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The Discrete Case of the Mixed Joint Universality for a Class of Certain

Partial Zeta-functions

Roma Kačinskaitė and Kohji Matsumoto*

Abstract. We give a new type of mixed discrete joint universality properties, which

is satisfied by a wide class of zeta-functions. We study the universality for a certain

modification of Matsumoto zeta-functions ϕh(s) and a collection of periodic Hurwitz

zeta-functions ζ(s, α;B) under the condition that the common difference of arithmeti-

cal progression h > 0 is such that exp
{

2π
h

}
is a rational number and parameter α is

a transcendental number.

1. Introduction

In 2015, the first result on the mixed joint universality theorem for a general polyno-

mial Euler product (or a so-called Matsumoto zeta-function) ϕ(s) belonging to the Steu-

ding class S̃ and a periodic Hurwitz zeta-function ζ(s, α;B) was obtained by the authors

(see [5]). In 2017, this result was generalized to the case of the tuple consisting of one

Matsumoto zeta-function and several periodic Hurwitz zeta-functions (see [7]).

We recall the definitions of both of the above functions. Let s = σ + it be a complex

variable, and by P, N, N0, Z, Q and C denote the sets of all primes, positive integers,

non-negative integers, integers, rational numbers and complex numbers, respectively. Let

B = {bm : m ∈ N0} be a periodic sequence of complex numbers bm with a minimal period

k ∈ N, and suppose that α is a fixed real number, 0 < α ≤ 1. Then, for σ > 1, the periodic

Hurwitz zeta-function is defined by the Dirichet series

ζ(s, α;B) =
∞∑
m=0

bm
(m+ α)s

.

For σ > 1, the function ζ(s, α;B) can be expressed as a linear combination of classical

Hurwitz zeta-functions ζ(s, α) (see [10]), i.e.,

ζ(s, α;B) =
1

ks

k−1∑
l=0

blζ

(
s,
l + α

k

)
,
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from which we deduce that it can be analytically continued to the whole s-plane except

for a possible simple pole at the point s = 1 with residue b := k−1(b0 + · · ·+ bk−1).

The polynomial Euler products ϕ̃(s) or so-called Matsumoto zeta-functions are given

by the formula

(1.1) ϕ̃(s) =
∞∏
m=1

g(m)∏
j=1

(
1− a

(j)
m

p
sf(j,m)
m

)−1

for m ∈ N, g(m) ∈ N, j ∈ N, 1 ≤ j ≤ g(m), f(j,m) ∈ N, and the mth prime number pm

(see [14]). Suppose that, for non-negative constants α and β, the inequalities

g(m) ≤ C1p
α
m and |a(j)

m | ≤ pβm

hold with a positive constant C1. In view of this assumption, the right-side of the equality

(1.1) converges absolutely for σ > α+ β + 1, and in this half-plane the function ϕ̃(s) can

be presented by the Dirichlet series

ϕ̃(s) =
∞∑
k=1

c̃k
ks
,

where the coefficients c̃k satisfy an estimate c̃k = O(kα+β+ε) with every positive ε if all

prime factors of k are large (for the comments, see Appendix in [7]). For brevity, denote

the shifted version of ϕ̃(s) by

ϕ(s) := ϕ̃(s+ α+ β) =

∞∑
k=1

ck
ks
,

where ck := k−α−β c̃k. Then ϕ(s) is an absolutely convergent series for σ > 1. Also, let

the function ϕ(s) be such that

(i) it can be continued meromorphically to σ ≥ σ0, 1/2 ≤ σ0 < 1, and all poles in this

region are included in a compact set which has no intersection with the line σ = σ0,

(ii) for σ ≥ σ0, ϕ(σ + it) = O(|t|C2) holds with a positive constant C2,

(iii) it holds the mean-value estimate∫ T

0
|ϕ(σ0 + it)|2 dt = O(T ), T →∞.

We denote the set of all such ϕ(s) by M.

Now we recall the definition of the Steuding class S̃ (see [20]). We say that the function

ϕ(s) belongs to this class if the following conditions are fulfilled:
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(a) there exists a Dirichlet series expansion

ϕ(s) =
∞∑
m=1

a(m)

ms

with a(m) = O(mε) for every ε > 0;

(b) there exists σϕ < 1 such that ϕ(s) can be meromorphically continued to the half-

plane σ > σϕ, and is holomorphic except for a pole at s = 1;

(c) for every fixed σ > σϕ and ε > 0, there exists a constant C3 ≥ 0 such that

ϕ(σ + it) = O(|t|C3+ε);

(d) there exists the Euler product expansion over primes, i.e.,

ϕ(s) =
∏
p∈P

l∏
j=1

(
1− aj(p)

ps

)−1

;

(e) there exists a constant κ > 0 such that

lim
x→∞

1

π(x)

∑
p≤x
|a(p)|2 = κ,

where π(x) denotes the number of primes p not exceeding x as usual.

Denote by σ∗ the infimum of all σ1 such that

1

2T

∫ T

−T
|ϕ(σ + it)|2 dt ∼

∞∑
m=1

|a(m)|2

m2σ

holds for any σ ≥ σ1. Then 1/2 ≤ σ∗ < 1. This implies that S̃ ⊂M.

Also, throughout this paper we will use the following notation and definitions. By

H(G) we denote the space of holomorphic functions on a region G with the uniform

convergence topology (here G is any open region in the complex plane). Let K ⊂ C be

a compact set. Denote by Hc(K) the set of all C-valued continuous functions on K and

holomorphic in the interior of K, and by Hc
0(K) the subset of elements of Hc(K) which

are non-zero on K, respectively. Let D(a, b) = {s ∈ C : a < σ < b} for every a < b, and

denote by meas{A} the Lebesgue measure of the measurable set A ⊂ R, and by B(S) the

set of all Borel subsets of a topological space S.

Now we recall the statement of our first result on the mixed joint universality property,

which is of continuous character, for the functions ϕ(s) and ζ(s, α;B). This result is

Theorem 2.2 in [5] (while a more general case is contained in Theorem 4.2 in [7]).
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Theorem 1.1. (see [5]) Suppose that ϕ(s) belongs to the Steuding class S̃, and α is a

transcendental number, 0 < α < 1. Let K1 be a compact subset of D(σ∗, 1), K2 be a

compact subset of D(1/2, 1), both with connected complements. Then, for any f1(s) ∈
Hc

0(K1), f2(s) ∈ Hc(K2) and every ε > 0, it holds that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ϕ(s+ iτ)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iτ, α;B)− f2(s)| < ε

}
> 0.

This theorem shows that the set of shifts τ , with which the pair (ϕ(s + iτ), ζ(s +

iτ, α;B)) approximates the tuple of holomorphic functions (f1(s), f2(s)), is sufficiently

rich and has a positive lower density.

The mixed joint universality property of discrete character is sometimes more inter-

esting. In this case, we study an approximation of the functions when the imaginary part

of the complex variable s varies only on the values from a certain arithmetic progression

with a common difference h > 0.

In 2017, the discrete mixed joint universality for the pair (ϕ(s), ζ(s, α;B)) was proved

by the authors (see [6]) under a condition for the set

L(P, α, h) :=

{
(log p : p ∈ P),

(
log(m+ α) : m ∈ N0

)
,
2π

h

}
.

Theorem 1.2. (see [6]) Let ϕ(s), K1, K2, f1(s) and f2(s) be as in Theorem 1.1. Suppose

that the elements of the set L(P, α, h) are linearly independent over Q. Then, for every

ε > 0, it holds that

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|ϕ(s+ ikh)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ ikh, α;B)− f2(s)| < ε

}
> 0.

Here, and in what follows, N stands for a positive integer.

2. Statements of results

The main aim of this paper is to give a new type of mixed discrete joint universality

theorem for the aforementioned functions under a different condition from that in Theo-

rem 1.2. Suppose that exp
{

2π
h

}
∈ Q. Then we can write exp

{
2π
h

}
= a

b for (a, b) = 1,

a, b ∈ Z. Write the factorization of numbers a and b into primes as a = qα1
1 · · · q

αd(1)

d(1) and

b = rβ11 · · · r
βd(2)
d(2) , respectively. Put Pp = {q1, . . . , qd(1), r1, . . . , rd(2)}, and let Ph := P \ Pp.
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Denote the set of all m ∈ N such that pm ∈ Pp by Np, and let Nh := N \ Np. Also by Nm
denote the set of all m ∈ N whose all prime divisors belong to Ph.

Under the above notation, for σ > α+β+1, we define a modification of the Matsumoto

zeta-function ϕ̃(s) by the formula

ϕ̃h(s) =
∏
m∈Nh

g(m)∏
j=1

(
1− a

(j)
m

p
sf(j,m)
m

)−1

,

and by ϕh(s) we denote its shifted version, i.e., ϕh(s) := ϕ̃h(s + α + β). We call ϕ̃h(s)

and ϕh(s) the partial Matsumoto zeta-functions. Note that the difference between ϕh(s)

and ϕ(s) is only finitely many Euler factors. Therefore the function ϕh(s) satisfies the

properties (i), (ii) and (iii) too, so ϕh(s) ∈M. Moreover, if ϕ(s) ∈ S̃, then ϕh(s) ∈ S̃.

Now we are ready to give the statement of the main results in this paper. The statement

of the following theorem was announced in [6].

Theorem 2.1. Suppose that α is transcendental, h > 0, and exp
{

2π
h

}
is a rational num-

ber. Let ϕh(s) ∈ S̃. Suppose K1, K2, f1(s) and f2(s) satisfy the conditions of Theorem 1.1.

Then, for every ε > 0, it holds that

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|ϕh(s+ ikh)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ ikh, α;B)− f2(s)| < ε

}
> 0.

Remark 2.2. A typical case when the elements of L(P, α, h) are linearly independent is

that α and exp
{

2π
h

}
are algebraically independent over Q (see [2]). On the other hand,

in Theorem 2.1 we assume that exp
{

2π
h

}
is rational. Therefore the arithmetic nature of

h in Theorem 2.1 is quite different from that in Theorem 1.2.

In the present paper we will prove the following more general result, which gives the

mixed joint discrete universality of a ϕh and a collection of periodic Hurwitz zeta-functions.

Let Bj = {bmj : m ∈ N0}, j = 1, . . . , r, be periodic sequences of complex numbers with

the minimal period kj . By ζ(s, αj ;Bj) we denote the corresponding periodic Hurwitz

zeta-function, j = 1, . . . , r.

Theorem 2.3. Suppose that ϕh(s) and exp
{

2π
h

}
are as in Theorem 2.1, and the num-

bers α1, . . . , αr are algebraically independent (hence transcendental; see [17]) over Q. Let

ϕ(s) ∈ S̃, K1 be a compact subset of D(σ∗, 1), K2j be compact subset of D(1/2, 1),

j = 1, . . . , r, all of them with connected complements, and f1 ∈ Hc
0(K1), f2j ∈ Hc(K2j).
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Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|ϕh(s+ ikh)− f1(s)| < ε,

sup
1≤j≤r

sup
s∈K2j

|ζ(s+ ikh, αj ;Bj)− f2j(s)| < ε

}
> 0.

The mixed joint universality property for the tuple of different types of zeta-functions

(one having an Euler product expression and the other without them) was introduced by

Mishou in 2007 (see [16]), and independently by Steuding and Sanders in 2006 (see [19]).

They obtained that any two holomorphic functions can be approximated simultaneously

by shifts of the Riemann zeta-function ζ(s) and the Hurwitz zeta-function ζ(s, α).

Generally speaking, the concept of discrete universality was introduced by Reich stu-

dying the Dedekind zeta-functions in 1980 (see [18]). Mixed discrete joint universality

theorems for zeta-functions are interesting and complicated objects for the investigation,

because an important role is played by arithmetic properties of parameters occurring in

the theorems. Until this moment only few papers related to this problem have appeared.

In the papers [2,3,11,12], the discrete mixed joint universality for the collection of periodic

zeta-functions or its subclasses are studied. The authors’ result in [6], which is stated as

Theorem 1.2, gives a generalization of the result in [2]. While the most general result (at

this moment) for the function ϕ(s) and collection of periodic Hurwitz zeta-functions is

contained in [8].

Note that the first attempt to prove mixed discrete joint universality theorem was

made by the first author (see [4]). The proof of universality property there unfortunately

contains incompleteness, but this work is the origin of our present investigation. In fact,

Theorem 2.1 is a generalization of the “corrected” version of [4], as was mentioned in [6].

The present paper is organized in the following way. Since Theorem 2.1 is clearly a

special case of Theorem 2.3, it is enough to prove the latter. We separate its proof into

two parts: in Section 3 we prove a discrete functional limit theorem which contains the

most part of novelty of this paper, and in Section 4 we study the support of the limit

measure and give a proof of Theorem 2.3.

3. Functional discrete limit theorem

For the proof of Theorem 2.3, we adopt the well-known probabilistic method (see, for

example, [7, 13]), based on joint limit theorems. In this section, we assume ϕh(s) ∈ M,

and give a proof of a mixed joint discrete limit theorem in the sense of weakly convergent

probability measures in the space of holomorphic functions.
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The function ϕ(s) has only finitely many poles, say s1(ϕ), . . . , sl(ϕ), and let

Dϕ := {s ∈ C : σ > σ0, σ 6= <sj(ϕ), j = 1, . . . , l}.

The poles of ϕ(s) and of ϕh(s) in the region σ > σ0 exactly coincide, and hence the

functions ϕh(s) and ϕh(s + ikh) are holomorphic in Dϕ. Also, the functions ζ(s, αj ;Bj)

and ζ(s+ ikh, αj ;Bj) are holomorphic in

Dζ :=

{s ∈ C : σ > 1/2} if ζ(s, αj ;Bj) is entire for all j,

{s ∈ C : σ > 1/2, σ 6= 1} if s = 1 is a pole of ζ(s, αj ;Bj) for some j

(for the arguments, see [5]).

Put sr = (s1, s21, . . . , s2r) ∈ Cr+1, α = (α1, . . . , αr) and B = (B1, . . . ,Br). Let D1 be

an open region of Dϕ and D2 an open region of Dζ . Write

Hr := H(D1)×H(D2)× · · · ×H(D2)︸ ︷︷ ︸
r

,

where H(Dj) denotes the space of holomorphic functions defined on Dj , j = 1, 2. Let

Zhr(sr) = Zhr(sr, α,B) := (ϕh(s1), ζ(s21, α1;B1), . . . , ζ(s2r, αr;Br))

and, on (Hr,B(Hr)), define

PNhr(A) :=
1

N + 1
#
{

0 ≤ k ≤ N : Zhr(sr + ikh) ∈ A
}
, A ∈ B(H),

where sr + ikh := (s1 + ikh, s21 + ikh, . . . , s2r + ikh).

Let γ be the unit circle on the complex plane C, i.e., γ := {s ∈ C : |s| = 1}. Define

two tori

Ω1h :=
∏
p∈Ph

γph and Ω2 :=
∞∏
m=0

γm

with γph = γ for all p ∈ Ph and γm = γ for all m ∈ N0, respectively. Further define

Ωhr := Ω1h × Ω21 × · · · × Ω2r,

where Ω2j = Ω2 for all j = 1, . . . , r. By the Tikhonov theorem, the tori Ω1h and Ω2

are compact topological Abelian groups (see Lemma 5.1.5 in [9]) with probability Haar

measuresmH1h andmH2 defined on the spaces (Ω1h,B(Ω1h)) and (Ω2,B(Ω2)), respectively.

Therefore the torus Ωhr is also a compact topological Abelian group, and, on (Ωhr,B(Ωhr)),

there exists a probability Haar measure mh
Hr. Here mh

Hr := mH1h ×mH21 × · · · ×mH2r

with mH2j = mH2, j = 1, . . . , r. This leads to the probability space (Ωhr,B(Ωhr),m
h
Hr).

For the elements ω1h ∈ Ω1h and ω2j ∈ Ω2j , denote by ω1h(p) and ω2j(m) the projections

to the coordinate spaces γph for p ∈ Ph, and γm for m ∈ N0, respectively.
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Let ωhr := (ω1h, ω21, . . . , ω2r) ∈ Ωhr. For s1 ∈ D1 and ω1h ∈ Ω1h, define

ϕh(s1, ω1h) :=
∑
k∈Nm

ckω1h(k)

ks1
=
∏
k∈Nh

g(k)∏
j=1

(
1−

a
(j)
k ω1h(pk)

f(j,k)

p
(s1+α+β)f(j,k)
k

)−1

.

This series, for all ω1h ∈ Ω1h, converges absolutely for <s1 > 1. From the properties of

Dirichlet series it follows that this series converges uniformly almost surely on any compact

subsets of D1. Therefore, ϕh(s1, ω1h) is an H(D1)-valued random element defined on the

probability space (Ω1h,B(Ω1h),mH1h). On (Ω2j ,B(Ω2j),mH2j), define

ζ(s2j , αj , ω2j ;Bj) :=

∞∑
m=0

bmjω2j(m)

(m+ αj)s2j
, s2j ∈ D2, j = 1, . . . , r

for ω2j ∈ Ω2j , which is an H(D2)-valued random element (for the details, see [10]).

Now, on the probability space (Ωhr,B(Ωhr),m
h
Hr), define an Hr-valued random ele-

ment Zhr(sr, ωhr) by the formula

Zhr(sr, ωhr) = Zhr(sr, α, ωhr;B)

:=
(
ϕh(s1, ω1h), ζ(s21, α1, ω21;B1), . . . , ζ(s2r, αr, ω2r;Br)

)
.

Let PZhr denote its distribution, i.e., PZhr is the probability measure on (Hr,B(Hr))

defined by

PZhr(A) := mh
Hr

{
ωhr ∈ Ωhr : Zhr(sr, ωhr) ∈ A

}
, A ∈ B(Hr).

The aim of the present section is to show the following mixed discrete joint limit

theorem in the sense of weakly convergent probability measures in the space of holomorphic

functions.

Theorem 3.1. Let ϕh(s) ∈ M. Suppose that, for h > 0, exp
{

2π
h

}
is a rational number.

Let the numbers α1, . . . , αr be algebraically independent over Q. Then PNhr converges

weakly to PZhr as N →∞.

The basic structure of the proof of this theorem is similar to those of same type of

discrete limit theorems for ϕ(s) (Theorem 4 in [6] and Theorem 5 in [8]). Therefore we

skip some standard details, and focus onto the points which are novel and essential in the

present proof.

The first necessary lemma is the following discrete joint limit theorem on the torus

Ωhr. The assumptions of Theorem 3.1 are essentially used in the proof of this lemma.
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Lemma 3.2. Suppose that ϕh(s), exp
{

2π
h

}
and αj, j = 1, . . . , r, are as in Theorem 3.1.

Then the probability measure

QNhr(A)

:=
1

N + 1
#
{

0 ≤ k ≤ N :
(
(p−ikh : p ∈ Ph), ((m+ αj)

−ikh : m ∈ N0, j = 1, . . . , r)
)
∈ A

}
,

A ∈ B(Ωhr), converges weakly to the Haar measure mh
Hr as N →∞.

Proof. We use the well-known Fourier transform method. The Fourier transform gNhr of

the measure QNhr is defined by the formula

gNhr(k, l1, . . . , lr) =

∫
Ωhr

∏
p∈Ph

ω
kp
1h(p)

r∏
j=1

∏
m∈N0

ω
lmj

2j (m)

 dQNhr,

where k = (kp : p ∈ Ph), lj = (lmj : m ∈ N0), j = 1, . . . , r, with the condition that only a

finite number of integers kp and lmj are distinct from zero. Then, from the definition of

QNhr, we have

gNhr(k, l1, . . . , lr) =
1

N + 1

N∑
k=0

∏
p∈Ph

p−ikkph
r∏
j=1

∏
m∈N0

(m+ αj)
−iklmjh

=
1

N + 1

N∑
k=0

exp

{
− ikh

( ∑
p∈Ph

kp log p+
r∑
j=1

∑
m∈N0

lmj log(m+ αj)

)}
.

We claim that

(3.1) exp

{
− ih

( ∑
p∈Ph

kp log p+
r∑
j=1

∑
m∈N0

lmj log(m+ αj)

)}
6= 1

when (k, l1, . . . , lr) 6= (0, 0, . . . , 0). In fact, if (3.1) is not true, then

−ih

∑
p∈Ph

kp log p+
r∑
j=1

∑
m∈N0

lmj log(m+ αj)

 = 2πir

for some integer r. Then

∑
p∈Ph

kp log p+
r∑
j=1

∑
m∈N0

lmj log(m+ αj) = −2πr

h
,

and taking the exponentials, we obtain

(3.2)
∏
p∈Ph

pkp
r∏
j=1

∏
m∈N0

(m+ αj)
lmj = exp

(
−2πr

h

)
.
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Since the right-hand side is rational by the assumption, the algebraic independence of

α1, . . . , αr implies that all lmj = 0. Therefore (3.2) reduces to∏
p∈Ph

pkp = exp

(
−2πr

h

)
.

But this is impossible in view of the condition of Ph. Therefore (3.1) is valid, and so,

gNhr(k, l1, . . . , lr)

=
1

N + 1

1− exp
{
− i(N + 1)h

(∑
p∈Ph

kp log p+
∑r

j=1

∑
m∈N0

lmj log(m+ αj)
)}

1− exp
{
− ih

(∑
p∈Ph

kp log p+
∑r

j=1

∑
m∈N0

lmj log(m+ αj)
)} .

On the other hand, if (k, l1, . . . , lr) = (0, 0, . . . , 0), then the left-hand side of (3.1) is clearly

equal to 1. Thus we have

lim
N→∞

gNhr(k, l1, . . . , lr) =

1 if (k, l1, . . . , lr) = (0, 0, . . . , 0),

0 otherwise.

This and the continuity theorem for probability measures on compact groups prove the

lemma.

Suppose that σ∗1 > 1/2 is fixed, and let

v1(m,n) = exp

{
−
(m
n

)σ∗
1

}
for m,n ∈ N

and

v2(m,n, αj) = exp

{
−
(
m+ αj
n+ αj

)σ∗
1

}
for m ∈ N0, n ∈ N, j = 1, . . . , r.

Define, for n ∈ N and a fixed ω̂hr = (ω̂1h, ω̂21, . . . , ω̂2r) ∈ Ωhr,

ϕh,n(s1) :=
∑
k∈Nm

ckv1(k, n)

ks1
, ζn(s2j , αj ;Bj) :=

∑
m∈N0

bmjv2(m,n, αj)

(m+ αj)s2j
,

ϕh,n(s1, ω̂1h) :=
∑
k∈Nm

ckω̂1h(k)v1(k, n)

ks1

and

ζn(s2j , αj , ω̂2j ;Bj) :=
∑
m∈N0

bmjω̂2j(m)v2(m,n, αj)

(m+ αj)s2j
, j = 1, . . . , r.

These series are absolutely convergent when the real parts of the variables are greater than

1/2 (for the comments, see [5]). Now we consider the weak convergence of the measures

PNh,n(A) :=
1

N + 1
#
{

0 ≤ k ≤ N : Zhr,n(sr + ikh) ∈ A
}
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and

P̂Nh,n(A) :=
1

N + 1
#
{

0 ≤ k ≤ N : Zhr,n(sr + ikh, ω̂h) ∈ A
}

for A ∈ B(Hr), where

Zhr,n(sr) :=
(
ϕh,n(s1), ζn(s21, α1;B1), . . . , ζn(s2r, αr;Br)

)
and

Zhr,n(sr, ω̂hr) :=
(
ϕh,n(s1, ω̂1h), ζn(s21, α1, ω̂21;B1), . . . , ζn(s2r, αr, ω̂2r;Br)

)
.

Lemma 3.3. Suppose that the conditions of Theorem 3.1 hold. Then, for all n, PNh,n

and P̂Nh,n both converge weakly to the same probability measure, which we denote by Pn,

on (H,B(H)) as N →∞.

Proof. Because of the absolute convergence of the series for ϕh,n(s), ϕh,n(s, ω̂1h), ζn(s, αj ;

Bj) and ζn(s, αj , ω̂2j ;Bj), we can use Lemma 3.2 above and Theorem 5.1 in [1], and argue

in a way similar to the proof of Lemma 3.2 in [5] (see also Lemma 3 in [8]), to obtain the

statement of the lemma.

Now we need to pass from Zhr,n(sr) to Zhr(sr) and from Zhr,n(sr, ωhr) to Zhr(sr, ωhr),

respectively. This can be done by using the approximation method together with Lem-

ma 3.3. For this purpose, we introduce a metric on Hr.

It is known that, for any open region G ⊂ C, there exists a sequence of compact sets

{Kl : l ∈ N} ⊂ G such that G =
⋃∞
l=1Kl, Kl ⊂ Kl+1 for all l ∈ N, and, if K is a compact

set, then K ⊂ Kl for some l ∈ N. For the functions f(s), g(s) ∈ H(G), let

%G(f, g) =

∞∑
l=1

2−l
sups∈Kl

|f(s)− g(s)|
1 + sups∈Kl

|f(s)− g(s)|
.

Set %1 = %D1 and %2 = %D2 . For f = (f1, f21, . . . , f2r) and g = (g1, g21, . . . , g2r) ∈ Hr,

%(f, g) = max

{
%1(f1, g1), max

1≤j≤r
%2(f2j , g2j)

}
.

Then %(f, g) is a metric on the space Hr which induces its topology of uniform convergence

on compacta.

Lemma 3.4. Under conditions of Theorem 3.1, the following relations hold:

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

ρ
(
Zhr(sr + ikh), Zhr,n(sr + ikh)

)
= 0

and, for almost all ωhr ∈ Ωhr,

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

ρ
(
Zhr(sr + ikh, ωh), Zhr,n(sr + ikh, ωhr)

)
= 0.
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To prove this lemma, we need some elements from ergodic theory. Let

fhr =
{

(p−ih : p ∈ Ph), ((m+ αj)
−ih : m ∈ N0, j = 1, . . . , r)

}
∈ Ωhr

and, on the probability space (Ωhr,B(Ωhr),m
h
Hr), define the measurable measure-preser-

ving transformation Φhr : Ωhr → Ωhr by the formula Φhr(ωhr) = fhrωhr for ωhr ∈ Ωhr.

Recall that a set A ∈ B(Ωhr) is called invariant with respect to Φhr if the sets A and

Φhr(A) differ only by a set of zero mh
Hr-measure, and the transformation Φhr is ergodic if

its σ-field of invariant sets consists only of sets having mh
Hr-measure equal to 0 or 1.

Lemma 3.5. Suppose that α is transcendental, h > 0, and exp
{

2π
h

}
is rational. Then

the transformation Φhr is ergodic.

In the proof of this lemma, again the conditions for α and exp
{

2π
h

}
play the essential

role. Therefore we give the full details.

Proof of Lemma 3.5. Let χ be a non-trivial character of Ωh. In the proof of Lemma 3.2,

we have already known that such characters are given by

χ(ωhr) =
∏
p∈Ph

ω
kp
1h(p)

r∏
j=1

∏
m∈N0

ω
lmj

2j (m)

with only a finite number of integers kp and lmj distinct from zero, where ωhr = (ω1h, ω21,

. . . , ω2r), ω1h ∈ Ω1h, ω2j ∈ Ω2j . Therefore,

χ(fhr) = exp

{
− ih

( ∑
p∈Ph

kp log p+
r∑
j=1

∑
m∈N0

lmj log(m+ αj)

)}
.

As in the proof of Lemma 3.2 (see the equation (3.1)), under the assumptions for α and

exp
{

2π
h

}
, we have that

(3.3) χ(fhr) 6= 1

for (k, l1, . . . , lr) 6= (0, 0, . . . , 0).

Denote by IA the indicator function of the set A, and by ÎA(χ) its Fourier transforma-

tion. Let A ∈ B(Ωhr) be an invariant set of the transformation Φhr. Then we have that

IA(fhrωhr) = IA(ωhr) for almost all ωhr ∈ Ωhr. Therefore we obtain that

ÎA(χ) =

∫
Ωhr

χ(ωhr)IA(ωhr)m
h
Hr(dωhr) =

∫
Ωhr

χ(fhrωhr)IA(fhrωhr)m
h
Hr(dωhr)

= χ(fhr)

∫
Ωhr

χ(ωhr)IA(ωhr)m
h
Hr(dωhr) = χ(fhr )̂IA(χ).

Hence, in view of (3.3), for the non-trivial character χ, we have ÎA(χ) = 0.
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Now let χ0 be the trivial character of Ωhr, i.e., χ0(ωhr) = 1 for all ωhr ∈ Ωhr. Put

uA = ÎA(χ0). Taking into account the equalities

∫
Ωhr

χ(ωhr)m
h
Hr(dωhr) =

1 if χ = χ0,

0 if χ 6= χ0,

and the fact ÎA(χ) = 0 for χ 6= χ0, obviously we obtain that

ÎA(χ) = uA

∫
Ωhr

χ(ωhr)m
h
Hr(dωhr)

for every character χ of Ωhr. However the right-hand side is equal to ûA(χ) (here, we

regard uA as a constant function on Ωhr).

Since the function IA(ωh) is determined by its Fourier transform ÎA(χ), it follows that

(3.4) IA(ωhr) = uA

for almost all ωhr ∈ Ωhr. This especially implies uA = 0 or uA = 1, because IA(ωhr) only

takes the values 0 and 1. Thus from (3.4) it follows that IA(ωhr) = 0 or IA(ωhr) = 1 for

almost all ωhr ∈ Ωhr. From this we find that mh
Hr(A) = 0 or mh

Hr(A) = 1, and, therefore,

the transformation Φhr is ergodic.

Proof of Lemma 3.4. Since the properties of the function ϕh(s) are similar to those of

ϕ(s), in view of Lemma 3.5, the proof of the lemma goes in the same way as in the proof

of Lemma 3 in [6].

On (Hr,B(Hr)), for A ∈ B(Hr), define one more probability measure P̂Nhr by

P̂Nhr(A) :=
1

N + 1
#
{

0 ≤ k ≤ N : Zhr(sr + ikh, ωhr) ∈ A
}
.

Lemma 3.6. Suppose that the conditions of Theorem 3.1 are fulfilled. Then, on (Hr,

B(Hr)), there exists a probability measure Phr such that the measures PNhr and P̂Nhr both

converge weakly to Phr as N →∞.

Proof. The lemma is an analogue of Lemma 4 in [6], and can be proved similarly as

Lemma 5 in [2].

Proof of Theorem 3.1. Taking into account Lemma 3.6, the proof of Theorem 3.1 will be

completed if we can show that the limit measure Phr coincides with the measure PZhr. We

can do this, using Lemma 3.5 together with the Birkhoff–Khintchine ergodicity theorem,

in a standard way (for the details, see [9, 20]).
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4. Proof of Theorem 2.3

The deduction of Theorem 2.3 from Theorem 3.1 is now rather standard. We first need

the explicit form of the support of the measure PZhr. Recall that the support of PZhr is

a minimal closed set S ⊂ Hr such that PZhr(S) = 1.

Let ϕh(s) ∈ S̃, and K1, K2j , f1(s) and f2j(s) be as in the statement of Theorem 2.3.

We can find a real number σ0 such that σ∗ < σ0 < 1 and a positive number M > 0, such

that K1 is included in the open rectangle

DM = {s ∈ C : σ0 < σ < 1, |t| < M}.

Since ϕh(s) ∈ S̃, its pole is at most at s = 1 (as for the function ϕ(s)), then we find that

Dϕ = {s ∈ C : σ > σ0, σ 6= 1}. Therefore, DM is an open subset of Dϕ. Also we can find

T > 0 such that K2 is included in the open rectangle

DT = {s ∈ C : 1/2 < σ < 1, |t| < T}.

Now we choose D1 = DM and D2 = DT in Theorem 3.1. Denote by Sϕ the set of all

functions f ∈ H(DM ) non-vanishing on DM , or constantly equivalent to 0 on DM . As a

special case of Lemma 5.2 in [7] (when all l(j) = 1, j = 1, . . . , r, i.e., λ = r), we have

Theorem 4.1. Suppose that α1, . . . , αr are algebraically independent over Q, and exp
{

2π
h

}
is rational. Then the support of the measure PZhr is the set SZhr = Sϕ ×Hr(DT ).

To complete the proof of Theorem 2.3, we use the following well-known Mergelyan

theorem on the approximation of analytic functions by polynomials (see [15]).

Lemma 4.2. Let K ⊂ C be a compact subset with connected complement, and f(s) be a

continuous function on K which is analytic in the interior of K. Then, for every ε > 0,

there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε.

Proof of Theorem 2.3. Since the function f1(s) 6= 0 on K1, by Lemma 4.2, there exists

the polynomials p1(s) and p2j(s) such that

(4.1) sup
s∈K1

|f1(s)− ep1(s)| < ε

2
and sup

s∈K2

|f2j(s)− p2j(s)| <
ε

2
, j = 1, . . . , r.

Next we define the set

G =

{
(g1, g21, . . . , g2r) ∈ Hr : sup

s∈K1

|g1(s)− ep1(s)| < ε

2
, sup

1≤j≤r
sup
s∈K2j

|g2j(s)− p2j(s)| <
ε

2

}
,
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which is an open subset of the space Hr, and by Theorem 4.1, it is an open neighbour-

hood of (ep1(s), p21(s), . . . , p2r(s)) which is an element of the support of PZhr. Therefore,

PZhr(G) > 0. Moreover, Theorem 3.1 and an equivalent statement of the weak conver-

gence in terms of open sets (see [1]) together with the definitions of PNhr and G show

that

lim inf
N→∞

1

N + 1
#
{

0 ≤ k ≤ N : Zhr(sr + ikh) ∈ G
}
≥ PZhr(G) > 0,

or

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|ϕh(s+ ikh)− ep1(s)| < ε

2
,

sup
1≤j≤r

sup
s∈K2j

|ζ(s+ ikh, αj ;Bj)− p2j(s)| <
ε

2

}
> 0.

From the last inequality and (4.1) we obtain the assertion of Theorem 2.3.

5. Final remarks

We can generalize Theorem 2.3 to the following direction (as in [8]). Suppose that αj is

a real number such that αj ∈ (0, 1), j = 1, . . . , r. We construct the collection of periodic

Hurwitz zeta-functions ζ(s, αj ;Bjl) by, for each parameter αj , j = 1, . . . , r, attaching a

collection of periodic sequences Bjl = {bmjl ∈ C : m ∈ N0}, l = 1, . . . , l(j), where l(j) is a

positive integer.

Because the proof of the following general mixed discrete joint universality result is

quite similar to that of Theorem 2.3, we give only the statement.

Let λ := l(1) + · · ·+ l(r), and, for periodic sequence Bjl, kjl be the minimal period for

coefficients bmjl for each j = 1, . . . , r, l = 1, . . . , l(j). Let kj be the least common multiple

of periods kj1, . . . , kjl(j), and

Bj :=


b1j1 b1j2 · · · b1jl(j)

b2j1 b2j2 · · · b2jl(j)

. . . . . . . . . . . . . . . . . . . . . . . .

bkjj1 bkjj2 · · · bkjjl(j)

 , j = 1, . . . , r.

Theorem 5.1. Suppose that ϕh(s) belongs to the class S̃, exp
{

2π
h

}
is rational number

for h > 0, α1, . . . , αr are algebraically independent over Q, and rankBj = l(j), j =

1, . . . , r. Let K1 be a compact subset of D(σ∗, 1), K2jl be compact subsets of D(1/2, 1),

l = 1, . . . , l(j), all of them with connected complements. Suppose that f1(s) ∈ Hc
0(K1) and
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f2jl(s) ∈ Hc(K2jl). Then, for every ε > 0, it holds that

lim inf
N→∞

1

N + 1

{
0 ≤ k ≤ N : sup

s∈K1

|ϕh(s+ ikh)− f1(s)| < ε,

sup
1≤j≤r

sup
1≤l≤l(j)

sup
s∈K2jl

|ζ(s+ ikh, αj ;Bjl)− f2jl(s)| < ε

}
> 0.
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