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Normal Forms for Rigid C2,1 Hypersurfaces M5 ⊂ C3

Dedicated to the memory of Alexander Isaev

Zhangchi Chen, Wei Guo Foo, Joël Merker* and The Anh Ta

Abstract. Consider a 2-nondegenerate constant Levi rank 1 rigid C ω hypersurface

M5 ⊂ C3 in coordinates (z, ζ, w = u+ iv):

u = F (z, ζ, z, ζ).

The Gaussier-Merker model u =
zz+ 1

2 z
2ζ+ 1

2 z
2ζ

1−ζζ was shown by Fels-Kaup 2007 to be lo-

cally CR-equivalent to the light cone {x21+x22−x23 = 0}. Another representation is the

tube u = (Re z)2

1−Re ζ . The Gaussier-Merker model has 7-dimensional rigid automorphisms

group.

Inspired by Alexander Isaev, we study rigid biholomorphisms:

(z, ζ, w) 7−→ (f(z, ζ), g(z, ζ), ρw + h(z, ζ)) =: (z′, ζ ′, w′).

The goal is to establish the Poincaré-Moser complete normal form:

u =
zz + 1

2z
2ζ + 1

2z
2ζ

1− ζζ
+

∑
a,b,c,d∈N
a+c≥3

Ga,b,c,dz
aζbzcζ

d

with 0 = Ga,b,0,0 = Ga,b,1,0 = Ga,b,2,0 and 0 = G3,0,0,1 = ImG3,0,1,1.

1. Introduction

The problem of equivalence for CR manifolds was begun by Poincaré [24] in 1907, who,

by a plain counting argument, pointed out that real hypersurfaces M3 ⊂ C2 must a priori

possess infinitely many invariants under biholomorphic transformations. This created a

local classification problem, not even terminated nowadays for hypersurfaces in C3. Our

goal is to bring a contribution to this problem, by treating a certain already remarkably

rich class of special hypersurfaces M5 ⊂ C3.
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Throughout this article, all CR manifolds will be assumed real analytic (C ω). An

elementary complex Frobenius theorem proved, e.g., by Paulette Libermann in [15], guar-

antees embeddability into some CN. We will restrict ourselves to the definite class of C ω

hypersurfaces M5 ⊂ C3, which are automatically CR.

The interest of studying rigidly equivalent—in Alexander Isaev’s terminology—rigid

hypersurfaces was pointed out to us during his February 2019 stay in Orsay. A local

hypersurface M5 ⊂ C3 with coordinates Z = (Z1,Z2,Z3) is said to be rigid if there

exists an infinitesimal CR automorphism, namely a vector field T tangent to M of the

form T = X + X with a nonzero holomorphic vector field X =
∑3

i=1 ai(Z)∂Zi , which is

transversal to the complex tangent space T cM in the sense that TM = T cM ⊕RT . After

a local biholomorphic straightening, one makes X = i ∂∂w with w := Z3, and tangency of

X +X = ∂
∂v to M shows that, writing coordinates C3 3 (z, ζ, w), the right-hand side C ω

graphing function

M5 : u = F (z, ζ, z, ζ)

is independent of v, where w = u+ iv.

Alexander Isaev’s concept of rigid biholomorphic transformation is less popular or

widespread. In C3, such are biholomorphisms of the shape:

(z, ζ, w) 7−→ (f(z, ζ), g(z, ζ), ρw + h(z, ζ)),

where f , g, h are holomorphic in their arguments, independently of w, and where ρ ∈
R∗. The interest is that rigid biholomorphisms trivially send rigid hypersurfaces to rigid

hypersurfaces: they respect the pre-given CR symmetry 2 Re i∂w = ∂v.

The study of biholomorphic equivalence classes of general (not necessarily rigid) hy-

persurfaces M5 ⊂ C3 has raised remarkable attention recently, especially about the

class denoted C2,1 of constant Levi rank 1 and 2-nondegenerate hypersurfaces M5 ⊂ C3,

see [3–13,16–19,21–23].

In the rigid context, this class Crigid
2,1 consists of local hypersurfaces {u = F (z, ζ, z, ζ)}

passing through the origin which satisfy∣∣∣∣∣∣Fzz Fzζ

Fζz Fζζ

∣∣∣∣∣∣ ≡ 0 6=

∣∣∣∣∣∣ Fzz Fzζ

Fzzz Fzzζ

∣∣∣∣∣∣ .
Propositions 3.1 and 3.2 will show below that both conditions are invariant under rigid

biholomorphisms. Without loss of generality, we may also assume 0 6= Fzz. Then the first

condition means constant Levi rank 1, while the second condition means 2-nondegeneracy.

In Section 2, we will present a central example, the so-called Gaussier-Merker model :

MGM : u =
zz + 1

2z
2ζ + 1

2z
2ζ

1− ζζ
=: m(z, ζ, z, ζ),
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which is known to be maximally homogeneous, as follows from an application of Cartan’s

equivalence method performed in [6]. More precisely, if one defines the Lie algebra of rigid

infinitesimal holomorphic automorphisms of any M5 ∈ Crigid
2,1 as

holrigid(M5) :=
{
X = a(z, ζ)∂z + b(z, ζ)∂ζ + (σw + c(z, ζ))∂w : X +X is tangent to M

}
with σ ∈ R and a, b, c three holomorphic functions independent of w, then from [6,

Theorem 1.1] it follows that

dim holrigid(M5) ≤ dim holrigid(MGM) = 7

with equality holding if and only if M5 ∼= MGM is rigidly biholomorphically equivalent to

the model. Furthermore, holrigid(MGM) is spanned by

X1 := i∂w, X2 := (ζ − 1)∂z − 2z∂w, X3 := (i+ iζ)∂z − 2iz∂w,

X4 := zζ∂z + (ζ2 − 1)∂ζ − z2∂w, X5 := izζ∂z + (i+ iζ2)∂ζ − iz2∂w,

X6 := z∂z + 2w∂w, X7 := iz∂z + 2iζ∂ζ

with exp(tX6)(·) and exp(tX7)(·) generating the 2-dimensional isotropy subgroup of au-

tomorphisms of MGM fixing the origin 0 ∈MGM.

After that an {e}-structure and a canonical Cartan connection have been constructed

in [6], our main objective in this article is to produce a Moser-like normal form for any

M5 ∈ Crigid
2,1 . We may assume that M passes through the origin and has power series

expansion

u =
∑

a+b+c+d≥1
Fa,b,c,dz

aζbzcζ
d
.

Since M has Levi form of rank 1 and is 2-nondegenerate at the origin, it is not difficult

(see Section 4) to bring its cubic approximation to

u = zz +
1

2
z2ζ +

1

2
z2ζ +

∑
a+b+c+d≥4
a+b≥1
c+d≥1

Fa,b,c,dz
aζbzcζ

d
.

Notice that this general cubic approximation coincides with that of MGM.

And now, an idea of absorption by factorization appears. Writing initial monomials

as z(z) and z2
(
1
2ζ
)
, we may capture all holomorphic monomials behind z(· · · ) and behind

z2(· · · ), by making the rigid biholomorphism

z′ := z +
∑
a+b≥1

Fa,b,1,0z
aζb, ζ ′ := ζ + 2

∑
a+b≥2

Fa,b,2,0z
aζb
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with unchanged w′ := w. After this is done, dropping primes, we obtain a graph u =

F (z, ζ, z, ζ) which is prenormalized in the sense that

0 = Fa,b,0,0 = F0,0,c,d, 0 = Fa,b,1,0 = F1,0,c,d, 0 = Fa,b,2,0 = F2,0,c,d,

except of course F1,0,1,0 = 1 and F2,0,0,1 = 1/2 = F0,1,2,0. The true story is a little more

subtle, requires more care, and will be told with rigorous details in Section 4. The next

task is to normalize F beyond prenormalization.

Because in C2 a general rigid hypersurface u = F (z, z) = zz + Oz,z(3) is naturally

represented as a perturbation of the (flat) model u = zz, we must represent a general

rigid M ∈ Crigid
2,1 as a perturbation of the Gaussier-Merker model

u = F (z, ζ, z, ζ) = m(z, ζ, z, ζ) +G(z, ζ, z, ζ).

Here, the remainder function G cannot be arbitrary, it must be so that the Levi form is

indeed degenerate

0 ≡

∣∣∣∣∣∣mzz +Gzz mzζ +Gzζ

mζz +Gζz mζζ +Gζζ

∣∣∣∣∣∣ .
Using this zero determinant, in our key Proposition 4.4, we show that in prenormalized

coordinates, one necessarily has

G = Oz,z(3) = z3(· · · ) + z2z(· · · ) + zz2(· · · ) + z3(· · · ).

Next, since the Gaussier-Merker function

m(z, ζ, z, ζ) =
zz + 1

2z
2ζ + z2ζ

1− ζζ
is homogeneous of degree 2 in (z, z), we are conducted to assign the following weights to

the coordinate variables

[z] := 1 =: [z], [ζ] := 0 =:
[
ζ
]
, [w] := 2 =: [w].

We then expand G in weighted homogeneous parts

G =
∑
ν≥3

Gν , Gν =
∑
a+c=ν

zazcGa,c(ζ, ζ),

and we normalize progressively the Gν , in Sections 5 and 6. This conducts us to our main

Theorem 1.1. Every hypersurface M5 ∈ Crigid
2,1 is equivalent, through a local rigid bi-

holomorphism, to a rigid C ω hypersurface M ′5 ⊂ C′3 which, dropping primes for target

coordinates, is a perturbation of the Gaussier-Merker model

u =
zz + 1

2z
2ζ + 1

2z
2ζ

1− ζζ
+

∑
a,b,c,d∈N
a+c≥3

Ga,b,c,dz
aζbzcζ

d

with a simplified remainder G which
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(1) is normalized to be an Oz,z(3);

(2) satisfies the prenormalization conditions G = Oz(3) + Oζ(1) = Oz(3) + Oζ(1):

Ga,b,0,0 = 0 = G0,0,c,d, Ga,b,1,0 = 0 = G1,0,c,d, Ga,b,2,0 = 0 = G2,0,c,d;

(3) satisfies in addition the sporadic normalization conditions

G3,0,0,1 = 0 = G0,1,3,0, =G3,0,1,1 = 0 = =G1,1,3,0.

We would like to stress that, as a by-product, this result can be used to easily produce

an extremely large class of new examples of 2-nondegenerate constant Levi rank 1 hyper-

surfaces, none of them CR equivalent to the other. We thank the referee for pointing out

this consequence to us.

A standard consequence of a reduction to a CR normal form (cf. [14]), is the finite-

dimensionality (here 2D) of the remaining ambiguity, as stated by

Theorem 1.2. Furthermore, two such rigid C ω hypersurfaces M5 ⊂ C3 and M ′5 ⊂ C′3,

both brought into such a normal form, are rigidly biholomorphically equivalent if and only

if there exist two constants ρ ∈ R∗+, ϕ ∈ R, such that for all a, b, c, d,

Ga,b,c,d = G′a,b,c,dρ
(a+c−2)/2eiϕ(a+2b−c−2d).

A longer memoir prepublished as in [1] exposes some other aspects not conserved

(plainly for length reasons) in this article:

• an introduction to the differences between two of the classical ways of studying

the geometry of real submanifolds of Cn, namely Cartan’s equivalence method, and

Moser’s normal forms method;

• some hints on how to construct a ‘theoretical bridge’ between these two methods,

bringing new light on the concerned algebras of differential invariants;

• a detailed exposition of the so-called ‘power series method ’, developed e.g. in [2], for

determining explicit expressions of all (relative) differential invariants.

These aspects are currently being reorganized to be submitted elsewhere, and hopefully,

will appear in print.

2. The Gaussier-Merker model

What is the appropriate local graphed model for 2-nondegenerate constant Levi rank 1

hypersurfaces M5 ⊂ C3 in the class C2,1? It is known from [13,16,21] that the local model
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is any neighborhood of any smooth point of the tube in C3 over the light cone in R3 having

equation x22 − x23 = x21 with x1 > 0. But it is not graphed!

We claim that in different notations, this cone has local graphed equation

u =
x2

1− y

with x, y, u being the real parts of three complex coordinates on C3 3 (z, ζ, w). As

we agreed orally with Alexander Isaev, this is the best, most compact existing graphed

equation. It happens to also be the central model of parabolic surface S2 ⊂ R3 occurring

in [2].

The claim is easy. By CR-homogeneity, one can recenter at any smooth point, e.g. at

(0, 1, 1), write (1+x2)
2−(1+x3)

2 = x21, factor, divide, get x2−x3 =
x21

2+x2+x3
, and linearly

change coordinates.

However, this tube graphed equation contains many pluriharmonic terms

w + w

2
=

(z + z)2

4− 2ζ − 2ζ
=

1

8
z2ζ +

1

8
z2ζ + · · · ,

that Moser’s normal forms method would compulsorily kill at the very beginning. Thus,

u = x2

1−y is not the right start. Similarly, u = x2 = 1
2z

2 + 1
2z

2 + · · · in C2 is not the right

start from Moser’s point of view.

The right graphed equation for the model light cone MGM ⊂ C3 in C2,1 was discovered

by Gaussier-Merker in [8]:

MGM : u =
zz + 1

2z
2ζ + 1

2z
2ζ

1− ζζ
=: m(z, ζ, z, ζ).

Here, the letter m is from model. By luck, MGM is rigid!

Now, let us review the reasoning which conducted to MGM. Start with M5 ⊂ C3 with

0 ∈M , rigid, graphed as

u = F (z, ζ, z, ζ).

Constant Levi rank 1 means, possibly after a linear transformation in C2
z,ζ , that

(2.1) Fzz 6= 0 ≡

∣∣∣∣∣∣Fzz Fzζ

Fζz Fζζ

∣∣∣∣∣∣ =: Levi(F ),

while 2-nondegeneracy means that

(2.2) 0 6=

∣∣∣∣∣∣ Fzz Fzζ

Fzzz Fzzζ

∣∣∣∣∣∣ .
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By direct symbolic computations, Propositions 3.1 and 3.2 will establish invariancy of

these vanishing/nonvanishing properties under rigid changes of holomorphic coordinates.

At the origin, MGM of equation

u = zz +
1

2
z2ζ +

1

2
z2ζ + Oz,ζ,z,ζ(4)

is obviously 2-nondegenerate, thanks to the cubic monomial 1
2z

2ζ which gives that (2.2) at

(z, ζ) = (0, 0) becomes | 1 0
∗ 1 | = 1. As for constant Levi rank 1, order two terms u = zz+· · ·

show that this condition is true at the origin, and simple computations show that (2.1) is

identically zero: ∣∣∣∣∣∣mzz mzζ

mζz mζζ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1

1−ζζ
z+zζ

(1−ζζ)2
z+zζ

(1−ζζ)2
(z+zζ)(z+zζ)

(1−ζζ)3

∣∣∣∣∣∣ ≡ 0.

So how to easily produce one simple example? How MGM was born?

Normalizing the Levi form at the origin, one can assume F = zz + · · · . Hence the 2-

nondegeneracy determinant (2.2) becomes at the origin
∣∣∣ 1 0
∗ Fzzζ(0)

∣∣∣ = 1. Thus, a monomial

like 1
2z

2ζ must be present. Since F is real, its conjugate 1
2z

2ζ also comes

u = F = zz +
1

2
z2ζ +

1

2
z2ζ +

∑
k≥4

F k(z, ζ, z, ζ);

here of course, the F k are homogeneous polynomials of degree k. Without remainders,

i.e., with all F k = 0, the cubic equation is not of constant Levi rank 1 (exercise).

The idea of Gaussier-Merker was to take the simplest possible successive F 4, F 5, F 6, . . .

in order to guarantee Levi(F ) ≡ 0. Thus, plug all this in

0
?≡

∣∣∣∣∣∣1 + F 4
zz + F 5

zz + F 5
zz + · · · z + F 4

ζz + F 5
ζz + F 6

ζz + · · ·

z + F 4
zζ

+ F 5
zζ

+ F 6
zζ

+ · · · F 4
ζζ

+ F 5
ζζ

+ F 6
ζζ

+ · · ·

∣∣∣∣∣∣ .
At first, look at terms of order 2, get 0 = F 4

ζζ
− zz, integrate as the simplest possible

F 4 := zzζζ. Next, plug this F 4 in, chase only homogeneous terms of degree 3, get

F 5
ζζ

= z2ζ+z2ζ, and integrate most simply as F 5 := 1
2z

2ζ(ζζ)+ 1
2z

2ζ(ζζ). Next, plug this

F 5 in, get F 6
ζζ

= 4zzζζ, integrate F 6 := zz(ζζ)2, and so on.

An easy induction then shows that powers (ζζ)k appear, and a geometric summation

reconstitutes the denominator 1
1−ζζ in the Gaussier-Merker model.

We can now pass to general M ∈ Crigid
2,1 .

3. Two invariant determinants for hypersurfaces M5 ⊂ C3

Consider a rigid biholomorphism

H : (z, ζ, w) 7−→ (f(z, ζ), g(z, ζ), ρw + h(z, ζ)) =: (z′, ζ ′, w′), ρ ∈ R∗,
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hence with Jacobian fzgζ − fζgz 6= 0, between two rigid C ω hypersurfaces

w = −w + 2F (z, ζ, z, ζ) =: Q and w′ = −w′ + 2F ′(z′, ζ ′, z′, ζ
′
) =: Q′.

Plugging the three components of H in the target equation

ρw + h(z, ζ) + ρw + h(z, ζ) = 2F ′
(
f(z, ζ), g(z, ζ), f(z, ζ), g(z, ζ)

)
,

and replacing w+w = 2F , one receives the fundamental equation expressing H(M) ⊂M ′:

2ρF (z, ζ, z, ζ) + h(z, ζ) + h(z, ζ) ≡ 2F ′
(
f(z, ζ), g(z, ζ), f(z, ζ), g(z, ζ)

)
.

By differentiating it (exercise! use a computer!), one expresses as follows the invariancy

of the Levi determinant defined for general biholomorphisms [20] as∣∣∣∣∣∣∣∣∣
Qz Qζ Qw

Qzz Qzζ Qzw

Qζz Qζζ Qζw

∣∣∣∣∣∣∣∣∣ = 22

∣∣∣∣∣∣∣∣∣
Fz Fζ −1

Fzz Fzζ 0

Fζz Fζζ 0

∣∣∣∣∣∣∣∣∣ .
Proposition 3.1. Through any rigid biholomorphism∣∣∣∣∣∣

F ′z′z′ F ′
z′ζ
′

F ′ζ′z′ F ′
ζ′ζ
′

∣∣∣∣∣∣ =
ρ2∣∣∣∣∣∣fz fζ

gz gζ

∣∣∣∣∣∣
∣∣∣∣∣∣fz f ζ

gz gζ

∣∣∣∣∣∣

∣∣∣∣∣∣Fzz Fzζ

Fζz Fζζ

∣∣∣∣∣∣ .

Consequently, the property that the Levi form is of constant rank 1 is biholomorphically

invariant. The 2-nondegeneracy property [20] then expresses as the nonvanishing of∣∣∣∣∣∣∣∣∣
Qz Qζ Qw

Qzz Qzζ Qzw

Qzzz Qzzζ Qzzw

∣∣∣∣∣∣∣∣∣ = 22

∣∣∣∣∣∣∣∣∣
Fz Fζ −1

Fzz Fzζ 0

Fzzz Fzzζ 0

∣∣∣∣∣∣∣∣∣ .
Proposition 3.2. When the Levi form is of constant rank 1, through any rigid biholo-

morphism, ∣∣∣∣∣∣
F ′z′z′ F ′

z′ζ
′

F ′z′z′z′ F ′
z′z′ζ

′

∣∣∣∣∣∣ =
ρ2
(
gζFzz − gzFζz

)3∣∣∣∣∣∣fz fζ

gz gζ

∣∣∣∣∣∣
3 ∣∣∣∣∣∣fz f ζ

gz gζ

∣∣∣∣∣∣

∣∣∣∣∣∣ Fzz Fzζ

Fzzz Fzzζ

∣∣∣∣∣∣ .
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4. Prenormalization

In coordinates (z, ζ, w) ∈ C3 with w = u+iv, consider a local C ω rigid hypersurface M5 ⊂
C3 graphed as u = F (z, ζ, z, ζ) passing through the origin. Expand

∑
a+b+c+d≥1 Fa,b,c,d

zaζbzcζ
d
, and define by conjugating only coefficients

F (z, ζ, z, ζ) :=
∑

a+b+c+d≥1
F a,b,c,dz

aζbzcζ
d
.

The reality u = u forces F (z, ζ, z, ζ) = F (z, ζ, z, ζ) which becomes

F (z, ζ, z, ζ) ≡ F (z, ζ, z, ζ).

The 4 independent derivations ∂z, ∂ζ , ∂z, ∂ζ commute. Applying 1
a!∂

a
z
1
b!∂

b
ζ
1
c!∂

c
z
1
d!∂

d
ζ

at the

origin (0, 0, 0, 0), it comes

F c,d,a,b = Fa,b,c,d.

With χ(z, ζ) := F (z, ζ, 0, 0) which is holomorphic, setting w′ := w − 2χ(z, ζ), we get

w′ + w′

2
= u′ = F (z, ζ, z, ζ)− χ(z, ζ)− χ(z, ζ) =: F ′(z, ζ, z, ζ)

with now 0 ≡ F ′(z, ζ, 0, 0) ≡ F ′(0, 0, z, ζ).

By Ox(3), we mean a (remainder) function equal to x3(· · · ), where (· · · ) is any function

of one or several variables. By Ox,y(2), we mean x2(· · · ) + xy(· · · ) + y2(· · · ), and so on.

Proposition 4.1. After a rigid biholomorphism, an M ∈ C2,1 satisfies

F (z, ζ, z, 0) = zz +
1

2
ζz2 + Oz(3).

Employing the letter R for unspecified functions, this amounts to

(4.1) F (z, ζ, z, ζ) = zz +
1

2
ζz2 + z3R(z, ζ, z) + ζR(z, ζ, z, ζ).

We will use without mention

R(z, ζ, z, ζ) = R(z, ζ, z) + ζR(z, ζ, z, ζ).

Proof of Proposition 4.1. We will perform rigid biholomorphisms of the form z′ = z′(z, ζ),

ζ ′ = ζ ′(z, ζ), w′ = w fixing 0. They transform u = F (z, ζ, z, ζ) into u′ = F ′(z′, ζ ′, z′, ζ
′
)

with

F ′(z′, ζ ′, z′, ζ
′
) := F

(
z(z′, ζ ′), ζ(z′, ζ ′), z(z′, ζ

′
), ζ(z′, ζ

′
)
)
,

hence they conserves F ′(z′, ζ ′, 0, 0) ≡ 0.

The Levi form being of rank 1 at 0, we may assume

u = zz + O3(z, ζ, z, ζ).
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Assertion 4.2. After a rigid biholomorphism fixing 0,

F = zz + z2R + ζR.

Proof. We can decompose

F (z, ζ, z, ζ) = F (z, ζ, z, 0) + ζR = z(z + χ(z, ζ)) + z2R + ζR

with χ = O(2). Then

F = (z + χ)(z + χ)− zχ− χχ+ z2R + ζR.

But χ = z2R(z) + ζR(z, ζ) is absorbable, hence

F = (z + χ)(z + χ) + z2R + ζR.

Thus, we perform the rigid biholomorphism z′ := z + χ(z, ζ), ζ ′ := ζ with inverse

z = z′ + Oz′,ζ′(2) = z′ + z′
2
R′ + ζ ′R′.

Hence z2 = z′2R′ + ζ
′
R′, and lastly

F ′(z′, ζ ′, z′, ζ
′
) = z′z′ + z′

2
R′ + ζ

′
R′.

Next, dropping primes, specifying 3rd order (real) terms P = P3 in F = zz + P3 +

Oz,ζ,z,ζ(4), let us inspect the Levi determinant

0 ≡

∣∣∣∣∣∣1 + Pzz + O2 Pζz + O2

Pzζ + O2 Pζζ + O2

∣∣∣∣∣∣ , whence 0 ≡ Pζζ ,

i.e., P is harmonic with respect to ζ when z, z are seen as constants. Thus taking account

of 0 ≡ P (z, ζ, 0, 0),

P = az2z + azz2 + ζ(bzz + cz2) + ζ(bzz + cz2) + ζ2(dz) + ζ
2
(dz).

But Assertion 4.2 forces a = 0, b = 0, d = 0, whence

u = zz + cζz2 + cζz2 + Oz,ζ,z,ζ(4).

From Proposition 3.2, we know that c 6= 0, hence cζ =: 1
2ζ
′ conducts to

(4.2) u = zz +
1

2
z2ζ +

1

2
z2ζ + Oz,ζ,z,ζ(4) = zz + z2R + ζR.

Next, let us look at 4th order terms which depend only on (z, z), especially at the

monomial ez2z2 with e := F2,0,2,0 ∈ R. We can make e = 0 thanks to ζ ′ := ζ + ez2,

u = zz +
1

2
(ζ + ez2)z2 +

1

2
(ζ + ez2)z2 + z2R + ζR.
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So we can assume F2,0,2,0 = 0. We then write

u = zz +
1

2
z2S(z, ζ, z) + ζR(z, ζ, z, ζ)

with S = ζ + Oz,ζ,z(2) and with no z2 monomial in the remainder. Hence with some

function τ(z) which is an Oz(3), and with some function ω(z, ζ) = Oz,ζ(1), we devise

which biholomorphism to perform

u = zz +
1

2
z2(ζ + τ(z) + ζω(z, ζ) + zθ(z, ζ, z)) + ζR

= zz +
1

2
z2
(
ζ + τ(z) + ζω(z, ζ)︸ ︷︷ ︸

=:ζ′, while z=:z′

)
+ z3R + ζR.

Assertion 4.3. The inverse ζ = ζ ′+O(2) = τ ′(z′)+ζ ′[1+ω′(z′, ζ ′)] also satisfies τ ′(z′) =

Oz′(3).

Proof. Indeed, by definition,

ζ ≡ τ ′(z) + [τ(z) + ζ(1 + ω(z, ζ))][1 + ω′(z, τ(z) + ζ(1 + ω(z, ζ)))],

and it suffices to put ζ := 0 to get a concluding relation which even shows that ord0 τ =

ord0 τ
′:

0 ≡ τ ′(z) + τ(z)[1 + ω′(z, τ(z))].

All this enables to reach the goal (4.1) since τ ′(z′) is absorbable in z′3R′:

u = z′z′ +
1

2
z′

2
ζ ′ + z′

3
R′ +

(
ζ
′
+ τ ′(z′) + ζ

′
ω′(z′, ζ

′
)
)
R′.

Coordinates like in Proposition 4.1 will be called prenormalized. Equivalently (exer-

cise),

0 = Fa,b,0,0 = F0,0,c,d, 0 = Fa,b,1,0 = F1,0,c,d, 0 = Fa,b,2,0 = F2,0,c,d

with only three exceptions F1,0,1,0 = 1 and F2,0,0,1 = 1/2 = F0,1,2,0. During the proof, in

(4.2), we obtained simultaneously

(4.3) u = F = zz +
1

2
z2ζ + Oz(3) + Oζ(1) = zz +

1

2
z2ζ +

1

2
z2ζ + Oz,ζ,z,ζ(4).

Now, recall that the Gaussier-Merker model is homogeneous of degree 2 in z, z, when

ζ, ζ are treated as constants:

u =
zz + 1

2z
2ζ + 1

2z
2ζ

1− ζζ
=: m(z, ζ, z, ζ).

A general M ∈ C2,1 is just a perturbation of it:

u = F = m+G with G := F −m = Oz,ζ,z,ζ(4).



344 Zhangchi Chen, Wei Guo Foo, Joël Merker and The Anh Ta

Proposition 4.4. In prenormalized coordinates, one has G = Oz,z(3).

Proof. Expand

m = zz
∑
i≥0

ζiζ
i
+

1

2
z2
∑
i≥0

ζiζ
i+1

+
1

2
z2
∑
i≥0

ζi+1ζ
i

= zz +
1

2
z2ζ +

1

2
z2ζ + Oz,ζ,z,ζ(4),

G =
∑
k≥4

∑
a+b+c+d=k

Ga,b,c,dz
aζbzcζ

d
=:
∑
k≥4

Gk.

Of course, F k = mk +Gk with G2 = G3 = 0.

Assertion 4.5. For every k ≥ 2, one has Gk = Oz,z(3).

Proof. For some k ≥ 4, assume by induction that G2, G3, . . . , Gk−1 are Oz,z(3), whence

G`zz = Oz,z(1), G`ζz = Oz,z(2) = G`
zζ
, G`

ζζ
= Oz,z(3), 1 ≤ ` ≤ k − 1.

Next, insert F =
∑

i≥2 F
i in the Levi determinant:

0 ≡

∣∣∣∣∣∣
∑

i F
i
zz

∑
j F

j
ζz∑

i F
i
zζ

∑
j F

j

ζζ

∣∣∣∣∣∣ =
∑
`≥4

 ∑
i+j=`
i,j≥2

(
F izzF

j

ζζ
− F i

zζ
F jζz
) .

Behind
∑

`, all terms are of constant homogeneous order i − 2 + j − 2 = ` − 4, hence

0 ≡
∑

i+j=`(above) for each ` ≥ 4. Take ` := k + 2 and expand

0 ≡ F 2
zzF

k
ζζ

+
∑

3≤i≤k−1
F izzF

k+2−i
ζζ

+ F kzzF
2
ζζ◦

− F 2
zζ◦
F kζz −

∑
3≤i≤k−1

F i
zζ
F k+2−i
ζz − F k

zζ
F 2
ζz◦
.

Observe from (4.3) that 1 ≡ F 2
zz while 0 ≡ F 2

ζζ
≡ F 2

zζ
≡ F 2

ζz. Of course, Levi determinant

vanishing holds for F := m,

0 ≡ m2
zzm

k
ζζ

+
∑

3≤i≤k−1
mi
zzm

k+2−i
ζζ

+mk
zzm

2
ζζ◦

−m2
zζ◦
mk
ζz −

∑
3≤i≤k−1

mi
zζ
mk+2−i
ζz −mk

zζ
m2
ζz◦
.

Substituting the boxed term F k
ζζ

with mk
ζζ

+Gk
ζζ

, solving for Gk
ζζ

, substituting as well

the other F `·· = m`
·· +G`··, and subtracting, we obtain

−Gk
ζζ
≡

∑
3≤i≤k−1

(
mi
zzG

k+2−i
ζζ

+Gizzm
k+2−i
ζζ

+GizzG
k+2−i
ζζ

)
−

∑
3≤i≤k−1

(
mi
zζ
Gk+2−i
ζz +Gi

zζ
mk+2−i
ζz +Gi

zζ
Gk+2−i
ζz

)
.
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Since we also have 3 ≤ k + 2 − i ≤ k − 1, induction applies to all six products to get

Gk
ζζ

= Oz,z(3).

By integration, Gk = λk(z, ζ, z) +λ
k
(z, ζ, z) + Oz,z(3). After absorption in Oz,z(3), we

can assume that λk is of degree ≤ 2 in (z, z), hence contains only monomials zaζbzc with

a+ c ≤ 2 and a+ b+ c = k. So b ≥ k − 2.

Further, Gk(z, ζ, 0, 0) ≡ 0 imposes λk(z, ζ, 0) ≡ 0. So 1 ≤ c ≤ 2. Consequently, λk can

contain only three monomials

λk(z, ζ, z) = azζk−1 + bzzζk−2 + cz2ζk−2.

Since k ≥ 4, we see that the conjugate λ
k
(z, ζ, z) is multiple of ζ

k−2≥2
, hence

Gk(z, ζ, z, 0) = λk(z, ζ, z) + λ
k
(z, 0, z)◦ + Oz,z(3).

Finally, because the prenormalized coordinates of Proposition 4.1 require Gk(z, ζ, z, 0)

= Oz(3), we reach λk(z, ζ, z) = Oz,z(3), which forces a = b = c = 0 = λk, so as asserted

Gk = Oz,z(3).

In conclusion, G =
∑
Gk = Oz,z(3).

According to [6] the Lie group G of rigid holomorphic automorphisms of the Gaussier-

Merker model {u = m} has Lie algebra of dimension 7, generated by the vector fields

X1, . . . , X7 shown in Section 1. The 2-dimensional isotropy subgroup G0 ⊂ G of the

origin 0 ∈ C3 has Lie algebra generated by

X6 := z∂z + 2w∂w, X7 := iz∂z + 2iζ∂ζ .

By computing the flows exp(tXσ)(z, ζ, w) for t ∈ R and σ = 6, 7, one verifies that G0

consists of scalings coupled with ‘rotations’:

z′ = ρ1/2eiϕz, ζ ′ = e2iϕζ, w′ = ρw, ρ ∈ R∗+, ϕ ∈ R.

Next, any holomorphic function e = e(z, ζ) decomposes in weighted homogeneous

terms as

e(z, ζ) =
∑
a,b

ea,bz
aζb =

∑
k≥0

(∑
b

ek,bζ
b

)
zk =:

∑
k≥0

ek.

Mind notation: for weights, indices ek are lower case, while for orders, as e.g. in Gk before,

they were upper case. Similarly,

E(z, ζ, z, ζ) =
∑
k≥0

 ∑
a+c=k

∑
b,d

Ea,b,c,dζ
bζ
d

 zazc

 =:
∑
k≥0

Ek.
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According to what precedes, we can assume that both the source M and the target

M ′ rigid hypersurfaces are prenormalized. Assume therefore that a rigid biholomorphism

H : (z, ζ, w) 7−→ (f(z, ζ), g(z, ζ), ρw + h(z, ζ)) =: (z′, ζ ′, w′),

fixing the origin is given between

u = F = zz +
1

2
z2ζ + Oz(3) = m+G =

zz + 1
2z

2ζ + 1
2z

2ζ

1− ζζ
+ Oz,z(3),

u′ = F ′ = z′z′ +
1

2
z′

2
ζ ′ + Oz′(3) = m′ +G′ =

z′z′ + 1
2z
′2ζ
′
+ 1

2z
′2ζ ′

1− ζ ′ζ ′
+ Oz′,z′(3).

Observation 4.6. Scalings and rotations (z′, ζ ′, w′) 7−→
(
ρ1/2eiϕz′, e2iϕζ ′, ρw′

)
preserve

prenormalizations.

Since T c0M = {w = 0} and T c0M
′ = {w′ = 0}, and since H∗T

c
0M = T c0M

′, we

necessarily have h = Oz,ζ(2). After the scaling w′ 7−→ 1
ρw
′, we may therefore assume that

the last component of H is w + Oz,ζ(2).

Let us decompose the components of H in weighted homogeneous parts

f = f0 + f1 + f2 + f3 + · · · , g = g0 + g1 + g2 + · · · , h = h0 + h1 + h2 + h3 + h4 + · · · .

Plug in the components of H in the target rigid equation w′+w′

2 = F ′(z′, ζ ′, z′, ζ
′
):

w + h(z, ζ) + w + h(z, ζ) = 2F ′
(
f(z, ζ), g(z, ζ), f(z, ζ), g(z, ζ)

)
,

and then, substitute w + w = 2F to get a fundamental equation, holding identically:

(4.4) 2F (z, ζ, z, ζ) + h(z, ζ) + h(z, ζ) ≡ 2F ′
(
f(z, ζ), g(z, ζ), f(z, ζ), g(z, ζ)

)
.

Proposition 4.7. Possibly after a rotation (z′, ζ ′, w′) 7−→ (eiϕz′, e2iϕζ ′, w′), one has

f = z + f2 + f3 + · · · , g = ζ + g1 + g2 + · · · , h = w + h3 + h4 + · · ·

or equivalently: f0 = 0, f1 = z; g0 = ζ; h0 = 0, h1 = 0, h2 = w.

Proof. Recall that F = m+G, that m = m2 and that G = G3 +G4 + · · · with the same

about F ′ = m′ +G′. So F and F ′ have no terms of weights 0 or 1. Of course f0 = f0(ζ),

g0 = g0(ζ), h0 = h0(ζ) depend on ζ only.

In (4.4), pick terms of weight zero:

0 + h0(ζ) + h0(ζ) ≡ 2F ′
(
f0(ζ), g0(ζ), f0(ζ), g0(ζ)

)
,

put ζ := 0, use F ′(z′, ζ ′, 0, 0) ≡ 0, and get h0 = 0.
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Once again, pick in (4.4) terms of weight zero using F ′ = m′ + Oz′,z′(3):

0 ≡
f0(ζ)f0(ζ) + 1

2f0(ζ)2g0(ζ) + 1
2f0(ζ)g0(ζ)

1− g0(ζ)g0(ζ)
+ Of0(ζ),f0(ζ)

(3).

We claim that f0(ζ) ≡ 0. Otherwise, f0 = cζν + Oζ(ν + 1) with c 6= 0, but on the right,

the monomial ccζνζ
ν

cannot be killed—contradiction. This finishes examination of weight

zero, for it remains only 0 ≡ 0.

Hence, pass to weight 1. We claim that h1 = 0. Of course, f1 = zf1(ζ) and h1 = zh1(ζ).

Since m′ is weighted homogeneous of degree 2, we have F ′ = Oz′,z′(2), and we get from

(4.4) what forces h1 = 0:

Oz,z(2) + zh1(ζ) + zh1(ζ) ≡ Ozf1(ζ),zf1(ζ)
(2) ≡ Oz,z(2).

Before passing to weight 2, since f = zf1(ζ) + Oz(2) and g = g0(ζ) + zg1(ζ) + Oz(2),

the nonzero Jacobian
∣∣∣ fz fζgz gζ

∣∣∣ has value at the origin
∣∣∣ f1(0) 0
g1(0) g′0(0)

∣∣∣, hence f1(0) 6= 0 6= g′0(0).

Lastly, picking weighted degree 2 terms in (4.4), we get

2m(z, ζ, z, ζ) + z2h2(ζ) + z2h2(ζ) ≡ 2m
(
zf1(ζ), g0(ζ), zf1(ζ), g0(ζ)

)
.

This identity means that the map (z, ζ, w) 7−→ (zf1(ζ), g0(ζ), w + z2h2(ζ)) is an auto-

morphism of the Gaussier-Merker model fixing the origin, hence is a rotation, so that

f1(ζ) = eiϕ, g0(ζ) = e2iϕζ, h2(z, ζ) ≡ 0. Post-composing with the inverse rotation, we

attain the conclusion.

Question 4.8. Suppose given two rigid hypersurfaces prenormalized as before,

u = F = zz +
1

2
z2ζ + Oz(3) + Oζ(1) = m+G =

zz + 1
2z

2ζ + 1
2z

2ζ

1− ζζ
+ Oz,z(3),

u′ = F ′ = z′z′ +
1

2
z′

2
ζ ′ + Oz′(3) + O

ζ
′(1) = m′ +G′ =

z′z′ + 1
2z
′2ζ
′
+ 1

2z
′2ζ ′

1− ζ ′ζ ′
+ Oz′,z′(3).

Is it true that the group of rigid biholomorphisms at the origin between them:

(z, ζ, w) 7−→
(
z + f(z, ζ), ζ + g(z, ζ), w + h(z, ζ)

)
=: (z′, ζ ′, w′),

where f = f2 + f3 + · · · , g = g1 + g2 + · · · , h = h3 + h4 + · · · , is finite-dimensional?

Here, the two appearing remainders Oz,z(3) and Oz(3) + Oζ(1) are different. By

expanding 1/(1− ζζ) we see that

m = zz +
1

2
z2ζ +

1

2
z2ζ + ζζ(· · · ) = zz +

1

2
z2ζ + Oζ(1),

hence by subtraction, we get that G is more than just an Oz,z(3).

Observation 4.9. The remainder function satisfies G = Oz,z(3) = Oz(3) + Oζ(1).

The synthesis between these two conditions will be made in Section 6.
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5. Weighted homogeneous normalizing biholomorphisms

Now, inspired by Jacobowitz’s presentation [14] of Moser’s normal form in C2, Proposi-

tions 4.4 and 4.7 justify to introduce the spaces

G :=
{
G = G(z, ζ, z, ζ) : G = G3 +G4 + · · ·

}
,

D :=
{

(z + f(z, ζ), ζ + g(z, ζ), w + h(z, ζ)) : f = f2 + f3 + · · · , g = g1 + g2 + · · · ,

h = h3 + h4 + · · ·
}
,

where lower indices denote homogeneous components with respect to the weighting [z] = 1,

[ζ] = 0, [w] = 2 of Section 1, leading to[
zaζbzcζ

d]
= a+ c.

The goal is to use the ‘freedom’ space D of rigid biholomorphisms in order to ‘normalize’

as much as possible the remainder G in the graphed equation {u = m+G} of any given

hypersurface. Here, m =
zz+ 1

2
z2ζ+ 1

2
z2ζ

1−ζζ is homogeneous of weight 2.

Both G and D decompose as direct sums graded by increasing weights

G =
⋃
ν≥3

Gν , Gν := {Gν},

D =
⋃
ν≥3

Dν , Dν := {(fν−1, gν−2, hν)},

and the (upcoming) justification for the shifts in Dν will be due to two multipliers

mz =
z + zζ

1− ζζ
of weight 1 and mζ =

(z + zζ)2

2(1− ζζ)2
of weight 2.

One can figure out that G2 := m and G′2 := m′ are already finalized/normalized. With

increasing weights ν = 3, 4, 5, . . ., we shall perform successive holomorphic rigid transfor-

mations of the shape

(5.1) z′ := z + fν−1, ζ ′ := ζ + gν−2, w′ := w + hν .

When ν � 1 is high, it is intuitively clear that such transformations close to the

identity will preserve previously achieved low order normalizations; to make this claim

precise, let us follow and adapt [14, Chapter 3].

For µ ≥ 0, denote by O(µ) power series whose monomials zaζbzcζ
d

are all of weight

a+ c ≥ µ, and introduce the projection operators

πµ

 ∑
a,b,c,d≥0

Ta,b,c,dz
aζbzcζ

d

 :=
∑
a+c≤µ

∑
b,d≥0

Ta,b,c,dz
aζbzcζ

d
.
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Proposition 5.1. Through any biholomorphism (5.1) which transforms

u = m+G3 + · · ·+Gν−1 +Gν + O(ν+ 1) into u′ = m+G′3 + · · ·+G′ν−1 +G′ν + O′(ν+ 1),

homogeneous terms are kept untouched up to order ≤ ν − 1,

G′µ(z, ζ, z, ζ) = Gµ(z, ζ, z, ζ), 3 ≤ µ ≤ ν − 1,

while

G′ν(z, ζ, z, ζ)

= Gν(z, ζ, z, ζ)− 2 Re

{
z + zζ

1− ζζ
fν−1(z, ζ) +

(z + zζ)2

2(1− ζζ)2
gν−2(z, ζ)− 1

2
hν(z, ζ)

}
.

Thus, by appropriately choosing (fν−1, gν−2, hν), we will be able to ‘kill’ many mono-

mials in Gν , hence make G′ν simpler, or normalized. We leave to the reader to verify that

in fact hν ≡ 0 necessarily, when F and F ′ are assumed to be prenormalized.

Proof. As already seen, the fundamental equation, holding identically, is

Re(w + hν) = F (z, ζ, z, ζ) + Rehν ≡ F ′(z + fν−1(z, ζ), ζ + gν−2(z, ζ), w + hν(z, ζ)).

Decomposing F = m+G, F ′ = m′ +G′ and reorganizing, it becomes

(z + fν−1)(z + fν−1) + 1
2(z + fν−1)

2(ζ + gν−2) + 1
2(z + fν−1)

2(ζ + gν−2)

1− (ζ + gν−2)(ζ + gν−2)

−
zz + 1

2z
2ζ + 1

2z
2ζ

1− ζζ
− Rehν

= G−G′.

A reduction of the left hand side to the same denominator shows after algebraic sim-

plifications:

(1− ζζ)
[
zfν−1 + zfν−1 + 1

2(2zfν−1ζ + z2gν−2) + 1
2(2zfν−1ζ + z2gν−2)

]
(1− ζζ)(1− ζζ − ζgν−2 − ζgν−2 − gν−2gν−2)

+
(ζgν−2 + ζgν−2)

(
zz + 1

2z
2ζ + 1

2z
2ζ
)

(1− ζζ)(1− ζζ − ζgν−2 − ζgν−2 − gν−2gν−2)
− Rehν

that this left-hand side is O(ν), hence has zero πν−1(•) = 0. Moreover, its homogeneous

degree ν part is obtained by taking only weighted degree zero terms in the denomina-

tor, namely numerator
(1−ζζ)2 − Rehν , and one recognizes/reconstitutes mz, mζ as homogeneous

multipliers of weights 1, 2:

πν(m′ −m− Rehν) = 2 Re

{
z + zζ

1− ζζ
fν−1(z, ζ) +

(z + zζ)2

2(1− ζζ)2
gν−2(z, ζ)− 1

2
hν(z, ζ)

}
.
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It remains to treat πν(•) of the right-hand side:

∑
3≤µ≤ν

Gµ(z, ζ, z, ζ)− πν

 ∑
3≤µ≤ν

G′µ(z + fν−1, ζ + gν−2, z + fν−1, ζ + gν−2)

 .

Assertion 5.2. For each 3 ≤ µ ≤ ν,

πν
(
G′µ(z + fν−1, ζ + gν−2, z + fν−1, ζ + gν−2)

)
= G′µ(z, ζ, z, ζ).

Proof. All possible monomials in G′µ with a+ c = µ ≥ 3 after binomial expansion

(z + fν−1)
a(ζ + gν−2)

b(z + fν−1)
c(ζ + gν−2)

d

= (za + O(a− 1 + ν − 1))(ζb + O(ν − 2))(zc + O(c− 1 + ν − 1))(ζ
d

+ O(ν − 2))

= zaζbzcζ
d

+ O(a+ c− 2 + ν)

have the simple projection πν(•) = zaζbzcζ
d

since a+ c− 2 + ν ≥ 1 + ν.

We therefore obtain an identity in which all arguments are (z, ζ, z, ζ):

2 Re

{
z + zζ

1− ζζ
fν−1 +

(z + zζ)2

2(1− ζζ)2
gν−2 −

1

2
hν

}
≡

∑
3≤µ≤ν−1

(
Gµ −G′µ◦

)
+Gν −G′ν .

Applying πν−1 annihilates both the left-hand side and Gν − G′ν , whence Gµ = G′µ for

3 ≤ µ ≤ ν − 1, which concludes.

6. Normal form

The assumption that the Levi form is of constant rank 1:

Fzz 6= 0 ≡ FzzFζζ − FζzFzζ ,

enables to solve identically as functions of (z, ζ, z, ζ):

Fζζ ≡
FζzFzζ
Fzz

.

By successively differentiating this identity and performing replacements, we get formulas.

Lemma 6.1. For every jet multiindex (a, b, c, d) ∈ N4 with b ≥ 1 and d ≥ 1, abbreviating

n := a + b + c + d, there exists a polynomial Pa,b,c,d in its arguments and an integer

Na,b,c,d ≥ 1 such that

F
zaζbzcζ

d

≡ 1

(Fzz)Na,b,c,d
Pa,b,c,d

({
F
za′zc

′
}
a′+c′≤n,

{
F
za′ζb′zc

′
}b′≥1
a′+b′+c′≤n,

{
F
za′zc

′
ζ
d′
}d′≥1
a′+c′+d′≤n

)
.
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In other words, the Levi rank 1 assumption implies that all Taylor coefficients at the

origin of
∑

a,b,c,d Fa,b,c,dz
aζbzcζ

d
for which b ≥ 1 and d ≥ 1 are determined by the free

Taylor coefficients

{Fa,0,c,0}a≥0, c≥0 ∪ {Fa,b,c,0}a≥0, b≥1, c≥0 ∪ {Fa,0,c,d}a≥0, c≥0, d≥1.

In subsequent computations, we will therefore normalize only these free (independent)

Taylor coefficients at the origin, while those (dependent) attached to monomials that are

multiple of ζζ will then be automatically determined by the formulas of Lemma 6.1.

As promised, we can now explore Observation 4.9 further. What precedes shows that

it is best appropriate to expand G with respect to (ζ, ζ):

G =
∑
a,c≥0

Ga,0,c,0z
azc +

∑
b≥1

ζb

∑
a,c≥0

Ga,b,c,0z
azc


+
∑
d≥1

ζ
d

∑
a,c≥0

Ga,0,c,dz
azc

+
∑
b,d≥1

∑
a,c≥0

Ga,b,c,dz
aζbzcζ

d
.

The last quadruple sum gathers all dependent jets. We will abbreviate this remainder as

ζζ(· · · ). With different notations, we can therefore write

G = a(z, z) +
∑
k≥0

ζk+1Πk(z, z) +
∑
k≥0

ζ
k+1

Πk(z, z) + ζζ(· · · )

with a(z, z) ≡ a(z, z) real, but no reality constraint on the Πk(z, z).

Recall that G = Oz,z(3). In view of Proposition 5.1, we must, for every weight ν ≥ 3,

extract Gν , while writing ζk+1 = ζζk,

Gν = aν,0z
ν + aν−1,1z

ν−1z + · · ·+ a1,ν−1zz
ν−1 + a0,νz

ν

+
∑
k≥0

ζζk
(
zνΠk,ν,0 + zν−1zΠk,ν−1,1 + · · ·+ zzν−1Πk,1,ν−1 + zνΠk,0,ν

)
+
∑
k≥0

ζζ
k(
zνΠk,ν,0 + zν−1zΠk,ν−1,1 + · · ·+ zzν−1Πk,1,ν−1 + zνΠk,0,ν

)
+ ζζ(· · · ).

To reorganize all this in powers of (z, z), let us introduce the two collections for all

0 ≤ µ ≤ ν of (anti)holomorphic functions (mind the inversion ν − µ←→ µ at the end):

Bν−µ,µ(ζ) :=
∑
k≥0

ζkΠk,ν−µ,µ and Cν−µ,µ(ζ) :=
∑
k≥0

ζ
k
Πk,µ,ν−µ.

The definition of these B•,• and C•,• enables us to emphasize that the obtained functions

ζB•,•(ζ) and ζC•,•(ζ) vanish when either ζ := 0 or ζ := 0, and we therefore obtain, taking
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also account of the fact that Gν is real:

Gν = zν
(
aν,0 + ζBν,0(ζ) + ζCν,0(ζ)

)
+ zν−1z

(
aν−1,1 + ζBν−1,1(ζ) + ζCν−1,1(ζ)

)
+ · · ·+ zzν−1

(
aν−1,1 + ζBν−1,1(ζ) + ζCν−1,1(ζ)

)
+ zν

(
aν,0 + ζBν,0(ζ) + ζCν,0(ζ)

)
+ ζζ(· · · ).

Of course, all these weighted homogeneous functions Gν automatically satisfy Gν =

Oz,z(3), since ν ≥ 3 thanks to Proposition 4.4. Now, Observation 4.9 also requires that

they satisfy, since they are real:

(6.1) Gν = Oz(3) + Oζ(1) = Oz(3) + Oζ(1).

Lemma 6.2. For each weight ν ≥ 5, the function Gν satisfies (6.1) if and only if it is of

the form

Gν = zν
(
0 + 0 + ζCν,0(ζ)

)
+ zν−1z

(
0 + 0 + ζCν−1,1(ζ)

)
+ zν−2z2

(
0 + 0 + ζCν−2,2(ζ)

)
+ zν−3z3

(
aν−3,3 + ζBν−3,3(ζ) + ζCν−3,3(ζ)

)
+ · · ·

+ z3zν−3
(
aν−3,3 + ζCν−3,3(ζ) + ζBν−3,3(ζ)

)
+ z2zν−2(0 + ζCν−2,2(ζ) + 0)

+ z1zν−1(0 + ζCν−1,1(ζ) + 0) + zν(0 + ζCν,0(ζ) + 0) + ζζ(· · · ).

Just after, we will treat the two weights ν = 3, 4 separately.

Proof of Lemma 6.2. Putting ζ := 0 above, it must hold that

Oz(3) + 0 = Gν
∣∣
ζ=0

= zν(aν,0 + ζBν,0(ζ) + 0) + zν−1z(aν−1,1 + ζBν−1,1(ζ) + 0)

+ zν−2z2(aν−2,2 + ζBν−2,2(ζ) + 0) + Oz(3) + 0.

Thus, all the appearing a•,• and B•,• should vanish, as stated, and the converse is clear.

Proceeding similarly, the reader will find for ν = 3 that G3 satisfies (6.1) if and only if

G3 = z3
(
0 + 0 + ζC3,0(ζ)

)
+ z2z(0 + 0 + 0) + zz2(0 + 0 + 0) + z3(0 + ζC3,0(ζ) + 0) + ζζ(· · · ),

as well as

G4 = z4
(
0 + 0 + ζC4,0(ζ)

)
+ z3z

(
0 + 0 + ζC3,1(ζ)

)
+ z2z2(0 + 0 + 0)

+ zz3(0 + ζC1,3(ζ) + 0) + z4(0 + ζC4,0(ζ) + 0) + ζζ(· · · ).

Now, consider a rigid biholomorphism z′ = f(z, ζ), ζ ′ = g(z, ζ), w′ = ρw + h(z, ζ)

between two rigid hypersurfaces M and M ′. Of course, as in Question 4.8, we may assume

that both M and M ′ have already been prenormalized, and thanks to Proposition 4.7 also

that f = f2 + f3 + · · · , g = g1 + g2 + · · · , ρ = 1, h = h3 + h4 + · · · .
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The goal is to normalize M ′ even further, by means of appropriate choices of f , g, h.

We saw that it is natural to decompose G = G3+G4+G5+· · · and G′ = G′3+G′4+G′5+

· · · in weighted homogeneous parts, and we just finished to express what prenormalization

means about these Gν and G′ν . Proceeding with increasing weights ν = 3, 4, 5, . . ., we

therefore consider biholomorphisms of the shape z′ = z+fν−1, ζ
′ = ζ+gν−2, w

′ = w+hν ,

and we recall that Proposition 5.1 showed that

G′ν(z, ζ, z, ζ)

= Gν(z, ζ, z, ζ)− 2 Re

{
z + zζ

1− ζζ
fν−1(z, ζ) +

(z + zζ)2

2(1− ζζ)2
gν−2(z, ζ)− 1

2
hν(z, ζ)

}
.

The freedom to ‘normalize’ G′ν even more that Gν , namely the term −2 Re{· · · }, is

parametrized by the completely free choice for the triple of holomorphic functions

(fν−1, gν−2, hν). However, prenormalizations should be left untouched.

Lemma 6.3. At every weight level ν ≥ 5, only the identity biholomorphic transformation

z′ = z, ζ ′ = ζ, w′ = w stabilizes prenormalization in source and target spaces

Gν(z, ζ, z, ζ) = Oz(3) + Oζ(1) = G′ν(z, ζ, z, ζ),

or equivalently, the ‘freedom function’ respects prenormalization

Oz(3) + Oζ(1) = 2 Re

{
z + zζ

1− ζζ
fν−1(z, ζ) +

(z + zζ)2

2(1− ζζ)2
gν−2(z, ζ)− 1

2
hν(z, ζ)

}
=: Φ(z, ζ, z, ζ)

if and only if 0 = fν−1 = gν−2 = hν .

Proof. It is easy to verify that the vanishings Gν(z, ζ, 0, 0) ≡ 0 ≡ G′ν(z, ζ, 0, 0), which hold

from the very beginning (of Proposition 4.1) already suffice to force hν(z, ζ) ≡ 0.

Next, write

fν−1(z, ζ) = zν−1f(ζ) = zν−1(f0 + f1ζ + f2ζ
2 + · · · ),

gν−2(z, ζ) = zν−2g(ζ) = zν−2(g0 + g1ζ + g2ζ
2 + · · · ).

The goal is to show that f(ζ) ≡ 0 and g(ζ) ≡ 0.

Prenormalization being expressed modulo ζζ(· · · ), when we expand the two denomi-

nators of Φ, we have by luck 1
1−ζζ ≡ 1 and 1

2(1−ζζ2)
≡ 1

2 , and hence it suffices to require

that

Oz(3) + Oζ(1)
?
= 2 Re

(z + zζ)zν−1
∑
k≥0

fkζ
k +

1

2
(z + zζ)2zν−2

∑
k≥0

gkζ
k

 .
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Using ν ≥ 5 to guarantee that there is no interference when extracting the first three

powers zν , zν−1z, zν−2z2, let us compute the three relevant terms of the freedom function:

Φ(z, ζ, z, ζ) = (z + zζ)zν−1(f0 + f1ζ + f2ζ
2 + · · · )

+

(
1

2
z2 + zzζ +

1

2
z2ζ

2
)
zν−2(g0 + g1ζ + g2ζ

2 + · · · )

+ (z + zζ)zν−1(f0 + f1ζ + f2ζ
2

+ · · · )

+

(
1

2
z2 + zzζ +

1

2
z2ζ2

)
zν−2(g0 + g1ζ + g2ζ

2
+ · · · )

= zν
(
f0ζ + f1ζζ + f2ζ

2ζ + · · ·◦ +
1

2
g0ζ

2
+

1

2
g1ζζ

2
+

1

2
g2ζ

2ζ
2

+ · · ·
◦

)
+ zν−1z

(
f0 + f1ζ + f2ζ

2 + · · ·+ g0ζ + g1ζζ + g2ζ
2ζ + · · ·◦

)
+ zν−2z2

(
1

2
g0 +

1

2
g1ζ +

1

2
g2ζ

2 + · · ·
)

+ z3(· · · ) + ζζ(· · · ).

Since the underlined terms can be absorbed into the remainder ζζ(· · · ), it remains only

Φ(z, ζ, z, ζ) =
1

2
zν(2f0ζ + g0ζ

2
) + zν−1z(f0 + f1ζ + f2ζ

2 + · · ·+ g0ζ)

+
1

2
zν−2z2(g0 + g1ζ + g2ζ

2 + · · · ) + z3(· · · ) + ζζ(· · · ).

Putting ζ := 0, the result should be an Oz(3), hence the first three lines should vanish,

and lines 2 and 3 conclude that f(ζ) ≡ 0 ≡ g(ζ), as aimed at.

Next, inspect the two remaining weights ν = 3, 4. For ν = 3, again modulo ζζ(· · · ),
the freedom function is

Φ3 ≡ 2 Re

{
(z + zζ)z2(f0 + f1ζ + f2ζ

2 + · · · )

+

(
1

2
z2 + zzζ +

1

2
z2ζ

2
)
z1(g0 + g1ζ + g2ζ

2 + · · · )
}
.

Assertion 6.4. Prenormalization Φ3 = Oz(3) + Oζ(1) is preserved if and only if

0 = f0 +
1

2
g0, 0 = f1, 0 = f2, 0 = g0 +

1

2
g1, 0 = g2, . . . .

Consequently, only 1 complex constant is free, f0, in terms of which

g0 = −2f0, g1 = −4f0.

With this, how can one normalize G′3 = G3 − Φ3 further? Still modulo ζζ(· · · ):

Φ3 ≡ z3(f0ζ − f0ζ
2
) + z2z(0) + zz2(0) + z3(f0ζ − f0ζ2),
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hence

G′3,0,0,1 = G3,0,0,1 − f0, G′3,0,0,2 = G3,0,0,2 + f0.

It is natural to normalize the lowest jet order 4 = 3 + 0 + 0 + 1 coefficient here.

Assertion 6.5. One can normalize G′3,0,0,1 := 0 by choosing f0 := G3,0,0,1.

Once this is done, it is easy to see that preserving/maintaining the normalization

G′3,0,0,1 = G3,0,0,1 = 0,

forces f0 = 0 above.

Assertion 6.6. In prenormalized coordinates which satisfy in addition G3,0,0,1 = 0, the

coefficient

G′3,0,0,2 = G3,0,0,2

is an invariant (at the origin).

After such a normalization, we get

u = zz +
1

2
z2ζ +

1

2
z2ζ + zzζζ + az2z2 + Oz,ζ,z,ζ(5)

with, possible, a nonzero real constant a, and possibly, a remainder that is not prenor-

malized.

Fortunately, we can apply the process of Proposition 4.1 to prenormalize again the

coordinates, making in particular a = 0, without perturbing the normalizations obtained

up to order 4 included.

Lastly, treat weight ν = 4. The freedom function modulo ζζ(· · · ), is

Φ4 ≡ 2 Re

{
(z + zζ)z3(f0 + f1ζ + f2ζ

2 + · · · )

+

(
1

2
z2 + zzζ +

1

2
z2ζ

2
)
z2(g0 + g1ζ + g2ζ

2 + · · · )
}
.

Assertion 6.7. Prenormalization Φ4 = Oz(3) + Oζ(1) is preserved if and only if

0 = f0 = f1 = f2 = · · · , 0 = g0 + g0 = g1 = g2 = · · · .

Thus now, only 1 real degree of freedom is left:

g0 = iτ, τ ∈ R.

With this, how can one normalize G′4 = G4 − Φ4 further? Still modulo ζζ(· · · ):

Φ4 ≡ z4
(
i

2
τζ

2
)

+ z3z(iτζ) + z2z2(0) + zz3(−iτζ) + z4
(
− i

2
τζ2
)
,
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hence

G′4,0,0,2 = G4,0,0,2 −
i

2
τ, G′3,0,1,1 = G3,0,1,1 − iτ, G′2,0,2,0 = G2,0,0,2.

The third line shows an invariant. Notice also that G′4,0,0,1 = G4,0,0,1 is an invariant. We

choose to normalize the lowest jet order 3 + 0 + 1 + 1 = 5 coefficient here.

Assertion 6.8. One can normalize =G′3,0,1,1 := 0 by choosing τ := =G3,0,1,1.

Once this is done, G′3,0,1,1 = G3,0,1,1 ∈ R is an invariant.

Again, we can re-apply the process of Proposition 4.1 to prenormalize the coordinates

without touching the lower order normalizations.

We already saw in Lemma 6.3 that for any weight ν ≥ 5, no degree of freedom exists.

Since only 2 + 1 = 3 real degrees of freedom have been encountered, namely f0 ∈ C in

weight ν = 3 and =g0 ∈ R in weight ν = 4, we conclude that the answer to Question 4.8

is positive.

All this enables us to conclude the present section by stating results which come from

our analysis.

Theorem 6.9. Every local rigid C ω graphed hypersurface M5 ⊂ C3 3 (z, ζ, w = u + iv)

passing through the origin of equation

u =
∑

a+b+c+d≥1
Fa,b,c,dz

aζbzcζ
d
,

whose Levi form is of constant rank 1 and which is 2-nondegenerate:

Fzz 6= 0 ≡

∣∣∣∣∣∣Fzz Fzζ

Fζz Fζζ

∣∣∣∣∣∣ and 0 6=

∣∣∣∣∣∣ Fzz Fzζ

Fzzz Fzzζ

∣∣∣∣∣∣
is equivalent, through a local rigid biholomorphism

(z, ζ, w) 7−→ (f(z, ζ), g(z, ζ), ρw + h(z, ζ)) =: (z′, ζ ′, w′), ρ ∈ R∗

to a rigid C ω hypersurface M ′5 ⊂ C′3 which, dropping primes for target coordinates, is a

perturbation of the Gaussier-Merker model—homogeneous of order 2 in (z, z)—

u =
zz + 1

2z
2ζ + 1

2z
2ζ

1− ζζ
+

∑
a,b,c,d∈N
a+c≥3

Ga,b,c,dz
aζbzcζ

d

with a simplified remainder G which

(1) is normalized to be an Oz,z(3);
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(2) satisfies the prenormalization conditions G = Oz(3) + Oζ(1) = Oz(3) + Oζ(1), or

equivalently,

Ga,b,0,0 = 0 = G0,0,c,d, Ga,b,1,0 = 0 = G1,0,c,d, Ga,b,2,0 = 0 = G2,0,c,d;

(3) satisfies in addition the sporadic normalization conditions

G3,0,0,1 = 0 = G0,1,3,0, =G3,0,1,1 = 0 = =G1,1,3,0.

There is of course no uniqueness of a rigid biholomorphic map which transfers M to

an M ′ satisfying all these normalization conditions (1), (2), (3), just because any post-

composition with a dilation-rotation map

(z′, ζ ′, w′) 7−→ (ρ1/2eiϕz′, e2iϕζ ′, ρw′) = (z′′, ζ ′′, w′′), ρ ∈ R∗+, ϕ ∈ R

will transfer M ′ into an M ′′ = {u′′ = m′′ + G′′} which enjoys again the normalization

conditions (1), (2), (3), since one obviously has

G′′a,b,c,dρ
a+c−2

2 eiϕ(a+2b−c−2d) = G′a,b,c,d.

Remind that such dilation-rotation maps parametrize the 2-dimensional isotropy group

of the origin for the Gaussier-Merker model {u′ = m(z′, ζ ′, z′, ζ
′
)}. Fortunately, an ex-

amination of our analysis above can show that these two parameters ρ, ϕ are the only

ambiguity, since once one assumes that f = z+ f2 + f3 + · · · with no ρ1/2eiϕ in front of z,

that g = ζ + g1 + g2 + · · · , and that h = w+h3 +h4 + · · · , with no ρ1/2eiϕ, our reasonings

showed uniqueness (exercise) of the map to normal form.

To finish, let us abbreviate the space of power series G = G(z, ζ, z, ζ) satisfying the

normalization conditions (1), (2), (3) as

N2,1.

Corollary 6.10. Two rigid C ω hypersurfaces M5 ⊂ C3 and M ′5 ⊂ C′3 belonging to C2,1,

both brought into normal form

u = m+G, G ∈ N2,1,

u′ = m′ +G′, G′ ∈ N′2,1

are rigidly biholomorphically equivalent if and only if there exist two constants ρ ∈ R∗+,

ϕ ∈ R, such that for all a, b, c, d,

Ga,b,c,d = G′a,b,c,dρ
a+c−2

2 eiϕ(a+2b−c−2d).

Granted that hypersurfaces can be put into such a normal form, this criterion is quite

effective to determine whether two M,M ′ ∈ C2,1 are rigidly equivalent.
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7. A summary of further results

As an epilog, we now briefly describe some results which were detailed in the longer memoir

prepublished as in [1], and which will appear elsewhere.

Adding factorials for technical reasons, consider a rigid C2,1 hypersurface M5 ⊂ C3

with 0 ∈M ,

u = F =
∑

a+b+c+d≥1

Fa,b,c,d
a!b!c!d!

zaζbzcζ
d
.

By Theorem 1.1, there exists a rigid biholomorphism which transforms M into normal

form

u = m(z, ζ, z, ζ) +
∑
a+c≥3

Ga,b,c,d
a!b!c!d!

zaζbzcζ
d

with the Ga,b,c,d satisfying the normalizing conditions stated there.

Question 7.1. How do the final coefficients G•,•,•,• express in terms of the initial coeffi-

cients F•,•,•,•?

In Section 9 of [1], we present a general method inspired from [2] which proceeds with

truncated group actions on jet spaces of increasing orders in order to keep track of how

the G•,•,•,• express in terms of the F•,•,•,•. Without proofs, we would like to show what

the outcome is, up to order 5 included.

With the standard weighting [zaζbzcζ
d
] := a+ b+ c+ d, looking at the terms G4 and

G5 after Lemma 6.2, we see that, in normal form, the remainder G has no order 4 term,

and just the following 3 couples of order 5 monomials remain

u = zz +
1

2
z2ζ +

1

2
z2ζ + zzζζ +

1

2
z2ζζζ +

1

2
z2ζζζ

+
1

24
G0,1,4,0z

4ζ +
1

24
G0,1,4,0ζz

4 +
1

12
G0,2,3,0z

3ζ
2

+
1

12
G0,2,3,0ζ

2z3

+
1

6
G1,1,3,0z

3zζ +
1

6
G1,1,3,0zζz

3 + Oz,ζ,z,ζ(6).

Question 7.2. How G0,1,4,0 ∈ C, how G0,2,3,0 ∈ C, how G1,1,3,0 ∈ R express in terms of

{Fa,b,c,d}a+b+c+d≤5?

In [1], we show with details that the three quantities

V0 := G0,1,4,0

(
{Fa,b,c,d}a+b+c+d≤5

)
,

I0 := G0,2,3,0

(
{Fa,b,c,d}a+b+c+d≤5

)
,

Q0 := G1,1,3,0

(
{Fa,b,c,d}a+b+c+d≤5

)
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are relative differential invariants under rigid biholomorphisms, in accordance with Theo-

rem 1.2. Furthermore,

V0 =
11 terms in degree 4

3F1,0,1,0(F0,1,1,0F1,0,2,0 − F0,1,2,0F1,0,1,0)2
,

I0 =
52 terms in degree 9

F
3/2
1,0,1,0(F0,1,1,0F1,0,2,0 − F0,1,2,0F1,0,1,0)3(F1,0,0,1F2,0,1,0 − F1,0,1,0F2,0,0,1)

,

Q0 =
824 terms in degree 18

6F 3
1,0,1,0(F0,1,1,0F1,0,2,0 − F0,1,2,0F1,0,1,0)4(F1,0,0,1F2,0,1,0 − F1,0,1,0F2,0,0,1)4

,

where the numerator of V0 is

3F 2
0,1,1,0F1,0,2,0F1,0,4,0 − 5F 2

0,1,1,0F
2
1,0,3,0 − 3F0,1,1,0F0,1,2,0F1,0,1,0F1,0,4,0

+ 12F0,1,1,0F0,1,2,0F1,0,2,0F1,0,3,0 + 10F0,1,1,0F0,1,3,0F1,0,1,0F1,0,3,0 − 12F0,1,1,0F0,1,3,0F
2
1,0,2,0

− 3F0,1,1,0F0,1,4,0F1,0,1,0F1,0,2,0 − 12F 2
0,1,2,0F1,0,1,0F1,0,3,0 + 12F0,1,2,0F0,1,3,0F1,0,1,0F1,0,2,0

+ 3F0,1,2,0F0,1,4,0F
2
1,0,1,0 − 5F 2

0,1,3,0F
2
1,0,1,0,

and where the numerator of I0 is

F 3
0,1,1,0F1,0,0,1F

2
1,0,1,0F1,0,2,0F2,0,1,0F2,0,3,0 − F 3

0,1,1,0F1,0,0,1F
2
1,0,1,0F1,0,3,0F2,0,1,0F2,0,2,0

+ 2F 3
0,1,1,0F1,0,0,1F1,0,1,0F

3
1,0,2,0F3,0,1,0 − 6F 3

0,1,1,0F1,0,0,1F
3
1,0,2,0F

2
2,0,1,0

− F 3
0,1,1,0F

3
1,0,1,0F1,0,2,0F2,0,0,1F2,0,3,0 + F 3

0,1,1,0F
3
1,0,1,0F1,0,3,0F2,0,0,1F2,0,2,0

− 2F 3
0,1,1,0F

2
1,0,1,0F

3
1,0,2,0F3,0,0,1 + 6F 3

0,1,1,0F1,0,1,0F
3
1,0,2,0F2,0,0,1F2,0,1,0

− F 2
0,1,1,0F0,1,2,0F1,0,0,1F

3
1,0,1,0F2,0,1,0F2,0,3,0 − 6F 2

0,1,1,0F0,1,2,0F1,0,0,1F
2
1,0,1,0F

2
1,0,2,0F3,0,1,0

+ F 2
0,1,1,0F0,1,2,0F1,0,0,1F

2
1,0,1,0F1,0,3,0F

2
2,0,1,0 + 18F 2

0,1,1,0F0,1,2,0F1,0,0,1F1,0,1,0F
2
1,0,2,0F

2
2,0,1,0

+ F 2
0,1,1,0F0,1,2,0F

4
1,0,1,0F2,0,0,1F2,0,3,0 + 6F 2

0,1,1,0F0,1,2,0F
3
1,0,1,0F

2
1,0,2,0F3,0,0,1

− F 2
0,1,1,0F0,1,2,0F

3
1,0,1,0F1,0,3,0F2,0,0,1F2,0,1,0 − 18F 2

0,1,1,0F0,1,2,0F
2
1,0,1,0F

2
1,0,2,0F2,0,0,1F2,0,1,0

+ F 2
0,1,1,0F0,1,3,0F1,0,0,1F

3
1,0,1,0F2,0,1,0F2,0,2,0 − F 2

0,1,1,0F0,1,3,0F1,0,0,1F
2
1,0,1,0F1,0,2,0F

2
2,0,1,0

− F 2
0,1,1,0F0,1,3,0F

4
1,0,1,0F2,0,0,1F2,0,2,0 + F 2

0,1,1,0F0,1,3,0F
3
1,0,1,0F1,0,2,0F2,0,0,1F2,0,1,0

− 2F 2
0,1,1,0F1,0,0,1F

3
1,0,1,0F1,0,2,0F1,1,3,0F2,0,1,0 + 2F 2

0,1,1,0F1,0,0,1F
3
1,0,1,0F1,0,3,0F1,1,2,0F2,0,1,0

+ 2F 2
0,1,1,0F

4
1,0,1,0F1,0,2,0F1,1,3,0F2,0,0,1 − 2F 2

0,1,1,0F
4
1,0,1,0F1,0,3,0F1,1,2,0F2,0,0,1

+ 6F0,1,1,0F
2
0,1,2,0F1,0,0,1F

3
1,0,1,0F1,0,2,0F3,0,1,0 − 18F0,1,1,0F

2
0,1,2,0F1,0,0,1F

2
1,0,1,0F1,0,2,0F

2
2,0,1,0

− 6F0,1,1,0F
2
0,1,2,0F

4
1,0,1,0F1,0,2,0F3,0,0,1 + 18F0,1,1,0F

2
0,1,2,0F

3
1,0,1,0F1,0,2,0F2,0,0,1F2,0,1,0

+ 2F0,1,1,0F0,1,2,0F1,0,0,1F
4
1,0,1,0F1,1,3,0F2,0,1,0 − 2F0,1,1,0F0,1,2,0F1,0,0,1F

3
1,0,1,0F1,0,3,0F1,1,1,0F2,0,1,0

− 2F0,1,1,0F0,1,2,0F
5
1,0,1,0F1,1,3,0F2,0,0,1 + 2F0,1,1,0F0,1,2,0F

4
1,0,1,0F1,0,3,0F1,1,1,0F2,0,0,1

− 2F0,1,1,0F0,1,3,0F1,0,0,1F
4
1,0,1,0F1,1,2,0F2,0,1,0 + 2F0,1,1,0F0,1,3,0F1,0,0,1F

3
1,0,1,0F1,0,2,0F1,1,1,0F2,0,1,0

+ 2F0,1,1,0F0,1,3,0F
5
1,0,1,0F1,1,2,0F2,0,0,1 − 2F0,1,1,0F0,1,3,0F

4
1,0,1,0F1,0,2,0F1,1,1,0F2,0,0,1

− F0,1,1,0F0,2,2,0F1,0,0,1F
4
1,0,1,0F1,0,3,0F2,0,1,0 + F0,1,1,0F0,2,2,0F

5
1,0,1,0F1,0,3,0F2,0,0,1

+ F0,1,1,0F0,2,3,0F1,0,0,1F
4
1,0,1,0F1,0,2,0F2,0,1,0 − F0,1,1,0F0,2,3,0F

5
1,0,1,0F1,0,2,0F2,0,0,1
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− 2F 3
0,1,2,0F1,0,0,1F

4
1,0,1,0F3,0,1,0 + 6F 3

0,1,2,0F1,0,0,1F
3
1,0,1,0F

2
2,0,1,0

+ 2F 3
0,1,2,0F

5
1,0,1,0F3,0,0,1 − 6F 3

0,1,2,0F
4
1,0,1,0F2,0,0,1F2,0,1,0

+ F0,1,2,0F0,2,1,0F1,0,0,1F
4
1,0,1,0F1,0,3,0F2,0,1,0 − F0,1,2,0F0,2,1,0F

5
1,0,1,0F1,0,3,0F2,0,0,1

− F0,1,2,0F0,2,3,0F1,0,0,1F
5
1,0,1,0F2,0,1,0 + F0,1,2,0F0,2,3,0F

6
1,0,1,0F2,0,0,1

− F0,1,3,0F0,2,1,0F1,0,0,1F
4
1,0,1,0F1,0,2,0F2,0,1,0 + F0,1,3,0F0,2,1,0F

5
1,0,1,0F1,0,2,0F2,0,0,1

+ F0,1,3,0F0,2,2,0F1,0,0,1F
5
1,0,1,0F2,0,1,0 − F0,1,3,0F0,2,2,0F

6
1,0,1,0F2,0,0,1.

Question 7.3. Why chasing explicit expressions?

Before this article, in [6], we applied Cartan’s equivalence method to rigid biholomor-

phic equivalences of rigid C2,1 hypersurfaces M5 ⊂ C3, and we found two primary relative

differential invariants named V0, I0, plus a secondary one Q0. Let us briefly describe the

main result of [6], and argue that explicit expressions prove a perfect matching of the full

expressions of V0, I0, Q0 found by two completely different approaches.

Consider as before a rigid M5 ⊂ C3 with 0 ∈ M , which is 2-nondegenerate and has

Levi form of constant rank 1, i.e., belongs to the class C2,1, and which is graphed as

u = F (z1, z2, z1, z2).

Now, the letter ζ is protected, hence not used instead of z2, since ζ will denote a 1-form.

Two natural generators of T 1,0M in the intrinsic coordinates (z1, z2, z1, z2, v) on M are

L1 := ∂z1 − iFz1∂v and L2 := ∂z2 − iFz2∂v.

The Levi kernel bundle K1,0M ⊂ T 1,0M is generated by

K := kL1 + L2, where k := −Fz2z1
Fz1z1

is the slant function. The hypothesis of 2-nondegeneracy is equivalent to the nonvanishing

0 6= L 1(k).

Also, the conjugate K generates the conjugate Levi kernel bundle K0,1 ⊂ T 0,1M .

There is a second fundamental function, and no more

P :=
Fz1z1z1
Fz1z1

.

In the rigid case, it looks so simple, but in the nonrigid case [5, 21], we would like to

mention that P has a numerator involving 69 differential monomials (!).

In [6], we produced a reduction to an {e}-structure for the equivalence problem, under

rigid (local) biholomorphic transformations, of such rigid M5 ∈ C2,1. We constructed an

invariant 7-dimensional bundle P 7 −→M5 equipped with coordinates

(z1, z2, z1, z2, v, c, c)
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with c ∈ C, together with a collection of seven complex-valued 1-forms which make a

frame for T ∗P 7, denoted

{ρ, κ, ζ, κ, ζ, α, α}, ρ = ρ

which satisfy 7 finalized invariant exterior differential equations of the form

dρ = (α+ α) ∧ ρ+ iκ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ = (α− α) ∧ ζ +
1

c
I0κ ∧ ζ +

1

cc
V0κ ∧ κ,

dα = ζ ∧ ζ − 1

c
I0ζ ∧ κ+

1

cc
Q0κ ∧ κ+

1

c
I0ζ ∧ κ

conjugate structure equations for dκ, dζ, dα being easily deduced.

Here, there are exactly two primary Cartan-curvature invariants

V0 := −1

3

L 1(L 1(L 1(k)))

L 1(k)
+

5

9

(
L 1(L 1(k))

L 1(k)

)2

− 1

9

L 1(L 1(k))P

L 1(k)
+

1

3
L 1(P )− 1

9
PP ,

I0 := −1

3

K (L 1(L 1(k)))

L 1(k)2
+

1

3

K (L 1(k))L 1(L 1(k))

L 1(k)3
+

2

3

L1(L1(k))

L1(k)
+

2

3

L1(L 1(k))

L 1(k)
.

Furthermore, there is one secondary invariant whose unpolished expression is

Q0 :=
1

2
L 1(I0)−

1

3

(
P − L1(L1(k))

L1(k)

)
I0 −

1

6

(
P − L 1(L 1(k))

L 1(k)

)
I0 −

1

2

K (V0)

L 1(k)
.

Visibly indeed, the vanishing of I0 and V0 implies the vanishing of Q0. In fact, a

consequence of Cartan’s general theory is

0 ≡ V0 ≡ I0 ⇐⇒ M is rigidly equivalent to the Gaussier-Merker model.

When one inserts the expressions of k, P in terms of F inside V0, I0, Q0, and when one

factorizes, simplifies, reorganizes, one obtains

Theorem 7.4 (On a computer). Up to multiplication by a complex number of modulus 1,

the expressions of V0, I0, Q0 obtained either by the normal forms method or by Cartan’s

equivalence method are exactly the same.

However, the normal forms method showed by construction that Q0 = G1,1,3,0(F•,•,•,•)

is real-valued, whereas the expression of Q0 found in [6] and copied just above does not

look real-valued. Even a sub-part of Q0 above which seems real-valued is not, because

−1
3 6= −

1
6 ! For some time, we thought there could be some errors somewhere, because

computations in [6] were done manually.
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Fortunately, there were no errors, and in Section 8 of the longer memoir prepublished as

in [1], an equivalent clean finalized expression of Q0, in terms of only the two fundamental

functions k, P (and their conjugates), from which one immediately sees real-valuedness,

has been obtained

Q0 = 2 Re

{
1

9

K (L 1(k))L 1(L 1(k))2

L 1(k)4
− 1

9

K (L 1(L 1(k)))L 1(L 1(k))

L 1(k)3

− 1

9

K (L 1(k))L 1(L 1(k))P

L 1(k)3
− 1

9

L1(L 1(k))L 1(L 1(k))

L 1(k)2

+
1

9

K (L 1(L 1(k)))P

L 1(k)2
− 2

9

L1(L 1(k))P

L 1(k)
− 1

9

L 1(L 1(k))P

L 1(k)

+
1

3

L1(L 1(L 1(k)))

L 1(k)
+

1

6
L 1(P )

}
− 1

9
|P |2 +

1

3

∣∣∣∣L 1(L 1(k))

L 1(k)

∣∣∣∣2 .
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