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Planar Graphs Without Pairwise Adjacent 3-, 4-, 5-, and 6-cycle are

4-choosable

Kittikorn Nakprasit and Pongpat Sittitrai*

Abstract. Xu and Wu proved that if every 5-cycle of a planar graph G is not simul-
taneously adjacent to 3-cycles and 4-cycles, then G is 4-choosable. In this paper, we
improve this result as follows. If G is a planar graph without pairwise adjacent 3-, 4-,
5-, and 6-cycle, then G is 4-choosable.

1. Introduction

Every graph in this paper is finite, simple, and undirected. The concept of choosability
was introduced by Vizing in 1976 [12] and by Erdds, Rubin, and Taylor in 1979 [5],
independently. A k-assignment L of a graph G assigns a list L(v) (a set of colors) with
|L(v)| = k to each vertex v. A graph G is L-colorable if there is a proper coloring f where
f(v) € L(v). If G is L-colorable for any k-assignment L, then we say G is k-choosable.

It is known that every planar graphs is 4-colorable |1,2]. Thomassen [11] proved that
every planar graph is 5-choosable. Meanwhile, Voight [13] presented an example of non
4-choosable planar graph. Additionally, Gutner [8] showed that determining whether a
given planar graph 4-choosable is NP-hard. Since every planar graph without 3-cycle
always has a vertex of degree at most 3, it is 4-choosable. More conditions for a planar
graph to be 4-choosable are investigated. It is shown that a planar graph is 4-choosable
if it has no 4-cycles |10], 5-cycles |14], 6-cycles [7], T-cycles [6], intersecting 3-cycles [15],
intersecting 5-cycles [9], or 3-cycles adjacent to 4-cycles [3,/4]. Xu and Wu [16] proved
that if every 5-cycle of a planar graph G is not simultaneously adjacent to 3-cycles and

4-cycles, then G is 4-choosable. In this paper, we improve this result as follows.

Theorem 1.1. If G is a planar graph without pairwise adjacent 3-, 4-, 5-, and 6-cycle,
then G is 4-choosable.
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2. Preliminaries

First, we introduce some definitions and notation.

Let G be a plane graph. We use V(G), E(G), and F(G) for the vertex set, the edge
set, and the face set respectively. We use B(f) to denote a boundary of a face f. A
wheel W, is an n-vertex graph formed by connecting a single vertex (hub) to all vertices
(external vertices) of an (n — 1)-cycle. A k-vertex (kT-vertex, k™ -vertex, respectively) is
a vertex of degree k (at least k, at most k, respectively). The same notations are applied
to faces.

A (dy,da, ..., dg)-face f is a face of degree k where vertices on f have degree dy,ds, .. .,
dy, in a cyclic order. A (dj,da, ..., dy)-vertex v is a vertex of degree k where faces incident
to v have degree dy,do,...,dr in a cyclic order. Note that some face may appear more
than one time in the order.

An extreme face is a bounded face that shares a vertex with the unbounded face. An
inner face is a bounded face that is not an extreme face. A (3,5,3,5")-vertex v is called
a flaw 4-vertez if v is incident to a poor inner 5-face and two inner 3-faces. A (3,5,3,5%)-
vertex v is called a pseudo flaw 4-vertex if v is incident to a poor inner 5-face and at least
one extreme 3-face.

We say zy is a chord in an embedding cycle C' if z,y € V(C) but zy € E(G) — E(C).
An internal chord is a chord inside C while external chord is a chord outside C. A
triangular chord is a chord e such that two edges in C' and e form a 3-cycle. A graph
C(m,n) is obtained from a cycle x1z2 ... Tp4+pn—2o with an internal chord zqx,,.

A graph C(l,m,n) is obtained from a cycle z1x3... %14 min—q With internal chords
x12; and X127 1m_o. A graph C(m,n,p,q) can be defined similarly. We use int(C') and
ext(C) to denote the graphs induced by vertices inside and outside a cycle C, respectively.
A cycle C'is a separating cycle if int(C') and ext(C') are not empty.

Let L be a list assignment of G and let H be an induced subgraph of GG. Suppose
G — H has an L-coloring ¢ on G — H where L is restricted to G — H. For a vertex v € H,
let L"(v) be a set of colors used on the neighbors of v by ¢. We define the residual list
assignment L' of H by L'(v) = L(v) — L"(v). One can see that if G — H has an L-coloring
¢ and H has an L'-coloring, then G has an L-coloring.

The following is a fact on list colorings that we use later.

Lemma 2.1. [5| Let L be a 2-assignment. A cycle Cy, is L-colorable if and only if n is

even or L does not assign the same list to all vertices.

Let A denote the family of planar graphs without pairwise adjacent 3-, 4-, 5-, and
6-cycle.
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Next, we explore some properties of graphs in A which are helpful in a proof of the

main results.

Lemma 2.2. Fvery graph G in A does not contain each of the followings:
(1) C(3,3,4), (2) C(3,3,5), (3) C(3,4,47), (4) C(4,3,5),
(5) Ws that shares exactly one edge with a 6 -cycle.

Proof. Let C(l,m,n) be obtained from a cycle z123 . .. Zj4m4n—4 With internal chords z2;
and T1Z4m—2-

(1) Suppose G contains C(3,3,4). Then we have four pairwise adjacent cycles xjzoxs,
T1L2XL3L4, T1X3L4L5L6, and T1ToT3T4T5Lg, contrary to G € A.

(2) Suppose G contains C(3,3,5). Then we have four pairwise adjacent cycles xjz3xy,
T1T2XL3L4, T1X4T5LeLT, and T1T3T4T5Te27, contrary to G € A.

(3) Suppose G contains C(3,4,3). Then we have four pairwise adjacent cycles xjzox3,
T1T3T4T5, T1T2X3T4T5, and T1Tox3raxsxg, contrary to G € A. Suppose GG contains
C(3,4,4). Then we have four pairwise adjacent cycles xixox3, T1X3T4T5, T1T2T324T5,
and x1r3142526T7, contrary to G € A.

(4) Suppose G contains C'(4, 3,5). Then we have four pairwise adjacent cycles x1z4xs,
T1L2XL3L4, T1X2X3L4L5, and T1T4T5T6T7Ls, contrary to G € A.

(5) Let the hub of W5 be ¢ and let external vertices be r, s, u, and v in a cyclic order.
Suppose there is a cycle uvw. Then we have four pairwise adjacent cycles vwu, vwug,
vwusq, and vwusqr, contrary to G € A. Suppose there is a cycle uvwz. Then we have
four pairwise adjacent cycles usq, usqu, usqrv, and usquwz, contrary to G € A. Suppose
there is a cycle uvwzy. Then we have four pairwise adjacent cycles uqu, ugrv, ugsrv,
and uquwzxy, contrary to G € A. Suppose there is a cycle uvwzyz. Then we have four

pairwise adjacent cycles uvgq, uvgs, uvgrs, and uvwxyz, contrary to G € A. ]
Lemma 2.3. If C is a 6-cycle with a triangular chord, then C has exactly one chord.

Proof. Let C = tuvxyz with a chord tv. Suppose to the contrary that C has another
chord e. By symmetry, it suffices to assume that e = ux, uy, tx, ty, or xz. If e = ux, then
we have four pairwise adjacent cycles tuv, tuzv, tvryz, and tuvzryz, contrary to G € A. If
e = uy, then we have four pairwise adjacent cycles tuv, uwvzy, tvryz, and tuvxyz, contrary
to G € A. If e = tx, then we have four pairwise adjacent cycles tuv, tuvz, tvryz, and
tuvzyz, contrary to G € A. If e = ty, then we have four pairwise adjacent cycles tuwv,
tvry, tvryz, and tuvzyz, contrary to G € A. If e = xz, then we have four pairwise
adjacent cycles tuv, tvxz, tvxyz, and tuvryz, contrary to G € A. Thus C has exactly one
chord. O
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3. Structure

To prove Theorem we prove a stronger result as follows.

Theorem 3.1. If G € A with a 4-assignment L, then each precoloring of a 3-cycle in G

can be extended to an L-coloring of G.

We consider (G, C) and a 4-assignment L where C is a precolored 3-cycle as a minimal
counterexample to Theorem Embed G in the plane.

Lemma 3.2. G has no separating 3-cycles.

Proof. Suppose to the contrary that there exists a separating 3-cycle C' in G. By symmetry,
we assume V(Cp) C V(C) Uint(C). By the minimality of G, a precoloring of Cp can be
extended to V(C) U int(C). After C is colored, then again the coloring of C' can be

extended to ext(C'). Thus we have an L-coloring of G, a contradiction. O

So we may assume that a minimal counterexample (G, Cp) has no separating 3-cycles,

and Cj is the boundary of the unbounded face D of G in the rest of this paper.
Lemma 3.3. Each vertex in int(Cy) has degree at least four.

Proof. Suppose otherwise that there exists a 3~ -vertex v in int(Cp). By the minimality
of (G,Cyh), (G —v,Cp) has an L-coloring. One can see that the residual list L'(v) is not

empty. Thus we can color v and thus extend a coloring to GG, a contradiction. O
Lemma 3.4. For faces in G, each of the followings holds.
(1) The boundary of a bounded 6~ -face is a cycle.

(2) If a bounded ky-face f and a bounded ko-face g are adjacent where ki + ko < 8, then
B(f)U B(g) = C(k1, k2).

(3) If a bounded 4-face f and a bounded 5-face g are adjacent, then B(f) U B(g) is
C(4,5) or a configuration as in Figure where tuy is Cy.

(4) If bounded 5-faces f and g are adjacent, then B(f)UB(g) is C(5,5) or a configuration
as in Figure [3.2]

Proof. (1) One can observe that a boundary of a 5~ -face is always a cycle. Consider a
bounded 6-face f. If B(f) is not a cycle, then a boundary closed walk is in a form of
wwwrywu. By Lemma u or x has degree at least 4. Consequently, uvw or zyw is a

separating 3-cycle, contrary to Lemma [3.2
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(2) It suffices to show that such f and g share exactly two vertices. Let B(f) = uvw
and B(g) = vwz. If u =z, then f or g is the unbounded face, a contradiction.

Let B(f) = uwvw and B(g) = vwzy. If u =z or y, then d(w) = 2 or d(v) = 2, contrary
to Lemma [3.3]

Let B(f) = uvw and B(g) = vwzyz. If u = z or z, then d(w) = 2 or d(v) = 2,
contrary to Lemma If w = y, then vyz or wxy is a separating 3-cycle, contrary to
Lemma

Let B(f) = stuv and B(g) = uvwz. If s = w, then d(v) = 2, contrary to Lemma
If s =, then utx or vwz is a separating 3-cycle, contrary to Lemma The remaining
cases are similar.

(3) Let B(f) = stuv and B(g) = wvwzy. It suffices to show that V(B(f))NV(B(g)) =
{u,v} or {u,v,z} where z = s or t. If t = w, then uvw is a separating 3-cycle, contrary
to Lemma If t = z, then tuy is Cp, otherwise tuy is a separating cycle, contrary to
Lemma If t = y, then d(u) = 2, contrary to Lemma The remaining cases are

similar.

sS=x
)
r w
S
U t=ux v
F H
Figure 3.1: A graph F is formed by a Figure 3.2: A graph H is formed by two
4-face and a 5-face with tuy = Cp. adjacent 5-faces with but is not C'(5,5).

(4) Let B(f) = rstuv and B(g) = uvwzy. It suffices to show that V/(B(f))NV(B(g)) =
{u,v} or {u,v,z = s}. If r = w, then d(v) = 2, contrary to Lemma[3.3] If B(f) N B(g) =
{u,v,r = z}, then vwz, wvry, vwwzry, and stuvwz are four pairwise adjacent cycles,
contrary to G € A. If B(f) N B(g) = {u,v,r = xz,s = y}, then rvs, rvus, rvuts,
and rstuvw are four pairwise adjacent cycles, contrary to G € A, then uts or vwz is a
separating 3-cycle, contrary to Lemma If B(f)n B(g) = {u,v,r = y}, then ruv is
a separating 3-cycle, contrary to Lemma If B(f)NB(g) = {u,v,s = w}, then rvw,
tuvw, uvwzy, and rwryuv are four pairwise adjacent cycles, contrary to G € A. The

remaining cases are similar. O

Lemma 3.5. If a k-vertex v is incident to bounded faces f1,..., fr in a cyclic order and
d; is a degree of a face f; for each i € {1,...,k}, then each of the followings holds.
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(1) (d17d27d3) 7é (37 374)7 (2) (d17d27d3) 7é (37 3’ 5)7
(3) (d17d27d3) 7é (374747)7 (4) (d17d2;d3) 7é (47375);

(5) Let H be W5 such that a hub and each two vertices of consecutive external vertices
form a boundary of an inner 3-face. Then H is not adjacent to a boundary of a
67 -face other than these 3-faces.

Proof. Let F' = B U By U Bg where B; denote B(f;).

(1) Suppose (dy,ds,ds) = (3,3,4). Let By = rsv, By = vst, and B3 = vtzy. It follows
from Lemma 2) that V/(B1) NV (B2) = {s,v} and V(B2) NV (B3) = {t,v}. If r = x,
then stz or vxy is a separating 3-cycle, contrary to Lemma If r =y, then d(v) = 3,
contrary to Lemma [3.3] Thus V(B;1) NV (Bs) = {v}. Altogether we have F = C(3,3,4),
contrary to Lemma [2.2]1).

(2) Suppose (di1,ds,ds) = (3,3,5). Let By = rsv, By = vst, and By = vtzyz. It
follows from Lemma [3.4)2) that V(B1) N V(B2) = {s,v} and V(B2) N V(B3) = {t,v}.
We have C' = stxyzv is a 6-cycle with a triangular chord tv. If r € {x,y, z}, then C has
another chord, contrary to Lemma Thus V(B1) NV (B3) = {v}. Altogether we have
F = (C(3,3,5), contrary to Lemma [2.2)2).

(3) Suppose (dy,da,ds) = (3,4,3). Let By = rsv, By = vstu, and Bs = vuw. It follows
from Lemma [3.4(2) that V(B1) NV (Bz) = {s,v} and V(B2) NV (B3) = {u,v}. If r = w,
then d(v) = 3, contrary to Lemma Thus V(B1) NV (B3) = {v}. Altogether we have
F = ((3,4,3), contrary to Lemma [2.2|(3).

Suppose (di,da,d3) = (3,4,4). Let By = rsv, By = vstu, and Bs = uwvzxy. It follows
from Lemma [3.4)(2) that V(B1) NV (Bz2) = {s,v} and V(B2) NV (B3) = {u,v}. If r =z,
then d(v) = 3, contrary to Lemma If r = y, then vuy is a separating 3-cycle, contrary
to Lemma [3.2] Thus V(B;1) NV (Bs) = {v}. Altogether we have F = C(3,4,4), contrary
to Lemma [2.2(3).

(4) Suppose (dy,da,ds) = (4,3,5). Let By = gqrsv, By = vst, and Bs = vtxyz. It
follows from Lemma [3.4)2) that V(B1) NV (B2) = {s,v} and V(By) NV (B3) = {t,v}. We
have C' = stxyzv is a 6-cycle with a triangular chord tv. If {¢,r} and {z,y, 2} are not
disjoint, then C has another chord or ¢ = z. The former contradicts Lemma [2.3 and the
latter yields d(v) = 3, contrary to Lemma Thus V(B;) N V(Bs) = {v}. Altogether
we have F' = C(4,3,5), contrary to Lemma [2.2{2).

(5) Let v be a hub and let w, x, y, z be external vertices of H in the cyclic order.
Suppose to the contrary that H is adjacent to a face f with B(f) = wzq, wzqr, wzqrs, or
wzgrst. Now we have {w,z} C V(H)NV(B(f)). By Lemma 2.2(5), V(H) N V(B(f)) #
{w,z}. If ¢ = y, then d(z) = 3, contrary to Lemma If r = y, then vwaqyz is a
6-cycle with four triangular chords, contrary to Lemma If s = y, then vzw, vzwz,
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vxwzy, and varqryz are four pairwise adjacent cycles, contrary to G € A. If t = y, then
vrw, vrwz, vrwzy, and veqrsy are four pairwise adjacent cycles, contrary to G € A. The

remaining cases lead to similar contradictions. Thus f is not a 6~ -face. O

Lemma 3.6. Let C'(m,n) in int(Cy) be obtained from a cycle C = 1 ... ZTmyn—2 with a
chord x1x,, and d(x1) < 5. If C has at most one additional chord e and e is not Tyy—1 T 41
or x1xk where k # m, then there exists i € {2,...,m +n — 2} with d(x;) > 5.

Proof. Suppose to the contrary that G has such C with d(z;) < 4 for each i € {2,...,m+
n — 2}. By minimality, there exists an L-coloring for G — C. Considering the residual list
L' (x;) for each z; € V(C), we have |L'(x,,)| > 3 and |L/(z;)| > 2 for each z; € V(C).

Case 1. C has exactly one chord. Assume that {1,2} C L'(zy).

Case 1.1. Assume {1,2} C L'(z;) for each x; where i # m. We can color vertices in
a path C' — x,, with colors 1 and 2. Finally, we assign an available to x,, to complete a
coloring.

Case 1.2. Assume that there are adjacent vertices xj and zj1q in C — x,, such that
{1,2} C L'(zy) but {1,2} € L(xj4+1) where k < m. Assign a color in L'(xy) to x, such
that |L'(xg41)| > 2. Apply L'-coloring to Zg_1,Tk—2,. .., T1, Tmin—2, Tmtn—3, - - - s Tkto i1
this order. Consequently, |L'(zx+1)| > 1 and thus we can complete an L-coloring,.

Case 2. C has exactly one more chord e such that e is not x;,—1Zm41 or x1x) Where
k # m. Let e = zsx;. By symmetry, we may assume that s < ¢t and s < m — 1.
Since |L'(zs)| > 3, we can apply an L’-coloring to xs such that |L'(zs41)| > 2. Apply
L’-coloring t0 Ts_1,Ts_2,- ., T1, Tmin—2, Tmin_3,---,Tsio in this order. Consequently,

|L'(25+1)| > 1 and thus we can complete an L-coloring. O
Corollary 3.7. If v is a flaw vertex, then we have the followings.

(1) v is incident to exactly one poor 5-face.

(2) Each 3-face that is incident to v is a semi-rich face.

Proof. Let v be incident to inner faces f1, f2, f3, f1 in a cyclic order where f; and f3 are
inner 3-faces, fo is an inner poor 5-face, and fy is a 5-face. By Lemma B(f1)UB(f2)
and B(f2) U B(f3) are C(3,5). It follows from Lemmas and that a 6-cycle C' in
such C(3,5) has at most one external chord and such chord (if it exists) is not a triangular
chord. By Lemma some vertex in B(f1) U B(f2) and in B(f2) U B(f3) has degree at
least 5. Since fy is a poor face, some vertex in B(f1) and in B(f3) has degree at least 5
(1) If fy is also a poor 5-face, then f is a poor face, contrary to the observation above.
(2) By observation above, fi and f3 are not poor 3-faces. Since fs is a poor face, we
obtain that fi and f3 are not rich faces. O
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Lemma 3.8. If H in Figure is in int(Cy) and contains a 5~ -vertex v, then there is

another vertex of H with degree at least 5 in G.

Proof. First, we show that H is an induced subgraph. Suppose to the contrary that
there is an edge e joining vertices in V(H) such that e ¢ E(H). If e = ty, then tuy is
a separating 3-cycle. If e = wua, then stu is a separating 3-cycle. If e = sv, then rsv
is a separating 3-cycle. If e = rw, then rvw is a separating 3-cycle. All consequences
contradicts Lemma [3:2 Thus H is an induced subgraph.

Suppose to the contrary that d(v) < 5 but each of remaining vertices has degree at
most 4. By minimality, G — H has an L-coloring where L is restricted to G — H. Consider
a residual list assignment L' on H. Since L is a 4-assignment, we have |L'(s)| = 4,
|L'(u)] > 3, and |L'(v)|, |L'(r)], |L'(t)], L' (y)|, L' (w)| > 2. We begin by choosing a color
¢ from L'(u) such that |L'(y) — ¢| > 2. Then we choose colors of v, r, w, t, s, and y in
this order, we obtain an L’-coloring on H. Thus we can extend an L-coloring to G, a

contradiction. O

Corollary 3.9. Let v be a k-vertex in int(Cy) with consecutive incident faces f1,..., fr
where k < 5. If fi and fo are inner 5~ -faces, then there exists w € B(f1) U B(f2) such
that w # v and d(w) > 5.

Proof. Tt follows from Lemmas and that that B(f1) U B(f2) is a graph H as in
Figure or C(s,t) where s = d(f1) and t = d(f2). The former case is proved by
Lemma Assume B(f1) U B(f2) = C(s,t). It follows from Lemmas and that a
cycle C in the above C(s,t) has at most one external chord and such chord (if it exists)
is not a triangular chord. Use Lemma to complete the proof. ]

Corollary 3.10. If v is a 5-vertex in which each incident face is a 5~ -face, then v is

incident to at least three faces that are rich or extreme.

Proof. Suppose to the contrary that v is incident to three faces that are neither rich nor
extreme. Consequently, v is incident to consecutive inner faces 5~ -faces f and ¢ such that
each vertex in B(f) U B(g) except v have degree 4. This contradicts Corollary O

Lemma 3.11. Let C(ly,...,l;) in int(Cp) be obtained from a cycle C' = xy ...xy, with
k — 1 internal chords sharing a common endpoint x1. Suppose x1 is not incident to other

chords while xo or ., is not incident to any chord. If d(x1) < k + 2, then there exists
i€{2,3,...,m} such that d(z;) > 5.

Proof. By symmetry, we assume z,, is not an endpoint of any chord in C. Suppose to the
contrary that d(z;) < 4 for each i = 2,3,...,m. By the minimality of G, the subgraph

G —{x1,...,2,} has an L-coloring where L is restricted to G — {z1,...,z,}. Consider a
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residual list assignment L' on z1,...,2y. Since L is a 4-assignment, we have |L/'(z1)| > 3
and |L'(v)| > 3 for each v € V(C) with an edge z1v and |L'(x;)] > 2 for each of the
remaining vertices z; in V(C'). Since z,, is not an endpoint of a chord in C, we can choose
a color ¢ from L'(x71) such that |L'(x,,) — ¢| > 2. By choosing colors of z9, 23, ..., 2y, in
this order, we obtain an L’-coloring on G’. Thus we can extend an L-coloring to G, a

contradiction. O

Corollary 3.12. Let v be a 6-vertex with consecutive inner incident faces fi,..., f¢ and
let F = By U By U B3 U By where B; denote B(f;). If fi...f1s are inner faces and
(d(f1),d(f2),d(f3),d(f1)) = (5,3,5,3), then there exists w € V(F) — {v} with d(w) > 5.

Proof. By Lemma it suffices to show that F' = C(5,3,5,3). Let cycles By = vqrst,
By = vtu, B3 = vuwzy, and By = vyz. Using Lemma we have that V/(B1) NV (Bsy) =
{v,t}, V(B2) NV (Bs) = {v,u}, and V(B3) N V(Bs) = {v,y}. It suffices to show that
V(B1) NV (Bs) ={v} =V(Bs) N(V(B1)UV(B2)).

Suppose to the contrary that V(B;) NV (B3) # {v}. Consider a 6-cycle vtuwzy with
a triangular chord wv. If s = u,w,x, or y, then vtuwxy has another chord, contrary to
Lemmal[2.3] Thus s ¢ V(B1)NV (Bs). Similarly each of ¢, w, and y is not in V (By)NV (Bs).
The only remaining possibility is that r = x. Suppose this holds. Then vyz, vyxq, vyzwu,
and vyrstu are four pairwise adjacent cycles, contrary to G € A. Thus V(By) NV (B3) =
{v} which implies BjUB2UB3 = C(5,3,5). As a consequence, we have vgrstu and vtuwzy
are 6-cycles with a triangular chord.

If there is a vertex b € V(By4) N (V(By) U V(Bsg)) such that b # v, then vgrstu or
vtuwzxy has another chord, contrary to Lemma This completes the proof. O

Corollary 3.13. Let v be a 4-vertex incident to four inner 3-faces. If all four neighbors

of v are 5™ -vertices, then at least three of them are 5-vertices.

Proof. Let w, x, y, z be neighbor of v in a cyclic order. Let cycles By = vwz and By = vxy.
Note that w and y are not adjacent, otherwise vwy is a separating 3-cycle, contrary to
Lemma Similarly, z and z are not adjacent.

Suppose to the contrary that there are at least two 4-vertices among w, z, y, and z. If
those two 4-vertices are not adjacent, say w and y, then By U By contradicts Lemma [3.6]
Thus we assume that w and x are 4-vertices.

Let H be the graph induced by v and its neighbors. By minimality of G, the graph
G — H has an L-coloring where L is restricted to G— H. Consider a residual list assignment
L' on H. Since L is a 4-assignment, we have |L'(y)|,|L'(z)| > 2, |L'(w)|,|L'(z)| > 3, and
|L'(v)| = 4. It suffices to assume that equalities holds for these list sizes. We aim to show

that H has an L’-coloring, and thus an L-coloring can be extended to G, a contradiction.
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Case 1. There is a color ¢t in L'(v) — (L'(y) U L'(z)). We begin by choosing t for v.
Each of the residual lists of w, x, y, z now has sizes at least 2. By Lemma [2.1| an even
cycle is 2-choosable, thus H has an L'-coloring.

Case 2. L'(v) — (L'(y) U L'(z)) = 0. This implies L'(y) N L'(z) = (. Choose t €
L'(v) = L'(w) for v. If t € L'(y), then ¢t ¢ L'(z) and we can color y, z, z, and w in this
order, otherwise we can color z, y, x, and w in this order. Thus H has an L’-coloring.

This contradiction completes the proof. ]

4. Proof of Theorem

Let the initial charge of a vertex u in G be u(u) = 2d(u) — 6, let the initial charge of a
bounded face f in G be u(f) = d(f) — 6, and let the initial charge of the unbounded face
D be p(D) = d(D) + 6. Then by Euler’s formula |V(G)| — |E(G)| + |F(G)| = 2 and by

the Handshaking lemma, we have

S uw+ Y ulp) =o.

ueV(G) fEF(G)

Now we design the discharging rule transferring charge from one element to another
to provide a new charge p*(x) for all x € V(G) U F(G). The total of new charges remains
0. If the final charge p*(z) > 0 for all x € V(G) U F(G) and p*(D) > 0, then we get a
contradiction and complete the proof.

Before we establish a discharging rule, some definitions are required.

A 4-vertex is a special 4-vertex if it is incident to two consecutive inner 3-faces. A
graph C(3,3,3) in int(Cp) is called a trio. A vertex that is not in any trio is called a good
vertex. We call a vertex v incident to a face f in a trio T a bad (worse, worst, respectively)
vertex of f if v is incident to exactly one (two, three, respectively) 3-face(s) in 7. We call
a face f in a trio T a bad (worse, worst, respectively) face of a vertex v if v is a bad (worse,
worst, respectively) vertex of f in T. A good face f of a vertex v is a 3-face incident to
v such that f is not in a trio. For our purpose, we regard an external vertex of W5 as a
worse vertex of its incident 3-faces in Ws.

Let w(v — f) be the charge transferred from a vertex v to an incident face f. From
now on, a vertex v is in int(Cp) unless stated otherwise. The discharging rules are as

follows.

(R1) Let f be an inner 3-face that is not adjacent to another 3-face.

(R1.1) For a 4-vertex v,

if v is flaw,

9
u(o=s ) =4

otherwise.
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(R1.2) For a 5T-vertex v,

if fisa (4,4,5T)-face,
wv— f) =
otherwise.

(R2) Let f be an inner 3-face that is adjacent to another 3-face.

(R2.1) For a 4-vertex v,

if v is incident to four internal 3-faces,

wv — f) = if f is a good, bad, or worse face of v,

Wi N

if f is a worst face of v.

(R2.2) For a 5-vertex v,

1 if f is a good or worst face of v,
w(v— f) =142 if fis a worse face of v,
% if f is a bad face of v.
(R2.3) For a 61-vertex v,
1 if f is a good or worst face of v,
wlv - f) =
% if f is a bad or worse face of v.

(R3) Let f be an inner 4-face.

_1
(R3.1) For a 4-vertex v, let w(v — f) = 3.
(R3.2) For a 5t-vertex v,

if fisa (4,4,4,5")-face,
if f is rich.

w(v— f) =

win =

(R4) Let f be an inner 5-face.
(R4.1) For a 4-vertex v,
if v is flaw and f is a poor 5-face,

if v is pseudo flaw and f is a poor 5-face,

if v is incident to at most one 3-face,

S Wik A= ol

otherwise.

1123
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(R4.2) For a 5T -vertex v,

w(v — f)

\

if fisa (4,4,4,4,5)-face adjacent to five 3-faces,

if fisa (4,4,4,4,57)-face adjacent to at least one 41-face

win =

other than f,

1 if f is a rich face with ¢ incident 5T -vertices.

(R5) Let f be an inner 3-face. If f is adjacent to a 7 -face g, we let w(g — f) = %.

(R6) The unbounded face D gets u(v) from each incident vertex.

(R7) Let f be an extreme face.

w(x — f) =

(

3
5
2

D=

if f is a 3-face incident to a special 4-vertex and x = D,

if f is a 3-face not incident to a special 4-vertex

such that B(f) shares an edge with Cy and = = D,

if f is a 4- or 5-face and x = D,

if f is a 3-face not incident to a special 4-vertex

such that B(f) shares exactly one vertex with Cy and z = D,
if f is a 3-face incident to a vertex z in int(Cj)

but x is not a special 4-vertex,

otherwise.

(R8) After (R1) to (R7), redistribute the total of charges of 3-faces in the same cluster of

at least three adjacent inner 3-faces (trio or Wj) equally among its 3-faces.

It remains to show that resulting p*(x) > 0 for all z € V(G) U F(G). Let v be a

k-vertex incident to faces fi,..., fr in a cyclic order. By (R6), we only consider v in

int(Cp). Consider the following cases.

(1) v is a 4-vertex.

(1.1) A vertex v is incident to a 3-face that is adjacent to another 3-face.

(1.1.1) v is incident to at least two consecutive 3-faces.

Assume v is incident to four 3-faces. If v is not adjacent to a vertex in

V(Cp), then v is incident to four inner 3-faces. Thus p*(v) > p(v) —4x § =

0 by (R2.1). If v is adjacent to exactly one vertex in V(Cp), then v is

incident to exactly two inner 3-faces which are good faces of v. Thus
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pw(v) > p(v) =2 x1 =0 by (R2.1) and (R7). Observe that two endpoints
of an edge in the boundary of an incident 3-face of v cannot be both in
V(Cp) by Lemma [2.2{(5). If v is adjacent to at least two vertices in V' (Cp),
then each incident face of v is an extreme 3-face by the observation above.
Thus p*(v) > p(v) —4 x £ = 0 by (R7).

Assume v is incident to exactly three 3-faces, say fi, fa, and f3, then fy is
a 67 -face by Lemmal[3.5(1), (2). If v is incident to three inner 3-faces, then
p*(v) > p(v) —3 x 2 =0 by (R2.1). If v is incident to exactly two inner
3-faces and those two are consecutive, then v is a special 4-vertex, and thus
p(v) > p(v) —2x1=0by (R2.1). If v is incident to exactly two inner
3-faces but they are not consecutive, then p*(v) > u(v) — 3 > 0 by (R7). If
v is incident to at most one inner 3-face, then p*(v) > p(v) —1—-2x 3 =0
by (R2.1) and (RT7).

Assume v is incident to exactly two 3-faces, say fi1 and fo, then f3 and
f1 are 6-faces by Lemma [3.5(1), (2). Thus p*(v) > pu(v) —2 x 1 =0 by
(R2.1) and (R7).

(1.1.2) v has no adjacent incident 3-faces.

(1.2)

Let f1 be a 3-face adjacent to another 3-cycle. It follows from Lemma (1)
and (2) that fo and f4 are 61-faces. Then w(v — f1) < 1 by (R2.1) and
(R7), and w(v — f3) < 1 by (R2.1), (R3.1), (R4.1), and (R7). Thus
w*(v) > pv) —2x1=0.
v is not incident to a 3-face that is adjacent to another 3-face and v is adjacent
to at most one 3-face.
Using the fact that w(v — f;) < 1 for a 3-face f; by (R1.1) and (R7), and
wv = f;) < % for each 4*-face f; by (R3.1), (R4.1), and (R7), we obtain that
pr(v) > p(v) —1-3x £ =0.
v is not incident to a 3-face that is adjacent to another 3-face and v is adjacent
to two 3-faces.
Consequently, v is incident to exactly two 3-faces, say f1 and f3. It follows from
Lemma (3) that fo and fy are 57-faces. Assume v is flaw. Consequently, v
is incident to exactly one poor 5-face, say fo by Corollary (1)7 and f; and
f3 are semi-rich 3-faces by Corollary (2) It follows that w(v — f;) = % for
i=1and 3 by (R1.1), w(v = fo) < % and w(v — f4) =0 by (R4.1) and (R7).
Thus p*(v) > p(v) —2 x .5 — 1 =0.
Assume v is not flaw. If f; and f3 are inner faces, then each of fo and f; is an
extreme 5-face or a 67-face by the definition. Thus p*(v) = pu(v) —2x 1 =10
by (R1.1). If at least one of f; and f3 is an extreme 3-face, then p*(v) =
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p(v) —1—12 —2x 1 =0by (RL1), (R4.1), and (RT7).

(2) A 5-vertex v is incident to a 3-face that is adjacent to another 3-face.

(2.1)

(2.2)

v has at least two consecutive incident 3-faces.

If v is incident to four 3-faces say fi, fo, f3, and f4, then one can see that
B(f1) UB(f2) UB(f3) UB(f1) = C(3,3,3,3). But C(3,3,3,3) contains four
pairwise adjacent cycles that contradict G € A. Thus v is incident to at most
three consecutive 3-faces.

If v incident to consecutive three 3-faces say fi, f2, and fs, then f4 and f5 are
6"-faces by Lemma 1) and (2). Thus p*(v) = pu(v) —3 x 1 > 0 by (R2.2)
and (R7).

If v incident to exactly two consecutive 3-faces say fi and fo, then f3 and
f5 are 6'-faces by Lemma (1) and (2). Consequently, w(v — f;) < 2 for
i =1and 2, and w(v — f1) < 3 by (R2.2), (R3.2), (R4.2), and (R7). Thus
pr(v) > p(v) —2x 2 -2 =0.

v is not incident to consecutive 3-faces.

Let fi be a 3-face adjacent to another 3-face. It follows from Lemma [3.5(1)
and (2) that fo and f5 are 67-faces. By (R2.2) and (R7), w(v — fi) < 3. If
neither f3 nor fy are 3-faces, then w(v — f;) < 1 for ¢ = 3 and 4 by (R3.2),
(R4.2), and (R7). Thus p*(v) > p(v) — 2 —2x 1> 0.

Now assume that f3 is a 3-face. By the condition of (2.2), f4 is a 4T-face
which implies w(v — f4) < 1 by (R3.2), (R4.2), and (R7). If f3 is adjacent
to another 3-face, then f4 is a 67-face by Lemma [3.5(1) and (2). Moreover,
w(v — f3) < 3 by (R2.2) and (R7). Thus p*(v) > p(v) —2 x 3 > 0. If f3is
not adjacent to another 3-face, then w(v — f3) < 2 by (R2.2) and (R7). Thus
piw) > pv) = § = ¢ >0.

(3) A 5-vertex v is not incident to a 3-face that is adjacent to another 3-face and v is

incident to at least one 61-face. Consequently, v is incident to at most two 3-faces.

(3.1)

v is incident to at least two 6*-faces.

Recall that w(v — f;) < ¢ for each 3-face f; by (R1.2) and (R7), and w(v —
fi) <1 for each k-face f; where k = 4,5 by (R3.2), (R4.2), and (R7). If v is
incident to t 3-faces, then there are at most 3 — ¢ faces f with d(f) = 4 or 5.
Thus p*(v) Zu(v)—txg—(?,—t) x1>0byt<3.

v is incident to exactly one 6-face and incident to at most one 3-face.

If v has no incident 3-faces, then v has all incident faces f except one 6" -face
has d(f) =4 or 5. Thus p*(v) > pu(v) —4 x 1 =0 by (R3.2), (R4.2), and (R7).
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Assume v is incident to exactly one 3-face, say fi. By Lemma (3), v 18
not a (3,4,4,4,6%)- or a (3,4,4,6",4)-face. Consequently, v has at least one
incident 5-face f;. Moreover, f; is adjacent to at least one 4*-face. We have
w(v — f1) < ¢ by (R1.2) and (R7), w(v — f;) < % by (R4.2) and (R7), and

w(v — fi) <1 for each remaining k-face f; where k = 4,5 by (R3.2), (R4.2),

and (R7). Thus p*(v) > p(v) =S —2-2x1>0.

(3.3) v is incident to exactly one 6'-face and incident to exactly two 3-faces.

By symmetry and using Lemma [3.5(3) and (4), we have that v is either a
(3,5,3,5,6%)-, (3,5,5,3,6%)- or (3,5,4, 3,6")-vertex.

Assume v is a (3,5,3,5,67)- or (3,5,5,3,6")-vertex. Applying Corollary
to B(f2) U B(f3), v has an incident 5-face f; which is rich or extreme. Recall
that w(v — f;) < & for each 3-face f; by (R1.2) and (R7), w(v — f;) < 5 by
(R4.2) and (R7), and w(v — f;) <1 for the remaining 5-face f; by (R4.2) and
(R7). Thus p*(v) > pv) —2x 2 =3 —1>0.

Assume v is a (3,5,4,3,6")-vertex. Applying Corollary to B(f1) U B(f2),
we obtain that f; or fy is rich or extreme. In the former case, w(v — f1) <1
by (R1.2) and (R7), and w(v — f5) < 2 by (R4.2) and (R7). In the latter
case, w(v — f1) < ¢ by (R1.2) and (R7), and w(v — f2) < 3 by (R4.2) and
(R7). Combining with w(v — f3) <1 by (R3.2) and (R7) and w(v — fy) < &
by (R1.2) and (R7), we have p*(v) > p(v) —2x1—2—2 > 0or p*(v) >
pv)y—2x8—1—-1>0.

(4) A 5-vertex v is not incident to a 3-face that is adjacent to another 3-face and v
is not incident to a 67-face. Consequently, v is incident to at most two 3-faces.
Using Corollary we have that v has at least three incident faces that are rich

or extreme.

(4.1) v has no incident 3-faces.
If f has an extreme face f;, then w(v — f;) =0 by (R7) and w(v — f;) <1 for
each remaining f; by (R3.2), (R4.2), and (R7). Thus p*(v) > p(v) —4x 1 =0.
If f has ¢ rich faces, then p*(v) > p(v) —t x 2 — (5—1t) x 1 > 0 by (R3.2),
(R4.2), (R7), and t > 3.

(4.2) v is incident to exactly one 3-face, say f1. It follows from Lemma [3.5{3) that v

has at most two incident 4-faces.

(4.2.1) v has no incident 4-faces.
We have that w(v — f1) < g by (R1.2) and (R7) and w(v — f;) < % for
each 5-face f; by (R4.2) and (R7). Thus p*(v) > p(v) — 2 —4x 2 > 0.
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(4.2.2) v has exactly one incident 4-face.

It follows from Lemma (4) that v is a (3,5,4,5,5)-face. Recall that
w(v — f1) < & by (R1.2) and (R7), w(v — f3) < 1 by (R3.2) and (R7),
and w(v — f;) < 2 for each remaining f; by (R4.2) and (R7). If f3 is
rich or extreme, then w(v — f3) < 2 by (R3.2) and (R7). Thus p*(v) >
p(v) — g —4 % % > 0. If f3 is neither rich nor extreme, then fo and fy are
rich or extreme by Corollary Consequently, w(v — f;) < % for i = 2
or 4 by (R4.2) and (R7). Thus p*(v) > p(v) =S —1-2x - 2>0.

(4.2.3) v has exactly two incident 4-faces.

It follows from Lemma(B) and (4) that visa (3,4,5,5,4)- or a (3,5,4, 4,
5)-face. Moreover, v has at least three incident faces that are rich or
extreme by Corollary Consequently, we have (i) f; and at least one
4-face f; are rich or extreme, (i) f1 and two 5T-faces are rich or extreme,
(iii) a 4-face and two 5-faces are rich or extreme, or (iv) two 4-faces and a
5-face are rich or extreme.

Recall that w(v — f1) < & by (R1.2) and (R7), w(v — f;) < 1 for each
4-face f; by (R3.2) and (R7), and w(v — f;) < 2 for each 5-face f; by
(R4.2) and (R7). Additionally, w(v — f1) < 1 if f; is rich or extreme
by (R1.2) and (R7), w(v — f;) < % for each rich or extreme 4-face f; by
(R3.2) and (R7), and w(v — f;) < 3 for each rich or extreme 5-face f; by
(R4.2) and (R7).

If f; and a 4-face f; are rich or extreme, then p*(v) > p(v)—2x1-3 x% =0.
If fi and two 5T-faces are rich or extreme, then p*(v) > p(v) —1—2 x
1—-2x % = 0. If a 4-face and two 5T-faces are rich or extreme, then
pr(v) > pv) — & —1-2—-2x1>0. If two 4-faces and a 5-face are rich
or extreme, then p*(v) > p(v) — 8 —3x 2 -1 >0.

(4.3) v is incident to exactly two 3-faces, say f1 and fs.

It follows from Lemma [3.5(3) and (4) that v has no incident 4-faces. This
implies v is a (3,5,3,5,5)-vertex. Recall that w(v — f;) < g for each 3-face
fi by (R1.2) and (R7), and w(v — f;) < 1 for each 5-face f; by (R4.2) and
(R7). Furthermore, w(v — f;) <1 for each rich 3-face f; by (R1.2) and (R7),
and w(v — f;) < 3 for each rich 5-face f; by (R4.2) and (R7). Furthermore,
w(v — f;) = 3 for each extreme 3-face (fi) by (R7), and w(v — f;) = 0 for
each extreme 5-face f; by (R7).

If f1 or f3 is an extreme 3-face, then p*(v) > u(v) — g —3-3x % > 0. If fo,

fa, or f5is an extreme 3-face, then p*(v) > p(v) — 2 x g —2X % > 0. Thus we

assume that all incident faces of v are inner faces.
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If each incident 5-face is rich, then p*(v) > p(v) —2x -3 x 3 > 0. If f
is not rich, then f; and f3 are rich by Corollary Consequently, f; and
f5 are also rich. Thus p*(v) > p(v) —3x1—2x 3 = 0. If f; is not rich,
then f3 and f5 are rich by Corollary Consequently, fo is also rich. Thus

p(v) > p(v) — 2 —1—2—2x 3 > 0. The case that f5 is not rich is similar.
(5) A 6-vertex v is incident to a 3-face that is adjacent to another 3-face.

(5.1) v is incident to at least two consecutive 3-faces.

Let fi,...,fr be consecutive 3-faces. Similar to Case (2.1), we have k <
3. Tt follows from Lemma [3.5(1) and (2) that v is a (3,3,6%, ks, ks,67)- or
(3,3,3,6", ks, 67)-face. Since w(v — f;) < % for each 5~ -face f; by (R2.3),
(R3.2), (R4.2), and (R7), Thus p*(v) > p(v) —4x 3 = 0.

(5.2) v has no adjacent incident 3-faces.

Let fi be a 3-face adjacent to another 3-face. It follows from Lemma [3.5(1)
and (2) that fo and fg are 67-faces. Similar to Case (5.1), we obtain that
W) > pv) — 4 x & =0,

(6) A 6-vertex v is not incident to a 3-face that is adjacent to another 3-face. Conse-

quently, v is incident to at most three 3-faces.

(6.1) v is incident to at least one 6T -face.
Recall that w(v — f;) < & for each 3-face f; by (R1.2) and (R7), and w(v —
fi) < 3 for each k-face f; where k = 4 or 5 by (R3.2) and (R4.2). Thus
u*(v) > p(v) —t x g —(5—1t) x1 > 0 where t < 3 is the number of incident

3-faces.
(6.2) v has no incident 6T -face.

(6.2.1) v has no incident 3-faces.
By (R3.2), (R4.2), and (R7), we have u*(v) > pu(v) —6 x 1 =0.

(6.2.2) v has exactly one incident 3-face, say fi.
It follows from Lemma [3.5(3) that v is not a (3,4, 4,4, 4, 4)-vertex. Conse-
quently, v has s 5-faces where ¢ > 1. Note that each incident face of v is
adjacent to another 4*-face. It follows that w(v — f;) < % for each 5-face
fi by (R4.2) and (R7). Recall that w(v — f1) < ¢ by (R1.2) and (R7), and
w(v — f;) < 1for each 4-face f. Thus p*(v) > p(v)—S—sx2—(5-s)x1 >
0.

(6.2.3) v has exactly two incident 3-faces. Consequently, v is a (3, k2, 3, k4, ks, ke )-
or (3, ke, k3,3, ks, k¢ )-vertex.
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Assume v is a (3, ko, 3, k4, k5, k¢ )-face. Then k9 = 5 by Lemma (3) This
implies k4 = kg = 5 by Lemma (4) Since v is a (3,5,3,5,47, 5)-vertex,
we have w(v — f;) < g for i =1 and 3 by (R1.2) and (R7), w(v — f;) <1
for i = 2 and 5 by (R3.2),(R4.2) and (R7), and w(v — fi) < % for i = 4
and 6 by (R4.2) and (R7). Thus p*(v) > p(v) —2x £ —2x1-2x 2 > 0.
Assume v is a (3, ko, k3, 3, k5, kg)-vertex. It follows from Lemma (4)
that {ko, ke} # {4,5}. If ky = k¢ = 4, then k3 = k5 = 5 by Lemma [3.5(3).
Consequently, we may assume that visa (3,4,5,3,5,4)-and (3,5,5,3,5,5)-
vertex. Recall that w(v — fi) < 2 for i = 1 and 4 by (R1.2) and (R7),
w(v — fi) < 1 for each 4-face f; by (R3.2) and (R7), and w(v — f;) < 2
for each 5-face f; by (R4.2) and (R7). Thus a (3,4,5,3,5,4)-vertex has
pr(v) > pw) —2x 8 —-2x1-2x2>0,anda (3,5,5,3,5,5)-vertex has
pr(v) > p(v) —2x & —4x 2>0.

v has exactly three incident 3-faces. Consequently, v is a (3,5,3,5,3,5)-
vertex by Lemma [3.5(3).

Assume v is incident to at least one extreme 5-face. Consequently, p*(v) >
p(v) =3x8 —2x1>0by (R1.2), (R4.2), and (RT).

Assume v is not incident to an extreme 5-face. Consequently, each incident
face of v is an inner face. It follows from Corollary that each union
of the boundaries of four consecutive incident faces has a 5T-vertex other
than v. Consequently, two incident 5-faces of v has at least two incident 5 -
vertices, or v has one incident 5-face with at least three incident 5T -vertices.
Thus p*(v) > u(v)—3><%—2><%—1 >0, or u*(v) > ,u(v)—3><g—2>< 1—% >0
by (R1.2), (R4.2), and (R7).

(7) v is a k-vertex where k > 7.

(7.1) A vertex v is incident to a 3-face that is adjacent to another 3-face. Then v

is incident to at least two 6F-faces by Lemma [3.5(1) and (2). Thus p*(v) >
p(v) — (k—2) x 3 >0by (R2.3), (R3.2), (R4.2), and (RT).

(7.2) A vertex v is not incident to a 3-face that is adjacent to another 3-face. Con-

sequently v is incident to ¢ 3-faces where ¢ < k/2. Thus p*(v) > pu(v) —t x & —
(k—1t) x1>0Dby (R1.2), (R3.2), (R4.2), and (R7).

(8) An inner 3-face f is not adjacent to another 3-face.

If f has no incident flaw 4-vertices, then p*(f) > u(f) +3 x 1 =0 by (R1.1) and

(R1.2). If f has an incident flaw vertex, then f is a (4,4, 5%)-face by Corollary [3.7)(2).

Recall that w(v — f) > =% for an incident 4-vertex v by (R1.1), and w(v — f) > &
.. * 9 6 _

for an incident 5*-vertex v by (R1.2). Thus p*(f) > pu(f) +2 x 15 +2 = 0.
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(9) An inner 3-face f is adjacent to another 3-face. Note that we use only (R2) to

calculate a new charge.

(9.1) A face f is not in a trio. Then p*(f) > pu(f) +3x1=0.

(9.2) A face fisin a trio T" but not in W5 formed by four inner 3-faces.
Let f1, fo, and f3 be 3-faces in the same trio T'. Define p(T') := p(f1) + p(f2) +
p(fs) = =9 and p*(T) == p*(f1) +p*(f2) + 1" (f3). By (R8), it suffices to prove
that u*(T) > 0.

(9.2.1) A worst vertex is a 5T-vertex. Then p*(T) > u(T) +9x 1 =0.

(9.2.2) A worst vertex is a 4-vertex and each worse vertex is a 4-vertex. Then two
bad vertices are 5'-vertices by Corollary Thus p*(T) > w(T) + 3 x
2+2x34+4x1=0.

(9.2.3) A worst vertex is a 4-vertex and one of worse vertices is a 5-vertex. Then
Corollary yields that the other worse vertex or at least one bad vertex
is a 5T-vertex. Thus p*(T) > p(T) +3x24+4x3+2x1 =0or
pH(T) > pu(T)+3 x 24+2x 2+ 343 x1=0, respectively.

(9.2.4) A worst vertex is a 4-vertex and one of worse vertices is a 6T-vertex. Then
pi(T) > p(T)+3x2+2x3+4x1=0.

(9.3) A face f is in W5 formed by four inner 3-faces incident to v.
Let fi1, f2, f3, and f4 be 3-faces in the same W5. Define u(Ws) := u(f1) +
n(f2) + p(fs) + p(fa) = =12 and p*(Ws) == p* (f1) + p*(f2) + 1 (f3) + 1" (fa)-
By (RR), it suffices to prove that p*(W5) > 0. Note that each 3-face in Wi is
adjacent to a 7t-face by Lemma ). Thus W5 always obtains 4 x % from
four 7t-faces by (R5).

(9.3.1) Each vertex of W5 is a 5 -vertex. Then at least three of them are 5-vertices
by Corollarym Thus p*(Ws) > p(Ws)+6x 3 +2x 1+4x 3 +4x % =0.

(9.3.2) Exactly one vertex of Wj is a 67-vertex. Then one of the remaining vertices
is a 5T-vertex by Corollary Thus p*(Ws) = p(Ws) +2x 3 +2x 2 +
Ax144x3+4x2=0.

(9.3.3) At least two vertices of W5 are 67 -vertices. Then p*(Ws) > u(Ws) + 4 x
S4Ax144x3+4x%>0.

(10) f is an inner 4-face.

We claim that f is a (41,47,4% 57)-face. Suppose to the contrary that f is a
(4,4,4,4)-face. By the minimality of G, there is an L-coloring of G — B(f) where L
is restricted to G — B(f). After the coloring, each vertex of B(f) has at least two

legal colors. By Lemma [2.1] we can extend an L-coloring to G, a contradiction.
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If fis a (4,4,4,5%)-face, then p*(f) > u(f) +3 x 1 +1 =0 by (R3). If f is
a (47,41 5T 5%)- or (47,5%, 4% 5T)-face, then f is a rich face and thus p*(f) >
n(f)+2x % +2x2=0by (R3).

(11) f is an inner 5-face.

(11.1) f is a poor 5-face, that is f is a (4,4,4, 4, 4)-face.
It follows from Lemma (2) that each incident 4-vertex of f is incident to at
most two 3-faces. If an incident vertex v of f is incident to at most one 3-face,
then w(v — f) = % by (R4.1). If an incident vertex v of f is incident to two
3-faces, then v is a flaw vertex or a pseudo flaw vertex, and thus w(v — f) > £
by (R4.1). Thus p*(f) > p(f) +5x £+ =0.
(11.2) fisa (4,4,4,4,51)-face.
(11.2.1) f is adjacent to at least one 4T-face g. It follows from (R4.2) that w(v —
f) = 2 for an incident 5"-vertex v of f. Consider a 4-vertex u € V(B(f))N
V(B(g)). It follows from Lemma [3.5(2) that u is incident to at most one 3-
face. Consequently, w(u — f) = % by (R4.1). Thus p*(f) > p(f)+2+1 =
0.
(11.2.2) f is adjacent to five 3-faces. Then p*(f) = pu(f) +1 =0 by (R4.2).
(11.3) f is a rich face with ¢ incident 5T -vertices. Then p*(f) > u(f) +t x % =0 by
(R4.2).

(12) f is an inner 6" -face.

If f is a 6-face, then p*(f) = pu(f) = 0. If f is a k-face where k > 7, then p*(f) >
u(f) —kx § >0 Dby (R5).

(13) f is an extreme face.

It follows from (R7) that w(D — f) = 3 if a 3-face f is adjacent to a special 4-vertex.
Consequently p*(f) = u(f) +3 = 0. Thus we assume f is a 3-face not incident to a

special 4-vertex, a 4-face, or a 5-face.

(13.1) f is a 3-face that shares exactly one vertex, say u, with Cy. It follows from (R7)
that w(D — f) = 2 and w(v — f) = 3 for each incident vertex v in int(Cp).
Thus p*(f) = u(f) +2+2x 5 =0.

(13.2) f is a 3-face that shares an edge with Cy. It follows from (R7) that w(D —
f) =5 and w(v — f) =  for an incident vertex v in int(Cp). Thus p*(f) =
uf)+3+35=0

(13.3) fis a 4- or 5-face. Then p*(f) > u(f) +2 > 0 by (R7).
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(14) D is the unbounded face.

If a 3-face is incident to a special 4-vertex, then we call it a special 3-face, otherwise

we call it a non-special 3-face.

Let f3, f4, f’ be the number of special 3-faces sharing an incident vertex with D, non-
special 3-faces sharing exactly one incident edge with D, non-special 3-faces sharing
exactly one incident vertex with D or 4- or 5-faces sharing incident vertices with D,
respectively. Let E(Cy, V(G)—Cyp) be the set of edges between Cy and V(G)—Cy, and
let e(Cop, V(G) — Cp) be its size. Let E*(Cy, V(G) — Cp) be the set of edges between
Cp and V(G) — Cj that are incident with special 3-faces, and let e*(Cp, V(G) — Cp)
be its size. Let E'(Cy, V(G) — Cp) = E(Co, V(G) — Cp) — E*(Cy, V(G) — Cy), and
let €/(Co, V(G) — Cp) be its size.

Then by (R6) and (R7),

p(D) =346+ 3 (2d(v) —6) 35 — > fy—2f'

veCy
5
:9+2Z(d(v)—2)—2><3—3f§—§f§—2f’
veCy

=3 L fh+26(Co, V(G) — Co) — 3fi — 24— 2"
_3_ %fé +(2¢*(Co, V(G) — Co) — 3£5)
+(2¢'(Co, V(G) = Co) — 2f5 = 2f").

So we may consider that each edge in E(Cp, V(G) — Cp) gives a charge of 2 to D. It
follows from Lemmal[2.2)(1),(2),(5) and Lemma [3.4{2) that an edge in E*(Cp, V(G) —
Cp) is not incident to an extreme non-special 3-face, and not incident to an extreme
4- or b-face. Moreover, an extreme special 3-face f share incident edges with at
most one another extreme special 3-face. Consider an extreme special 3-face f that
does not share incident edges with other extreme special 3-faces. By the observation
above, f contributes 2 to e*(Cp, V(G) — Cp) and 1 to fi. Consider two extreme
special 3-faces f and g that share an incident edge. By the observation above, f and g
contribute 3 to e(Cy, V(G)—Cp) and 2 to f3. Altogether, 2¢*(Co, V(G)—Cp)—3f5 >
0. Similarly, 2¢'(Co, V(G) — Cp) —2f5 —2f" > 0. Note that f; < 3. Thus p*(D) > 0.

This completes the proof.
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