condition of (2.2), f4 is a 4+-face

which implies w(v → f4) ≤ 1 by (R3.2), (R4.2), and (R7). If f3 is adjacent

to another 3-face, then f4 is a 6+-face by Lemma 3.5(1) and (2). Moreover,

w(v → f3) ≤ 3
2 by (R2.2) and (R7). Thus µ∗(v) ≥ µ(v) − 2 × 3

2 > 0. If f3 is

not adjacent to another 3-face, then w(v → f3) ≤ 6
5 by (R2.2) and (R7). Thus

µ∗(v) ≥ µ(v)− 3
2 − 6

5 > 0.

(3) A 5-vertex v is not incident to a 3-face that is adjacent to another 3-face and v is

incident to at least one 6+-face. Consequently, v is incident to at most two 3-faces.

(3.1) v is incident to at least two 6+-faces.

Recall that w(v → fi) ≤ 6
5 for each 3-face fi by (R1.2) and (R7), and w(v →

fi) ≤ 1 for each k-face fi where k = 4, 5 by (R3.2), (R4.2), and (R7). If v is

incident to t 3-faces, then there are at most 3 − t faces f with d(f) = 4 or 5.

Thus µ∗(v) ≥ µ(v)− t× 6
5 − (3− t)× 1 > 0 by t ≤ 3.

(3.2) v is incident to exactly one 6+-face and incident to at most one 3-face.

If v has no incident 3-faces, then v has all incident faces f except one 6+-face

has d(f) = 4 or 5. Thus µ∗(v) ≥ µ(v)− 4× 1 = 0 by (R3.2), (R4.2), and (R7).
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Assume v is incident to exactly one 3-face, say f1. By Lemma 3.5(3), v is

not a (3, 4, 4, 4, 6+)- or a (3, 4, 4, 6+, 4)-face. Consequently, v has at least one

incident 5-face fj . Moreover, fj is adjacent to at least one 4+-face. We have

w(v → f1) ≤ 6
5 by (R1.2) and (R7), w(v → fj) ≤ 2

3 by (R4.2) and (R7), and

w(v → fi) ≤ 1 for each remaining k-face fi where k = 4, 5 by (R3.2), (R4.2),

and (R7). Thus µ∗(v) ≥ µ(v)− 6
5 − 2

3 − 2× 1 > 0.

(3.3) v is incident to exactly one 6+-face and incident to exactly two 3-faces.

By symmetry and using Lemma 3.5(3) and (4), we have that v is either a

(3, 5, 3, 5, 6+)-, (3, 5, 5, 3, 6+)- or (3, 5, 4, 3, 6+)-vertex.

Assume v is a (3, 5, 3, 5, 6+)- or (3, 5, 5, 3, 6+)-vertex. Applying Corollary 3.9

to B(f2) ∪ B(f3), v has an incident 5-face fj which is rich or extreme. Recall

that w(v → fi) ≤ 6
5 for each 3-face fi by (R1.2) and (R7), w(v → fj) ≤ 1

2 by

(R4.2) and (R7), and w(v → fi) ≤ 1 for the remaining 5-face fi by (R4.2) and

(R7). Thus µ∗(v) ≥ µ(v)− 2× 6
5 − 1

2 − 1 > 0.

Assume v is a (3, 5, 4, 3, 6+)-vertex. Applying Corollary 3.9 to B(f1) ∪ B(f2),

we obtain that f1 or f2 is rich or extreme. In the former case, w(v → f1) ≤ 1

by (R1.2) and (R7), and w(v → f2) ≤ 2
3 by (R4.2) and (R7). In the latter

case, w(v → f1) ≤ 6
5 by (R1.2) and (R7), and w(v → f2) ≤ 1

2 by (R4.2) and

(R7). Combining with w(v → f3) ≤ 1 by (R3.2) and (R7) and w(v → f4) ≤ 6
5

by (R1.2) and (R7), we have µ∗(v) ≥ µ(v) − 2 × 1 − 2
3 − 6

5 > 0 or µ∗(v) ≥
µ(v)− 2× 6

5 − 1
2 − 1 > 0.

(4) A 5-vertex v is not incident to a 3-face that is adjacent to another 3-face and v

is not incident to a 6+-face. Consequently, v is incident to at most two 3-faces.

Using Corollary 3.10, we have that v has at least three incident faces that are rich

or extreme.

(4.1) v has no incident 3-faces.

If f has an extreme face fi, then w(v → fi) = 0 by (R7) and w(v → fi) ≤ 1 for

each remaining fi by (R3.2), (R4.2), and (R7). Thus µ∗(v) ≥ µ(v)− 4× 1 = 0.

If f has t rich faces, then µ∗(v) ≥ µ(v) − t × 2
3 − (5 − t) × 1 ≥ 0 by (R3.2),

(R4.2), (R7), and t ≥ 3.

(4.2) v is incident to exactly one 3-face, say f1. It follows from Lemma 3.5(3) that v

has at most two incident 4-faces.

(4.2.1) v has no incident 4-faces.

We have that w(v → f1) ≤ 6
5 by (R1.2) and (R7) and w(v → fi) ≤ 2

3 for

each 5-face fi by (R4.2) and (R7). Thus µ∗(v) ≥ µ(v)− 6
5 − 4× 2

3 > 0.
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(4.2.2) v has exactly one incident 4-face.

It follows from Lemma 3.5(4) that v is a (3, 5, 4, 5, 5)-face. Recall that

w(v → f1) ≤ 6
5 by (R1.2) and (R7), w(v → f3) ≤ 1 by (R3.2) and (R7),

and w(v → fi) ≤ 2
3 for each remaining fi by (R4.2) and (R7). If f3 is

rich or extreme, then w(v → f3) ≤ 2
3 by (R3.2) and (R7). Thus µ∗(v) ≥

µ(v)− 6
5 − 4× 2

3 > 0. If f3 is neither rich nor extreme, then f2 and f4 are

rich or extreme by Corollary 3.9. Consequently, w(v → fi) ≤ 1
2 for i = 2

or 4 by (R4.2) and (R7). Thus µ∗(v) ≥ µ(v)− 6
5 − 1− 2× 1

2 − 2
3 > 0.

(4.2.3) v has exactly two incident 4-faces.

It follows from Lemma 3.5(3) and (4) that v is a (3, 4, 5, 5, 4)- or a (3, 5, 4, 4,

5)-face. Moreover, v has at least three incident faces that are rich or

extreme by Corollary 3.10. Consequently, we have (i) f1 and at least one

4-face fi are rich or extreme, (ii) f1 and two 5+-faces are rich or extreme,

(iii) a 4-face and two 5-faces are rich or extreme, or (iv) two 4-faces and a

5-face are rich or extreme.

Recall that w(v → f1) ≤ 6
5 by (R1.2) and (R7), w(v → fi) ≤ 1 for each

4-face fi by (R3.2) and (R7), and w(v → fi) ≤ 2
3 for each 5-face fi by

(R4.2) and (R7). Additionally, w(v → f1) ≤ 1 if f1 is rich or extreme

by (R1.2) and (R7), w(v → fi) ≤ 2
3 for each rich or extreme 4-face fi by

(R3.2) and (R7), and w(v → fi) ≤ 1
2 for each rich or extreme 5-face fi by

(R4.2) and (R7).

If f1 and a 4-face fi are rich or extreme, then µ∗(v) ≥ µ(v)−2×1−3× 2
3 = 0.

If f1 and two 5+-faces are rich or extreme, then µ∗(v) ≥ µ(v) − 1 − 2 ×
1 − 2 × 1

2 = 0. If a 4-face and two 5+-faces are rich or extreme, then

µ∗(v) ≥ µ(v)− 6
5 − 1− 2

3 − 2× 1
2 > 0. If two 4-faces and a 5-face are rich

or extreme, then µ∗(v) ≥ µ(v)− 6
5 − 3× 2

3 − 1
2 > 0.

(4.3) v is incident to exactly two 3-faces, say f1 and f3.

It follows from Lemma 3.5(3) and (4) that v has no incident 4-faces. This

implies v is a (3, 5, 3, 5, 5)-vertex. Recall that w(v → fi) ≤ 6
5 for each 3-face

fi by (R1.2) and (R7), and w(v → fi) ≤ 1 for each 5-face fi by (R4.2) and

(R7). Furthermore, w(v → fi) ≤ 1 for each rich 3-face fi by (R1.2) and (R7),

and w(v → fi) ≤ 1
2 for each rich 5-face fi by (R4.2) and (R7). Furthermore,

w(v → fi) = 1
2 for each extreme 3-face (fi) by (R7), and w(v → fi) = 0 for

each extreme 5-face fi by (R7).

If f1 or f3 is an extreme 3-face, then µ∗(v) ≥ µ(v)− 6
5 − 1

2 − 3× 2
3 > 0. If f2,

f4, or f5 is an extreme 3-face, then µ∗(v) ≥ µ(v)− 2× 6
5 − 2× 2

3 > 0. Thus we

assume that all incident faces of v are inner faces.
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If each incident 5-face is rich, then µ∗(v) ≥ µ(v) − 2 × 6
5 − 3 × 1

2 > 0. If f2

is not rich, then f1 and f3 are rich by Corollary 3.9. Consequently, f4 and

f5 are also rich. Thus µ∗(v) ≥ µ(v) − 3 × 1 − 2 × 1
2 = 0. If f4 is not rich,

then f3 and f5 are rich by Corollary 3.9. Consequently, f2 is also rich. Thus

µ∗(v) ≥ µ(v)− 6
5 − 1− 2

3 − 2× 1
2 > 0. The case that f5 is not rich is similar.

(5) A 6-vertex v is incident to a 3-face that is adjacent to another 3-face.

(5.1) v is incident to at least two consecutive 3-faces.

Let f1, . . . , fk be consecutive 3-faces. Similar to Case (2.1), we have k ≤
3. It follows from Lemma 3.5(1) and (2) that v is a (3, 3, 6+, k4, k5, 6

+)- or

(3, 3, 3, 6+, k5, 6
+)-face. Since w(v → fi) ≤ 3

2 for each 5−-face fi by (R2.3),

(R3.2), (R4.2), and (R7), Thus µ∗(v) ≥ µ(v)− 4× 3
2 = 0.

(5.2) v has no adjacent incident 3-faces.

Let f1 be a 3-face adjacent to another 3-face. It follows from Lemma 3.5(1)

and (2) that f2 and f6 are 6+-faces. Similar to Case (5.1), we obtain that

µ∗(v) ≥ µ(v)− 4× 3
2 = 0.

(6) A 6-vertex v is not incident to a 3-face that is adjacent to another 3-face. Conse-

quently, v is incident to at most three 3-faces.

(6.1) v is incident to at least one 6+-face.

Recall that w(v → fi) ≤ 6
5 for each 3-face fi by (R1.2) and (R7), and w(v →

fi) ≤ 3
2 for each k-face fi where k = 4 or 5 by (R3.2) and (R4.2). Thus

µ∗(v) ≥ µ(v) − t × 6
5 − (5 − t) × 1 > 0 where t ≤ 3 is the number of incident

3-faces.

(6.2) v has no incident 6+-face.

(6.2.1) v has no incident 3-faces.

By (R3.2), (R4.2), and (R7), we have µ∗(v) ≥ µ(v)− 6× 1 = 0.

(6.2.2) v has exactly one incident 3-face, say f1.

It follows from Lemma 3.5(3) that v is not a (3, 4, 4, 4, 4, 4)-vertex. Conse-

quently, v has s 5-faces where t ≥ 1. Note that each incident face of v is

adjacent to another 4+-face. It follows that w(v → fi) ≤ 2
3 for each 5-face

fi by (R4.2) and (R7). Recall that w(v → f1) ≤ 6
5 by (R1.2) and (R7), and

w(v → fi) ≤ 1 for each 4-face f . Thus µ∗(v) ≥ µ(v)− 6
5−s× 2

3−(5−s)×1 >

0.

(6.2.3) v has exactly two incident 3-faces. Consequently, v is a (3, k2, 3, k4, k5, k6)-

or (3, k2, k3, 3, k5, k6)-vertex.
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Assume v is a (3, k2, 3, k4, k5, k6)-face. Then k2 = 5 by Lemma 3.5(3). This

implies k4 = k6 = 5 by Lemma 3.5(4). Since v is a (3, 5, 3, 5, 4+, 5)-vertex,

we have w(v → fi) ≤ 6
5 for i = 1 and 3 by (R1.2) and (R7), w(v → fi) ≤ 1

for i = 2 and 5 by (R3.2),(R4.2) and (R7), and w(v → fi) ≤ 2
3 for i = 4

and 6 by (R4.2) and (R7). Thus µ∗(v) ≥ µ(v)− 2× 6
5 − 2× 1− 2× 2

3 > 0.

Assume v is a (3, k2, k3, 3, k5, k6)-vertex. It follows from Lemma 3.5(4)

that {k2, k6} 6= {4, 5}. If k2 = k6 = 4, then k3 = k5 = 5 by Lemma 3.5(3).

Consequently, we may assume that v is a (3, 4, 5, 3, 5, 4)- and (3, 5, 5, 3, 5, 5)-

vertex. Recall that w(v → fi) ≤ 6
5 for i = 1 and 4 by (R1.2) and (R7),

w(v → fi) ≤ 1 for each 4-face fi by (R3.2) and (R7), and w(v → fi) ≤ 2
3

for each 5-face fi by (R4.2) and (R7). Thus a (3, 4, 5, 3, 5, 4)-vertex has

µ∗(v) ≥ µ(v)− 2× 6
5 − 2× 1− 2× 2

3 > 0, and a (3, 5, 5, 3, 5, 5)-vertex has

µ∗(v) ≥ µ(v)− 2× 6
5 − 4× 2

3 > 0.

(6.2.4) v has exactly three incident 3-faces. Consequently, v is a (3, 5, 3, 5, 3, 5)-

vertex by Lemma 3.5(3).

Assume v is incident to at least one extreme 5-face. Consequently, µ∗(v) ≥
µ(v)− 3× 6

5 − 2× 1 > 0 by (R1.2), (R4.2), and (R7).

Assume v is not incident to an extreme 5-face. Consequently, each incident

face of v is an inner face. It follows from Corollary 3.12 that each union

of the boundaries of four consecutive incident faces has a 5+-vertex other

than v. Consequently, two incident 5-faces of v has at least two incident 5+-

vertices, or v has one incident 5-face with at least three incident 5+-vertices.

Thus µ∗(v) ≥ µ(v)−3× 6
5−2× 1

2−1 > 0, or µ∗(v) ≥ µ(v)−3× 6
5−2×1− 1

3 > 0

by (R1.2), (R4.2), and (R7).

(7) v is a k-vertex where k ≥ 7.

(7.1) A vertex v is incident to a 3-face that is adjacent to another 3-face. Then v

is incident to at least two 6+-faces by Lemma 3.5(1) and (2). Thus µ∗(v) ≥
µ(v)− (k − 2)× 3

2 > 0 by (R2.3), (R3.2), (R4.2), and (R7).

(7.2) A vertex v is not incident to a 3-face that is adjacent to another 3-face. Con-

sequently v is incident to t 3-faces where t ≤ k/2. Thus µ∗(v) ≥ µ(v)− t× 6
5 −

(k − t)× 1 > 0 by (R1.2), (R3.2), (R4.2), and (R7).

(8) An inner 3-face f is not adjacent to another 3-face.

If f has no incident flaw 4-vertices, then µ∗(f) ≥ µ(f) + 3 × 1 = 0 by (R1.1) and

(R1.2). If f has an incident flaw vertex, then f is a (4, 4, 5+)-face by Corollary 3.7(2).

Recall that w(v → f) ≥ 9
10 for an incident 4-vertex v by (R1.1), and w(v → f) ≥ 6

5

for an incident 5+-vertex v by (R1.2). Thus µ∗(f) ≥ µ(f) + 2× 9
10 + 6

5 = 0.
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(9) An inner 3-face f is adjacent to another 3-face. Note that we use only (R2) to

calculate a new charge.

(9.1) A face f is not in a trio. Then µ∗(f) ≥ µ(f) + 3× 1 = 0.

(9.2) A face f is in a trio T but not in W5 formed by four inner 3-faces.

Let f1, f2, and f3 be 3-faces in the same trio T . Define µ(T ) := µ(f1)+µ(f2)+

µ(f3) = −9 and µ∗(T ) := µ∗(f1)+µ∗(f2)+µ∗(f3). By (R8), it suffices to prove

that µ∗(T ) ≥ 0.

(9.2.1) A worst vertex is a 5+-vertex. Then µ∗(T ) ≥ µ(T ) + 9× 1 = 0.

(9.2.2) A worst vertex is a 4-vertex and each worse vertex is a 4-vertex. Then two

bad vertices are 5+-vertices by Corollary 3.9. Thus µ∗(T ) ≥ µ(T ) + 3 ×
2
3 + 2× 3

2 + 4× 1 = 0.

(9.2.3) A worst vertex is a 4-vertex and one of worse vertices is a 5-vertex. Then

Corollary 3.9 yields that the other worse vertex or at least one bad vertex

is a 5+-vertex. Thus µ∗(T ) ≥ µ(T ) + 3 × 2
3 + 4 × 5

4 + 2 × 1 = 0 or

µ∗(T ) ≥ µ(T ) + 3× 2
3 + 2× 5

4 + 3
2 + 3× 1 = 0, respectively.

(9.2.4) A worst vertex is a 4-vertex and one of worse vertices is a 6+-vertex. Then

µ∗(T ) ≥ µ(T ) + 3× 2
3 + 2× 3

2 + 4× 1 = 0.

(9.3) A face f is in W5 formed by four inner 3-faces incident to v.

Let f1, f2, f3, and f4 be 3-faces in the same W5. Define µ(W5) := µ(f1) +

µ(f2) + µ(f3) + µ(f4) = −12 and µ∗(W5) := µ∗(f1) + µ∗(f2) + µ∗(f3) + µ∗(f4).

By (R8), it suffices to prove that µ∗(W5) ≥ 0. Note that each 3-face in W5 is

adjacent to a 7+-face by Lemma 3.5(5). Thus W5 always obtains 4 × 1
8 from

four 7+-faces by (R5).

(9.3.1) Each vertex of W5 is a 5−-vertex. Then at least three of them are 5-vertices

by Corollary 3.13. Thus µ∗(W5) ≥ µ(W5)+6× 5
4 +2×1+4× 1

2 +4× 1
8 = 0.

(9.3.2) Exactly one vertex of W5 is a 6+-vertex. Then one of the remaining vertices

is a 5+-vertex by Corollary 3.9. Thus µ∗(W5) = µ(W5) + 2× 3
2 + 2× 5

4 +

4× 1 + 4× 1
2 + 4× 1

8 = 0.

(9.3.3) At least two vertices of W5 are 6+-vertices. Then µ∗(W5) ≥ µ(W5) + 4 ×
3
2 + 4× 1 + 4× 1

2 + 4× 1
8 > 0.

(10) f is an inner 4-face.

We claim that f is a (4+, 4+, 4+, 5+)-face. Suppose to the contrary that f is a

(4, 4, 4, 4)-face. By the minimality of G, there is an L-coloring of G−B(f) where L

is restricted to G − B(f). After the coloring, each vertex of B(f) has at least two

legal colors. By Lemma 2.1, we can extend an L-coloring to G, a contradiction.
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If f is a (4, 4, 4, 5+)-face, then µ∗(f) ≥ µ(f) + 3 × 1
3 + 1 = 0 by (R3). If f is

a (4+, 4+, 5+, 5+)- or (4+, 5+, 4+, 5+)-face, then f is a rich face and thus µ∗(f) ≥
µ(f) + 2× 1

3 + 2× 2
3 = 0 by (R3).

(11) f is an inner 5-face.

(11.1) f is a poor 5-face, that is f is a (4, 4, 4, 4, 4)-face.

It follows from Lemma 3.5(2) that each incident 4-vertex of f is incident to at

most two 3-faces. If an incident vertex v of f is incident to at most one 3-face,

then w(v → f) = 1
3 by (R4.1). If an incident vertex v of f is incident to two

3-faces, then v is a flaw vertex or a pseudo flaw vertex, and thus w(v → f) ≥ 1
5

by (R4.1). Thus µ∗(f) ≥ µ(f) + 5× 1
5 = 0.

(11.2) f is a (4, 4, 4, 4, 5+)-face.

(11.2.1) f is adjacent to at least one 4+-face g. It follows from (R4.2) that w(v →
f) = 2

3 for an incident 5+-vertex v of f . Consider a 4-vertex u ∈ V (B(f))∩
V (B(g)). It follows from Lemma 3.5(2) that u is incident to at most one 3-

face. Consequently, w(u→ f) = 1
3 by (R4.1). Thus µ∗(f) ≥ µ(f)+ 2

3 + 1
3 =

0.

(11.2.2) f is adjacent to five 3-faces. Then µ∗(f) = µ(f) + 1 = 0 by (R4.2).

(11.3) f is a rich face with t incident 5+-vertices. Then µ∗(f) ≥ µ(f) + t× 1
t = 0 by

(R4.2).

(12) f is an inner 6+-face.

If f is a 6-face, then µ∗(f) = µ(f) = 0. If f is a k-face where k ≥ 7, then µ∗(f) ≥
µ(f)− k × 1

8 > 0 by (R5).

(13) f is an extreme face.

It follows from (R7) that w(D → f) = 3 if a 3-face f is adjacent to a special 4-vertex.

Consequently µ∗(f) = µ(f) + 3 = 0. Thus we assume f is a 3-face not incident to a

special 4-vertex, a 4-face, or a 5-face.

(13.1) f is a 3-face that shares exactly one vertex, say u, with C0. It follows from (R7)

that w(D → f) = 2 and w(v → f) = 1
2 for each incident vertex v in int(C0).

Thus µ∗(f) = µ(f) + 2 + 2× 1
2 = 0.

(13.2) f is a 3-face that shares an edge with C0. It follows from (R7) that w(D →
f) = 5

2 and w(v → f) = 1
2 for an incident vertex v in int(C0). Thus µ∗(f) =

µ(f) + 5
2 + 1

2 = 0.

(13.3) f is a 4- or 5-face. Then µ∗(f) ≥ µ(f) + 2 ≥ 0 by (R7).
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(14) D is the unbounded face.

If a 3-face is incident to a special 4-vertex, then we call it a special 3-face, otherwise

we call it a non-special 3-face.

Let f∗3 , f ′3, f
′ be the number of special 3-faces sharing an incident vertex with D, non-

special 3-faces sharing exactly one incident edge with D, non-special 3-faces sharing

exactly one incident vertex with D or 4- or 5-faces sharing incident vertices with D,

respectively. Let E(C0, V (G)−C0) be the set of edges between C0 and V (G)−C0, and

let e(C0, V (G)−C0) be its size. Let E∗(C0, V (G)−C0) be the set of edges between

C0 and V (G)−C0 that are incident with special 3-faces, and let e∗(C0, V (G)−C0)

be its size. Let E′(C0, V (G) − C0) = E(C0, V (G) − C0) − E∗(C0, V (G) − C0), and

let e′(C0, V (G)− C0) be its size.

Then by (R6) and (R7),

µ∗(D) = 3 + 6 +
∑
v∈C0

(2d(v)− 6)− 3f∗3 −
5

2
f ′3 − 2f ′

= 9 + 2
∑
v∈C0

(d(v)− 2)− 2× 3− 3f∗3 −
5

2
f ′3 − 2f ′

= 3− 1

2
f ′3 + 2e(C0, V (G)− C0)− 3f∗3 − 2f ′3 − 2f ′

= 3− 1

2
f ′3 + (2e∗(C0, V (G)− C0)− 3f∗3 )

+ (2e′(C0, V (G)− C0)− 2f ′3 − 2f ′).

So we may consider that each edge in E(C0, V (G)−C0) gives a charge of 2 to D. It

follows from Lemma 2.2(1),(2),(5) and Lemma 3.4(2) that an edge in E∗(C0, V (G)−
C0) is not incident to an extreme non-special 3-face, and not incident to an extreme

4- or 5-face. Moreover, an extreme special 3-face f share incident edges with at

most one another extreme special 3-face. Consider an extreme special 3-face f that

does not share incident edges with other extreme special 3-faces. By the observation

above, f contributes 2 to e∗(C0, V (G) − C0) and 1 to f∗3 . Consider two extreme

special 3-faces f and g that share an incident edge. By the observation above, f and g

contribute 3 to e(C0, V (G)−C0) and 2 to f∗3 . Altogether, 2e∗(C0, V (G)−C0)−3f∗3 ≥
0. Similarly, 2e′(C0, V (G)−C0)−2f ′3−2f ′ ≥ 0. Note that f ′3 ≤ 3. Thus µ∗(D) > 0.

This completes the proof.
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