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Generalized Derivations and Generalization of Co-commuting Maps in Prime

Rings

Basudeb Dhara*, Nripendu Bera, Sukhendu Kar and Brahim Fahid

Abstract. Suppose that R is a prime ring of characteristic different from 2 with Utumi

quotient ring U , C = Z(U) the extended centroid of R, and f(x1, . . . , xn) a noncentral

multilinear polynomial over C. If F , G andH are three nonzero generalized derivations

of R such that

F
(
G(f(X))f(X)

)
= f(X)H(f(X))

for all X = (x1, . . . , xn) ∈ Rn, then we describe the nature of the maps F , G and H.

1. Introduction

Throughout this paper R denotes a prime ring with center Z(R), extended centroid C and

U its Utumi quotient ring. The definition and axiomatic formulation of Utumi quotient

ring U can be found in [2, 4].

We have the following properties which we need

1. R ⊆ U ;

2. U is a prime ring with unity;

3. The center of U is denoted by C and is called the extended centroid of R. C is a

field.

By a derivation of R, we mean an additive mapping d : R → R such that d(xy) =

d(x)y+xd(y) holds for all x, y ∈ R. An additive mapping F : R→ R is called a generalized

derivation if there exists a derivation d on R such that F (xy) = F (x)y + xd(y) holds

for all x, y ∈ R. Basic examples of generalized derivations are derivations, generalized

inner derivations (i.e., maps of type x → ax + xb for some a, b ∈ R). In [16], Lee

proved that any generalized derivation of R can be uniquely extended to a generalized

derivation of U and its form will be g(x) = ax + d(x) for some a ∈ U , where d is the
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associated derivation. The Lie commutator of x and y is denoted by [x, y] and also

defined by [x, y] = xy − yx for all x, y ∈ R; also the symbol x ◦ y stands for the anti-

commutator xy+ yx. By s4, we denotes the standard polynomial in four variables, which

is s4(x1, x2, x3, x4) =
∑

σ∈S4
(−1)σxσ(1)xσ(2)xσ(3)xσ(4), where (−1)σ is +1 or −1 according

to σ being an even or odd permutation in symmetric group S4. Let S ⊆ R. An additive

map F : R → R is said to be commuting (centralizing) on S if [F (x), x] = 0 for all

x ∈ S (resp. [F (x), x] ∈ Z(R) for all x ∈ S). Two additive maps F,G : R → R are

said to be co-commuting (co-centralizing) on S if F (x)x − xG(x) = 0 for all x ∈ S

(resp. F (x)x− xG(x) ∈ Z(R) for all x ∈ S).

In [6], De Filippis and De Vincenzo described the structure of additive mappings d and

G satisfying d(G(f(X))f(X) − f(X)G(f(X))) = 0 for all X = (x1, . . . , xn) ∈ Rn, where

f is a multinear polynomial over extended centroid C and d is a nonzero derivation and

G is a nonzero generalized derivation on prime ring R of char(R) 6= 2.

In [9], the first author, Argac and Albas extended the above result by considering

two generalized derivations. More precisely, they studied the situation d(F (f(X))f(X)−
f(X)G(f(X))) = 0 for all X = (x1, . . . , xn) ∈ Rn, where f is a multinear polynomial

over extended centroid C and d is a nonzero derivation and F , G are two generalized

derivations on prime ring R of char(R) 6= 2. In the paper authors determined all possible

forms of the additive maps d, F and G.

On the other hand, Carini and De Filippis [3] proved that if R is a prime ring of

characteristic different from 2, δ a nonzero derivation of R, G a nonzero generalized

derivation of R, and f(x1, . . . , xn) a non-central multilinear polynomial over C such that

δ(G(f(X))f(X)) = 0 for all X = (x1, . . . , xn) ∈ Rn, then there exist a, b ∈ U such

that G(x) = ax and δ(x) = [b, x] for all x ∈ R, with [b, a] = 0 and f(x1, . . . , xn)2 is

central-valued on R.

Further, the first author and Argac [8] extended the above result replacing derivation

δ with another generalized derivation F , that is, F (G(f(X))f(X)) = 0 for all X =

(x1, . . . , xn) ∈ In, and then gave the complete description of the additive maps F and G,

where I is a non-zero two-sided ideal of R.

In another paper [1], Argaç and De Filippis studied the generalized derivations G and

H co-commuting on f(I) = {f(x1, . . . , xn) | xi ∈ I}, that is, G(u)u − uH(u) = 0 for all

u ∈ f(I) and then obtained the all possible forms of the maps F and G, where I is a

non-zero two-sided ideal of R.

Motivated by the above results we prove the following theorem.

Theorem 1.1. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C, which is not central valued on R. Suppose that F , G and H are three
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nonzero generalized derivations of R such that

F
(
G(f(X))f(X)

)
= f(X)H(f(X))

for all X = (x1, . . . , xn) ∈ Rn. Then one of the following holds:

(1) there exist λ ∈ C and a, b ∈ U such that F (x) = λx, G(x) = xa and H(x) = λax

for all x ∈ R;

(2) there exist λ, α ∈ C and p, q, u, v ∈ U such that F (x) = λx, G(x) = px + xq and

H(x) = λ(qx+ xp) for all x ∈ R with f(x1, . . . , xn)2 is central valued in R;

(3) there exist λ ∈ C and a, p ∈ U such that F (x) = ax, G(x) = px and H(x) = λx for

all x ∈ R with ap = λ;

(4) there exist λ ∈ C and a ∈ U such that F (x) = xa, G(x) = λx and H(x) = λxa for

all x ∈ R;

(5) there exist a, b, p, v ∈ U such that F (x) = ax+xb, G(x) = px and H(x) = xv for all

x ∈ R with f(x1, . . . , xn)2 is central valued on R and ap+ pb = v.

In particular, when G = H, we have the following

Corollary 1.2. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C, which is not central valued on R. Suppose that F and G are two

nonzero generalized derivations of R such that

F
(
G(f(X))f(X)

)
= f(X)G(f(X))

for all X = (x1, . . . , xn) ∈ Rn. Then one of the following holds:

(1) there exists µ ∈ C such that F (x) = x and G(x) = µx for all x ∈ R;

(2) there exist α ∈ C and p ∈ U such that F (x) = x and G(x) = px + xp + αx for all

x ∈ R with f(x1, . . . , xn)2 is central valued in R;

(3) there exists p ∈ U such that F (x) = −x and G(x) = [p, x] for all x ∈ R with

f(x1, . . . , xn)2 is central valued in R;

(4) there exist a, b, p ∈ U such that F (x) = ax + xb and G(x) = px for all x ∈ R with

f(x1, . . . , xn)2 is central valued on R and F (p) = p.
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Proof. By Theorem 1.1, we have the following conclusions:

(1) There exists µ ∈ C such that F (x) = x and G(x) = µx for all x ∈ R. This is our

conclusion (1).

(2) There exist λ, α ∈ C and p, q ∈ U such that F (x) = λx, G(x) = px + xq for all

x ∈ R with f(x1, . . . , xn)2 being central valued in R and q − λp = λq − p = α ∈ C. The

last relation yields (λ − 1)(p + q) = 0. This yields either λ = 1 or p + q = 0. (i) When

λ = 1, we have q− p = α ∈ C and hence F (x) = x and G(x) = px+xp+αx for all x ∈ R.

This gives conclusion (2). (ii) When p + q = 0, we have F (x) = λx, G(x) = [p, x] for all

x ∈ R with p+λp = α ∈ C, i.e., (1 +λ)p ∈ C. This implies 1 +λ = 0, since p ∈ C implies

G = 0, a contradiction. Thus λ = −1. This gives conclusion (3).

(3) There exist λ ∈ C and a, p ∈ U such that F (x) = ax, G(x) = λx for all x ∈ R with

aλ = λ. Since G 6= 0, λ 6= 0 and hence last relation gives a = 1. This is conclusion (1).

(4) There exist λ ∈ C and a, u ∈ U such that F (x) = xa, G(x) = λx for all x ∈ R
with aλ = λ. By the same argument as above, a = 1, as desired in (1).

(5) There exist a, b, p, v ∈ U such that F (x) = ax + xb, G(x) = px for all x ∈ R with

f(x1, . . . , xn)2 being central valued on R and ap+ pb = p. This is conclusion (4).

From Theorem 1.1(2), we conclude that when G is derivation then H also be a deriva-

tion. Thus following corollary is straightforward.

Corollary 1.3. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C, which is not central valued on R. Suppose that F and H are two

nonzero generalized derivations of R and d is a derivation of R such that

F
(
d(f(X))f(X)

)
= f(X)H(f(X))

for all X = (x1, . . . , xn) ∈ Rn. Then there exist λ ∈ C and p, u ∈ U such that F (x) = λx,

d(x) = [p, x] and H(x) = −λ[p, x] for all x ∈ R with f(x1, . . . , xn)2 being central valued

in R.

Corollary 1.4. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C, which is not central valued on R. Suppose that F and G are two

nonzero generalized derivations of R and d is a derivation of R such that

F
(
G(f(X))f(X)

)
= f(X)d(f(X))

for all X = (x1, . . . , xn) ∈ Rn. Then there exist λ ∈ C and p, u ∈ U such that F (x) = λx,

G(x) = [p, x] and d(x) = −λ[p, x] for all x ∈ R with f(x1, . . . , xn)2 being central valued in

R.
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In particular, when F is derivation, then we have last conclusion of Theorem 1.1.

Corollary 1.5. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C, which is not central valued on R. Suppose that G and H are two

nonzero generalized derivations of R and d is a derivation of R such that

d
(
G(f(X))f(X)

)
= f(X)H(f(X))

for all X = (x1, . . . , xn) ∈ Rn. Then there exist a, b, p, v ∈ U such that d(x) = [a, x],

G(x) = px and H(x) = xv for all x ∈ R with f(x1, . . . , xn)2 being central valued on R

and d(p) = v.

Corollary 1.6. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C. Suppose that d, δ and h are three nonzero derivations of R such that

d
(
δ(f(X))f(X)

)
= f(X)h(f(X))

for all X = (x1, . . . , xn) ∈ Rn. Then f(x1, . . . , xn) must be central valued.

Corollary 1.7. Let R be a prime ring of characteristic different from 2. Suppose that d,

δ and h are three nonzero derivations of R such that

d
(
δ(x)x

)
= xh(x)

for all x ∈ R. Then R must be commutative.

2. Main results

Let F (6= 0), G (6= 0) and H (6= 0) be all inner generalized derivations of R. There exist

some fixed a, b, p, q, u, v ∈ U such that F (x) = ax+xb, G(x) = px+xq and H(x) = ux+xv

for all x ∈ R. Then by our hypothesis F (G(x)x) = xH(x)) for all x ∈ f(R), we have

(2.1) apx2 + axqx+ px2b+ xqxb− xux− x2v = 0

for all x ∈ f(R).

To investigate this generalized polynomial identity (GPI) in prime ring R, we recall

the following

Lemma 2.1. [1, Lemma 3] Let R be a noncommutative prime ring with Utumi quotient

ring U and extended centroid C, and f(x1, . . . , xn) a multilinear polynomial over C, which

is not central valued on R. Suppose that there exist a, b, c, q ∈ U such that (af(r) +

f(r)b)f(r) − f(r)(cf(r) + f(r)q) = 0 for all r = (r1, . . . , rn) ∈ Rn. Then one of the

following holds:
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(1) a, q ∈ C and q − a = b− c = α ∈ C;

(2) f(x1, . . . , xn)2 is central valued on R and there exists α ∈ C such that q−a = b−c =

α;

(3) char(R) = 2 and R satisfies s4.

Now to investigate our generalized polynomial identity (GPI) (2.1), in all that follows,

we assume R a noncommutative prime ring with extended centroid C, char(R) 6= 2.

Moreover, we assume that f(x1, . . . , xn) is a multilinear polynomial over C which is not

central valued on R.

Lemma 2.2. If a, b ∈ C and R satisfies (2.1), then one of the following holds:

(1) p, v ∈ C with (a+ b)(p+ q) = u+ v;

(2) f(x1, . . . , xn)2 is central valued in R with v − (a+ b)p = (a+ b)q − u = α ∈ C.

Proof. If a, b ∈ C, then by hypothesis

(a+ b)(px+ xq)x = x(ux+ xv)

for all x ∈ f(R). In this case by Lemma 2.1, one of the following holds:

(i) (a + b)p, v ∈ C and v − (a + b)p = (a + b)q − u = α ∈ C. Since F 6= 0, a + b 6= 0

and so (a+ b)p ∈ C implies p ∈ C.

(ii) f(x1, . . . , xn)2 is central valued on R and there exists α ∈ C such that v−(a+b)p =

(a+ b)q − u = α ∈ C.

Lemma 2.3. If q ∈ C and R satisfies (2.1), then one of the following holds:

(1) b, u, v ∈ C with (a+ b)(p+ q) = v + u;

(2) a, p, u ∈ C with (a+ b)(p+ q) = v + u;

(3) u ∈ C with f(x1, . . . , xn)2 being central valued on R and a(p+ q) + (p+ q)b = u+ v.

Proof. If q ∈ C, then our hypothesis becomes

a(p+ q)x2 + px2b+ x2(bq − v)− xux = 0

for all x ∈ f(R). Then by Proposition 2.7 in [10], we conclude that u ∈ C. Then our

hypothesis reduces to

a(p+ q)x2 + px2b+ x2(bq − v − u) = 0

for all x ∈ f(R). Then by applying Lemma 2.9 in [7], we conclude one of the following:
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(i) b, u, bq− v−u ∈ C with a(p+ q) + pb+ (bq− v−u) = 0, i.e., (a+ b)(p+ q) = v+u.

Since b, q, u ∈ C, we have v ∈ C.

(ii) a(p+q), u, p ∈ C with a(p+q)+pb+(bq−v−u) = 0, i.e., (a+b)(p+q) = v+u. In

this case G(x) = (p+ q)x for all x ∈ R. As G 6= 0, thus 0 6= p+ q ∈ C. Hence a(p+ q) ∈ C
implies a ∈ C.

(iii) u ∈ C and f(x1, . . . , xn)2 is central valued on R with a(p+q)+pb+(bq−v−u) = 0,

i.e., a(p+ q) + (p+ q)b = u+ v.

Thus the lemma is proved.

Lemma 2.4. Let R be a prime ring with extended centroid C and a, b, p, q, u, v ∈ R. If

apx2 + axqx+ px2b+ xqxb− xux− x2v = 0

for all x ∈ f(R) is a trivial generalized polynomial identity, then either a, b ∈ C or q ∈ C.

Proof. Let a /∈ C and q /∈ C. By hypothesis, we have

ζ(x1, . . . , xn) = apf(x1, . . . , xn)2 + af(x1, . . . , xn)qf(x1, . . . , xn)

+ pf(x1, . . . , xn)2b+ f(x1, . . . , xn)qf(x1, . . . , xn)b

− f(x1, . . . , xn)uf(x1, . . . , xn)− f(x1, . . . , xn)2v = 0

for all x1, . . . , xn ∈ R. Since R and U satisfy the same generalized polynomial identity

(see [4]), U satisfies ζ(x1, . . . , xn) = 0. By our assumption ζ(x1, . . . , xn) is a trivial GPI

for U . Let T = U ∗C C{x1, x2, . . . , xn}, the free product of U and C{x1, . . . , xn}, the

free C-algebra in noncommuting indeterminates x1, x2, . . . , xn. Then, ζ(x1, . . . , xn) is zero

element in T = U ∗CC{x1, . . . , xn}. This implies that {ap, a, p, 1} is linearly C-dependent.

Then there exist α1, α2, α3, α4 ∈ C such that α1ap+α2a+α3p+α4 ·1 = 0. If α1 = α3 = 0,

then α2 6= 0 and so a = −α−12 α4 ∈ C, a contradiction. Therefore, either α1 6= 0 or α3 6= 0.

Without loss of generality, we assume that α1 6= 0. Then ap = αa + βp + γ, where

α = −α−11 α2, β = −α−11 α3, γ = −α−11 α4. Then

(αa+ βp+ γ)f(x1, . . . , xn)2 + af(x1, . . . , xn)qf(x1, . . . , xn)

+ pf(x1, . . . , xn)2b+ f(x1, . . . , xn)qf(x1, . . . , xn)b

− f(x1, . . . , xn)uf(x1, . . . , xn)− f(x1, . . . , xn)2v = 0

in T . This implies that {a, p, 1} is linearly C-dependent. Then there exist β1, β2, β3 ∈ C
such that β1a+ β2p+ β3 = 0. By same argument as before, since a /∈ C, we have β2 6= 0

and hence p = α′a+ β′ for some α′, β′ ∈ C. Thus our identity becomes

(αa+ βα′a+ ββ′ + γ)f(x1, . . . , xn)2 + af(x1, . . . , xn)qf(x1, . . . , xn)

+ (α′a+ β′)f(x1, . . . , xn)2b+ f(x1, . . . , xn)qf(x1, . . . , xn)b

− f(x1, . . . , xn)uf(x1, . . . , xn)− f(x1, . . . , xn)2v = 0.
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Since {a, 1} is linearly C-independent, we have

(α+ βα′)af(x1, . . . , xn)2 + af(x1, . . . , xn)qf(x1, . . . , xn) + α′af(x1, . . . , xn)2b = 0,

that is

af(x1, . . . , xn)
(
(α+ βα′ + q)f(x1, . . . , xn) + α′f(x1, . . . , xn)b

)
= 0

in T . Moreover, since q /∈ C, the term af(x1, . . . , xn)qf(x1, . . . , xn) cannot be canceled

and hence af(x1, . . . , xn)qf(x1, . . . , xn) = 0 in T which implies q = 0, a contradiction.

Thus either a ∈ C or q ∈ C.

Similarly, we can prove that either b ∈ C or q ∈ C.

Lemma 2.5. [6, Lemma 1] Let K be an infinite field and m ≥ 2. If A1, . . . , Ak are not

scalar matrices in Mm(K) then there exists some invertible matrix P ∈Mm(K) such that

any matrices PA1P
−1, . . . , PAkP

−1 have all non-zero entries.

Proposition 2.6. Let R = Mm(C) be the ring of all m × m matrices over the infi-

nite field C and f(x1, . . . , xn) a non-central multilinear polynomial over C. If there exist

a, b, p, q, u, v ∈ R such that

apx2 + axqx+ px2b+ xqxb− xux− x2v = 0

for all x ∈ f(R), then either a, b are central or q is central.

Proof. By our hypothesis, R satisfies the generalized polynomial identity

apf(x1, . . . , xn)2 + af(x1, . . . , xn)qf(x1, . . . , xn)

+ pf(x1, . . . , xn)2b+ f(x1, . . . , xn)qf(x1, . . . , xn)b

− f(x1, . . . , xn)uf(x1, . . . , xn)− f(x1, . . . , xn)2v = 0.

We assume first that a /∈ Z(R) and q /∈ Z(R). Now we shall show that this case leads to

a contradiction.

Since a /∈ Z(R) and q /∈ Z(R), by Lemma 2.5 there exists a C-automorphism φ of

Mm(C) such that φ(a), φ(q) have all non-zero entries. Clearly, R satisfies the generalized

polynomial identity

φ(ap)f(x1, . . . , xn)2 + φ(a)f(x1, . . . , xn)φ(q)f(x1, . . . , xn)

+ φ(p)f(x1, . . . , xn)2φ(b) + f(x1, . . . , xn)φ(q)f(x1, . . . , xn)b

− f(x1, . . . , xn)φ(u)f(x1, . . . , xn)− f(x1, . . . , xn)2φ(v) = 0.

(2.2)

By eij , we mean the usual matrix unit with 1 in (i, j)-entry and zero elsewhere. Since

f(x1, . . . , xn) is not central valued, by [15] (see also [17]), there exist a sequence of matrices
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v1, . . . , vn in Mm(C) and γ ∈ C−{0} such that f(v1, . . . , vn) = γepq, with p 6= q. Moreover,

since the set {f(r1, . . . , rn) : r1, . . . , rn ∈ Mm(C)} is invariant under the action of all C-

automorphisms of Mm(C), then for any i 6= j there exist r1, . . . , rn in Mm(C) such that

f(r1, . . . , rn) = eij . Hence by (2.2), we have

(2.3) φ(a)eijφ(q)eij + eijφ(q)eijb− eijφ(u)eij = 0

and then left multiplying by eij , it follows eijφ(a)eijφ(q)eij = 0, which is a contradiction,

since φ(a) and φ(q) have all non-zero entries. Thus we conclude that either a ∈ Z(R) or

q ∈ Z(R).

If we consider b /∈ Z(R) and q /∈ Z(R), then by same argument as above we have a

contradiction with the fact eijφ(q)eijφ(b)eij = 0 obtained from (2.3). Thus we conclude

either b ∈ Z(R) or q ∈ Z(R).

Thus, q /∈ Z(R) implies a ∈ Z(R) and b ∈ Z(R). Thus the conclusion follows.

Proposition 2.7. Let R = Mm(C) be the ring of all matrices over the field C with

char(R) 6= 2 and f(x1, . . . , xn) a non-central multilinear polynomial over C. If there exist

a, b, p, q, u, v ∈ R such that

apx2 + axqx+ px2b+ xqxb− xux− x2v = 0

for all x ∈ f(R), then either a, b ∈ C · Im or q ∈ C · Im.

Proof. In case C is infinite, the conclusions follow by Proposition 2.6.

So we assume that C is finite. Let K be an infinite field which is an extension of the

field C. Let R = Mm(K) ∼= R⊗CK. Notice that the multilinear polynomial f(x1, . . . , xn)

is central-valued on R if and only if it is central-valued on R. Consider the generalized

polynomial

Ψ(x1, . . . , xn) = apf(x1, . . . , xn)2 + af(x1, . . . , xn)qf(x1, . . . , xn)

+ pf(x1, . . . , xn)2b+ f(x1, . . . , xn)qf(x1, . . . , xn)b

− f(x1, . . . , xn)uf(x1, . . . , xn)− f(x1, . . . , xn)2

which is a generalized polynomial identity for R.

Moreover, it is a multi-homogeneous of multi-degree (2, . . . , 2) in the indeterminates

x1, . . . , xn. Hence the complete linearization of Ψ(x1, . . . , xn) yields a multilinear general-

ized polynomial Θ(x1, . . . , xn, y1, . . . , yn) in 2n indeterminates, moreover

Θ(x1, . . . , xn, x1, . . . , xn) = 2nΨ(x1, . . . , xn).

Clearly the multilinear polynomial Θ(x1, . . . , xn, y1, . . . , yn) is a generalized polynomial

identity for R and R too. Since char(C) 6= 2 we obtain Ψ(r1, . . . , rn) = 0 for all r1, . . . , rn ∈
R and then conclusion follows from Proposition 2.6.
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In particular, we have the following

Corollary 2.8. Let R = Mm(C) be the ring of all matrices over the field C with char(R) 6=
2. If there exist a, b, p, q, u, v ∈ R such that

apx2 + axqx+ px2b+ xqxb− xux− x2v = 0

for all x ∈ R, then either a, b ∈ C · Im or q ∈ C · Im.

Similarly, we have the following

Corollary 2.9. Let R = Mm(C) be the ring of all matrices over the field C with char(R) 6=
2. If there exist a′, a, b, p, q, u, v ∈ R such that

a′x2 + axqx+ px2b+ xqxb− xux− x2v = 0

for all x ∈ R, then either a, b ∈ C · Im or q ∈ C · Im.

Lemma 2.10. Let R be a primitive ring of char(R) 6= 2 with nonzero socle Soc(R), which

is isomorphic to a dense ring of linear transformations of a vector space V over C, such

that dimC V =∞. Let a′, a, b, p, q, u, v ∈ R. If

a′x2 + axqx+ px2b+ xqxb− xux− x2v = 0

for all x ∈ R, then either a, b ∈ C or q ∈ C.

Proof. Recall that if any element r ∈ R commutes the nonzero ideal Soc(RC), i.e.,

[r, Soc(RC)] = (0), then r ∈ C. Hence on contrary, we assume that there exist h0, h1, h2 ∈
Soc(R) such that

(i) either [a, h0] 6= 0 or [b, h1] 6= 0;

(ii) [q, h2] 6= 0

and prove that a number of contradiction arises. Since V is infinite dimensional over C, for

any e = e2 ∈ Soc(R), we have eRe ∼= Mk(C) with k = dimC V e. By Litoff’s Theorem [12],

there exists an idempotent e ∈ Soc(R) such that

• h0, h1, h2 ∈ eRe;

• h0a, ah0, h1a, ah1, h2a, ah2 ∈ eRe;

• h0b, bh0, h1b, bh1, h2b, bh2 ∈ eRe;

• h0q, qh0, h1q, qh1, h2q, qh2 ∈ eRe,
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where eRe ∼= Mk(C), k = dimC V e. Since R satisfies e{a′(exe)2 + aexeqexe+ p(exe)2b+

exeqexeb − exeuexe − (exe)2v}e = 0, the subring eRe satisfies ea′ex2 + eaexeqex +

epex2ebe + xeqexebe − xeuex − x2eve = 0. By Corollary 2.9, we conclude that one of

the following holds:

(i) eae, ebe ∈ eC which contradicts with the choice of h0 and h1;

(ii) eqe ∈ eC which contradicts with the choices of h2.

Lemma 2.11. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C, which is not central valued on R. Suppose that F , G and H are three

nonzero inner generalized derivations of R such that F (G(f(r))f(r)) = f(r)H(f(r)) for

all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exist λ ∈ C and a, b ∈ U such that F (x) = λx, G(x) = xa and H(x) = bx for

all x ∈ R with λa = b;

(2) there exist λ, α ∈ C and p, q, u, v ∈ U such that F (x) = λx, G(x) = px + xq and

H(x) = ux + xv for all x ∈ R with f(x1, . . . , xn)2 being central valued in R and

v − λp = λq − u = α ∈ C;

(3) there exist λ ∈ C and a, p ∈ U such that F (x) = ax, G(x) = px and H(x) = λx for

all x ∈ R with ap = λ;

(4) there exist λ ∈ C and a, u ∈ U such that F (x) = xa, G(x) = λx and H(x) = xu for

all x ∈ R with aλ = u;

(5) there exist a, b, p, v ∈ U such that F (x) = ax+xb, G(x) = px and H(x) = xv for all

x ∈ R with f(x1, . . . , xn)2 being central valued on R and ap+ pb = v.

Proof. Suppose that for some a, b, p, q, u, v ∈ U , F (x) = ax + xb, G(x) = px + xq and

H(x) = ux+ xv for all x ∈ R. By hypothesis, we have

a
(
(pf(x1, . . . , xn) + f(x1, . . . , xn)q)f(x1, . . . , xn)

)
+
(
(pf(x1, . . . , xn) + f(x1, . . . , xn)q)f(x1, . . . , xn)

)
b

= f(x1, . . . , xn)(uf(x1, . . . , xn) + f(x1, . . . , xn)v),

that is,

apf(x1, . . . , xn)2 + af(x1, . . . , xn)qf(x1, . . . , xn)

+ pf(x1, . . . , xn)2b+ f(x1, . . . , xn)qf(x1, . . . , xn)b

− f(x1, . . . , xn)uf(x1, . . . , xn)− f(x1, . . . , xn)2v = 0
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for all x1, . . . , xn ∈ R. Since R and U satisfy the same generalized polynomial identities

(see [4]), therefore, U satisfies

apf(x1, . . . , xn)2 + af(x1, . . . , xn)qf(x1, . . . , xn)

+ pf(x1, . . . , xn)2b+ f(x1, . . . , xn)qf(x1, . . . , xn)b

− f(x1, . . . , xn)uf(x1, . . . , xn)− f(x1, . . . , xn)2v = 0.

(2.4)

If this is a trivial generalized polynomial identity for U , then by Lemma 2.4, either a, b ∈ C
or q ∈ C.

Next we assume that (2.4) is a non-trivial GPI for U .

Since both U and U⊗CC are prime and centrally closed [11, Theorems 2.5 and 3.5], we

may replace R by U or U⊗CC according as C finite or infinite. Then R is centrally closed

over C and R satisfies (2.4). By Martindale’s Theorem [18], R is then a primitive ring

with nonzero socle soc(R) and with C as its associated division ring. Then, by Jacobson’s

Theorem [13, p. 75], R is isomorphic to a dense ring of linear transformations of a vector

space V over C. Assume first that V is finite dimensional over C, that is, dimC V = m.

By density of R, we have R ∼= Mm(C). Since f(r1, . . . , rn) is not central valued on R,

R must be noncommutative and so m ≥ 2. In this case, by Proposition 2.7, we get that

a, b ∈ C or q ∈ C. If V is infinite dimensional over C, then by Lemma 2.10, we conclude

that either a, b ∈ C or q ∈ C.

Thus up to now, we have proved that in any cases either a, b ∈ C or q ∈ C.

Case 1: a, b ∈ C. In this case by Lemma 2.2, we have the following cases:

(i) p, v ∈ C with (a + b)(p + q) = u + v; Thus F (x) = ax + xb = (a + b)x, G(x) =

px+xq = x(p+q) and H(x) = ux+xv = (u+v)x for all x ∈ R. This is our conclusion (1).

(ii) f(x1, . . . , xn)2 is central valued in R with v − (a + b)p = (a + b)q − u = α ∈ C.

Thus F (x) = ax+ xb = (a+ b)x, G(x) = px+ xq and H(x) = ux+ xv for all x ∈ R. This

is our conclusion (2).

Case 2: q ∈ C. In this case by Lemma 2.3, we have the following cases:

(i) b, q, u, v ∈ C with (a + b)(p + q) = v + u = λ ∈ C. Thus F (x) = (a + b)x,

G(x) = (p+ q)x and H(x) = (u+ v)x for all x ∈ R. This is our conclusion (3).

(ii) a, u, p, q ∈ C with (a+ b)(p+ q) = v + u. Thus F (x) = x(a+ b), G(x) = (p+ q)x

and H(x) = x(u+ v) for all x ∈ R. This is our conclusion (4).

(iii) q, u ∈ C with f(x1, . . . , xn)2 being central valued onR and a(p+q)+(p+q)b = u+v.

Thus F (x) = ax + xb, G(x) = (p + q)x and H(x) = x(u + v) for all x ∈ R. This is our

conclusion (5).

In particular we have
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Corollary 2.12. Let R be a noncommutative prime ring of characteristic different from 2

with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear poly-

nomial over C, which is not central valued on R. Suppose that F is a nonzero inner gen-

eralized derivation of R such that F ([p, f(r)]f(r)) = f(r)[q, f(r)] for all r = (r1, . . . , rn) ∈
Rn, then there exists λ ∈ C such that F (x) = λx for all x ∈ R with f(x1, . . . , xn)2 being

central valued in R and (λp+ q) ∈ C.

Corollary 2.13. Let R be a noncommutative prime ring of characteristic different from 2

with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear poly-

nomial over C, which is not central valued on R. Suppose that F is a nonzero inner gen-

eralized derivation of R such that F ([p, f(r)]f(r)) = f(r)[p, f(r)] for all r = (r1, . . . , rn) ∈
Rn, then there exists λ ∈ C such that F (x) = λx for all x ∈ R with f(x1, . . . , xn)2 being

central valued in R and (λ+ 1)p ∈ C.

Lemma 2.14. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C, which is not central valued on R. Suppose that G and H are two

generalized derivations of R and F (x) = cx + xc′ for all x ∈ R, for some c, c′ ∈ U is a

nonzero inner generalized derivation of R, such that F (G(f(r))f(r)) = f(r)H(f(r)) for

all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exist λ ∈ C and a, b ∈ U such that F (x) = λx, G(x) = xa and H(x) = bx for

all x ∈ R with λa = b;

(2) there exist λ, α ∈ C and p, q, u, v ∈ U such that F (x) = λx, G(x) = px + xq and

H(x) = ux + xv for all x ∈ R with f(x1, . . . , xn)2 being central valued in R and

v − λp = λq − u = α ∈ C.

(3) there exist λ ∈ C and a, p ∈ U such that F (x) = ax, G(x) = px and H(x) = λx for

all x ∈ R with ap = λ.

(4) there exist λ ∈ C and a, u ∈ U such that F (x) = xa, G(x) = λx and H(x) = xu for

all x ∈ R with aλ = u.

(5) there exist a, b, p, v ∈ U such that F (x) = ax+xb, G(x) = px and H(x) = xv for all

x ∈ R with f(x1, . . . , xn)2 being central valued on R and ap+ pb = v.

Proof. In view of [16, Theorem 3], we may assume that there exist a, b ∈ U and derivations

d′, δ of U such that G(x) = ax+ d′(x) and H(x) = bx+ δ(x). Since R and U satisfy the

same generalized polynomial identities (see [4]) as well as the same differential identities

(see [15]), we may assume that

(2.5) c
{
af(r)2 + d′(f(r))f(r)

}
+
{
af(r)2 + d′(f(r))f(r)

}
c′ = f(r)bf(r) + f(r)δ(f(r))
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for all r = (r1, . . . , rn) ∈ Un, where d′, δ are two derivations on U .

If G and H both are inner generalized derivations of R, then by Lemma 2.11 we obtain

our conclusions (1)–(5). Thus we assume that not both of F and G are inner. Then d′

and δ cannot be both inner derivations of U . Now we consider the following two cases:

Case I: Assume that d′ and δ are C-dependent modulo inner derivations of U , say

αd′ + βδ = adq, where α, β ∈ C, q ∈ U and adq(x) = [q, x] for all x ∈ R.

Subcase i: Let α 6= 0. Then d′(x) = λδ(x) + [p, x] for all x ∈ U , for some λ ∈ C and

p ∈ U .

Then δ cannot be inner derivation of U . From (2.5), we obtain

c
{
af(r)2 + λδ(f(r))f(r) + [p, f(r)]f(r)

}
+
{
af(r)2 + λδ(f(r))f(r) + [p, f(r)]f(r)

}
c′

= f(r)bf(r) + f(r)δ(f(r))

(2.6)

for all r = (r1, . . . , rn) ∈ Un.

Since f(r1, . . . , rn) is a multilinear polynomial over C, we have δ(f(r1, . . . , rn)) =

f δ(r1, . . . , rn) +
∑

i f(r1, . . . , δ(ri), . . . , rn), where f δ(r1, . . . , rn) is the polynomials ob-

tained from f(r1, . . . , rn) replacing each coefficients ασ with δ(ασ). Thus by Kharchenko’s

Theorem [14], we can replace δ(f(r1, . . . , rn)) by f δ(r1, . . . , rn) +
∑

i f(r1, . . . , yi, . . . , rn)

in (2.6) and then U satisfies blended components

c

{
λ
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)

}

+

{
λ
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)

}
c′

= f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn).

(2.7)

Replacing yi with [q, yi] for some q /∈ C in (2.7), we obtain

cλ[q, f(r)]f(r) + [q, f(r)]f(r)λc′ = f(r)[q, f(r)].

By Corollary 2.13, f(x1, . . . , xn)2 is central valued in R with cλ, c′λ ∈ C and (λ(c+ c′) +

1)q ∈ C. Since q /∈ C, (λ(c+ c′) + 1)q ∈ C implies (λ(c+ c′) + 1) = 0, i.e., λ(c+ c′) = −1.

Then by (2.7),

(c+ c′)λ
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn) = f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn)

which implies

f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn) +
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn) = 0.
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In particular, for y1 = r1 and y2 = · · · = yn = 0, we have 2f(r1, . . . , rn)2 = 0 for all

r1, . . . , rn ∈ U , implying f(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ U , a contradiction.

Subcase ii: Let α = 0. Then δ(x) = [q′, x] for all x ∈ U , where q′ = β−1q. Since δ is

inner, d′ cannot be inner derivation. From (2.5), we obtain

c
{
af(r)2 + d′(f(r))f(r)

}
+
{
af(r)2 + d′(f(r))f(r)

}
c′

= f(r)bf(r) + f(r)[q′, f(r)]
(2.8)

for all r = (r1, . . . , rn) ∈ Un.

Since d′(f(r1, . . . , rn)) = fd
′
(r1, . . . , rn)+

∑
i f(r1, . . . , d

′(ri), . . . , rn), by Kharchenko’s

Theorem [14], we can replace d′(f(r1, . . . , rn)) by fd
′
(r1, . . . , rn) +

∑
i f(r1, . . . , yi, . . . , rn)

in (2.8) and then U satisfies blended component

c
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)

+
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)c′ = 0.

Replacing yi with [a′, ri] for some a′ /∈ C, U satisfies

c[a′, f(r1, . . . , rn)]f(r1, . . . , rn) + [a′, f(r1, . . . , rn)]f(r1, . . . , rn)c′ = 0.

Then by Corollary 2.12, f(x1, . . . , xn)2 is central valued in R with c, c′ ∈ C and (c+c′)a′ ∈
C. Since a′ /∈ C, c+ c′ = 0 implying F = 0, a contradiction.

Case II: Assume next that d′ and δ are C-independent modulo inner derivations of U .

Then applying Kharchenko’s Theorem [14], we have from (2.5) that U satisfies blended

components

c
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn) +
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)c′

= f(r1, . . . , rn)
∑
i

f(r1, . . . , zi, . . . , rn).

In particular, for y1 = · · · = yn = 0, U satisfies f(r1, . . . , rn)
∑

i f(r1, . . . , zi, . . . , rn) = 0.

In particular, f(r1, . . . , rn)2 = 0 for all r1, . . . , rn ∈ U , implying f(r1, . . . , rn) = 0, a

contradiction.

Lemma 2.15. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C, which is not central valued on R. Suppose that F and H are two

generalized derivations of R and G(x) = cx + xc′ for all x ∈ R, for some c, c′ ∈ U is a

nonzero inner generalized derivation of R, such that F (G(f(r))f(r)) = f(r)H(f(r)) for

all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:
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(1) there exist λ ∈ C and a, b ∈ U such that F (x) = λx, G(x) = xa and H(x) = bx for

all x ∈ R with λa = b;

(2) there exist λ, α ∈ C and p, q, u, v ∈ U such that F (x) = λx, G(x) = px + xq and

H(x) = ux + xv for all x ∈ R with f(x1, . . . , xn)2 being central valued in R and

v − λp = λq − u = α ∈ C;

(3) there exist λ ∈ C and a, p ∈ U such that F (x) = ax, G(x) = px and H(x) = λx for

all x ∈ R with ap = λ;

(4) there exist λ ∈ C and a, u ∈ U such that F (x) = xa, G(x) = λx and H(x) = xu for

all x ∈ R with aλ = u;

(5) there exist a, b, p, v ∈ U such that F (x) = ax+xb, G(x) = px and H(x) = xv for all

x ∈ R with f(x1, . . . , xn)2 being central valued on R and ap+ pb = v.

Proof. In view of [16, Theorem 3], we may assume that there exist a, b ∈ U and derivations

d′, δ of U such that F (x) = ax + d(x) and H(x) = bx + δ(x). Since R and U satisfy the

same generalized polynomial identities (see [4]) as well as the same differential identities

(see [15]), we may assume that

(2.9) a{cf(r)2 + f(r)c′f(r)}+ d{cf(r)2 + f(r)c′f(r)} = f(r)bf(r) + f(r)δ(f(r))

for all r = (r1, . . . , rn) ∈ Un, where d, δ are two derivations on U .

If F and H both are inner generalized derivations of R, then by Lemma 2.11 we obtain

our conclusions (1)–(5). Thus we assume that not both of F and H are inner. Then d

and δ cannot be both inner derivations of U . Now we consider the following two cases:

Case I: Assume that d and δ are C-dependent modulo inner derivations of U , say

αd + βδ = adq, where α, β ∈ C, q ∈ U and adq(x) = [q, x] for all x ∈ R. If β = 0, then

α 6= 0 and thus d is inner. In this case conclusion follows by Lemma 2.14. Next we assume

that β 6= 0. Then there exist some λ ∈ C and p ∈ U such that δ(x) = λd(x) + [p, x] for all

x ∈ U . The by (2.9), U satisfies

a{cf(r)2 + f(r)c′f(r)}+ d(c)f(r)2 + cd(f(r))f(r) + cf(r)d(f(r))

+ d(f(r))c′f(r) + f(r)d(c′)f(r) + f(r)c′d(f(r))

= f(r)bf(r) + f(r)λd(f(r)) + f(r)[p, f(r)].

(2.10)

Since f(r1, . . . , rn) is a multilinear polynomial over C, we have d(f(r1, . . . , rn)) =

fd(r1, . . . , rn) +
∑

i f(r1, . . . , d(ri), . . . , rn), where fd(r1, . . . , rn) is the polynomials ob-

tained from f(r1, . . . , rn) replacing each coefficients ασ with d(ασ). Thus by Kharchenko’s
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Theorem [14], we can replace d(f(r1, . . . , rn)) by fd(r1, . . . , rn) +
∑

i f(r1, . . . , yi, . . . , rn)

in (2.10) and then U satisfies blended components

c
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn) + cf(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn)

+
∑
i

f(r1, . . . , yi, . . . , rn)c′f(r1, . . . , rn) + f(r1, . . . , rn)c′
∑
i

f(r1, . . . , yi, . . . , rn)

= f(r1, . . . , rn)λ
∑
i

f(r1, . . . , yi, . . . , rn).

(2.11)

In particular, for y1 = r1 and y2 = · · · = yn = 0, U satisfies

(2c− λ)f(r1, . . . , rn)2 + f(r1, . . . , rn)(2c′)f(r1, . . . , rn) = 0,

which implies (
(2c− λ)f(r1, . . . , rn) + f(r1, . . . , rn)(2c′)

)
f(r1, . . . , rn) = 0.

By Lemma 2.1, we conclude that 2c′ = λ− 2c ∈ C. Since char(R) 6= 2, c, c′ ∈ C. Then by

(2.11), U satisfies

(c+ c′)
∑
i

f(r1, . . . , yi, . . . , rn)f(r1, . . . , rn)

+ (c+ c′ − λ)f(r1, . . . , rn)
∑
i

f(r1, . . . , yi, . . . , rn) = 0.

Replacing yi with [q, xi] for some q′ /∈ C, we have

(c+ c′)[q′, f(r1, . . . , rn)]f(r1, . . . , rn) + (c+ c′ − λ)f(r1, . . . , rn)[q′, f(r1, . . . , rn)] = 0,

that is,

[(c+ c′)q′, f(r1, . . . , rn)]f(r1, . . . , rn) + f(r1, . . . , rn)[(c+ c′ − λ)q′, f(r1, . . . , rn)] = 0.

By Lemma 2.1, one of the following holds: (i) (c+ c′)q′, (c+ c′ − λ)q′ ∈ C; in this case as

q′ /∈ C, c + c′ = 0, implying G = 0, a contradiction. (ii) f(r1, . . . , rn)2 is central valued

and (c + c′ − λ)q′ − (c + c′)q′ ∈ C, i.e., λq′ ∈ C. In this case as q′ /∈ C, λ = 0. Thus

λ = 2(c+ c′) = 0 implying c+ c′ = 0. Hence G = 0, a contradiction.

Lemma 2.16. Let R be a noncommutative prime ring of characteristic different from

2 with Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) a multilinear

polynomial over C, which is not central valued on R. Suppose that F and G are two

generalized derivations of R and H(x) = bx + xb′ for all x ∈ R, for some b, b′ ∈ U is a

nonzero inner generalized derivation of R, such that F (G(f(r))f(r)) = f(r)H(f(r)) for

all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:
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(1) there exist λ ∈ C and a, b ∈ U such that F (x) = λx, G(x) = xa and H(x) = bx for

all x ∈ R with λa = b;

(2) there exist λ, α ∈ C and p, q, u, v ∈ U such that F (x) = λx, G(x) = px + xq and

H(x) = ux + xv for all x ∈ R with f(x1, . . . , xn)2 being central valued in R and

v − λp = λq − u = α ∈ C;

(3) there exist λ ∈ C and a, p ∈ U such that F (x) = ax, G(x) = px and H(x) = λx for

all x ∈ R with ap = λ;

(4) there exist λ ∈ C and a, u ∈ U such that F (x) = xa, G(x) = λx and H(x) = xu for

all x ∈ R with aλ = u;

(5) there exist a, b, p, v ∈ U such that F (x) = ax+xb, G(x) = px and H(x) = xv for all

x ∈ R with f(x1, . . . , xn)2 being central valued on R and ap+ pb = v.

Proof. In view of [16, Theorem 3], we may assume that there exist a, b ∈ U and derivations

d′, δ of U such that F (x) = cx+ d(x) and G(x) = ax+ d′(x). Since R and U satisfy the

same generalized polynomial identities (see [4]) as well as the same differential identities

(see [15]), we may assume that

(2.12) c{af(r)2 + d′(f(r))f(r)}+ d{af(r)2 + d′(f(r))f(r)} = f(r)bf(r) + f(r)2b′

for all r = (r1, . . . , rn) ∈ Un, where d, d′ are two derivations on U .

If d or d′ is inner, then F or G is inner and then by Lemmas 2.14 and 2.15, we obtain

our conclusions (1)–(5). Thus we assume that both of d and d′ are outer. Now we consider

the following two cases:

Case I: Assume that d and d′ are C-dependent modulo inner derivations of U , then

d = αd′ + adp′ . Then (2.12) becomes

c
{
af(r)2 + d′(f(r))f(r)

}
+ αd′

{
af(r)2 + d′(f(r))f(r)

}
+ [p′, af(r)2 + d′(f(r))f(r)]

= f(r)bf(r) + f(r)2b′.

(2.13)

We know that d′(f(r1, . . . , rn)) = fd
′
(r1, . . . , rn) +

∑
i f(r1, . . . , d

′(ri), . . . , rn), and

d′2(f(r1, . . . , rn)) = fd
′2

(r1, . . . , rn) + 2
∑
i

fd
′
(r1, . . . , d

′(ri), . . . , rn)

+
∑
i

f(r1, . . . , d
′2(ri), . . . , rn)

+
∑
i 6=j

f(r1, . . . , d
′(ri), . . . , d

′(rj), . . . , rn).
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By applying Kharchenko’s Theorem [14], we can replace d(f(r1, . . . , rn)) with fd(r1, . . . , rn)

+
∑

i f(r1, . . . , yi, . . . , rn) and d′2(f(r1, . . . , rn)) with

fd
′2

(r1, . . . , rn) + 2
∑
i

fd
′
(r1, . . . , yi, . . . , rn)

+
∑
i

f(r1, . . . , ti, . . . , rn) +
∑
i 6=j

f(r1, . . . , yi, . . . , yj , . . . , rn)

in (2.13) and then U satisfies blended component

α
∑
i

f(r1, . . . , ti, . . . , rn)f(r1, . . . , rn) = 0.

This implies αf(x1, . . . , xn)2 = 0, implying α = 0. Then d is inner, a contradiction.

Case II: Assume that d and d′ are C-independent modulo inner derivations of U .

Then applying Kharchenko’s Theorem [14] to (2.12), we can replace

d′(f(r1, . . . , rn)) = fd
′
(r1, . . . , rn) +

∑
i

f(r1, . . . , yi, . . . , rn),

d(f(r1, . . . , rn)) = fd(r1, . . . , rn) +
∑
i

f(r1, . . . , ti, . . . , rn),

and

dd′(f(r1, . . . , rn)) = fdd
′
(r1, . . . , rn) +

∑
i

f δ(r1, . . . , yi, . . . , rn)

+
∑
i

fd
′
(r1, . . . , ti, . . . , rn) +

∑
i 6=j

f(r1, . . . , yi, . . . , tj , . . . , rn)

+
∑
i

f(r1, . . . , w
′
i, . . . , rn).

Then U satisfies blended component
∑

i f(r1, . . . , w
′
i, . . . , rn)f(r1, . . . , rn) = 0. In partic-

ular, f(r1, . . . , rn)2 = 0 implying f(r1, . . . , rn) = 0, a contradiction.

Proof of Theorem 1.1. If any one of F or G or H is inner, then conclusion follows by

Lemmas 2.14, 2.15 and 2.16.

Thus we assume that F , G and H are all outer generalized derivations of R. Then

by [16], we have F (x) = cx + d(x), G(x) = ax + d′(x) and H(x) = bx + δ(x) for some

a, b, c ∈ U and d, d′, δ are three derivations of U . By hypothesis, we have

(2.14) c{af(r)2 + d′(f(r))f(r)}+ d{af(r)2 + d′(f(r)}f(r)) = f(r)bf(r) + f(r)δ(f(r))

for all r = (r1, . . . , rn) ∈ Un. Now we consider the following two cases:

Case 1: Let d′ and δ be C-dependent modulo inner derivations of U , i.e., αd′ + βδ =

adp′ .
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Now α = 0 implies that δ is inner, a contradiction as H cannot be inner. Thus α 6= 0.

Then d′ = λδ + adp, where λ = −βα−1 ∈ C and p = p′α−1 ∈ U . Therefore, (2.14) gives

c{af(r)2 + λδ(f(r))f(r) + [p, f(r)]f(r)}+ d
(
af(r)2 + λδ(f(r))f(r) + [p, f(r)]f(r)

)
= f(r)bf(r) + f(r)δ(f(r))

for all r = (r1, . . . , rn) ∈ Un, that is,

c
(
af(r)2 + λδ(f(r))f(r) + [p, f(r)]f(r)

)
+ d
(
af(r)2 + [p, f(r)]f(r)

)
+ d(λ)δ(f(r))f(r) + λ(dδ)(f(r))f(r) + λδ(f(r))d(f(r))

= f(r)bf(r) + f(r)δ(f(r))

(2.15)

for all r = (r1, . . . , rn) ∈ Un. We know that

d(f(r1, . . . , rn)) = fd(r1, . . . , rn) +
∑
i

f(r1, . . . , d(ri), . . . , rn)

and

δd(f(r1, . . . , rn)) = f δd(r1, . . . , rn) +
∑
i

fd(r1, . . . , δ(ri), . . . , rn)

+
∑
i

f δ(r1, . . . , d(ri), . . . , rn) +
∑
i

f(r1, . . . , δd(ri), . . . , rn)

+
∑
i

f(r1, . . . , δ(ri), . . . , d(rj), . . . , rn).

Let δ and d be C-independent modulo inner derivations of U . By applying Kharchenko’s

Theorem [14] to (2.15), we can replace d(f(r1, . . . , rn)) with fd(r1, . . . , rn)

+
∑

i f(r1, . . . , yi, . . . , rn) and δd(f(r1, . . . , rn)) with

f δd(r1, . . . , rn) +
∑
i

fd(r1, . . . , si, . . . , rn) +
∑
i

f δ(r1, . . . , yi, . . . , rn)

+
∑
i

f(r1, . . . , ti, . . . , rn) +
∑
i

f(r1, . . . , si, . . . , yj , . . . , rn)

in (2.15) and then U satisfies blended component

(2.16) λ
∑
i

f(r1, . . . , ti, . . . , rn)f(r1, . . . , rn) = 0.

In particular, for t1 = r1 and t2 = · · · = tn = 0 in (2.16), we have λf(r1, . . . , rn)2 = 0.

If λ 6= 0, then f(r1, . . . , rn)2 = 0 which implies f(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ U

(see [5]), a contradiction. Thus λ = 0. In this case G becomes inner, a contradiction.
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Now let δ and d be C-dependent, i.e., α1δ + β1d = adq′ . Now, α1 = 0, implies d is

inner, a contradiction. Thus α1 6= 0 and so δ = µd + [q, x] for some µ ∈ C and q ∈ U .

Then by (2.15), U satisfies

c
(
af(r)2 + λµd(f(r))f(r) + λ[q, f(r)]f(r) + [p, f(r)]f(r)

)
+ d
(
af(r)2 + [p, f(r)]f(r)

)
+ d(λ)µd(f(r))f(r) + d(λ)[q, f(r)]f(r)

+ λd
(
µd(f(r)) + [q, f(r)]

)
f(r) + λ

(
µd(f(r)) + [q, f(r)]

)
d(f(r))

= f(r)bf(r) + f(r)
(
µd(f(r)) + [q, f(r)]

)
for all r = (r1, . . . , rn) ∈ Un.

Since d(f(r1, . . . , rn)) = fd(r1, . . . , rn) +
∑

i f(r1, . . . , d(ri), . . . , rn) and

d2(f(r1, . . . , rn)) = fd
2
(r1, . . . , rn) + 2

∑
i

fd(r1, . . . , d(ri), . . . , rn)

+
∑
i

f(r1, . . . , d
2(ri), . . . , rn)

+
∑
i 6=j

f(r1, . . . , d(ri), . . . , d(rj), . . . , rn),

by applying Kharchenko’s Theorem [14], we can replace d(f(r1, . . . , rn)) with fd(r1, . . . , rn)

+
∑

i f(r1, . . . , yi, . . . , rn) and d2(f(r1, . . . , rn)) with

d2(f(r1, . . . , rn)) = fd
2
(r1, . . . , rn) + 2

∑
i

fd(r1, . . . , yi, . . . , rn)

+
∑
i

f(r1, . . . , ti, . . . , rn) +
∑
i 6=j

f(r1, . . . , yi, . . . , yj , . . . , rn),

and then U satisfies blended component

λµ
∑
i

f(r1, . . . , ti, . . . , rn)f(r1, . . . , rn) = 0.

In particular, λµf(r1, . . . , rn)2 = 0. This implies λµ = 0 and so either λ = 0 or µ = 0.

Now λ = 0 gives G is inner, a contradiction. Again µ = 0, gives H is inner, a contradiction.

Case 2: Let d′ and δ be C-independent modulo inner derivations of U . We divide the

proof into two subcases.

Subcase i. Let d, d′ and δ be C-independent modulo inner derivations of U . In this

case we rewrite (2.14) as

c
(
af(r)2 + d′(f(r))f(r)

)
+ d(a)f(r)2 + ad(f(r))f(r)

+ af(r)d(f(r)) + dd′(f(r))f(r) + d′(f(r))d(f(r))

= f(r)bf(r) + f(r)δ(f(r))
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for all r = (r1, . . . , rn) ∈ Un.

By applying Kharchenko’s Theorem [14], we can replace dd′(f(x1, . . . , xn)) by

fdd
′
(r1, . . . , rn) +

∑
i

fd
′
(r1, . . . , xi, . . . , rn) +

∑
i

fd(r1, . . . , ti, . . . , rn)

+
∑
i 6=j

f(r1, . . . , ti, . . . , xj , . . . , rn) +
∑
i

f(r1, . . . , wi, . . . , rn)

in above equality and then U satisfies the blended component

(2.17)
∑
i

f(r1, . . . , wi, . . . , rn)f(r1, . . . , rn) = 0.

In particular for w1 = r1 and w2 = · · · = wn = 0, U satisfies f(r1, . . . , rn)2 = 0 implying

f(r1, . . . , rn) = 0, a contradiction.

Subcase ii. Let d, d′ and δ be C-dependent modulo inner derivations of U , i.e., α1d+

α2d
′ + α3δ = ada′ for some α1, α2, α3 ∈ C. Then α1 6= 0, otherwise d′ and δ are C-

dependent modulo inner derivation of U , a contradiction. Then we can write d = β1d
′ +

β2δ + ada′′ for some β1, β2 ∈ C and a′′ ∈ U . Then by (2.14), we have

c{af(r)2 + d′(f(r))f(r)}+ β1d
′{af(r)2 + d′(f(r))f(r)}

+ β2δ{af(r)2 + d′(f(r))f(r)}+ [a′′, af(r)2 + d′(f(r))f(r)]

= f(r)bf(r) + f(r)δ(f(r))

(2.18)

for all r = (r1, . . . , rn) ∈ Un.

Using Kharchenko’s Theorem [14], we substitute the following values in (2.18)

d′(f(r1, . . . , rn)) = fd
′
(r1, . . . , rn) +

∑
i

f(r1, . . . , yi, . . . , rn),

δ(f(r1, . . . , rn)) = f δ(r1, . . . , rn) +
∑
i

f(r1, . . . , ti, . . . , rn),

δd′(f(r1, . . . , rn)) = f δd
′
(r1, . . . , rn) +

∑
i

f δ(r1, . . . , yi, . . . , rn)

+
∑
i

fd
′
(r1, . . . , ti, . . . , rn) +

∑
i 6=j

f(r1, . . . , yi, . . . , tj , . . . , rn)

+
∑
i

f(r1, . . . , w
′
i, . . . , rn),

d′2(f(r1, . . . , rn)) = fd
′2

(r1, . . . , rn) + 2
∑
i

fd
′
(r1, . . . , yi, . . . , rn)

+
∑
i

f(r1, . . . , z
′
i, . . . , rn) +

∑
i 6=j

f(r1, . . . , yi, . . . , yj , . . . , rn).

Therefore, U satisfies the blended components

β1
∑
i

f(r1, . . . , z
′
i, . . . , rn)f(r1, . . . , rn) = 0
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and

β2
∑
i

f(r1, . . . , w
′
i, . . . , rn)f(r1, . . . , rn) = 0.

If β1 6= 0, then from above, U satisfies∑
i

f(r1, . . . , z
′
i, . . . , rn)f(r1, . . . , rn) = 0.

This is same as (2.17) and hence by same argument as above, it leads to a contradiction.

Thus we conclude that β1 = 0. Similarly, from above relation, we conclude that β2 = 0.

Then d is inner, contradicting with the fact that F is outer. This complete the proof of

the theorem.
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