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Radial Limits of Nonparametric PMC Surfaces with Intermediate Boundary

Curvature

Mozhgan Nora Entekhabi and Kirk Eugene Lancaster*

Abstract. The influence of the geometry of the domain on the behavior of general-

ized solutions of Dirichlet problems for elliptic partial differential equations has been

an important subject for over a century. We investigate the boundary behavior of

variational solutions f of Dirichlet problems for prescribed mean curvature equations

in a domain Ω ⊂ R2 near a point O ∈ ∂Ω under different assumptions about the

curvature of ∂Ω on each side of O. We prove that the radial limits at O of f exist

under different assumptions about the Dirichlet boundary data φ, depending on the

curvature properties of ∂Ω near O.

1. Introduction

Let Ω be a bounded, locally Lipschitz domain in R2 and define Nf = ∇ · Tf = div(Tf),

where f ∈ C2(Ω) and Tf = ∇f√
1+|∇f |2

. Let H ∈ C1,λ(Ω) for some λ ∈ (0, 1) and satisfy

the condition ∣∣∣∣∫
Ω
Hη dx

∣∣∣∣ ≤ 1

2

∫
Ω
|Dη| dx for all η ∈ C1

0 (Ω)

(e.g., see [14, (16.60)] and [15]). We wish to study the following

Dirichlet problem. Let φ ∈ L∞(∂Ω). Find a function f ∈ C2(Ω)∩C0(Ω) which satisfies

Nf = 2H in Ω,(1.1)

f = φ on ∂Ω.(1.2)

If φ ∈ C0(∂Ω) and a function f ∈ C2(Ω) ∩ C0(Ω) exists which satisfies (1.1)–(1.2),

this is a classical solution and, in this case, every appropriate approximate solution (e.g.,

Perron solutions, variational solution, viscosity solutions) will equal this classical solution.

The geometry of Ω plays a critical role with regard to the existence of classical solutions

when φ ∈ C0(∂Ω). For some choices of domain Ω and boundary data φ, no classical
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solution of (1.1)–(1.2) exists; when H ≡ 0, much of the history (up to 1985) of this

topic can be found in Nitsche’s book [24] (e.g., §285, 403–418) and, for general H, one

might consult [26]. (Appropriate “smallness of φ” conditions can imply the existence

of classical solutions when Ω is not convex in the H ≡ 0 case (e.g., [24, §285 & §412]

and [17, 25, 27, 28]) or when ∂Ω does not satisfy appropriate curvature conditions in the

general case (e.g., [1,16,22]); however see [24, §411]. In [2], Bourni assumes ∂Ω and φ are

(C1,α) smooth, ignores the geometry of Ω and characterizes the “graph” of a variational

solution which may include portions of the boundary cylinder ∂Ω×R; in comparison, we

do not assume any regularity for our boundary data φ and focus on the closure in Ω× R
of the graph of f over Ω.)

We wish to investigate the effects of the geometry of Ω on the behavior of a variational

solution f of (1.1)–(1.2) near a point O ∈ ∂Ω; ∂Ω might be smooth or have a corner

at O or φ might be discontinuous at O. For convenience, we assume O = (0, 0). In

many cases, the approximate solution is unique since if f, g ∈ C2(Ω) both satisfy (1.1)

and f = g almost everywhere on ∂Ω, then f = g in Ω (e.g., [12, Theorem 5.1]); see, for

example, [7, 645-6]) for a discussion of when Perron and variational solutions exist.

Let α and β, α < β < α+ 2π, be the angles which the tangent rays to ∂Ω at O make

with the positive x-axis such that

{(r cos θ, r sin θ) : 0 < r < ε(θ), α < θ < β} ⊂ Ω ∩Bδ(O)

for some δ > 0 and some function ε(·) : (α, β) → (0, δ), and β − α ∈ (0, 2π) is the size of

the “corner” at O of ∂Ω. Here and throughout this note, we adopt the sign convention

that the curvature of ∂Ω is nonnegative when Ω is convex and we denote by Λ(x) the

curvature of ∂Ω at points x ∈ ∂Ω at which ∂Ω is smooth. Our primary interest is in the

existence and behavior of the radial limits at O,

Rf(θ) = lim
r↓0

f(r cos θ, r sin θ),

of a solution f ∈ C2(Ω) of (1.1); the existence of radial limits when H ≡ 0 was established

in [18] (see also [6, 8, 19]) and this was extended to general H in [7] (see also [9, 10, 21]).

When Γ is a C2,λ open subset of ∂Ω for some λ ∈ (0, 1), O ∈ Γ, H ≡ 0 and f is a

variational solution of (1.1)–(1.2), the following is known:

(i) If Λ(O) < 0, then Rf(θ) exists for every θ ∈ [α, β] no matter how badly discontinuous

φ is at O (see [11, Theorem 1.1]);

(ii) If Λ(O) > 0, then there exist φ ∈ L∞(∂Ω) ∩ C∞(∂Ω \ {O}) such that Rf(θ) does

not exist for any θ ∈ (α, β) (i.e., [20]);



Influence of Curvature 601

(iii) If Rf(θ) exists for some θ0 ∈ [α, β], then Rf(θ) exists for every θ ∈ (α, β) (i.e., [9,

Theorem 2]);

(iv) If Λ(O) = 0, then the existence of Rf(θ) is unknown (but see [11, Theorem 1.1]);

(v) If φ is continuous at O or has a jump discontinuity at O and Λ(x) ≥ 0 for all x ∈ Γ

near O, then Rf(θ) exists for every θ ∈ [α, β] (see [18,19]).

The equivalent statements when H 6≡ 0 are

(vi) If Λ(O) < −2|H(O)|, then Rf(θ) exists for every θ ∈ [α, β] no matter how badly

discontinuous φ is at O (see [11, Theorem 1.1]);

(vii) If Λ(O) > 2|H(O)|, then there exist φ ∈ L∞(∂Ω) ∩ C∞(∂Ω \ {O}) such that Rf(θ)

does not exist for any θ ∈ (α, β) (i.e., [21, Theorem 3]);

(viii) If Rf(θ) exists for some θ0 ∈ [α, β], then Rf(θ) exists for every θ ∈ (α, β) (i.e., [9,

Theorem 2]);

(ix) If −2|H(O)| ≤ Λ(O) < 2|H(O)|, then the existence of Rf(θ) is unknown;

(x) If φ is continuous at O or has a jump discontinuity at O and Λ(x) ≥ |H(x)| for all

x ∈ Γ near O, then Rf(θ) exists for every θ ∈ [α, β] (see [7, 19]).

Our goals here are to determine what happens in case (ix) when ∂Ω is smooth near O and

to determine the effects of the value of the curvature Λ(x) on each side of O when ∂Ω is

not smooth at O (i.e., β − α 6= π).

2. Preliminaries and theorems

Let us assume that Bδ(O) ∩ ∂Ω \ {O} consists of two components, ∂−Ω and ∂+Ω, which

are smooth (i.e., C2,λ for some λ ∈ (0, 1)) curves, ∂−Ω is tangent to the ray θ = α at O
and ∂+Ω is tangent to the ray θ = β at O; here (r, θ) represents polar coordinates about O
and Bδ(O) = {x ∈ R2 : |x−O| < δ}. We assume ∂−Ω is an (open) subset of a C2,λ-curve

Σ− which contains O as an interior point and ∂+Ω is an (open) subset of a C2,λ-curve Σ+

which contains O as an interior point; if β−α = π, we assume Σ− = Σ+ (see Figure 2.1).

Figure 2.1: Σ± when β − α > π (left); Σ± when β − α < π (right).
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Let f ∈ BV (Ω) ∩ C2(Ω) minimize the functional

(2.1) J(h) =

∫
Ω

√
1 + |Dh|2 +

∫
Ω

2Hhdx +

∫
∂Ω
|u− φ| dH1

for h ∈ BV (Ω), so that f is the variational solution of (1.1)–(1.2). (Our focus is local (near

O); if Ω was not bounded, we would consider f ∈ C2(Ω) to be a generalized variational

solution or just argue as in [21].) Let Rf(θ) denote the radial limit of f at O in the

direction θ ∈ (α, β),

Rf(θ) = lim
r↓0

f(r cos θ, r sin θ),

and set Rf(α) = lim∂−Ω3x→O f
∗(x) and Rf(β) = lim∂+Ω3x→O f

∗(x) when these limits

exist, where f∗ denotes the trace of f on ∂Ω. In [9] (together with [5]), the following two

results were proven.

Proposition 2.1. (see [9, Theorem 1] and [5]) Let f ∈ C2(Ω) ∩ L∞(Ω) satisfy (1.1) and

suppose β − α > π. Then for each θ ∈ (α, β), Rf(θ) exists and Rf(·) is a continuous

function on (α, β) which behaves in one of the following ways:

(i) Rf is a constant function and all nontangential limits of f at O exist.

(ii) There exist α1, α2 ∈ [α, β] with α1 < α2 such that

Rf(θ) is


constant for α < θ ≤ α1,

strictly monotonic for α1 ≤ θ ≤ α2,

constant for α2 ≤ θ < β.

(iii) There exist α1, α2 and θ0 with α ≤ α1 < θ0 < θ0 + π < α2 ≤ β such that

Rf(θ) is



constant for α < θ ≤ α1,

strictly increasing (decreasing) for α1 ≤ θ ≤ θ0,

constant for θ0 ≤ θ ≤ θ0 + π,

strictly decreasing (resp. increasing) for θ0 + π ≤ θ ≤ α2,

constant for α2 ≤ θ < β.

Proposition 2.2. (see [9, Theorem 2] and [5]) Let f ∈ C2(Ω) ∩ L∞(Ω) satisfy (1.1) and

suppose m = lim∂−Ω3x→O f(x) exists. Then for each θ ∈ (α, β), Rf(θ) exists and Rf(·)
is a continuous function on [α, β), where Rf(α) := m. If β − α ≤ π, Rf can behave as

in (i) or (ii) in Proposition 2.1. If β − α > π, Rf can behave as in (i), (ii) or (iii) in

Proposition 2.1.
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We shall prove

Theorem 2.3. Let f be the variational solution of (1.1)–(1.2). Suppose Γ ⊂ ∂Ω is a C2,λ

(open) curve for some λ ∈ (0, 1), O ∈ Γ, H is non-negative or non-positive in a neighbor-

hood of O and Λ(O) < 2|H(O)|. Then Rf(θ) exists for each θ ∈ (α, β), Rf ∈ C0((α, β))

and Rf behaves as in (i) or (ii) in Proposition 2.1. Further, if Λ(O) < −2|H(O)|,
then Rf(α) and Rf(β) both exist, Rf ∈ C0([α, β]), and, in case (i) in Proposition 2.1,

f ∈ C0(Ω ∪ {O}).

Example 2.4. Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1, x > 0} and set H = 1/2 and

φ(x, y) = sin
(

π
x2+y2

)
for (x, y) 6= O = (0, 0). Let f ∈ C2(Ω) minimize (2.1) over BV (Ω).

Then Theorem 2.3 implies that the radial limit Rf(θ) exists for each θ ∈ (−π/2, π/2) even

though φ has no limit at O. The symmetry of the problem then implies that Proposi-

tion 2.1(ii) cannot hold and so the radial limits are all the same and f has a nontangential

limit at O.

Theorem 2.5. Let f ∈ L∞(Ω) ∩C2(Ω) minimize (2.1) over BV (Ω) (i.e., f is the varia-

tional solution of (1.1)–(1.2)). Suppose H is non-negative or non-positive in a neighbor-

hood of O,

(2.2) lim sup
∂±Ω3x→O

(Λ(x)− 2|H(x)|) < 0

and, if β − α < π, m = lim∂−Ω3x→O f(x) exists. Then Rf(θ) exists for each θ ∈ (α, β)

and Rf ∈ C0(α, β).

(a) If β − α ≤ π, Rf behaves as in (i) or (ii) in Proposition 2.1.

(b) If β − α > π, Rf behaves as in (i), (ii) or (iii) in Proposition 2.1.

If, in addition, lim sup∂±Ω3x→O(Λ(x) + 2|H(x)|) < 0, then Rf(α) and Rf(β) both exist,

Rf ∈ C0([α, β]), and, in case (i) in Proposition 2.1, f ∈ C0(Ω ∪ {O}).

As noted previously (e.g., [9]), the “gliding hump” construction (which depends on the

existence of classical solutions of (1.1)–(1.2)) cannot be successfully used when β−α > π.

When β − α < π and (2.2) holds, local barriers for (1.1)–(1.2) do not exist on ∂±Ω and

the “gliding hump” construction in [20] and [21, Theorem 3] cannot be directly used in

Ω. One easily sees that this construction can be used to obtain a solution g ∈ C2(Ω0) of

(1.1) such that none of the radial limits Rg(θ) of g at O exist whenever O ∈ ∂Ω0 and Ω0

is a domain for which the Dirichlet problem has local barriers at each point of ∂Ω0; let

us assume as in [21, Theorem 3] that H = 1/2 and Ω0 is the disk of radius 1 centered

at (1, 0). If we rotate Ω about O so Ω ∩ Bδ(O) ⊂ Ω0 and β = −α < π/2, define φ = g

on ∂(Bδ(O) ∩ Ω) and set f = g in Ω ∩ Bδ(O), then f ∈ C2(Ω ∩ Bδ(O)) satisfies (1.1),
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φ ∈ L∞(∂(Bδ(O) ∩ Ω)) ∩ C∞(∂(Bδ(O) ∩ Ω) \ {O}) and none of the radial limits Rf(θ),

α ≤ θ ≤ β, of f at O exist (see Figure 2.2(a)). This shows the necessity of the assumption

that lim∂−Ω3x→O f(x) exists when β−α < π, although if Rf(σ) exists for any σ ∈ (α, β),

we can split Ω into two pieces (see Figure 2.2(b)), apply [9, Theorem 2] twice and see that

Rf(θ) exists for all θ ∈ (α, β) (which justifies (iii) & (viii) in §1).

Figure 2.2: (a) Ω ∩Bδ(O) ⊂ Ω0, (b) Rf(σ) exists, σ > 0.

3. Proofs

Let Q be the operator on C2(Ω) given by

(3.1) Qf(x) := Nf(x)− 2H(x), x ∈ Ω.

Let ν be the exterior unit normal to ∂Ω, defined almost everywhere on ∂Ω. At every

point y ∈ ∂Ω for which ∂Ω is a C1 curve in a neighborhood of y, ν̂ denotes a continuous

extension of ν to a neighborhood of y. Finally we adopt the convention used in [3, p. 178]

with regard to the meaning of phrases like “Tψ(y) · ν(y) = 1 at a point y ∈ ∂Ω” and the

notation, definitions and conventions used in [11], including upper and lower Bernstein

pairs (U±, ψ±), which we quote below.

Definition 3.1. Given a locally Lipschitz domain Ω, an upper Bernstein pair (U+, ψ+)

for a curve Γ ⊂ ∂Ω and a function H in (3.1) is a domain U+ and a function ψ+ ∈
C2(U+)∩C0(U+) such that Γ ⊂ ∂U+, ν is the exterior unit normal to ∂U+ at each point

of Γ (i.e., U+ and Ω lie on the same side of Γ), Qψ+ ≤ 0 in U+, and Tψ+ · ν = 1 almost

everywhere on Γ in the same sense as in [3]; that is, for almost every y ∈ Γ,

lim
U+3x→y

∇ψ+(x) · ν̂(x)√
1 + |∇ψ+(x)|2

= 1.

Definition 3.2. Given a domain Ω as above, a lower Bernstein pair (U−, ψ−) for a curve

Γ ⊂ ∂Ω and a function H in (3.1) is a domain U− and a function ψ− ∈ C2(U−)∩C0(U−)

such that Γ ⊂ ∂U−, ν is the exterior unit normal to ∂U− at each point of Γ (i.e., U− and

Ω lie on the same side of Γ), Qψ− ≥ 0 in U−, and Tψ− · ν = −1 almost everywhere on Γ

(in the same sense as above).
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The argument which establishes [14, Corollary 14.13], together with boundary regu-

larity results (e.g., [2, 23]), are noted in [11, Remark 1] and imply the following

Lemma 3.3. Suppose ∆ is a C2,λ domain in R2 for some λ ∈ (0, 1), y ∈ ∂Ω and

Λ(y) < 2|H(y)|, where Λ(y) denotes the curvature of ∂∆ at y. If H is non-negative in

U ∩ Ω for some neighborhood U of y, then there exist τ > 0 and an upper Bernstein pair

(U+, ψ+) for (Γ, H), where Γ = Bτ (y)∩ ∂Ω and U+ = Bτ (y)∩Ω. If H is non-positive in

U ∩ Ω for some neighborhood U of y, then there exist τ > 0 and a lower Bernstein pair

(U−, ψ−) for (Γ, H), where Γ = Bτ (y) ∩ ∂Ω and U− = Bτ (y) ∩ Ω.

Proof of Theorem 2.3. The claims in the last sentence of the theorem follow from [11,

Theorem 1.1]. Since the remainder of the conclusion of the theorem concerns interior

radial limits, we may assume that f ∈ C0(Ω \ {O}) (i.e., f ∈ C2(Ω) and, if necessary, we

could replace Ω by a set U ⊂ Ω such that ∂U ∩ ∂Ω = {O}, ∂U has the same tangent rays

at O as does ∂Ω and the curvature Λ∗ of ∂U satisfies Λ∗(O) < 2|H(O)|).
Let z1 = lim infΩ3x→O f(x) and z2 = lim supΩ3x→O f(x); if z1 = z2, then Proposi-

tion 2.1(i) holds and thus we assume z1 < z2. Set S0 = {(x, f(x)) : x ∈ Ω}. Since f

minimizes J in (2.1), we see that the area of S0 is finite; let M0 denote this area. For

δ ∈ (0, 1), set

p(δ) =

√
8πM0

ln
(

1
δ

) .
Let E = {(u, v) : u2 + v2 < 1}. As in [6, 21], there is a parametric description of the

surface S0,

Y (u, v) = (a(u, v), b(u, v), c(u, v)) ∈ C2(E : R3),

which has the following properties:

(a1) Y is a diffeomorphism of E onto S0.

(a2) Set G(u, v) = (a(u, v), b(u, v)), (u, v) ∈ E. Then G ∈ C0(E : R2).

(a3) Set σ(O) = G−1(∂Ω \ {O}); then σ(O) is a connected (open) arc of ∂E and G maps

σ(O) onto ∂Ω \ {O}. We may assume the endpoints of σ(O) are o1 and o2. (Note

that o1 and o2 are not assumed to be distinct.)

(a4) Y is conformal on E : Yu · Yv = 0, Yu · Yu = Yv · Yv on E.

(a5) 4Y := Yuu + Yvv = 2H(Y )Yu × Yv on E.

Let ζ(O) = ∂E \ σ(O); then G(ζ(O)) = {O} and o1 and o2 are the endpoints of ζ(O).

Suppose first that o1 6= o2. From the Courant-Lebesgue Lemma (e.g., Lemma 3.1

in [4]), we see that there exists ρ = ρ(δ,w) ∈
(
δ,
√
δ
)

such that the arc length lρ = lρ(δ,w)
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of Y (Cρ(δ,w)(w)) is less than p(δ), for each δ ∈ (0, 1) and w ∈ ∂E; here Cr(w) = {(u, v) ∈
E : |(u, v)−w| = r}. Set Er(w) = {(u, v) ∈ E : |(u, v)−w| < r}, E′r(w) = G(Er(w)) and

C ′r(w) = G(Cr(w)). Choose δ1 > 0 such that 2
√
δ1 < |o1 − o2|. Let w0 ∈ ζ(O) be the

“midpoint” of o1 and o2, so that
√
δ1 < |w0−o1| = |w0−o2|. Set C = C ′ρ(δ1,w0)(w0); then

{(x, f(x)) : x ∈ C} (= Y (Cρ(δ1,w0)(w0))) is a curve of finite length lρ(δ1,w0) with endpoints

(O, za) and (O, zb) for some za, zb ∈ R. Notice, in particular, that the graph of f over C
is either continuous at O (if za = zb) or has a jump discontinuity at O (if za 6= zb).

We may now argue as in [19]. Let Ω0 = G(Eρ(δ1,w0)(w0)) = E′ρ(δ1,w0)(w0), so that

∂Ω0 = C∪{O}. From the Courant-Lebesgue Lemma and the general comparison principle

(see [12, Theorem 5.1]), we see that Y is uniformly continuous on Eρ(δ1,w0)(w0) and so

extends to a continuous function on the closure of Eρ(δ1,w0)(w0). From Steps 2, 4 and 5

of [21] and with [5] replacing Step 3 of [21], we see that there exist α0, β0 ∈ [α, β] with

α0 < β0 such that

{r(cos θ, sin θ) : 0 < r < ε0(θ), α0 < θ < β0} ⊂ Ω0 ∩Bδ0(O)

for some function ε0(·) : (α, β) → (0, δ0) and the radial limits Rf(θ) of f at O exist for

α0 ≤ θ ≤ β0. Since ∂Ω is (C2,λ) smooth near O, we have β − α = π and so β0 − α0 ≤ π.

(We note that za = zb when o1 6= o2 and β0 − α0 ≤ π implies f ∈ C0(Ω), a contradiction,

and so za 6= zb.) The existence of Rf(·) on (α, β) now follows from two applications

of [9, Theorem 2], one in the domain {(r cos θ, r sin θ) ∈ Ω : r > 0, (α0 + β0)/2 < θ < β}
and one in the domain {(r cos θ, r sin θ) ∈ Ω : r > 0, α < θ < (α0 + β0)/2}.

Suppose second that o = o1 = o2 and ζ(O) = {o}. Let us assume that H is

non-negative in a neighborhood of O; here H(Y (u, v)) means H(a(u, v), b(u, v)). From

Lemma 3.3, we see that an upper Bernstein pair (U+, ψ+) for (Γ1, H) exists, where

U+ = Ω ∩ Bτ (O) and Γ1 = Γ ∩ Bτ (O) for some τ > 0; let q denote a modulus of

continuity for ψ+. Then Tψ+ · ν = +1 (in the sense of [3]) on Γ1 and, for each C ∈ R,

Q(ψ+ + C) = Q(ψ+) ≤ 0 on Ω ∩ U+ or equivalently

(3.2) N(ψ+ + C)(x) ≤ 2H(x) = Nf(x) for x ∈ Ω ∩ U+.

From the Courant-Lebesgue Lemma, we see that there exists ρ = ρ(δ,w) ∈
(
δ,
√
δ
)

such that the arc length lρ = lρ(δ,w) of Y (Cρ(δ,w)(w)) is less than p(δ), for each δ ∈ (0, 1)

and w ∈ ∂E.

Let us assume that δ ∈ (0, 1) is small enough that p(δ) < τ , so that G(w) ∈ U+

for each w ∈ E with |w − o| ≤
√
δ and G(w) ∈ Γ1 for each w ∈ ∂E with |w − o| ≤√

δ. Now ψ+ − ψ+(x) ≤ q(p(δ)) in E′ρ(δ,o)(o) for any x ∈ E′ρ(δ,o)(o) and using (3.2) in

conjunction with Finn’s general comparison principle (see [12, Theorem 5.1]) implies that

if U ⊂ E′ρ(δ,o)(o) is an open set, then

(3.3) f ≤ sup
Ω∩∂U

f + ψ+ − inf
Ω∩∂U

ψ+ ≤ sup
Ω∩∂U

f + q(p(δ)) in U.
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Set

k(δ) = inf
u∈Cρ(δ,o)(o)

c(u) = inf
x∈C′

ρ(δ,o)
(o)
f(x).

Now f ≤ k(δ) + p(δ) on C ′ρ(δ,o)(o) and ψ+ − infC′
ρ(δ,o)

(o) ψ
+ ≤ q(p(δ)) in E′ρ(δ,o)(o) and so

(3.3) implies

f ≤ k(δ) + p(δ) + ψ+ − inf
C′
ρ(δ,o)

(o)
ψ+ ≤ k(δ) + p(δ) + q(p(δ))

or

sup
E′
ρ(δ,o)

(o)

f ≤ inf
C′
ρ(δ,o)

(o)
f + p(δ) + q(p(δ)).

Since supE′
ρ(δ,o)

(o)) f ≥ z2,

(3.4) inf
C′
ρ(δ,o)

(o)
f ≥ z2 − p(δ)− q(p(δ)) = z2 − o(δ) for each δ > 0.

Let z(δ) = z2 − 2p(δ)− q(p(δ)) and

M(δ) = {x ∈ E′ρ(δ,o)(o) : f(x) > z(δ)}.

(Recall f ∈ C0(Ω\{O}) and c ∈ C0(E \{o}).) Then for each δ ∈ (0, p−1(τ)), (3.4) implies

f ≥ z2 − p(δ)− q(p(δ)) > z(δ) on C ′ρ(δ,o)(o) and so

C ′ρ(δ,o)(o) ⊂M(δ) and O ∈M(δ).

Let V (δ) denote the component of M(δ) which contains C ′ρ(δ,o)(o). We claim that O ∈
V (δ). Suppose otherwise; then there is a curve I in E′ρ(δ,o)(o) (with endpoints x− ∈ ∂−Ω

and x+ ∈ ∂+Ω) such that f ≤ z(δ) on I. Let Ω(I) be the component of Ω \ I whose

closure contains O. Then (3.3) implies that

f ≤ sup
I
f + q(p(δ)) ≤ z(δ) + q(p(δ)) = z2 − 2p(δ) in Ω(I)

and so lim supE3w→o c(w) ≤ z2 − 2p(δ) < z2, which is a contradiction; hence no such

curve I exists and O ∈ V (δ).

Now f ≥ z(δ) in V (δ) for each δ ∈ (0, p−1(τ)). Let C be any curve in Ω which starts

at a point x0 ∈ C ′ρ(p−1(τ),o)(o) and ends at O such that

C ⊂ V (δ) for each δ ∈ (0, p−1(τ)).

Since lim infC3x→O f(x) ≥ limδ↓0 z(δ) = z2 and z2 = lim supΩ3x→O f(x), we see that

lim
C3x→O

f(x) = z2.
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We may, if we wish, extend C by adding to C a curve from x0 to a point on ∂Ω \
E′
ρ(p−1(τ),o)

(o).

Now we modify the argument in the proof of [9, Theorem 2] to show that Rf(θ) = z2

for all θ ∈ (α, β); that is, we shall show that the nontangential limit of f at O exists and

equals z2. Let α′, β′ ∈ (α, β) with α′ < β′.

Figure 3.1: Ω, A− and C (left); Ω2 (right).

Let H0 = supBδ0 (O)∩ΩH and fix c0 ∈
(
− 1

4c0H0
, 0
)
. Set r1 = 1−

√
1+4c0H0
2H0

and r2 =

1+
√

1+4c0H0
2H0

(see [21, p. 171], [13]). Let A± be annuli with inner boundaries ∂1A± with

equal radii r1 and outer boundaries ∂2A± with equal radii r2 such that O ∈ ∂1A+∩∂1A−,

∂1A+ is tangent to the ray θ = β′ at O, ∂1A− is tangent to the ray θ = α′ at O and

∂1A± ∩ {(r cos θ, r sin θ) : 0 < r < δ0, α
′ < θ < β′} = ∅ (see Figure 3.1). Let h± = h(r̂±)

denote unduloid surfaces defined respectively on A± with constant mean curvature −H0

which become vertical at r̂± = r1, r2 and make contact angles of π and 0 with the vertical

cylinders r̂± = r2 and r̂± = r1 respectively, where r̂+(x) = |x− c+|, r̂−(x) = |x− c−|, c+

denotes the center of the annulus A+ and c− denotes the center of the annulus A−. With

respect to the upward direction, the graphs of h± over A± have constant mean curvature

−H0 and the graphs of −h± over A± have constant mean curvature H0.

Set τ1 = min{τ, r2 − r1}. Let δ ∈ (0, p−1(τ1)). Since C is a curve in Ω with O as

an endpoint, there exists x(δ) ∈ C ∩ C ′ρ(δ,o)(o) such that the portion C(δ) of C between

O and x(δ) lies in E′ρ(δ,o)(o) and divides E′ρ(δ,o)(o) into two components. Let U+ be the

component of E′ρ(δ,o)(o) \ C(δ) whose closure contains a portion of ∂+Ω and U− be the

component of E′ρ(δ,o)(o) \ C(δ) whose closure contains a portion of ∂−Ω (see Figure 3.2

with C ′ρ(δ,o)(o) (green) and C (red)).

Figure 3.2: Left: U+ (yellow), U− (blue); Right: C(δ) (red).
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Since C(δ) ⊂ V (δ),

f(x) ≥ z(δ) for x ∈ C(δ)

and, in particular, f(x(δ)) ≥ z(δ). Since |f(x(δ))−f(y)| ≤ lρ(δ,o) < p(δ) for y ∈ C ′ρ(δ,o)(o),

we see that

f ≥ z(δ)− p(δ) on C ′ρ(δ,o)(o) ∪ C(δ).

Let q2 denote a modulus of continuity of −h(r̂+). Then

f ≥ z(δ)− p(δ)− q2(p(δ)) in U+ \Br1(c+).

Thus

lim inf
U+\Br1 (c+)3x→O

f(x) ≥ z2.

If we set Ω1 = U+ \Br1(c+) and recall that z2 = lim supΩ3x→O f(x), we have

(3.5) lim
Ω13x→O

f(x) = z2.

(We note that Ω1 might not be connected (see Figure 3.3) and might even have an infinite

number of components but one sees that this does not affect the comparison argument

which establishes (3.5).)

Figure 3.3: Ω and Ω1.

In a similar manner, we see that

lim
Ω23x→O

f(x) = z2,

where Ω2 = U− \Br1(c−). Since Ω1 ∪Ω2 ∪C(δ) = E′ρ(δ,o)(o) \
(
Br1(c+) ∪Br1(c−)

)
, we see

that Rf(θ) = z2 for each θ ∈ (α′, β′). Since α′ and β′ are arbitrary (with α < α′ < β′ < β),

Theorem 2.3 is proven.

Proof of Theorem 2.5. All of the claims in the theorem except those in the last sentence

follow from [9, Theorem 1] and [5] (when β − α > π) and [9, Theorem 2] and [5] (when

β − α < π). (When β − α = π, all of the claims follow from Theorem 2.3 and [11].)
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The claims follow once we prove that the results of [11] hold under the assumptions of

Theorem 2.5. Let us assume

(3.6) lim sup
∂±Ω3x→O

(Λ(x) + 2|H(x)|) < 0.

Suppose β − α > π. Let δ1 > 0 be small enough that Bδ1(O) ∩ Ω \ Σ+ has two com-

ponents. Let Ω+ be the component whose closure contains Bδ1(O) ∩ ∂+Ω (see Figure 3.4

(left)) and notice that the tangent directions to ∂Ω+ at O are α′ = β − π and β and the

curvature Λ+(O) of ∂Ω+ at O satisfies

Λ+(O) < −2H(O)

since Λ+(x) = Λ(x) for x ∈ Bδ1(O) ∩ ∂+Ω and (3.6) implies

Λ+(O) = lim sup
∂+Ω3x→O

Λ+(x) < −2|H(O)|.

By restricting f to Ω+, we see that the existence of Rf(β) follows from [11]. A similar

argument implies Rf(α) also exists.

Figure 3.4: Ω+ when β − α > π (left); Ω+ when β − α < π (right).

Suppose β−α < π. Then Rf(α) exists and equals m. Let δ1 > 0 be small enough that

Bδ1(O)\Σ+ has two components and let Ω+ be the component which contains Bδ1(O)∩Ω

(see Figure 3.4 (right)). Then the tangent directions to ∂Ω+ at O are α′ = β − π and β

and, as before, the curvature Λ+(O) of ∂Ω+ at O satisfies Λ+(O) < −2H(O). Thus upper

and lower Bernstein pairs (U±, ψ±) exist for Γ = Bδ2(O) ∩ ∂Ω+ and H when δ2 ∈ (0, δ1)

is sufficiently small and U± = Bδ2(O)∩Ω+. We may parametrize S1 = S0 ∩ (Bδ2(O)×R)

in isothermal coordinates

Y (u, v) = (a(u, v), b(u, v), c(u, v)) ∈ C2(E : S1)

as in [11] with the properties noted there (e.g., a1, . . . , a5) and prove in essentially the same

manner as in [11] that Y is uniformly continuous on E and so extends to a continuous

function on E. The existence of Rf(β) then follows as in [11].
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