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A Gradient Estimate Related Fractional Maximal Operators for a p-Laplace
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Abstract. In the present paper, we deal with the global regularity estimates for the

p-Laplace equations with data in divergence form

div(|∇u|p−2∇u) = div(|F |p−2F ) in Ω,

in Morrey spaces with natural data F ∈ Lp(Ω;Rn) and nonhomogeneous boundary

data belongs to W 1,p(Ω). Motivated by the work of [M.-P. Tran, T.-N. Nguyen,

New gradient estimates for solutions to quasilinear divergence form elliptic equations

with general Dirichlet boundary data, J. Differential Equations 268 (2020), no. 4,

1427–1462], this paper extends that of global Lorentz–Morrey gradient estimates in

which the ‘good-λ’ technique was undertaken for a class of more general equations,

and further, global regularity of weak solutions will be given in terms of fractional

maximal operators.

1. Introduction and statements of main results

During the last few decades, most of the work done so far dealt with p-Laplace equa-

tions, which have their relevance in mathematical and physical applications. It is worth

mentioning that the study of regularity estimates for p-Laplace problems turned out to

be challenging and attracted a great attention by a number of researchers from many

scientific fields through the years. In several recent contributions to p-Laplace equations

and their generalizations such as the systems or double phase ones, etc, the validity of

Calderón–Zygmund estimates, regularity theory (higher integrability or differentiability of

the gradients of solutions, etc) of nonlinear problems, etc have been established and by

now rather developed. We herein recommend [4, 5, 15,16, 19] for rich literature and many

references so far.

Let us consider the following p-Laplace problem with divergence form data

(1.1) −∆pu = −div(f) in Ω, u = g on ∂Ω,
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where ∆pu := div(|∇u|p−2∇u) denotes the p-Laplacian operator with p > 1. It is re-

marked here that the divergence term div(f) in (1.1) can be replaced by the other form

div(|F |p−2F ) by changing of the vector field as follows

f = |F |p−2F ⇐⇒ F = |f |
2−p
p−1 f,

which ensures that

f ∈ L
p
p−1 (Ω) ⇐⇒ F ∈ Lp(Ω).

The present work is mainly devoted to the regularity property of p-Laplace equations

with nonhomogeneous Dirichlet boundary data (1.1) in the framework of Morrey spaces.

Furthermore, the results shown in this paper cover that of a larger class of quasilinear

elliptic equations as below

(1.2)

−div(A(x,∇u)) = −div(|F |p−2F ) in Ω,

u = g on ∂Ω.

Here, the nonlinear operator A : Ω×Rn → Rn in this problem is a Carathéodory mapping,

i.e., A( · , ξ) is measurable on Ω for every ξ ∈ Rn, and A(x, · ) is continuous on Rn for almost

every x ∈ Ω. Moreover, as in series of works on this quasi-linear elliptic equation, we also

consider A satisfying the standard growth and monotone conditions. More precisely, we

assume that there exist constants 1 < p ≤ n and Λ ≥ 1 such that

|A(x, ν)| ≤ Λ|ν|p−1,

〈A(x, ν)−A(x, µ), ν − µ〉 ≥ Λ−1(|ν|2 + |µ|2)
p−2

2 |ν − µ|2

for a.e. x in Ω and every (ν, µ) ∈ Rn × Rn \ {(0, 0)}. It is easy to see that the p-Laplace

problem (1.1) is a special case of (1.2) when A(x, ν) = |ν|p−2ν. The regularity property of

weak solutions to (1.2) can be studied under the natural data F ∈ Lp(Ω) and the boundary

condition g ∈ W 1,p(Ω). The leitmotif of our investigations is the aim at assumptions

on domain Ω, that has its complement satisfying p-capacity uniform thickness. To our

knowledge, this condition is the minimal regularity requirement for the regularity estimates

up to boundary. However, a huge number of interesting regularity results have been

investigated for weak solutions to (1.2) under various assumptions of domain, we address

the reader to the papers can be found in [6–11, 29, 34, 40] or similar works done on the

same topic.

A deep discussion of various developments and generalizations of this equation is made.

For instance, for p ≥ 2, Iwaniec in a very first work [23] proved the Lq-estimates for the

gradient of solutions

F ∈ Lq =⇒ ∇u ∈ Lq for all p ≤ q ≤ ∞,
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and later by DiBenedetto–Manfredi [17] extended the results with a broader range of

p: 1 < p < ∞, to the case of elliptic systems and in local BMO spaces. Since then,

the nonlinear Calderón–Zygmund theory has a number of contributions, we also refer

to [13] by Caffaralli and Peral, some research papers [6, 10] by Byun, Wang and Ryu,

or [29] by Mengesha and Phuc, [27] and more recent works on elliptic equations with

non-standard growth [1, 14], etc. Recently, the global Lorentz gradient estimates were

established by Tran and Nguyen in [32, 33, 38, 40, 41] using the good-λ technique or level-

set inequality, where regularity results were preserved in fractional maximal operators Mα.

More precisely, in [40] the authors proved the following result

Mα(|F |p + |∇g|p) ∈ Lq,s(Ω) =⇒ Mα(|∇u|p) ∈ Lq,s(Ω).

It is worth mentioning that the fractional maximal operators Mα has a relation to the

Riesz potential Iα and the fractional derivatives (see [3, 28, 30, 33]). Inspired by these

aforementioned studies and the recent works dealt with global Lorentz gradient estimates,

we are going to establish the result that is particularly given as follows

|F |p + |∇g|p ∈ Lq,s;κ(Ω) =⇒ Mα(|∇u|p) ∈ L
κq

κ−αq ,
κs

κ−αq ;κ
(Ω).

It should be noted that in the general context, result is obtained in Lorentz–Morrey spaces

whose definition will be given in the next section.

Let us briefly discuss the technique behind our work. We mention here the very effective

approach first proposed by Acerbi and Mingione in [1,2], that allows us to give harmonic

analysis and interpolation free proof of Calderón–Zygmund estimates. Later, under the

different viewpoint, the use of so-called ‘good-λ’ approach is devoted to regularity results

(at least for most types of quasi-linear elliptic equations), see [31, 35, 37, 39]. Needless to

say, we can follow this approach to obtain both regularity in interior domain as well as on

the boundary of domain. To better specify our results, one considers the problem under

an additional assumption of domain Ω that has p-capacity uniform thickness complement

corresponding to two constants c0, r0 > 0 (see Section 2 below).

We are now ready to state the main results hereafter.

Theorem 1.1. Let F ∈ Lp(Ω), g ∈ W 1,p(Ω) with 1 < p ≤ n and Ω be an open bounded

domain in Rn. Assume that u is a weak solution to equation (1.2) and Ω has p-capacity

uniform thickness complement corresponding to two constants c0, r0 > 0. Let ξ0 ∈ Ω and

0 < r < diam(Ω) fixed. Then there exists a constant Θ = Θ(n, p,Λ) > p such that for

0 ≤ α < np/Θ and ε ∈ (0, ε0) one can find bε > 0 satisfying the following inequality

Ln({Mα(χB10r(ξ0)|∇u|p) > ε−aλ,Mα(χB10r(ξ0)(|F |p + |∇g|p)) ≤ bελ} ∩Br(ξ0))

≤ CεLn({Mα(χB10r(ξ0)|∇u|p) > λ} ∩Br(ξ0))
(1.3)
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for any λ > λ0, where λ0 is given by

(1.4) λ0 := ε
p
Θ
−1rα−n‖∇u‖pLp(B10r(ξ0)∩Ω).

Here a := p
Θ −

α
n , ε0 = ε0(n, a, α) ∈ (0, 1) and the constant C depends on the given data

(n, p,Λ, α, c0, r0,diam(Ω)).

We stress here that we are going to use the common notation Ln(E) for the Lebesgue

measure of E ⊂ Rn. Moreover, for the sake of brevity, in the main theorems and in what

follows, the set {y ∈ Ω : |h(y)| > t} is simply denoted by {|h| > t}. On the other hand,

we tacitly extend u, F and g by zero to Rn \ Ω in all terms of (1.3).

Theorem 1.2. Let F ∈ Lp(Ω), g ∈ W 1,p(Ω) with 1 < p ≤ n and Ω be an open bounded

domain in Rn. Assume that u is a weak solution to equation (1.2) and Ω has p-capacity

uniform thickness complement corresponding to two constants c0, r0 > 0. Then there exist

constants Θ = Θ(n, p,Λ) > p and β0 ∈ (0, 1/2] such that for every

0 ≤ α < pn

Θ
, 1 < q <

Θ

p
, 0 < s ≤ ∞

and

max

{
pq(1− β0);

α
1
q −

p
Θ + α

n

}
< κ ≤ n,

there holds

(1.5) ‖Mα(|∇u|p)‖
L

κq
κ−αq ,

κs
κ−αq ;κ

(Ω)
≤ C‖|F |p + |∇g|p‖Lq,s;κ(Ω).

Here the constant C depends only on n, p, Λ, α, c0, r0, diam(Ω), q, s and κ.

The rest of this paper is organized in the following way. Section 2 is dedicated to the

fundamental notation, definitions and state the main assumptions which will be considered

throughout the paper. Section 3 contains various comparison estimates with a reference

homogeneous problem, that are very useful in our main proofs later. And finally, in

Section 4, we exhibit the proofs of our main results in this paper.

2. Notation and fundamental definitions

Throughout the paper, the domain Ω is an open bounded set in Rn. The diameter of Ω

will be denoted by diam(Ω). In addition, we will denote by Br(ξ) the open ball in Rn of

radius r > 0 and centered at ξ ∈ Rn. The integral average of a function f ∈ L1(U) over

the measurable subset U of Rn will be written as follows 
U
f(x) dx =

1

Ln(U)

�
U
f(x) dx,
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where notation Ln(U) stands for the Lebesgue measure of U ⊂ Rn. Along the paper, we

denote Uc for the complement of U in Rn.

Moreover, from now on, the letter C stands for the universal constant that may change

from line to line, the dependencies on prescribed parameters will be emphasized in paren-

theses, if needed.

Definition 2.1 (Distributional solution). A function u ∈ W 1,p(Ω) is called weak (or

distributional) solution to (1.2) if the following variational formula�
Ω
〈A(x,∇u),∇ϕ〉 dx =

�
Ω
〈|F |p−2F,∇ϕ〉 dx

holds for all test function ϕ ∈W 1,p
0 (Ω).

Definition 2.2 (The p-capacity). Let Q ⊂ Ω, the p-capacity of Q, namely capp(Q,Ω),

will be defined as follows

capp(Q,Ω) =



infψ∈C∞c (Ω)
χQψ≥1

�
Ω |∇ψ|

p dx if Q is compact,

sup Q′⊆Q
Q′compact

capp(Q
′,Ω) if Q is open,

inf Q′⊆Q
Q′open

capp(Q
′,Ω) otherwise.

Definition 2.3 (Domains with uniformly p-capacity thick complement). The complement

of Ω is said to satisfy a p-capacity uniform thickness (p-CUT) condition if there exist c0

and r0 > 0 such that

(2.1) capp(Ω
c ∩B%(y), B2%(y)) ≥ c0 capp(B%(y), B2%(y))

for every y ∈ Ωc and 0 < % ≤ r0.

For convenience of the reader, let us recall here some well-known remarks related to

the p-capacity uniform thickness condition.

Remark 2.4. Every Ωc 6= ∅ satisfies a p-CUT condition if p > n, and hence this condition

is nontrivial only if p ≤ n. Moreover, if Ωc satisfies a p-CUT condition, then it satisfies a

q-CUT for all q ≥ p.

Remark 2.5. We note that the p-CUT condition implies that every points on y ∈ ∂Ω is

regular, that means

� 1

0

(
capp(Ω

c ∩B%(y), B2%(y))

capp(B%(y), B2%(y))

) 1
p−1 d%

%
=∞

for the p-Laplace equation, where the thickness of Ωc near ∂Ω can be measured by capacity

densities. This condition is called the Wiener criterion which is important in regularity of

boundary points.
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Remark 2.6. Such assumption (2.1) is very mild and essential for higher integrability re-

sults. Domains whose complement satisfy p-CUT condition include domains with Lipschitz

continuous boundaries.

We now recall the definition of Lorentz space Lq,s(Ω) and Lorentz–Morrey space

Lq,s;κ(Ω) which is studied in many literature such as [22].

Definition 2.7 (Lorentz spaces). Let 0 < q < ∞ and 0 < s ≤ ∞, the Lorentz space

Lq,s(Ω) contains all of Lebesgue measurable maps f on Ω such that the quasi-norm

‖f‖Lq,s(Ω) is finite, where

‖f‖Lq,s(Ω) :=

[
q

� ∞
0

λs−1Ln({|f | > λ})
s
q dλ

] 1
s

as s 6=∞ and otherwise

‖f‖Lq,∞(Ω) := sup
λ>0

λLn({|f | > λ})
1
q .

The space Lq,∞(Ω) is well-known as the Marcinkiewicz space or the usual weak Lebesgue

space. In particular, the Lorentz space Lq,q(Ω) is exactly the Lebesgue space Lq(Ω).

Definition 2.8 (Lorentz–Morrey spaces). Let 0 < q <∞ and 0 < s ≤ ∞, we say that a

measurable map f ∈ Lq,s(Ω) belongs to the Lorentz–Morrey spaces Lq,s;κ(Ω) for 0 ≤ κ ≤ n
if ‖f‖Lq,s;κ(Ω) is finite, where

‖f‖Lq,s;κ(Ω) := sup
0<%<diam(Ω)

ξ∈Ω

%
κ−n
q ‖f‖Lq,s(B%(ξ)∩Ω).

In a special case when κ = n, the Lorentz–Morrey space Lq,s;κ(Ω) is not different from

the Lorentz space Lq,s(Ω).

Regarding [25, 26], let us reproduce the definition of fractional maximal operators as

follows.

Definition 2.9 (Fractional maximal operators). Let 0 ≤ α ≤ n and a locally integrable

function f : Rn → R+, we call Mαf the fractional maximal operator of f given by

Mαf(x) = sup
%>0

%α
 
B%(x)

|f(y)| dy, x ∈ Rn.

We have known that the Hardy–Littlewood maximal function M of locally integrable

maps f in Rn is defined by

Mf(x) = sup
%>0

 
B%(x)

|f(y)| dy, x ∈ Rn.
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This maximal function is obviously a typical case of fractional maximal function Mα when

α = 0.

Properties of Hardy–Littlewood maximal function and its fractional operators play a

key role in gradient estimates of the weak solution to our problem. The maximal function

has been successfully used in studying the regularity theory of partial differential equations.

Duzaar and Mingione in their contributions [18, 20] introduced the gradient estimates

employing fractional maximal functions and nonlinear potentials. With further important

technical developments, it allows us to give many research papers here [7,11,31,35,39,41],

etc. The following lemma will recall some useful properties of maximal and fractional

maximal operators, see [41] for the detailed proof of this lemma.

Lemma 2.10. (see [41]) The operator Mα is bounded from Lebesgue space Ls(Rn) to

Marcinkiewicz space L
ns

n−αs ,∞(Rn) for s ≥ 1 and 0 ≤ αs < n. Precisely, there is a positive

constant C = C(n, s, α) such that

λ
ns

n−αsLn({x ∈ Rn : Mαf(x) > λ}) ≤ C‖f‖
ns

n−αs
Ls(Rn)

for all f ∈ Ls(Rn) and λ > 0.

3. Comparisons with homogeneous problem

In this section, we always assume that Ω satisfies the p-capacity uniformly thickness con-

dition with two given constants c0, r0 > 0. We consider u ∈ W 1,p(Ω) as a weak solution

to (1.2) with given data F ∈ Lp(Ω) and g ∈ W 1,p(Ω). The following lemma is standard,

see also [40] for the proof.

Lemma 3.1. There exists a positive constant C depending on n, p and Λ such that
�

Ω
|∇u|p dx ≤ C

�
Ω

(|F |p + |∇g|p) dx.

Let us take x0 ∈ Ω, R ∈ (0, r0/2] and denote Ω2R = B2R(x0) ∩ Ω. Assume that

v ∈ W 1,p(Ω2R) is the unique solution to the following equation which can be considered

as the homogeneous type of equation (1.2) in Ω2R:

(3.1)

−divA(x,∇v) = 0 in Ω2R,

v = u− g on ∂Ω2R.

The next lemma gives the reverse Hölder inequality of ∇v in Ω2R and the comparison

between the integral average of ∇v on two different balls. That is a type of Gehring’s

lemma is applied to obtain the higher integrability of weak solutions v for the reference

homogeneous problem (3.1). We refer to [21, Theorem 6.7] and [24] for further reading.
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Lemma 3.2. There exists a constant Θ = Θ(n, p,Λ) > p such that

(3.2)

( 
ΩR

|∇v|Θ dx
) 1

Θ

≤ C
( 

Ω2R

|∇v|p dx
) 1
p

.

Moreover there exists a constant β0 = β0(n, p,Λ) ∈ (0, 1/2] such that for any s ∈ (0, p] the

following inequality( 
B%(y)

|∇v|s dx

) 1
s

≤ C
(%
r

)β0−1
( 

Br(y)
|∇v|s dx

) 1
s

holds for all B%(y) ⊂ Br(y) ⊂ Ω2R. Here the constant C depends on n, p and Λ.

Let us now present a local comparison estimate between ∇v and ∇u in the following

lemma.

Lemma 3.3. For every ε ∈ (0, 1), one can find a positive constant cε = C(n, p, ε) > 0

such that

(3.3)

 
Ω2R

|∇u−∇v|p dx ≤ ε
 

Ω2R

|∇u|p dx+ cε

 
Ω2R

|F |p + |∇g|p dx.

Proof. We also refer to [40] for the proof of the following inequality

 
Ω2R

|∇u−∇v|p dx ≤ C
 

Ω2R

|F |p + |∇g|p dx

+

( 
Ω2R

|∇u|p dx
) p−1

p
( 

Ω2R

|F |p + |∇g|p dx
) 1
p

,

which implies to (3.3) by applying Young’s inequality.

We next prove a technical Lemma 3.5 which is useful for the proof of our main theorem.

This lemma can be observed by combining the comparison estimate (3.3) and the well-

known result stated in many literatures, see [21] for instance.

Lemma 3.4. Given a, b, D > 0, k0 ∈ (0, 1) and 0 ≤ s < t. Let ϕ : [0, D] → R+ be a

non-decreasing function satisfying

ϕ(%) ≤ a
[(%
r

)t
+ ε

]
ϕ(r) + brs

for any 0 < % ≤ k0r < D and ε > 0. One can find a constant ε0 = ε0(a, t, s, k0) > 0 such

that if ε ∈ (0, ε0) then

ϕ(%) ≤ C
[(%
r

)ϑ
ϕ(r) + b%s

]
for all ϑ ∈ [s, t] and 0 < % ≤ r ≤ D, where C = C(a, t, ϑ) > 0.
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Lemma 3.5. Let β0 ∈ (0, 1/2] given in Lemma 3.2 and β ∈ (p(1− β0), n]. There holds

(3.4)

�
B%(y)∩Ω

|∇u|p dx ≤ C%n−βMD
β (|F |p + |∇g|p)(y)

for all y ∈ Ω and 0 < % < D = diam(Ω).

Proof. Let y ∈ Ω and 0 < % < D where D = diam(Ω), we introduce a non-decreasing

function ϕ as follows

ϕ(%) =

�
B%(y)∩Ω

|∇u|p dx, % ∈ (0, D].

In order to apply Lemma 3.4, we need to check the validation of hypotheses in this lemma.

Firstly, it is easy to see that

(3.5) ϕ(%) ≤ C
�
B%(y)∩Ω

|∇u−∇v|p dx+ C

�
B%(y)∩Ω

|∇v|p dx.

Moreover, thanks to Lemma 3.2 with s = p, % < 2r/3 and by performing a simple

computation, one obtains

�
B%(y)∩Ω

|∇v|p dx ≤ C
(%
r

)n+p(β0−1)
�
B2r/3(y)∩Ω

|∇v|p dx

≤
(%
r

)n+p(β0−1)
�
Br(y)∩Ω

|∇u|p dx.
(3.6)

On the other hand, by applying the comparison estimate (3.3) in Lemma 3.3, we have

the following estimate
�
B%(y)∩Ω

|∇u−∇v|p dx ≤ C
�
Br(y)∩Ω

|∇u−∇v|p dx

≤ C

(
ε

�
Br(y)∩Ω

|∇u|p dx+ cε

�
Br(y)∩Ω

(|F |p + |∇g|p) dx

)(3.7)

for all ε ∈ (0, 1). Combining the above approximations in (3.5), (3.6) and (3.7), one gets

that

ϕ(%) ≤ C
[(%
r

)n+p(β0−1)
+ ε

]�
Br(y)∩Ω

|∇u|p dx+ cε

�
Br(y)∩Ω

(|F |p + |∇g|p) dx

≤ C
[(%
r

)n+p(β0−1)
+ ε

]
ϕ(r) + cεr

n−βMD
β (|F |p + |∇g|p)(y).

Applying Lemma 3.4, one can find ε0 > 0 such that with s = n − β < n + p(β0 − 1) = t

and ε ∈ (0, ε0) there holds

ϕ(%) ≤ C
[(%
r

)n−β
ϕ(r) + %n−βMD

β (|F |p + |∇g|p)(y)

]
.
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In particular, this inequality holds for r = D, i.e.,

(3.8)

�
B%(y)∩Ω

|∇u|p dx ≤ C%n−β
[
Dβ−n

�
Ω
|∇u|p dx+ MD

β (|F |p + |∇g|p)(y)

]
.

Furthermore, based on Lemma 3.1 we can check that

Dβ−n
�

Ω
|∇u|p dx ≤ CMD

β (|F |p + |∇g|p)(y),

which ensures us to conclude (3.4) from (3.8).

4. Proofs of the main theorems

Our proofs in this section rely on the following important ingredient: the substitution of

Calderón–Zygmund–Krylov–Safonov decomposition, which allows us to apply with balls

instead of cubes.

Lemma 4.1 (Covering Lemma). Let Ω be an open bound domain in Rn such that its

complement satisfies the p-capacity uniform thickness condition with c0, r0 > 0. Consider

two measurable subsets V ⊂ W ⊂ Ω satisfying two following hypotheses for some constants

ε ∈ (0, 1) and r ∈ (0, r0]:

(i) Ln(V) ≤ εLn(Br(0));

(ii) ∀x ∈ Ω and % ∈ (0, r], if Ln(V ∩B%(x)) > εLn(B%(x)) then Ω ∩B%(x) ⊂ W.

Then there exists a constant C = C(n) > 0 such that Ln(V) ≤ CεLn(W).

To our knowledge, this lemma is a classical result in measure theory, and it plays an

essential role to prove ‘good-λ’ Theorem 1.1. We suggest for the interested reader the

references [12, Lemma 4.2] or [42].

Proof of Theorem 1.1. For every α ∈ [0, np/Θ), ξ0 ∈ Ω and 0 < r < diam(Ω), we denote

Q1 = Br(ξ0) and Q2 = B10r(ξ0). The constant Θ will be determined later. Let us consider

two measurable subsets of Q1 as follows

Gλ(t) = {Mα(χQ2 |∇u|p) > tλ} ∩Q1

and

Hλ(t) = {Mα(χQ2(|F |p + |∇g|p)) ≤ tλ} ∩Q1

for λ, t ≥ 0. Inequality (1.3) can be rewritten as

Ln(Gλ(ε−a) ∩Hλ(bε)) ≤ CεLn(Gλ(1)).
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The main idea of this proof is to apply Lemma 4.1 with V = Gλ(ε−a) ∩ Hλ(bε) and

W = Gλ(1). It is sufficient to show that two hypotheses (i) and (ii) in Lemma 4.1 hold.

Let us prove the first one. Thanks to Lemma 2.10, we can estimate as follows

(4.1) Ln(V) ≤ Ln(Gλ(ε−a)) ≤ C
(

1

ε−aλ

�
Ω
χQ2 |∇u|p dx

) n
n−α

.

For λ > λ0 with λ0 is given by (1.4), one obtains from (4.1) that

Ln(V) ≤ C

(
1

ε−aε
p
Θ
−1rα−n‖∇u‖pLp(Q2∩Ω)

�
Ω
χQ2 |∇u|p dx

) n
n−α

,

which is equivalent to the following inequality

(4.2) Ln(V) ≤ Cε
n

(
a+1− p

Θ

)
n−α Ln(Br(0)) ≤ CεLn(Br(0)).

In the last estimate of (4.2), we emphasize that the constraint

n
(
a+ 1− p

Θ

)
n− α

≥ 1 ⇐⇒ a ≥ p

Θ
− α

n
,

which will be valid with the choice of the constant a at the end of the proof.

Next, we will prove (ii) in Lemma 4.1 by contradiction. Assume that one can find

x ∈ Ω and % ∈ (0, r] such that Ω ∩ B%(x) 6⊂ W. To obtain a contradiction, we need to

show that

(4.3) Ln(V ∩B%(x)) ≤ εLn(B%(x)).

Without loss of generality we may assume that

V ∩B%(x) 6= ∅ and Ω ∩B%(x) ∩ (Rn \W) 6= ∅.

Thus there exist x1 ∈ V ∩B%(x) and x2 ∈ Ω ∩B%(x) such that

(4.4) Mα(χQ2(|F |p + |∇g|p))(x1) ≤ bελ and Mα(χQ2 |∇u|p)(x2) ≤ λ.

For any y ∈ B%(x), one can separate as follows

(4.5)

Mα(χQ2 |∇u|p)(y) = max

{
sup

0<ρ<%
ρα

 
Bρ(y)

χQ2 |∇u|p dx; sup
ρ≥%

ρα
 
Bρ(y)

χQ2 |∇u|p dx

}
.

The first term can be estimated from the fact that Bρ(y) ⊂ B2%(x) for all ρ ∈ (0, %). This

deduces that

sup
0<ρ<%

ρα
 
Bρ(y)

χQ2 |∇u|p dx ≤ sup
0<ρ<%

ρα
 
Bρ(y)

χQ2∩B2%(x)|∇u|p dx

≤Mα(χQ2∩B2%(x)|∇u|p)(y).

(4.6)
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Next, we estimate the second one from (4.4) as follows

sup
ρ≥%

ρα
 
Bρ(y)

χQ2 |∇u|p dx ≤ sup
ρ≥%

ρα
Ln(B3ρ(x2))

Ln(Bρ(y))

 
B3ρ(x2)

χQ2 |∇u|p dx

≤ 3n−αMα(χQ2 |∇u|p)(x2)

≤ 3n−αλ.

(4.7)

Here we remark that the first inequality in (4.7) yields from the following relation

Bρ(y) ⊂ Bρ+%(x) ⊂ Bρ+2%(x2) ⊂ B3ρ(x2), ∀ ρ ≥ %.

Collecting estimates in (4.5), (4.6) and (4.7), one concludes that

(4.8) Gλ(ε−a) ∩B%(x) = {Mα(χQ2∩B2%(x)|∇u|p) > ε−aλ} ∩B%(x),

if provided ε−a > 3n−α.

If B2%(x) ⊂ Ω then we choose

(4.9) x0 = x and R = 2%.

Otherwise, if B2%(x) ∩ ∂Ω 6= ∅ we choose x0 ∈ ∂Ω such that

(4.10) |x− x0| = dist(x, ∂Ω) ≤ 2% and R = 4%.

It is clear to see that B2%(x) ⊂ BR(x0) which follows from (4.8) that for all ε ∈ (0, ε0)

with ε0 = 3−
n−α
a , there holds

(4.11) Gλ(ε−a) ∩B%(x) = {Mα(χQ2∩BR(x0)|∇u|p) > ε−aλ} ∩B%(x).

Let v be the unique solution to (3.1) in Ω2R = B2R(x0) ∩ Ω. Lemma 3.3 ensures that

the reverse Hölder inequality (3.2) and the comparison estimate (3.3) hold. Using the

following fundamental inequality

|∇u|p ≤ 2p(|∇v|p + |∇u−∇v|p),

it implies from (4.11) that

Ln(Gλ(ε−a) ∩B%(x)) ≤ Ln({Mα(χQ2∩BR(x0)|∇v|p) > 2−pε−aλ} ∩B%(x))

+ Ln({Mα(χQ2∩BR(x0)|∇u−∇v|p) > 2−pε−aλ} ∩B%(x)).
(4.12)

Applying Lemma 2.10 with different values of s, s = Θ/p and s = 1 corresponding to two
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terms on the right-hand side of (4.12) respectively, we obtain that

Ln(Gλ(ε−a) ∩B%(x)) ≤ C

(
1

(2−pε−aλ)
Θ
p

�
Q2∩BR(x0)

|∇v|Θ dx

) n

n−αΘ
p

+ C

(
1

2−pε−aλ

�
Q2∩BR(x0)

|∇u−∇v|p dx

) n
n−α

≤ C

(
%n

(ε−aλ)
Θ
p

 
BR(x0)

χQ2 |∇v|Θ dx

) n

n−αΘ
p

+ C

(
%n

ε−aλ

 
BR(x0)

χQ2 |∇u−∇v|p dx

) n
n−α

.

(4.13)

The choice of R and x0 in (4.9) or (4.10) makes sure that

B2R(x0) ⊂ B8%(x0) ⊂ B12%(x) ⊂ B13%(x1) ∩B13%(x2),

which guarantees from (4.4) that
 
B2R(x0)

χQ2 |∇u|p dx ≤
Ln(B13%(x2))

Ln(B2R(x0))

 
B13%(x2)

χQ2 |∇u|p dx

≤ C%−αMα(χQ2 |∇u|p)(x2) ≤ C%−αλ,

and similarly 
B2R(x0)

χQ2(|F |p + |∇g|p) dx ≤ C%−αMα(χQ2(|F |p + |∇g|p))(x1) ≤ C%−αbελ.

Applying two above estimates into (3.3) and (3.2), it deduces that

(4.14)

 
B2R(x0)

χQ2 |∇u−∇v|p dx ≤ C(δ + cδbε)%
−αλ

for all δ > 0, and

 
BR(x0)

χQ2 |∇v|Θ dx ≤ C

( 
B2R(x0)

χQ2 |∇v|p dx

)Θ
p

≤ C

( 
B2R(x0)

χQ2 |∇u|p dx+

 
B2R(x0)

χQ2 |∇u−∇v|p dx

)Θ
p

≤ C
[
(1 + δ + cδbε)%

−αλ
]Θ
p .

(4.15)

Substituting (4.14) and (4.15) into (4.13), one gets that

Ln(Gλ(ε−a) ∩B%(x)) ≤ C

(
%n

(ε−aλ)
Θ
p

[
(1 + δ + cδbε)%

−αλ
]Θ
p

) n

n−αΘ
p
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+ C

(
%n

ε−aλ
(δ + cδbε)%

−αλ

) n
n−α

≤ C%n
(
ε

aΘn
np−αΘ + (εaδ)

n
n−α
)
,

where bε = δc−1
δ . Let us balance the exponent of ε in this inequality by taking δ =

ε
an(Θ−p)
np−αΘ ∈ (0, 1), we may conclude that

Ln(Gλ(ε−a) ∩B%(x)) ≤ Cε
aΘn

np−αΘ %n,

which leads to (4.3) by choosing a = p
Θ −

α
n . This finishes the proof.

Lemma 4.2. Let f ∈ Lq,s;κ(Ω) for 1 < q < ∞, 0 < s ≤ ∞ and 0 < κ ≤ n. For

0 ≤ τ < α ≤ κ/q, there exist constants C = C(n, q, κ, α) > 0 and υ = q(α−τ)
κ−τq ∈ (0, 1] such

that

(4.16) Mα(f)(ξ) ≤ C[Mτ (f)(ξ)]1−υ(‖f‖Lq,s;κ(Ω))
υ

for all ξ ∈ Ω. In particular, there holds

(4.17) ‖MD
κ
q

(f)‖L∞(Ω) ≤ C‖f‖Lq,s;κ(Ω),

where D = diam(Ω).

Proof. Let ξ ∈ Ω, % > 0 and 0 < υ ≤ 1, we may decompose as follows

%α−n
�
B%(ξ)

f(x) dx =

(
%τ−n

�
B%(ξ)

f(x) dx

)1−υ (
%γ−n

�
B%(ξ)

f(x) dx

)υ
,

where γ = τ + α−τ
υ . For q > 1, thanks to [36, Lemma 2.1] or [22, Exercise 1.1.11, p. 13],

one has the following estimate

%α−n
�
B%(ξ)

f(x) dx ≤ C[Mτ (f)(ξ)]1−υ
(
%γ−n%

n−n
q ‖f‖Lq,∞(B%(ξ))

)υ
≤ C[Mτ (f)(ξ)]1−υ

(
%
γ−n

q ‖f‖Lq,s(B%(ξ))

)υ
,

which yields that

(4.18) %α−n
�
B%(ξ)

f(x) dx ≤ C[Mτ (f)(ξ)]1−υ(‖f‖Lq,s;γq(Ω))
υ.

We may choose γq = κ ⇔ υ = q(α−τ)
κ−τq to obtain (4.16). In particular, inequality (4.17)

is valid by taking the supremum both sides of (4.18) for all 0 < % < D and ξ ∈ Ω with

υ = 1⇔ α = κ/q.
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Lemma 4.3. Let f ∈ Lq,s;κ(Ω) for 1 < q < ∞, 0 < s ≤ ∞ and 0 < κ ≤ n. For

0 < α ≤ κ/q, there exists a constant C = C(n, q, κ, α) > 0 such that

(4.19) sup
0<r<D
ξ∈Ω

r
−α+κ

q
−n
σ ‖Mαf‖Lσ,ϑ(Br(ξ)) ≤ C‖f‖Lq,s;κ(Ω),

where σ = κq
κ−αq and ϑ = κs

κ−αq .

Proof. We first remark that q > 1 implies to σ(1−υ) > 1 with υ = αq/κ. For this reason,

applying Lemma 4.2 and boundedness of maximal operator, there holds

‖Mαf‖Lσ,ϑ(Br(ξ)) ≤ C‖(Mf)1−υ‖Lσ,ϑ(Br(ξ))‖f‖
υ
Lq,s;κ(Ω)

= C‖Mf‖1−υ
Lσ(1−υ),ϑ(1−υ)(Br(ξ))

‖f‖υLq,s;κ(Ω)

≤ C‖f‖1−υ
Lσ(1−υ),ϑ(1−υ)(Br(ξ))

‖f‖υLq,s;κ(Ω).

From this reason, the left-hand side of (4.19) can be estimated as follows

sup
0<r<D
ξ∈Ω

r
−α+κ

q
−n
σ ‖Mαf‖Lσ,ϑ(Br(ξ))

≤ C sup
0<r<D
ξ∈Ω

r σ
(
κ
q −α
)
−n

σ(1−υ) ‖f‖Lσ(1−υ),ϑ(1−υ)(Br(ξ))

1−υ

‖f‖υLq,s;κ(Ω)

≤ C‖f‖1−υ
L
σ(1−υ),ϑ(1−υ);σ

(
κ
q −α
)

(Ω)

‖f‖υLq,s;κ(Ω).

(4.20)

It notes here the determination of σ and ϑ in the statement of this lemma ensures that

σ(1− υ) = q, ϑ(1− υ) = s, σ

(
κ

q
− α

)
= κ,

which deduces to (4.19) from (4.20). The proof is complete.

Henceforth, Theorem 1.2 is proved directly using the specific Theorem 1.1 and defini-

tion of Lorentz–Morrey spaces in general.

Proof of Theorem 1.2. Let ξ ∈ Ω and 0 < r < D = diam(Ω). For simplicity of notation,

let us denote as follows

U = χB10r(ξ)|∇u|
p and G = χB10r(ξ)(|F |

p + |∇g|p).

According to Theorem 1.1, there exists a constant Θ = Θ(n, p,Λ) > p such that the

following inequality

(4.21) Ln
({

MαU > ε
α
n
− p

Θλ,MαG ≤ bελ
}
∩Br(ξ)

)
≤ CεLn({MαU > λ} ∩Br(ξ))
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holds for any λ > λ0 := ε
p
Θ
−1rα−n‖U‖L1(Ω) and ε small enough, where the positive

constant C depends on n, p, Λ, α, c0, r0 and diam(Ω). We deduce from (4.21) that

Ln
({

MαU > ε
α
n
− p

Θλ
}
∩Br(ξ)

)
≤ Ln({MαG > bελ} ∩Br(ξ)) + CεLn({MαU > λ} ∩Br(ξ)), ∀λ > λ0.

(4.22)

On the other hand, let us introduce two parameters defined as

(4.23) σ =
κq

κ− αq
and ϑ =

κs

κ− αq
,

then the norm of MαU in Lorentz space Lσ,ϑ(Br(ξ)) can be rewritten as below

‖MαU‖ϑLσ,ϑ(Br(ξ))
= εϑ

(
α
n
− p

Θ

)
σ

� ∞
0

λϑLn
({

MαU > ε
α
n
− p

Θλ
}
∩Br(ξ)

)ϑ
σ
dλ

λ
.

We first separate this integral over (0,∞) by two integrals over (0, λ0) and (λ0,∞) respec-

tively, then we apply (4.22) for the term over (λ0,∞), there holds

‖MαU‖ϑLσ,ϑ(Br(ξ))
≤ εϑ

(
α
n
− p

Θ

)[
σλϑ0Ln(Br(ξ))

ϑ
σ

+ Cσ

� ∞
λ0

λϑLn({MαG > bελ} ∩Br(ξ))
ϑ
σ
dλ

λ

+ Cε
ϑ
σ σ

� ∞
λ0

λϑLn({MαU > λ} ∩Br(ξ))
ϑ
σ
dλ

λ

]
.

By replacing λ0 = ε
p
Θ
−1rα−n‖U‖L1(Ω) which is defined from the beginning of the proof,

one gets that

‖MαU‖ϑLσ,ϑ(Br(ξ))

≤ Cεϑ
(
α
n
− p

Θ

) [(
ε
p
Θ
−1rα−n‖U‖L1(Ω)

)ϑ
r
nϑ
σ + b−ϑε ‖MαG‖ϑLσ,ϑ(Br(ξ))

+ ε
ϑ
σ ‖MαU‖ϑLσ,ϑ(Br(ξ))

]
.

This inequality is equivalent to the following inequality

‖MαU‖Lσ,ϑ(Br(ξ)) ≤ Cε
α
n
−1rα−n+n

σ ‖U‖L1(Ω) + Cb−1
ε ε

α
n
− p

Θ ‖MαG‖Lσ,ϑ(Br(ξ))

+ Cε
α
n
− p

Θ
+ 1
σ ‖MαU‖Lσ,ϑ(Br(ξ)).

(4.24)

For every 1 < q < Θ/p, 0 < s ≤ ∞ and α
1
q
− p

Θ
+α
n

< κ ≤ n, it is a simple matter to check

from the setting (4.23) that α
n −

p
Θ + 1

σ > 0. For this reason, one may choose ε in (4.24)

small enough such that Cε
α
n
− p

Θ
+ 1
σ < 1/2, it follows that

(4.25) ‖MαU‖Lσ,ϑ(Br(ξ)) ≤ Cr
α−n+n

σ ‖U‖L1(Ω) + C‖MαG‖Lσ,ϑ(Br(ξ)).

Thanks to (3.4) in Lemma 3.5, it gives us the existence of a constant β0 ∈ (0, 1/2] such

that under assumption κ > pq(1− β0), one has

r
κ
q
−n‖U‖L1(Ω) ≤ C‖MD

κ
q

(|F |p + |∇g|p)‖L∞(Ω).
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Combining the above inequality with (4.17) in Lemma 4.2, it follows that

(4.26) r
κ
q
−n‖U‖L1(Ω) ≤ C‖|F |p + |∇g|p‖Lq,s;κ(Ω).

Collecting between (4.25) and (4.26) and taking supremum both sides of the inequality

for 0 < % < D and ξ ∈ Ω, there holds

sup
0<%<D
ξ∈Ω

r
−α+κ

q
−n
σ ‖Mα(χB10r(ξ)(|∇u|

p))‖Lσ,ϑ(Br(ξ))

≤ C‖|F |p + |∇g|p‖Lq,s;κ(Ω) + sup
0<%<D
ξ∈Ω

r
−α+κ

q
−n
σ ‖MαG‖Lσ,ϑ(Br(ξ)).

(4.27)

We deduce from (4.27) that

‖Mα(|∇u|p)‖
L
σ,ϑ;σ

(
κ
q −α
)

(Ω)

≤ C‖|F |p + |∇g|p‖Lq,s;κ(Ω) +K,

where the second term K is given by

K = sup
0<%<D
ξ∈Ω

r
−α+κ

q
−n
σ ‖Mα(χB10r(ξ)(|F |

p + |∇g|p))‖Lσ,ϑ(Br(ξ)).

An easy computation from (4.23) shows that σ(κ/q − α) = κ which leads to

(4.28) ‖Mα(|∇u|p)‖Lσ,ϑ;κ(Ω) ≤ C‖|F |p + |∇g|p‖Lq,s;κ(Ω) +K.

Finally, the statement in (1.5) will be proved from (4.28) once we have the following

estimate

K ≤ C‖|F |p + |∇g|p‖Lq,s;κ(Ω).

This inequality is immediately observed by Lemma 4.3 and hence we complete the proof.
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