
TAIWANESE JOURNAL OF MATHEMATICS

Vol. xx, No. x, pp. 1–16, xx 20xx

DOI: 10.11650/tjm/210303

Optimality Conditions for Quadratic Programming Problems in Hilbert

Spaces

Vu Van Dong

Abstract. In this paper, we give optimality conditions for the quadratic programming

problems with constraints defined by finitely many convex quadratic constraints in

Hilbert spaces. As special cases, we obtain optimality conditions for the quadratic

programming problems under linear constraints in Hilbert spaces.

1. Introduction

Let H be a real Hilbert space with inner product 〈 · , · 〉 and the induced norm ‖ · ‖. In

this paper we will study the following optimization problem

min f(x) :=
1

2
〈x,Qx〉+ 〈c, x〉

s.t. x ∈ H : gi(x) :=
1

2
〈x,Qix〉+ 〈ci, x〉+ αi ≤ 0, i = 1, 2, . . . ,m,

(QCQP)

where H is a Hilbert space, Q : H → H is a continuous linear self-adjoint operator, Qi is

positive semidefinite continuous linear self-adjoint operator on H, c, ci ∈ H, and αi are

real numbers, i = 1, 2, . . . ,m.

The constraint set of (QCQP) is denoted by

F =

{
x ∈ H

∣∣∣ gi(x) =
1

2
〈x,Qix〉+ 〈ci, x〉+ αi ≤ 0 for all i = 1, . . . ,m

}
.

If Qi are zero operators for all i = 1, . . . ,m, then we say that (QCQP) is a quadratic

programming problem under linear constraints and denote it by (QPL). Note that if Q and

Qi are zero operators for all i = 1, . . . ,m, then (QCQP) becomes a linear programming

problem and will be denoted by (LP).

Quadratic programming problems (QP problems, in short) have been studied fairly

complete in the setting of Euclidean spaces, see [8] and references therein. For infinite

dimensional spaces, it was extended to Hilbert spaces. Existence of the solutions for

Received September 3, 2020; Accepted March 7, 2021.

Communicated by Jein-Shan Chen.

2020 Mathematics Subject Classification. 90C20, 90C26, 90C30.

Key words and phrases. quadratic programming, Hilbert spaces, convex quadratic constraints, optimality

condition, tangent cone.

1



2 Vu Van Dong

QP problems in Hilbert spaces have been investigated extensively in various versions,

see [1, 3, 4, 7, 10–12] and references therein.

Optimality conditions for nonlinear programming have been intensively studied in

literatures, such as [6,9] and therein reference. Optimality conditions for (QCQP) are well-

known in [2]. For first and second-order necessary conditions, the proof techniques and the

conclusions are the same for the finite-dimensional and the infinite-dimensional situations.

However, this changes completely when trying to establish sufficient optimality condition.

Borwein [2] gave the second-order sufficient condition by assuming that constraint set F is

finite-dimensional. Bonnans and Shapiro [1, Theorem 3.130] gave necessary and sufficient

conditions for the quadratic programming problems under linear constraints in Hilbert

spaces.

The purpose of this paper is to give optimality conditions for the quadratic program-

ming problems with constraints defined by finitely many convex quadratic constraints

in Hilbert spaces. Our result is established without requesting finiteness dimension of

constraint set.

This paper is organized as follows. Some preliminaries are given in Section 2. Section 3

is devoted to discuss the first-order optimality conditions for (QCQP). Second-order

optimality conditions for (QCQP) are derived in Section 4. Finally, we conclude the

paper by emphasizing the results that have been obtained.

2. Notations and preliminary results

In this section we recall some notations and known results which will be used in our

analysis. For details, we refer to [1].

In this paper, dist(x, S) = infy∈S ‖x− y‖ stands for the distance from the point x ∈ H
to set S ⊂ H. The norm of a continuous linear operator Q : H → H shall be defined

‖Q‖ = sup
{‖Qx‖
‖x‖ | x 6= 0

}
.

The following cones will be important for the formulation of our optimality conditions.

Definition 2.1. (see, e.g., [1, p. 45]) Let x ∈ F be a feasible point of problem (QCQP)

and denote by I(x) = {i ∈ {1, 2, . . . ,m} | gi(x) = 0} the set of inequality constraints

active at x, as well as by

TF (x) = {h ∈ H | dist(x+ th, F ) = o(t), t ≥ 0}

where r(t) = o(t) mean that r(t)
t → 0 as t→ 0, the tangent cone of F at x. Later on, we

will also use the critical cone of the problem (QCQP) at x:

C(x) = {h ∈ TF (x) | 〈Qx+ c, h〉 = 0}.
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Finally, the radial cone to F at x is

RF (x) = {h ∈ H | ∃ t∗ > 0, ∀ t ∈ [0, t∗], x+ th ∈ F}.

Definition 2.2. (Mangasarian–Fromovitz constraint qualification, see, e.g., [1, p. 71])

Consider problem (QCQP). The feasible point x is called regular if

∃h ∈ H : 〈Qix+ ci, h〉 < 0, ∀ i ∈ I(x).

Remark 2.3. Note that if x ∈ F is regular, then TF (x) is formulated as follows (see [1,

Example 3.39])

TF (x) = {h ∈ H | 〈Qix+ ci, h〉 ≤ 0, ∀ i ∈ I(x)}.

To obtain our results, we will need the following lemma, which is an extension of a

Hoffman estimate for the distance to the set of solutions to a system of linear inequalities.

Lemma 2.4. (see [5, Theorem 3]) Let H be a Hilbert space. Let x∗i ∈ H, i = 1, 2, . . . ,m,

be given, and consider the set

S = {x ∈ H | 〈x∗i , x〉 ≤ 0, i = 1, 2, . . . ,m}.

Then there exists a constant k > 0 such that for any x ∈ H,

dist(x, S) ≤ k

(
m∑
i=1

〈x∗i , x〉+

)
,

where [a]+ := max{a, 0}.

3. First-order optimality conditions

In this section we will establish first-order necessary and sufficient optimality conditions

for (QCQP).

Theorem 3.1. Let x be a feasible point of the problem (QCQP).

(i) If x is a local solution of this problem, then

(3.1) 〈Qx+ c, x− x〉 ≥ 0 for every x ∈ F .

(ii) The point x is a local solution of (QCQP) if

(3.2) Qi = 0, ∀ i ∈ I(x) and 〈Qx+ c, x− x〉 > 0, ∀x ∈ F \ {x}.
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Proof. (i) Let x be a local solution of (QCQP). Choose µ > 0 such that

f(y)− f(x) ≥ 0, ∀ y ∈ F ∩B(x, µ).

Given any x ∈ F \{x}. Since F is a convex set, it follows that there exists δ > 0 such that

x+ t(x− x) = tx+ (1− t)x

belonging to F ∩B(x, µ) wherever t ∈ (0, δ). Hence

〈Qx+ c, x− x〉 = lim
t↓0

f(x+ t(x− x))− f(x)

t
≥ 0 for every x ∈ F .

Property (3.1) has been established.

(ii) On the contrary, suppose that (3.2) is valid, x is not a local minimum for (QCQP).

Then there exists a sequence of feasible points xk, converging to x, such that

f(xk) < f(x) for all k.

The sequence
{

xk−x
‖xk−x‖

}
is bounded and hence it has a weakly convergent subsequence.

There is no loss of generality in assuming that the sequence
{

xk−x
‖xk−x‖

}
converges weakly

to some h ∈ H. We have

f(xk)− f(x) = 〈Qx+ c, xk − x〉+
1

2
〈xk − x,Q(xk − x)〉 < 0, ∀ k.

Diving the last inequality by ‖xk − x‖ and taking the limits as k →∞, we obtain

(3.3) 〈Qx+ c, h〉 ≤ 0.

Since Qi = 0, ∀ i ∈ I(x),

gi(xk)− gi(x) = 〈ci, xk − x〉 ≤ 0, ∀ i ∈ I(x).

Therefore 〈ci, h〉 = limk→∞
〈
ci,

xk−x
‖xk−x‖

〉
≤ 0, ∀ i ∈ I(x) and hence gi(x+ th) ≤ 0 for every

i ∈ I(x) and t > 0. Obviously, there exists t∗ > 0 such that gi(x + th) ≤ 0 for every

i /∈ I(x) and t ∈ (0, t∗). Consequently, x + th ∈ F for every t ∈ (0, t∗). Substituting

x = x+ th into (3.2) gives 〈Qx+ c, h〉 > 0 which contradicts (3.3).

The proof is complete.

The following example shows that (3.1) is necessary but not sufficient for x to be a

local solution of (QCQP).

Example 3.2. Consider the programming problem

(3.4) min f(x) =
1

2
〈x,Qx〉 subject to x ∈ R2 : g1(x) = 〈c1, x〉+ α1 ≤ 0,
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where Q : R2 → R2 is defined by Qx = (−x1, 0), c1 = (1, 0) and α1 = −1.

Let

F = {x = (x1, x2) ∈ R2 | g1(x) ≤ 0} = {x = (x1, x2) ∈ R2 | x1 − 1 ≤ 0}.

For x = (0, 1) we have x = (0, 1) ∈ F and Qx = 0. It follows that the condition (3.1) is

satisfied.

Taking xε = (ε, 1), where ε is a positive number such that ε < 1, we have xε ∈ F and

f(xε) = −ε
2

2
< 0 = f(x).

Hence x = (0, 1) is not a local solution of (3.4).

The following example shows that the assumptionQi = 0, ∀ i ∈ I(x) cannot be dropped

from assumption of Theorem 3.1(ii).

Example 3.3. Consider the following programming problem

min f(x) =
1

2
〈x,Qx〉+ 〈c, x〉

s.t. x ∈ R3 : g1(x) =
1

2
〈x,Q1x〉 ≤ 0, g2(x) = 〈c2, x〉+ α2 ≤ 0,

(3.5)

where Q : R3 → R3 is defined by Qx = (−x1, 0, 0), Q1 : R3 → R3 is defined by Q1x =

(0, x2 − x3,−x2 + x3), c = (0, 1, 0), c2 = (0,−1, 0) and α2 = 1.

For x = (0, 1, 1) we have x ∈ F , g1(x) = 0, Q1 6= 0 and

〈Qx+ c, x− x〉 = x2 − 1 > 0, ∀x ∈ F \ {x}.

Taking xε = (ε, 1, 1), where ε is a positive number such that ε < 1, we have xε ∈ F and

f(xε) = −ε
2

2
+ 1 < 1 = f(x).

Hence x = (0, 1, 1) is not a local solution of (3.5).

The following example is constructed to show that (3.2) can guarantee x to be a local

solution, but it is not a global solution.

Example 3.4. Consider the following programming problem

min f(x) =
1

2
〈x,Qx〉+ 〈c, x〉

s.t. x ∈ R2 : g1(x) = 〈c1, x〉 ≤ 0, g2(x) = 〈c1, x〉 ≤ 0,
(3.6)

where Q : R2 → R2 is defined by Qx = (x1,−9x2), c = (−1, 3), c1 = (1,−2) and c2 =

(0,−1).
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Let

F = {x ∈ R2 | g1(x) ≤ 0, g2(x) ≤ 0}.

Taking x = (0, 0), we have x ∈ F . It is a simple matter to check that

〈Qx+ c, x− x〉 = 〈c, x〉 = −x1 + 3x2 ≥ x2 > 0, ∀x ∈ F \ {x}.

Let ε be a positive number such that ε < 1/2 and let U εx be neighborhood of x. Put

Nx = U εx ∩ F . Then, for all x ∈ Nx we have

f(x) =
1

2
(x1 − 3x2)(x1 + 3x2 − 2) ≥ 0 = f(0)

for all x ∈ Nx. Hence x = (0, 0) is a local minimum of (3.6).

Note that if x̂ = (0, 1), then x̂ ∈ F and f(x̂) = −3
2 < f(x) = 0. Therefore x is not a

global solution of (3.6).

Remark 3.5. If Q is a positive semidefinite continuous linear self-adjoint operator, then

(3.1) is sufficient condition for x to be a global solution of (QCQP). Indeed, by positive

semi-definiteness of Q, it follows that f(x) is a convex function. For every x ∈ F we have

0 ≤ 〈Qx+ c, x− x〉 ≤ f(x)− f(x).

Therefore x is a global solution of (QCQP).

The following theorem is just a special case of nonlinear programming with smooth

data. However, for the sake of completeness, we give the complete proof here.

Theorem 3.6. If x ∈ H is a local solution of problem (QCQP) and if x is regular, then

there exists λ = (λ1, . . . , λm) ∈ Rm such that

(3.7)



Qx+ c+
∑m

i=1 λi(Qix+ ci) = 0,

1
2〈x,Qix〉+ 〈ci, x〉+ αi ≤ 0,

λi
(
1
2〈x,Qix〉+ 〈ci, x〉+ αi

)
= 0,

λi ≥ 0, i = 1, . . . ,m.

Proof. Suppose that x ∈ H is a local solution of problem (QCQP) and x is regular. Then,

by regularity of x we have

TF (x) = {h ∈ H | 〈Qix+ ci, h〉 ≤ 0,∀ i ∈ I(x)}.

It follows from [1, Lemma 3.7] that h = 0 is an optimal solution of the linearized problem

(3.8) min
h∈H
〈Qx+ c, h〉 subject to 〈Qix+ ci, h〉 ≤ 0, i ∈ I(x).
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The problem (3.8) is a linear programming problem with a finite (equal zero) optimal

value. By Theorem 2.202 in [1], we have that the set of optimal solution of the dual

problem of (3.8)

(3.9) max
λi≥0

0 subject to Qx+ c+
∑
i∈I(x)

λi(Qix+ ci) = 0

is nonempty.

Put λi = 0 for all i ∈ I \ I(x) (where I = {1, 2, . . . ,m}), and λ = (λ1, . . . , λm). From

(3.9) we obtain the first equality in (3.7). Since x ∈ F and λi
(
1
2〈x,Qix〉+ 〈ci, x〉+αi) = 0

for each i ∈ I, the other conditions in (3.7) are satisfied too. The proof is complete.

Remark 3.7. If x ∈ H is a local solution of problem (QCQP) and if x is regular, then (3.7)

is equivalent to following condition

(3.10) 〈Qx+ c, h〉 ≥ 0 for all h ∈ TF (x).

Indeed, (3.10) implies (3.7) follows immediately from the proof of Theorem 3.6. It remains

to prove that (3.7) implies (3.10). Suppose that (3.7) is satisfied. Then, for every h ∈ TF (x)

we have 〈Qix+ ci, h〉 ≤ 0 for all i ∈ I(x) and

〈Qx+ c, h〉 = −
∑
i∈I(x)

λi〈Qix+ ci, h〉 ≥ 0.

Hence (3.10) is satisfied.

The following example shows that the conclusion of Theorem 3.6 fails if the assumption

on the regularity of x is omitted.

Example 3.8. Consider the programming problem

min f(x) =
1

2
〈x,Qx〉+ 〈c, x〉

subject to x = (x1, x2) ∈ R2 : g1(x) =
1

2
〈x,Q1x〉 ≤ 0,

(3.11)

where Q : R2 → R2 is defined by Qx = (x1, 0), c = (0,−1) and Q1 : R2 → R2 is defined by

Q1x = (x1 − x2,−x1 + x2).

Let F = {x = (x1, x2) ∈ R2 | g1(x) ≤ 0}. We have

F = {x = (x1, x2) ∈ R2 | (x1 − x2)2 ≤ 0}.

For x = (1, 1) ∈ R2 we have x ∈ F and g1(x) = 0. Since 〈Q1x, h〉 = 0 for all h ∈ R2, we

have x is irregular.

Since x1 = x2, we have f(x) = 1
2x

2
1−x1 = 1

2(x1−1)2− 1
2 ≥ −

1
2 for all x = (x1, x2) ∈ F .

It follows that x = (1, 1) is a local solution of (3.11). Since Qx+ c = (1,−1) and Q1x = 0,

we see that there exists no λ1 ≥ 0 such that Qx+ c+ λ1Q1x = 0. Hence the first equality

in (3.7) does not hold.
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4. Second-order optimality conditions

In this section, we shall establish second-order necessary and sufficient condition for x to

be (a strict) a local solution of problem (QCQP). For this, we will need the following

assumption

(H)
(
h ∈ TF (x), 〈Qx+c, h〉 = 0, 〈Qix+ci, h〉 = 0

)
=⇒ (〈h,Qih〉 = 0), ∀ i ∈ I(x).

It is easily seen that the assumption (H) is satisfied if one of the following conditions holds:

(i) Qi = 0 for all i ∈ I(x),

(ii) 〈Qx+ c, h〉 > 0 for all h ∈ TF (x) \ {0},

(iii) 〈Qix+ ci, h〉 < 0 for all h ∈ TF (x) \ {0} and for all i ∈ I(x).

Theorem 4.1. Let x be a feasible point of the problem (QCQP) and let x be regular.

Suppose that the assumption (H) is satisfied. Then, x is a local solution of (QCQP) if

and only if the following two conditions are satisfied:

〈Qx+ c, h〉 ≥ 0 for all h ∈ TF (x),(4.1)

if h ∈ TF (x) and 〈Qx+ c, h〉 = 0 then 〈h,Qh〉 ≥ 0.(4.2)

Proof. Since x is regular, it follows from Remark 2.3 that

TF (x) = {h ∈ H | 〈Qix+ ci, h〉 ≤ 0,∀ i ∈ I(x)}.

Necessity. By Remark 3.7, assertion (4.1) holds.

Suppose that there exists h ∈ TF (x) such that 〈Qx + c, h〉 = 0 but 〈h,Qh〉 < 0. Let

us first show that there exists t∗ > 0 such that

(4.3) x+ th ∈ F, ∀ t ∈ (0, t∗).

For i ∈ I(x), we have gi(x) = 0. Since 〈Qix+ ci, h〉 ≤ 0 and by the assumption (H), there

exists t∗1 > 0 such that

(4.4) gi(x+ th) = gi(x) + t〈Qix+ ci, h〉+
t2

2
〈h,Qih〉 ≤ 0, ∀ t ∈ (0, t∗1).

For i /∈ I(x) we have gi(x) < 0. Since gi(x+ th) = gi(x) + t〈Qix+ ci, h〉+ t2

2 〈h,Qih〉 is a

quadratic function (in the variable t) with gi(x) < 0 and 1
2〈h,Qih〉 ≥ 0, there exists t∗2 > 0

such that

(4.5) gi(x+ th) ≤ 0 for all t ∈ (0, t∗2).
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Let t∗ = min{t∗1, t∗2}. From (4.4) and (4.5) we obtain (4.3).

Consequently,

f(x+ th)− f(x) = t〈Qx+ c, h〉+
t2

2
〈h,Qh〉 =

t2

2
〈h,Qh〉 < 0, ∀ t ∈ (0, t∗).

This contradicts our assumption that x is a local solution of (QCQP). Hence, asser-

tion (4.2) holds.

Sufficiency. On the contrary, suppose that the conditions (4.1), (4.2) are satisfied, but

x is not a locally optimal solution of (QCQP). Then there exists a sequence of feasible

points xk, converging to x such that

(4.6) f(xk) < f(x) for all k large enough.

Set tk := ‖xk − x‖ and hk := xk−x
tk

. We have tk > 0, ‖hk‖ = 1 and

〈Qix+ ci, hk〉 =
1

tk

{
gi(xk)− gi(x)− 1

2
〈xk − x,Qi(xk − x)〉

}
≤ 0 for i ∈ I(x).

Put C(x) = {h ∈ H | 〈Qx + c, h〉 = 0, 〈Qix + ci, h〉 ≤ 0, i ∈ I(x)}. It follows from

Lemma 2.4 that

dist(hk, C(x)) ≤ β

[〈Qx+ c, hk〉]+ +
∑
i∈I(x)

[〈Qix+ ci, hk〉]+

 = β
(
[〈Qx+ c, hk〉]+

)
,

where β > 0 depends on Qx+ c and Qix+ ci.

By (4.6) and

f(xk)− f(x) = tk〈Qx+ c, hk〉+
t2k
2
〈hk, Qhk〉,

it follows that

(4.7) tk〈Qx+ c, hk〉 < −
t2k
2
〈hk, Qhk〉.

Since |〈hk, Qhk〉| ≤ ‖Q‖‖hk‖2 = ‖Q‖, it follows that − tk
2 〈hk, Qhk〉 → 0 as k → ∞.

Combining this with (4.7) we have that tk(〈Qx+ c, hk〉) ≤ o(tk), and hence there exists a

critical direction ĥk ∈ C(x) such that ĥk − hk → 0, and hence ‖ĥk‖ = 1.

Observe that

〈ĥk, Qĥk〉 − 〈hk, Qhk〉 = 〈ĥk + hk, Q(ĥk − hk)〉 ≤ ‖ĥk + hk‖‖Q‖‖ĥk − hk‖.

From this and ‖ĥk − hk‖ ≤ β([〈Qx+ c, hk〉]+) we deduce that

(4.8) 〈ĥk, Qĥk〉 − 〈hk, Qhk〉 ≤ 2β‖Q‖([〈Qx+ c, hk〉]+).
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Consequently, since for the function f(·) the second order Taylor expansion is exact,

we have by (4.8) that

f(xk) = f(x) + tk〈Qx+ c, hk〉+
t2k
2
〈hk, Qhk〉

≥ f(x) +
(
tk〈Qx+ c, hk〉 − t2kβ‖Q‖([〈Qx+ c, hk〉]+)

)
+
t2k
2
〈ĥk, Qĥk〉.

Since 〈Qx+ c, h〉 ≥ 0 for all h ∈ TF (x), we have that 〈Qx+ c, hk〉 ≥ 0 for k large enough.

Hence for k large enough, we have

f(xk)− f(x) ≥
(
tk〈Qx+ c, hk〉 − t2kβ‖Q‖([〈Qx+ c, hk〉]+)

)
+
t2k
2
〈ĥk, Qĥk〉 ≥ 0,

a contradiction with (4.6). The proof is complete.

The following example shows that Theorem 4.1 is an extension of Theorem 3.130 in [1]

for the quadratic programming problems in Hilbert spaces.

Example 4.2. Let `2 denote the Hilbert space of all square summable real sequence,

`2 =
{
x = (x1, x2, . . . , xn, . . .) |

∑∞
n=1 x

2
n < ∞, xn ∈ R, n = 1, 2, . . .

}
. The scalar product

and the norm in `2 are defined, respectively, by

〈x, y〉 =

∞∑
n=1

xnyn, ‖x‖ =

( ∞∑
n=1

x2n

)1/2

.

Consider the following programming problem

min f(x) =
1

2
〈x,Qx〉+ 〈c, x〉

s.t. x ∈ `2 : g1(x) =
1

2
〈x,Q1x〉+ 〈c1, x〉 ≤ 0, g2(x) = 〈c2, x〉 ≤ 0,

(4.9)

where Q : `2 → `2 is defined by Qx = (x1,−x2, x3, . . .), Q1 : `2 → `2 is defined by Q1x =

(x1, 0, 0, . . .), c = (−1, 1, 0, 0, . . .), c1 = (1,−1, 0, 0, . . .) and c2 = (−1, 0, 0, . . .).

Let

F = {x ∈ `2 | g1(x) ≤ 0, g2(x) ≤ 0}.

For x = (0, . . . , 0, . . .) ∈ F and h = (h1, h2, . . .) ∈ `2. It is a simple matter to check that x

is regular and

TF (x) = {h ∈ `2 | 〈Q1x+ c1, h〉 ≤ 0, 〈c2, h〉 ≤ 0}

= {h ∈ `2 | h1 − h2 ≤ 0, h1 ≥ 0}.

Since 〈Qx+ c, h〉 = h2− h1, it follows that 〈Qx+ c, h〉 ≥ 0 for all h ∈ TF (x). If h ∈ TF (x)

and 〈Qx+ c, h〉 = h2 − h1 = 0 then

〈h,Qh〉 = h21 − h22 + h23 + · · · ≥ 0.
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Note that if h ∈ TF (x), 〈Qx + c, h〉 = 0, 〈Q1x + c1, h〉 = 0, 〈c2, h〉 = 0, then h1 = h2 = 0

and 〈h,Q1h〉 = h21 = 0. Therefore the assumption (H) is satisfied.

Let ε be a positive number such that ε < 1 and let V ε
x be neighborhood of x. Put

Nx = V ε
x ∩ F . By taking xε = (xε1, x

ε
2, . . .) ∈ Nx, we have xεi < 1 for all i = 1, 2, . . ., and

xε2 ≥ xε1 ≥ 0. Since

f(x) =
1

2
(x1 − x2)(x1 + x2 − 2) +

1

2
x23 +

1

2
x24 + · · · ,

we have f(xε) ≥ 0 = f(0) for all xε ∈ Nx. Hence x = (0, . . . , 0, . . .) is a local solution of

(4.9).

The following example shows that the assumption (H) cannot be dropped from the

assumption of Theorem 4.1.

Example 4.3. Consider the programming problem

min f(x) =
1

2
〈x,Qx〉+ 〈c, x〉

subject to x ∈ R2 : g1(x) =
1

2
〈x,Q1x〉+ 〈c1, x〉+ α1 ≤ 0,

(4.10)

where Q : R2 → R2 is defined by Qx = (−x1, 0), Q1 : R2 → R2 is defined as Q1x = (x1, 0),

c = (0, 1), c1 = (0,−1) and α1 = 0.

Let F = {x ∈ R2 | g1(x) ≤ 0} =
{
x ∈ R2 | 12x

2
1 − x2 ≤ 0

}
. Since f(x) = −1

2x
2
1 + x2 ≥

−1
2x

2
1 + 1

2x
2
1 = 0, we have that x = (0, 0) ∈ F is a local solution of (4.10).

It is easy to check that x is regular and

TF (x) = {h ∈ R2 | 〈Q1x+ c1, h〉 ≤ 0} = {h ∈ R2 | −h2 ≤ 0}.

For h = (1, 0) ∈ TF (x), we have 〈Qx + c, h〉 = h2 = 0, 〈Q1x + c1, h〉 = −h2 = 0 and

〈h,Q1h〉 = 1 6= 0. Hence the assumption (H) do not hold. Since 〈h,Qh〉 = −1, we have

that the condition (4.2) does not hold.

Note that Theorem 4.1 can be reformulated in the following equivalent form which

requires the use of Lagrange multipliers.

Theorem 4.4. Let x be a feasible point of the problem (QCQP) and let x be regular.

Suppose that the assumption (H) is satisfied. The necessary and sufficient condition for a

point x to be a local solution of (QCQP) is that there exists λ = (λ1, . . . , λm) ∈ Rm such

that

(a) the system (3.7) is satisfied, and
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(b) if h ∈ H \ {0} is such that 〈Qix+ ci, h〉 = 0, i ∈ I1(x), 〈Qix+ ci, h〉 ≤ 0, i ∈ I2(x),

where

(4.11) I1(x) = {i : gi(x) = 0, λi > 0}, I2(x) = {i : gi(x) = 0, λi = 0},

then 〈h,Qh〉 ≥ 0.

Proof. Let us first prove that if x ∈ H, λ ∈ Rm such that the system (3.7) is satisfied and

let I1(x) and I2(x) be such as in (4.11), then

{h ∈ H | 〈Qix+ ci, h〉 = 0, i ∈ I1(x), 〈Qix+ ci, h〉 ≤ 0, i ∈ I2(x)}

= {h ∈ H | 〈Qix+ ci, h〉 ≤ 0, i ∈ I(x), 〈Qx+ c, h〉 = 0} = C(x).

Suppose that h ∈ H, 〈Qix+ ci, h〉 = 0, i ∈ I1(x), 〈Qix+ ci, h〉 ≤ 0, i ∈ I2(x). By (3.7) we

have

〈Qx+ c, h〉 = −
m∑
i=1

λi〈Qix+ ci, h〉

= −
∑
i∈I(x)

λi〈Qix+ ci, h〉 −
∑
i/∈I(x)

λi〈Qix+ ci, h〉 = 0.

Hence

{h ∈ H | 〈Qix+ ci, h〉 = 0, i ∈ I1(x), 〈Qix+ ci, h〉 ≤ 0, i ∈ I2(x)} ⊂ C(x).

To obtain the reverse inclusion, suppose that h ∈ C(x). We need only to show that

〈Qix+ ci, h〉 = 0, i ∈ I1(x). From (3.7) we deduce that

0 = 〈Qx+ c, h〉

= −
∑

i∈I1(x)

λi︸︷︷︸
>0

〈Qix+ ci, h〉 −
∑

i∈I2(x)

λi︸︷︷︸
=0

〈Qix+ ci, h〉 −
∑
i/∈I(x)

λi︸︷︷︸
=0

〈Qix+ ci, h〉.

Hence 〈Qix+ ci, h〉 = 0, i ∈ I1(x) and

{h ∈ H | 〈Qix+ ci, h〉 = 0, i ∈ I1(x), 〈Qix+ ci, h〉 ≤ 0, i ∈ I2(x)} = C(x).

Necessity. Suppose that x is a local solution of (QCQP) and x is regular. It follows

from Theorem 4.1 and Remark 3.7 that (3.7) and (4.2) hold. From (3.7), (4.2) and

C(x) = {h ∈ H | 〈Qix+ ci, h〉 = 0, i ∈ I1(x), 〈Qix+ ci, h〉 ≤ 0, i ∈ I2(x)},

it follows that (b) are satisfied.

Sufficiency. Suppose that x ∈ F is such that there exists λ ∈ Rm such that condi-

tions (a) and (b) are satisfied. Then, by Remark 3.7 and

{h ∈ H | 〈Qix+ ci, h〉 = 0, i ∈ I1(x), 〈Qix+ ci, h〉 ≤ 0, i ∈ I2(x)} = C(x),

it follows that conditions (4.1) and (4.2) are satisfied. On account of Theorem 4.1, we

have x is a local solution of (QCQP). This proof is complete.
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Corollary 4.5. (cf. [1, Theorem 3.130]) Consider the quadratic programming problem

under linear constraints (QPL) (i.e., (QCQP) with Qi = 0 for all i = 1, . . . ,m). Let x be

a feasible point of the problem (QCQP). Then, the point x is a locally optimal solution of

(QCQP) if and only if conditions (4.1) and (4.2) are satisfied.

Proof. Since Qi = 0 for all i = 1, . . . ,m, the assumptions of Theorem 4.1 is satisfied.

Hence the corollary follows.

In the remainder of this section we discuss necessary and sufficient optimality condition

for x to be a strict local solution of (QCQP). Recall that a point x is called a strict local

solution of (QCQP) if there exists ε > 0 such that

f(x) > f(x), ∀x ∈ (F ∩B(x, ε)) \ {x}.

Of course, if x is a strict local solution of a minimization problem then it is a local

solution of that problem. The converse is not true in general.

The following theorem describes the second-order necessary and sufficient condition

for a point to be a strict local solution of (QCQP).

Theorem 4.6. Let x be a feasible point of the problem (QCQP) and let x be regular.

Suppose that the assumption (H) is satisfied. Then, x is a strict local solution of (QCQP)

if and only if the following two conditions are satisfied.

〈Qx+ c, h〉 ≥ 0 for all h ∈ TF (x),(4.12)

if h ∈ TF (x) \ {0} and 〈Qx+ c, h〉 = 0 then 〈h,Qh〉 > 0.(4.13)

Proof. The proof of this theorem is similar to that of Theorem 4.1; for completeness we

present a short proof.

Since x is regular, we have

TF (x) = {h ∈ H | 〈Qix+ ci, h〉 ≤ 0,∀ i ∈ I(x)}.

Necessity. By Remark 3.7, assertion (4.12) holds.

Suppose that there exists h ∈ TF (x) \ {0} such that 〈Qx+ c, h〉 = 0 and 〈h,Qh〉 ≤ 0.

Using similar arguments as in the proof of Theorem 4.1, we conclude that there exists a

positive number t∗ such that

x+ th ∈ F, ∀ t ∈ (0, t∗)

and

f(x+ th)− f(x) = t〈Qx+ c, h〉+
t2

2
〈h,Qh〉 =

t2

2
〈h,Qh〉 ≤ 0, ∀ t ∈ (0, t∗).
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This contradicts our the fact that x is a strict local solution of (QCQP). Hence, asser-

tion (4.13) holds.

Sufficiency. Suppose that the point x is not a strict local solution for (QCQP). Then

there exists a sequence of feasible points xk, converging to x, xk 6= x, such that

(4.14) f(xk) ≤ f(x).

Set tk := ‖xk − x‖ and hk := xk−x
tk

. We have 〈Qix + ci, hk〉 ≤ 0 for i ∈ I(x) and k large

enough. Then, as in the proof of Theorem 4.1, it follows by Lemma 2.4 that there there

exists a critical direction ĥk ∈ C(x) such that ĥk − hk → 0, ‖ĥk‖ = 1,

‖ĥk − hk‖ ≤ β([〈Qx+ c, hk〉]+)

and

〈ĥk, Qĥk〉 − 〈hk, Qhk〉 ≤ 2β‖Q‖([〈Qx+ c, hk〉]+).

Consequently,

f(xk) = f(x) + tk〈Qx+ c, hk〉+
t2k
2
〈hk, Qhk〉

≥ f(x) + tk〈Qx+ c, hk〉+
t2k
2
〈ĥk, Qĥk〉 − t2kβ‖Q‖([〈Qx+ c, hk〉]+).

Since 〈Qx + c, h〉 ≥ 0 for all h ∈ TF (x), we have 〈Qx + c, hk〉 ≥ 0 for k large enough. It

follows that for k large enough

f(xk)− f(x) ≥ tk〈Qx+ c, hk〉+
t2k
2
〈ĥk, Qĥk〉 − t2kβ‖Q‖([〈Qx+ c, hk〉]+) > 0,

which contradicts (4.14). The proof is complete.

Theorem 4.6 can be reformulated in the following equivalent form which requires the

use of Lagrange multipliers.

Theorem 4.7. Let x be a feasible point of the problem (QCQP) and let x be regular.

Suppose that the assumption (H) is satisfied. The necessary and sufficient condition for a

point x to be a strict local solution of (QCQP) is that there exists λ = (λ1, . . . , λm) ∈ Rm

such that

(a) the system (3.7) is satisfied, and

(b) if h ∈ H \ {0} is such that 〈Qix+ ci, h〉 = 0, i ∈ I1(x), 〈Qix+ ci, h〉 ≤ 0, i ∈ I2(x),

where I1(x) = {i : gi(x) = 0, λi > 0}, I2(x) = {i : gi(x) = 0, λi = 0}, then

〈h,Qh〉 > 0.

The proof of this theorem is similar to that of Theorem 4.4 so it is omitted here.
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5. Conclusions

In this paper we consider quadratic programming problems in Hilbert spaces and propose

condition for a feasible point to be (a strict) a local solution of quadratic programming

problems whose constraint set is defined by finitely many convex quadratic inequalities

in Hilbert spaces. Our result is established without requesting finiteness dimension of

constraint set.
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