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Spanning Trees with Few Peripheral Branch Vertices

Pham Hoang Ha*, Dang Dinh Hanh and Nguyen Thanh Loan

Abstract. Let T be a tree, a vertex of degree one is a leaf of T and a vertex of

degree at least three is a branch vertex of T . The set of leaves of T is denoted

by L(T ) and the set of branch vertices of T is denoted by B(T ). For two distinct

vertices u, v of T , let PT [u, v] denote the unique path in T connecting u and v.

Let T be a tree with B(T ) 6= ∅, for each vertex x ∈ L(T ), set yx ∈ B(T ) such that

(V (PT [x, yx])\{yx})∩B(T ) = ∅. We delete V (PT [x, yx])\{yx} from T for all x ∈ L(T ).

The resulting graph is a subtree of T and is denoted by R Stem(T ). It is called the

reducible stem of T . A leaf of R Stem(T ) is called a peripheral branch vertex of T .

In this paper, we give some sharp sufficient conditions on the independence number

and the degree sum for a graph G to have a spanning tree with few peripheral branch

vertices.

1. Introduction

In this paper, we only consider finite simple graphs. Let G be a graph with vertex set

V (G) and edge set E(G). For any vertex v ∈ V (G), we use NG(v) and degG(v) (or

N(v) and deg(v) if there is no ambiguity) to denote the set of neighbors of v and the

degree of v in G, respectively. For any X ⊆ V (G), we denote by |X| the cardinality of

X. Sometimes, we use |G| (and G) to denote |V (G)| (and V (G) respectively). We define

NG(X) =
⋃

x∈X NG(x) and degG(X) =
∑

x∈X degG(x). We use G − X to denote the

graph obtained from G by deleting the vertices in X together with their incident edges.

We define G− uv to be the graph obtained from G by deleting the edge uv ∈ E(G), and

G+ uv to be the graph obtained from G by adding an edge uv between two non-adjacent

vertices u and v of G. For two vertices u and v of G, the distance between u and v in G

is denoted by dG(u, v). We use Kn to denote the complete graph on n vertices. We write

A := B to rename B as A.

For an integer m ≥ 2, let αm(G) denote the number defined by

αm(G) = max{|S| : S ⊆ V (G), dG(x, y) ≥ m for all distinct vertices x, y ∈ S}.
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For an integer p ≥ 2, we define

σmp (G) = min{degG(S) : S ⊆ V (G), |S| = p, dG(x, y) ≥ m

for all distinct vertices x, y ∈ S}.

For convenience, we define σmp (G) = +∞ if αm(G) < p. We note that, α2(G) is often

written α(G), which is the independence number of G, and σ2p(G) is often written σp(G),

which is the minimum degree sum of p independent vertices.

Let T be a tree. A vertex of degree one is a leaf of T and a vertex of degree at

least three is a branch vertex of T . There are several well-known conditions (such as

independence number conditions and degree sum conditions) ensuring that a graph G

contains a spanning tree with a bounded number of leaves or branch vertices (see [1, 12,

14, 16]). Win [16] obtained a sufficient condition related to the independence number

for l-connected graphs, which confirms a conjecture of Las Vergnas [11]. Broersma and

Tuinstra [1] gave a degree sum condition for a connected graph to contain a spanning tree

with at most k leaves.

Theorem 1.1. (see Win [16]) Let l ≥ 1 and k ≥ 2 be integers and let G be an l-connected

graph. If α(G) ≤ k + l − 1, then G has a spanning tree with at most k leaves.

Theorem 1.2. (see Broerma and Tuinstra [1]) Let G be a connected graph and let k ≥ 2

be an integer. If σ2(G) ≥ |G| − k + 1, then G has a spanning tree with at most k leaves.

The set of leaves of T is denoted by L(T ) and the set of branch vertices of T is denoted

by B(T ). The subtree T − L(T ) of T is called the stem of T and is denoted by Stem(T ).

Then, many researchers studied spanning trees in connected graphs whose stems have

a bounded number of leaves or branch vertices (see [7, 8, 15, 17] for more details). We

introduce here some results on spanning trees whose stems have a few leaves or branch

vertices.

Theorem 1.3. (see Tsugaki and Zhang [15]) Let G be a connected graph and let k ≥ 2 be

an integer. If σ3(G) ≥ |G| − 2k + 1, then G has a spanning tree whose stem has at most

k leaves.

Theorem 1.4. (see Kano and Yan [7]) Let G be a connected graph and let k ≥ 2 be an

integer. If either α4(G) ≤ k or σk+1(G) ≥ |G| − k − 1, then G has a spanning tree whose

stem has at most k leaves.

Theorem 1.5. (see Kano and Yan [8]) Let G be a connected graph. If σ44(G) ≥ |G| − 5,

then G has a spanning tree whose stem is a spider.
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Theorem 1.6. (see Yan [17]) Let G be a connected graph and k be a non-negative integer.

If one of the following conditions holds, then G has a spanning tree whose stem has at

most k branch vertices.

(a) α4(G) ≤ k + 2,

(b) σ4k+3(G) ≥ |G| − 2k − 3.

On the other hand, for a positive integer t ≥ 3, a graph G is said to be a K1,t-free graph

if it contains no K1,t as an induced subgraph. If t = 3, a K1,3-free graph is also called

a claw-free graph. Many independence number conditions and degree sum conditions

ensuring that a K1,t-free graph G contains a spanning tree which (or whose stem) has a

bounded number of leaves or branch vertices have been derived (see [2, 3, 5, 6, 9, 10,13]).

In this paper, we would like to introduce a new concept on spanning tree problem. For

two distinct vertices u and v of T , let PT [u, v] denote the unique path in T connecting u

and v. Let T be a tree with B(T ) 6= ∅. For every x ∈ L(T ), set yx ∈ B(T ) such that

(V (PT [x, yx]) \ {yx}) ∩B(T ) = ∅. We delete V (PT [x, yx]) \ {yx} from T for all x ∈ L(T ).

The resulting graph is denoted by R Stem(T ). It is called the reducible stem of T . The

path that connects x to yx but does not contain yx, is called a leaf-branch path of T

incident to x and denoted by Bx. Let B =
⋃

x∈L(T ) V (Bx), then R Stem(T ) = T −B (see

Figure 1.1 for an example of T and R Stem(T )).

Figure 1.1: Tree T and R Stem(T ).

A leaf of R Stem(T ) is also called a peripheral branch vertex of T (see [12]). We denote

by P (B(T )) the peripheral branch vertex set of T . Then P (B(T )) = L(R Stem(T )).

We would like to study sufficient conditions for a graph to have a spanning tree T with

few peripheral branch vertices, i.e., R Stem(T ) has a few leaves. In particular, we state

the following theorem.
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Theorem 1.7. Let G be a connected graph and let k ≥ 2 be an integer. If one of the

following conditions holds, then G has a spanning tree with at most k peripheral branch

vertices.

(i) α(G) ≤ 2k + 2,

(ii) σ4k+1(G) ≥
⌊ |G|−k

2

⌋
.

Here, the notation brc stands for the biggest integer that does not exceed the real number r.

To end this section, we give an example to show that our main results are sharp. Let

k ≥ 2 and m ≥ 1 be integers, and let D1, D2, . . . , Dk+1 and H1, H2, . . . ,Hk+1 be 2k + 2

disjoint copies of the complete graph Km of order m. Let w, x1, x2, . . . , xk+1 be k + 2

vertices not contained in V (D1)∪V (D2)∪· · ·∪V (Dk+1)∪V (H1)∪V (H2)∪· · ·∪V (Hk+1).

Join w to all vertices of {x1, x2, . . . , xk+1} and join xi to all the vertices in V (Di)∪V (Hi)

for every 1 ≤ i ≤ k + 1. Let G denote the resulting graph (see Figure 1.2). Then

α(G) = 2k + 3.

Figure 1.2: Graph G.

Moreover, let S be a subset of V (G) such that |S| = k + 1 and dG(x, y) ≥ 4 for all

distinct vertices x, y ∈ S, then S∩(V (Di)∪V (Hi)) 6= ∅ for every 1 ≤ i ≤ k+1. Therefore,

for every 1 ≤ i ≤ k + 1, take yi ∈ V (Di) ∪ V (Hi). We then obtain

σ4k+1(G) =
k+1∑
i=1

degG(yi) = (k + 1)m =

⌊
|G| − k

2

⌋
− 1.

But G has no spanning tree with at most k peripheral branch vertices. Then, our main

results are sharp.
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Since σk+1(G) ≤ σ4k+1(G), we have a corollary of Theorem 1.7 as follows.

Corollary 1.8. Let G be a connected graph and let k ≥ 2 be an integer. If σk+1(G) ≥⌊ |G|−k
2

⌋
, then G has a spanning tree with at most k peripheral branch vertices.

We also note that in the above example, if m ≤ k + 1 then σk+1(G) = σ4k+1(G) =⌊ |G|−k
2

⌋
− 1. So, the condition σk+1(G) ≥

⌊ |G|−k
2

⌋
of Corollary 1.8 is tight.

2. Proof of the main result

Let T be a tree. For two distinct vertices u and v of T , we always define the orientation

of PT [u, v] to be from u to v. If v ∈ V (P ), then v+ and v− denote the successor and

predecessor of v on P if they exist, respectively. For any X ⊆ V (G), set (N(X) ∩
PT [u, v])− = {x− | x ∈ V (PT [u, v]) \ {u} and x ∈ N(X)} and (N(X) ∩ PT [u, v])+ = {x+ |
x ∈ V (PT [u, v]) \ {v} and x ∈ N(X)}. For an integer t ≥ 1, we let Nt(X) = {x ∈ V (G) |
|N(x) ∩X| = t}. We refer to [4] for terminology and notation not defined here.

Proof of Theorem 1.7. Suppose, to the contrary, each spanning tree of G contains at least

k+1 peripheral branch vertices. Let T = {T : T is a subgraph of G and T is a tree}, and

let Tk+1 = {T : T ∈ T and |P (B(T ))| = k + 1}. Choose a maximal tree T in Tk+1 (a tree

T in Tk+1 such that |V (T )| is maximum) which satisfies the following two conditions:

(C1) |R Stem(T )| is as small as possible,

(C2) |L(T )| is as small as possible subject to (C1).

Claim 2.1. There does not exist a tree S in G such that V (S) = V (T ) and |P (B(S))| ≤ k.

Proof. Suppose, to the contrary, there exists a tree S in G such that V (S) = V (T ) and

|P (B(S))| ≤ k. Since |P (B(S))| ≤ k, S is not a spanning tree of G. Then there exists

u ∈ V (G) − V (S) such that u is adjacent to a vertex v ∈ S. Let S1 be a tree obtained

from S by adding the edge uv. Then S1 is a tree in G such that |V (S1)| = |V (T )|+ 1 and

|P (B(S1))| ≤ k + 1.

If |P (B(S1))| = k + 1, then S1 contradicts the maximality of T (since |V (S1)| =

|V (S)|+ 1 = |V (T )|+ 1 > |V (T )|). So we may assume that |P (B(S1))| ≤ k. By repeating

this process, we can recursively construct a set of trees {Si | i ≥ 1} in G such that Si

satisfies that |P (B(Si))| ≤ k and |V (Si+1)| = |V (Si)| + 1 for each i ≥ 1. Since G has no

spanning tree with at most k peripheral branch vertices and |V (G)| is finite, the process

must terminate after a finite number of steps, i.e., there exists some h ≥ 1 such that Sh+1

is a tree in G with |P (B(Sh+1))| = k + 1. But this contradicts the maximality of T . So

the claim holds.
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Set P (B(T )) = {x1, x2, . . . , xk+1}. By the definition of peripheral branch vertex, we

have the following claim.

Claim 2.2. For every i ∈ {1, 2, . . . , k + 1}, there exist at least two leaf-branch paths of T

which are incident to xi.

Now we will prove the following two claims to show that α(G) ≥ 2k + 3.

Claim 2.3. For each i ∈ {1, 2, . . . , k + 1}, there exist yi, zi ∈ L(T ) such that Byi , Bzi are

incident to xi and NG(yi) ∩ (V (R Stem(T )) − {xi}) = ∅ and NG(zi) ∩ (V (R Stem(T )) −
{xi}) = ∅.

Proof. Let {aij}mj=1 be the subset of L(T ) such that Baij is incident to xi. By Claim 2.2,

we obtain m ≥ 2.

Suppose that there are more than m− 2 vertices in {aij}mj=1 satisfying

NG(aij) ∩ (V (R Stem(T ))− {xi}) 6= ∅.

Without loss of generality, we may assume that NG(aij)∩(V (R Stem(T ))−{xi}) 6= ∅ for all

j = 2, . . . ,m. Set bij ∈ NG(aij)∩ (V (R Stem(T ))−{xi}) and vij ∈ NT (xi)∩V (PT [aij , xi])

for all j ∈ {2, . . . ,m}. Consider the tree

T ′ := T + {aijbij}mj=2 − {xivij}mj=2.

Then T ′ satisfies |V (T ′)| = |V (T )|, |P (B(T ′))| ≤ |P (B(T ))| and |R Stem(T ′)| <
|R Stem(T )|, where xi is not in V (R Stem(T ′)). This contradicts either Claim 2.1 or

Condition (C1). Therefore, Claim 2.3 holds.

Set U = {yi, zi}k+1
i=1 . By the maximality of T we have NG(U) ⊆ V (T ).

Claim 2.4. U is an independent set in G.

Proof. Suppose that there exist two vertices u, v ∈ U such that uv ∈ E(G). Without loss

of generality, we may assume that v = yi for some i ∈ {1, 2, . . . , k+ 1}. Set vi ∈ NT (xi)∩
V (Byi). Consider the tree T ′ := T + uyi − vixi. Then V (T ′) = V (T ) and |P (B(T ′))| ≤
|P (B(T ))|. If degT (xi) = 3 then xi is not a branch vertex of T ′. Hence |R Stem(T ′)| <
|R Stem(T )|, this contradicts either Claim 2.1 or Condition (C1). Otherwise, we have

|P (B(T ′))| = |P (B(T ))|, |R Stem(T ′)| = |R Stem(T )| and |L(T ′)| < |L(T )|, where either

T ′ has only one new leaf and yi, u are not leaves of T ′ or yi is still a leaf of T ′ but T ′

has no new leaf and u is not a leaf of T ′. This contradicts Condition (C2). The proof of

Claim 2.4 is completed.

Since k ≥ 2, then |L(R Stem(T ))| = |P (B(T ))| ≥ 3. Hence, we have |B(R Stem(T ))|
≥ 1. Let u be a vertex in B(R Stem(T )). By Claims 2.3 and 2.4, we conclude that U ∪{u}
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is an independent set in G. This implies that α(G) ≥ 2k+ 3. As either α(G) ≤ 2k+ 2, or

σ4k+1(G) ≥
⌊ |G|−k

2

⌋
, we conclude that σ4k+1(G) ≥

⌊ |G|−k
2

⌋
.

Claim 2.5. For every i, j ∈ {1, 2, . . . , k + 1} where i 6= j, NG(yi) ∩ V (Byj ) = ∅ and

NG(yi) ∩ V (Bzj ) = ∅.

Proof. By the same role of yj and zj , we only need to prove NG(yi)∩V (Byj ) = ∅. Suppose

the assertion of the claim is false. Then there exists a vertex x ∈ NG(yi) ∩ V (Byj ). Set

T ′ := T + xyi. Then T ′ is a subgraph of G including a unique cycle C, which contains

both xi and xj .

Since k ≥ 2, then |L(R Stem(T ))| = |P (B(T ))| ≥ 3. Hence, we obtain |B(R Stem(T ))|
≥ 1. Then there exists a branch vertex of R Stem(T ) contained in C. Let e be an edge

incident to such a vertex in C and R Stem(T ). By removing the edge e from T ′ we obtain

a tree T ′′ of G satisfying V (T ′′) = V (T ) and |P (B(T ′′))| ≤ k, the reason is that either

R Stem(T ′′) has only one new leaf and xi, xj are not leaves of R Stem(T ′′) or xi (or xj)

is still a leaf of R Stem(T ′′) but R Stem(T ′′) has no new leaf and xj (or xi respectively)

is not a leaf of R Stem(T ′′). This is a contradiction with Claim 2.1. So Claim 2.5 is

proved.

Claim 2.6. For every 1 ≤ i < j ≤ k + 1, dG(yi, yj) ≥ 4 and dG(zi, zj) ≥ 4.

Proof. We first prove that dG(yi, yj) ≥ 4. Let P [yi, yj ] be a shortest path connecting yi and

yj in G. Assume that all vertices of P [yi, yj ] are contained in (V (G)− V (R Stem(T ))) ∪
{xi, xj}.

Let ti ∈ Byi ∪ {xi}, tj ∈ Byj ∪ {xj} such that ti, tj ∈ P [yi, yj ] and

PP [yi,yj ][ti, tj ] ∩Byi = {ti}, PP [yi,yj ][ti, tj ] ∩Byj = {tj}.

Set P [ti, tj ] := PP [yi,yj ][ti, tj ]. For every vertex p ∈ L(T ) such that Bp ∩ P [ti, tj ] 6= ∅.
Let vp ∈ B(T ) such that (V (PT [p, vp]) \ {vp}) ∩ B(T ) = ∅. Let v−p ∈ V (Bp) ∩ NT (vp).

Remove all the edges vpv
−
p of T and add P [ti, tj ]. Then the resulting subgraph T ′ of

G includes a unique cycle C, which contains the vertices xi and xj . Since k ≥ 2, then

|L(R Stem(T ))| = |P (B(T ))| ≥ 3. Hence, we obtain |B(R Stem(T ))| ≥ 1. Then, there

exists a branch vertex u of R Stem(T ) contained in C. Let e be an edge in C which

is incident to u. Denote by T ′′ the tree obtained from T ′ by removing the edge e (see

Figure 2.1). Then V (T ) ⊆ V (T ′) = V (T ′′) and |P (B(T ′′))| ≤ k, where either R Stem(T ′′)

has only one new leaf and xi, xj are not leaves of R Stem(T ′′) or xi (or xj) is still a leaf

of R Stem(T ′′) but R Stem(T ′′) has no new leaf and xj (or xi respectively) is not a leaf

of R Stem(T ′′). This contradicts either the maximality of T or Claim 2.1. Therefore,
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P [yi, yj ] ∩ (R Stem(T )− {xi, xj}) 6= ∅. Set v ∈ P [yi, yj ] ∩ (R Stem(T )− {xi, xj}). Hence,

by combining with Claim 2.3, we obtain

dG(yi, yj) = dP [yi,yj ](yi, yj) ≥ dP [yi,yj ](yi, v) + dP [yi,yj ](v, yj) ≥ 2 + 2 = 4.

Now, using the same arguments, we also obtain that dG(zi, zj) ≥ 4. This completes the

Figure 2.1: Tree T ′′.

proof of Claim 2.6.

Claim 2.7. If p ∈ L(T )− U , then
∑

u∈U |NG(u) ∩Bp| ≤ |Bp| − 1.

Proof. Set vp ∈ B(T ) such that (V (PT [p, vp]) \ {vp}) ∩B(T ) = ∅. Let V (Bp) ∩NT (vp) =

{v−p }. Then we consider Bp = PT [p, v−p ].

Subclaim 2.7.1. For every i ∈ {1, 2, . . . , k + 1}, if x ∈ NG(yi) ∩ Bp then x− /∈ NG(U −
{yi}) ∩Bp.

Suppose that there exists x− ∈ NG(z)∩Bp with z ∈ U−{yi}. Let T ′ := T+{xyi, x−z}−
{xx−, vpv−p }. Then T ′ is a tree in G satisfying V (T ′) = V (T ), |P (B(T ′))| = |P (B(T ))|,
|R Stem(T ′)| = |R Stem(T )| and |L(T ′)| < |L(T )|, where yi, z are not leaves of T ′ (see

Figure 2.2). Hence this contradicts Condition (C2).

Subclaim 2.7.2. If x ∈ Bp, then x is adjacent to at most 2 vertices in U .

Indeed, we can prove a stronger statement that if x ∈ NG(yi)∩Bp then x /∈ NG(yj)∩Bp

and x /∈ NG(zj) ∩ Bp for all 1 ≤ i, j ≤ k + 1, i 6= j. Suppose, to the contrary, there exist

i and j, with 1 ≤ i, j ≤ k + 1, i 6= j, such that x ∈ NG(yi) ∩ Bp and x ∈ NG(w),

where w = yj or w = zj . Without loss of generality, we assume that w = yj . Set

T ′ := T +{xyi, xyj}−{vpv−p }. Then T ′ is a subgraph of G that includes a unique cycle C,

which contains two vertices xi and xj . Since k ≥ 2, then |L(R Stem(T ))| = |P (B(T ))| ≥ 3.
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Figure 2.2: Tree T ′.

Hence, we obtain |B(R Stem(T ))| ≥ 1. Then, there exists a branch vertex of R Stem(T )

contained in C. Let e be an edge which is incident to such a vertex in C. By removing

the edge e we obtain a tree T ′′ of G (see Figure 2.3).

Figure 2.3: Tree T ′′.

Then V (T ′′) = V (T ) and |P (B(T ′′))| ≤ k, where xi and xj are not leaves of R Stem(T ′′).

This contradicts either the maximality of T or Claim 2.1. Therefore, we have |U∩NG(x)| ≤
2. The proof of Subclaim 2.7.2 is completed.

Subclaim 2.7.3. p /∈ NG(U) and v−p /∈ NG(U).

Suppose, to the contrary, z ∈ NG(yi) for some z ∈ {p, v−p } and yi ∈ U . Consider

the tree T ′ := T + yiz − vpv
−
p . Then T ′ is a tree in G satisfying V (T ′) = V (T ),

|P (B(T ′))| = |P (B(T ))|, |R Stem(T ′)| = |R Stem(T )| and |L(T ′)| < |L(T )|. This con-

tradicts Condition (C2). Therefore, Subclaim 2.7.3 holds.

Now, by Subclaims 2.7.1–2.7.3 we conclude that {p}, NG(yi)∩Bp, (NG(U−{yi})∩Bp)
+

and (N2(U) − N(yi)) ∩ Bp are pairwise disjoint subsets in Bp for every 1 ≤ i ≤ k + 1.

Recall that N3(U) ∩ Bp = ∅ by Subclaim 2.7.2. Then by combining with Subclaim 2.7.3
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we obtain∑
u∈U
|NG(u) ∩Bp| = |NG(yi) ∩Bp|+ |NG(U − {yi}) ∩Bp|+ |(N2(U)−N(yi)) ∩Bp|

= |NG(yi) ∩Bp|+ |(NG(U − {yi}) ∩Bp)
+|+ |(N2(U)−N(yi)) ∩Bp|

≤ |Bp| − 1.

Claim 2.7 is proved.

Claim 2.8. For every 1 ≤ i ≤ k + 1,
∑

u∈U |NG(u) ∩Byi | ≤ |Byi | − 1 and
∑

u∈U |NG(u) ∩
Bzi | ≤ |Bzi | − 1.

Proof. By the same role of yi and zi, we only need to prove
∑

u∈U |NG(u)∩Byi | ≤ |Byi |−1.

Set V (Byi) ∩NT (xi) = {x−i }. Now we consider Byi = PT [yi, x
−
i ].

By Claim 2.5, we obtain the following.

Subclaim 2.8.1. NG(U) ∩Byi = NG({yi, zi}) ∩Byi .

Subclaim 2.8.2. If x ∈ NG(yi) ∩Byi then x− /∈ NG(zi) ∩Byi .

Suppose that there exists x ∈ NG(yi) ∩ Byi such that x− ∈ NG(zi) ∩ Byi . Consider

the tree T ′ := T + {xyi, zix−} − {xx−, x−i xi}. Then V (T ′) = V (T ) and |P (B(T ′))| ≤
|P (B(T ))|. If degT (xi) = 3 then xi is not a branch vertex of T ′. Hence |R Stem(T ′)| <
|R Stem(T )|, this contradicts either Claim 2.1 or Condition (C1). Otherwise, we have

|P (B(T ′))| = |P (B(T ))|, |R Stem(T ′)| = |R Stem(T )| and |L(T ′)| < |L(T )|, where yi

and zi are not leaves of T ′. This is a contradiction with Condition (C2). Therefore,

Subclaim 2.8.2 holds.

Subclaim 2.8.3. x−i /∈ NG(zi).

Suppose, to the contrary, x−i zi ∈ E(G). Consider the tree T ′ := T + x−i zi − xix
−
i .

Then T ′ is a tree in G satisfying V (T ′) = V (T ), |P (B(T ′))| = |P (B(T ))|, |R Stem(T ′)| =
|R Stem(T )| and |L(T ′)| < |L(T )|, where zi is not a leaf of T ′. This contradicts Condi-

tion (C2). Therefore, Subclaim 2.8.3 holds.

By Subclaims 2.8.1–2.8.3, we conclude that {yi}, NG(yi) ∩ Byi and (NG(zi) ∩ Byi)
+

are pairwise disjoint subsets in Byi . Combining with Subclaim 2.8.1, we have∑
u∈U
|NG(u) ∩Byi | = |NG(yi) ∩Byi |+ |NG(zi) ∩Byi |

= |NG(yi) ∩Byi |+ |(NG(zi) ∩Byi)
+| ≤ |Byi | − 1.

This completes the proof of Claim 2.8.

By Claims 2.3, 2.7 and 2.8, we obtain that

degG(U) =

k+1∑
i=1

(degG(yi) + degG(zi))
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≤
k+1∑
i=1

(|Byi | − 1) +
k+1∑
i=1

(|Bzi | − 1) +
∑

p∈L(T )−U

(|Bp| − 1) + 2(k + 1)

= |G| − |R Stem(T )| − |L(T )− U |

≤ |G| − |R Stem(T )|.

On the other hand, since k ≥ 2, then |L(R Stem(T ))| = |P (B(T ))| = k + 1 ≥ 3. Hence,

we obtain |B(R Stem(T ))| ≥ 1. So we have |R Stem(T )| ≥ k + 2. Hence

k+1∑
i=1

degG(yi) +
k+1∑
i=1

degG(zi) ≤ |G| − k − 2

=⇒ min

{
k+1∑
i=1

degG(yi),

k+1∑
i=1

degG(zi)

}
≤
⌊
|G| − k − 2

2

⌋
.

Combining with Claim 2.6, we obtain

σ4k+1(G) ≤ min

{
k+1∑
i=1

degG(yi),

k+1∑
i=1

degG(zi)

}
≤
⌊
|G| − k

2

⌋
− 1.

Thus, G does not satisfy either the condition α(G) ≤ 2k+2, or the condition σ4k+1(G) ≥⌊ |G|−k
2

⌋
, a contradiction. Therefore, G has a spanning tree with at most k peripheral

branch vertices if either α(G) ≤ 2k + 2, or σ4k+1(G) ≥
⌊ |G|−k

2

⌋
.

The proof of Theorem 1.7 is completed.
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