# Generalized Derivations and Generalization of Co-commuting Maps in Prime Rings

Basudeb Dhara\*, Nripendu Bera, Sukhendu Kar and Brahim Fahid

Abstract. Suppose that R is a prime ring of characteristic different from 2 with Utumi quotient ring U, C = Z(U) the extended centroid of R, and  $f(x_1, \ldots, x_n)$  a noncentral multilinear polynomial over C. If F, G and H are three nonzero generalized derivations of R such that

$$F(G(f(X))f(X)) = f(X)H(f(X))$$

for all  $X = (x_1, \dots, x_n) \in \mathbb{R}^n$ , then we describe the nature of the maps F, G and H.

### 1. Introduction

Throughout this paper R denotes a prime ring with center Z(R), extended centroid C and U its Utumi quotient ring. The definition and axiomatic formulation of Utumi quotient ring U can be found in [2,4].

We have the following properties which we need

- 1.  $R \subseteq U$ ;
- 2. U is a prime ring with unity;
- 3. The center of U is denoted by C and is called the extended centroid of R. C is a field.

By a derivation of R, we mean an additive mapping  $d: R \to R$  such that d(xy) = d(x)y + xd(y) holds for all  $x, y \in R$ . An additive mapping  $F: R \to R$  is called a generalized derivation if there exists a derivation d on R such that F(xy) = F(x)y + xd(y) holds for all  $x, y \in R$ . Basic examples of generalized derivations are derivations, generalized inner derivations (i.e., maps of type  $x \to ax + xb$  for some  $a, b \in R$ ). In [16], Lee proved that any generalized derivation of R can be uniquely extended to a generalized derivation of U and its form will be g(x) = ax + d(x) for some  $a \in U$ , where d is the

Received May 13, 2020; Accepted August 2, 2020.

Communicated by Kunio Yamagata.

2010 Mathematics Subject Classification. 16W25, 16N60.

Key words and phrases. prime ring, derivation, generalized derivation, extended centroid, Utumi quotient ring.

<sup>\*</sup>Corresponding author.

associated derivation. The Lie commutator of x and y is denoted by [x,y] and also defined by [x,y] = xy - yx for all  $x,y \in R$ ; also the symbol  $x \circ y$  stands for the anti-commutator xy + yx. By  $s_4$ , we denotes the standard polynomial in four variables, which is  $s_4(x_1, x_2, x_3, x_4) = \sum_{\sigma \in S_4} (-1)^{\sigma} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)}$ , where  $(-1)^{\sigma}$  is +1 or -1 according to  $\sigma$  being an even or odd permutation in symmetric group  $S_4$ . Let  $S \subseteq R$ . An additive map  $F: R \to R$  is said to be commuting (centralizing) on S if [F(x), x] = 0 for all  $x \in S$  (resp.  $[F(x), x] \in Z(R)$  for all  $x \in S$ ). Two additive maps  $F, G: R \to R$  are said to be co-commuting (co-centralizing) on S if F(x)x - xG(x) = 0 for all  $x \in S$  (resp.  $F(x)x - xG(x) \in Z(R)$  for all  $x \in S$ ).

In [6], De Filippis and De Vincenzo described the structure of additive mappings d and G satisfying d(G(f(X))f(X) - f(X)G(f(X))) = 0 for all  $X = (x_1, ..., x_n) \in \mathbb{R}^n$ , where f is a multinear polynomial over extended centroid C and d is a nonzero derivation and G is a nonzero generalized derivation on prime ring R of char $(R) \neq 2$ .

In [9], the first author, Argac and Albas extended the above result by considering two generalized derivations. More precisely, they studied the situation d(F(f(X))f(X) - f(X)G(f(X))) = 0 for all  $X = (x_1, ..., x_n) \in R^n$ , where f is a multinear polynomial over extended centroid C and d is a nonzero derivation and F, G are two generalized derivations on prime ring R of char $(R) \neq 2$ . In the paper authors determined all possible forms of the additive maps d, F and G.

On the other hand, Carini and De Filippis [3] proved that if R is a prime ring of characteristic different from 2,  $\delta$  a nonzero derivation of R, G a nonzero generalized derivation of R, and  $f(x_1, \ldots, x_n)$  a non-central multilinear polynomial over C such that  $\delta(G(f(X))f(X)) = 0$  for all  $X = (x_1, \ldots, x_n) \in R^n$ , then there exist  $a, b \in U$  such that G(x) = ax and  $\delta(x) = [b, x]$  for all  $x \in R$ , with [b, a] = 0 and  $f(x_1, \ldots, x_n)^2$  is central-valued on R.

Further, the first author and Argac [8] extended the above result replacing derivation  $\delta$  with another generalized derivation F, that is, F(G(f(X))f(X)) = 0 for all  $X = (x_1, \ldots, x_n) \in I^n$ , and then gave the complete description of the additive maps F and G, where I is a non-zero two-sided ideal of R.

In another paper [1], Argaç and De Filippis studied the generalized derivations G and H co-commuting on  $f(I) = \{f(x_1, \ldots, x_n) \mid x_i \in I\}$ , that is, G(u)u - uH(u) = 0 for all  $u \in f(I)$  and then obtained the all possible forms of the maps F and G, where I is a non-zero two-sided ideal of R.

Motivated by the above results we prove the following theorem.

**Theorem 1.1.** Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that F, G and H are three

nonzero generalized derivations of R such that

$$F(G(f(X))f(X)) = f(X)H(f(X))$$

for all  $X = (x_1, \ldots, x_n) \in \mathbb{R}^n$ . Then one of the following holds:

- (1) there exist  $\lambda \in C$  and  $a, b \in U$  such that  $F(x) = \lambda x$ , G(x) = xa and  $H(x) = \lambda ax$  for all  $x \in R$ ;
- (2) there exist  $\lambda, \alpha \in C$  and  $p, q, u, v \in U$  such that  $F(x) = \lambda x$ , G(x) = px + xq and  $H(x) = \lambda (qx + xp)$  for all  $x \in R$  with  $f(x_1, \dots, x_n)^2$  is central valued in R;
- (3) there exist  $\lambda \in C$  and  $a, p \in U$  such that F(x) = ax, G(x) = px and  $H(x) = \lambda x$  for all  $x \in R$  with  $ap = \lambda$ ;
- (4) there exist  $\lambda \in C$  and  $a \in U$  such that F(x) = xa,  $G(x) = \lambda x$  and  $H(x) = \lambda xa$  for all  $x \in R$ ;
- (5) there exist  $a, b, p, v \in U$  such that F(x) = ax + xb, G(x) = px and H(x) = xv for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  is central valued on R and ap + pb = v.

In particular, when G = H, we have the following

Corollary 1.2. Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two nonzero generalized derivations of R such that

$$F(G(f(X))f(X)) = f(X)G(f(X))$$

for all  $X = (x_1, ..., x_n) \in \mathbb{R}^n$ . Then one of the following holds:

- (1) there exists  $\mu \in C$  such that F(x) = x and  $G(x) = \mu x$  for all  $x \in R$ ;
- (2) there exist  $\alpha \in C$  and  $p \in U$  such that F(x) = x and  $G(x) = px + xp + \alpha x$  for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  is central valued in R;
- (3) there exists  $p \in U$  such that F(x) = -x and G(x) = [p, x] for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  is central valued in R;
- (4) there exist  $a, b, p \in U$  such that F(x) = ax + xb and G(x) = px for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  is central valued on R and F(p) = p.

*Proof.* By Theorem 1.1, we have the following conclusions:

- (1) There exists  $\mu \in C$  such that F(x) = x and  $G(x) = \mu x$  for all  $x \in R$ . This is our conclusion (1).
- (2) There exist  $\lambda, \alpha \in C$  and  $p, q \in U$  such that  $F(x) = \lambda x$ , G(x) = px + xq for all  $x \in R$  with  $f(x_1, \dots, x_n)^2$  being central valued in R and  $q \lambda p = \lambda q p = \alpha \in C$ . The last relation yields  $(\lambda 1)(p + q) = 0$ . This yields either  $\lambda = 1$  or p + q = 0. (i) When  $\lambda = 1$ , we have  $q p = \alpha \in C$  and hence F(x) = x and  $G(x) = px + xp + \alpha x$  for all  $x \in R$ . This gives conclusion (2). (ii) When p + q = 0, we have  $F(x) = \lambda x$ , G(x) = [p, x] for all  $x \in R$  with  $p + \lambda p = \alpha \in C$ , i.e.,  $(1 + \lambda)p \in C$ . This implies  $1 + \lambda = 0$ , since  $p \in C$  implies G = 0, a contradiction. Thus  $\lambda = -1$ . This gives conclusion (3).
- (3) There exist  $\lambda \in C$  and  $a, p \in U$  such that F(x) = ax,  $G(x) = \lambda x$  for all  $x \in R$  with  $a\lambda = \lambda$ . Since  $G \neq 0$ ,  $\lambda \neq 0$  and hence last relation gives a = 1. This is conclusion (1).
- (4) There exist  $\lambda \in C$  and  $a, u \in U$  such that F(x) = xa,  $G(x) = \lambda x$  for all  $x \in R$  with  $a\lambda = \lambda$ . By the same argument as above, a = 1, as desired in (1).
- (5) There exist  $a, b, p, v \in U$  such that F(x) = ax + xb, G(x) = px for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  being central valued on R and ap + pb = p. This is conclusion (4).

From Theorem 1.1(2), we conclude that when G is derivation then H also be a derivation. Thus following corollary is straightforward.

Corollary 1.3. Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that F and H are two nonzero generalized derivations of R and d is a derivation of R such that

$$F\big(d(f(X))f(X)\big)=f(X)H(f(X))$$

for all  $X = (x_1, ..., x_n) \in \mathbb{R}^n$ . Then there exist  $\lambda \in \mathbb{C}$  and  $p, u \in U$  such that  $F(x) = \lambda x$ , d(x) = [p, x] and  $H(x) = -\lambda [p, x]$  for all  $x \in \mathbb{R}$  with  $f(x_1, ..., x_n)^2$  being central valued in  $\mathbb{R}$ .

**Corollary 1.4.** Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two nonzero generalized derivations of R and d is a derivation of R such that

$$F(G(f(X))f(X)) = f(X)d(f(X))$$

for all  $X = (x_1, ..., x_n) \in \mathbb{R}^n$ . Then there exist  $\lambda \in \mathbb{C}$  and  $p, u \in U$  such that  $F(x) = \lambda x$ , G(x) = [p, x] and  $d(x) = -\lambda[p, x]$  for all  $x \in \mathbb{R}$  with  $f(x_1, ..., x_n)^2$  being central valued in  $\mathbb{R}$ .

In particular, when F is derivation, then we have last conclusion of Theorem 1.1.

**Corollary 1.5.** Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that G and H are two nonzero generalized derivations of R and d is a derivation of R such that

$$d(G(f(X))f(X)) = f(X)H(f(X))$$

for all  $X = (x_1, ..., x_n) \in \mathbb{R}^n$ . Then there exist  $a, b, p, v \in U$  such that d(x) = [a, x], G(x) = px and H(x) = xv for all  $x \in \mathbb{R}$  with  $f(x_1, ..., x_n)^2$  being central valued on  $\mathbb{R}$  and d(p) = v.

Corollary 1.6. Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C. Suppose that d,  $\delta$  and h are three nonzero derivations of R such that

$$d(\delta(f(X))f(X)) = f(X)h(f(X))$$

for all  $X = (x_1, \ldots, x_n) \in \mathbb{R}^n$ . Then  $f(x_1, \ldots, x_n)$  must be central valued.

Corollary 1.7. Let R be a prime ring of characteristic different from 2. Suppose that d,  $\delta$  and h are three nonzero derivations of R such that

$$d(\delta(x)x) = xh(x)$$

for all  $x \in R$ . Then R must be commutative.

#### 2. Main results

Let  $F \neq 0$ ,  $G \neq 0$  and  $H \neq 0$  be all inner generalized derivations of R. There exist some fixed  $a, b, p, q, u, v \in U$  such that F(x) = ax + xb, G(x) = px + xq and H(x) = ux + xv for all  $x \in R$ . Then by our hypothesis F(G(x)x) = xH(x) for all  $x \in f(R)$ , we have

(2.1) 
$$apx^{2} + axqx + px^{2}b + xqxb - xux - x^{2}v = 0$$

for all  $x \in f(R)$ .

To investigate this generalized polynomial identity (GPI) in prime ring R, we recall the following

**Lemma 2.1.** [1, Lemma 3] Let R be a noncommutative prime ring with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that there exist  $a, b, c, q \in U$  such that (af(r) + f(r)b)f(r) - f(r)(cf(r) + f(r)q) = 0 for all  $r = (r_1, \ldots, r_n) \in R^n$ . Then one of the following holds:

- (1)  $a, q \in C$  and  $q a = b c = \alpha \in C$ ;
- (2)  $f(x_1,...,x_n)^2$  is central valued on R and there exists  $\alpha \in C$  such that  $q-a=b-c=\alpha$ ;
- (3) char(R) = 2 and R satisfies  $s_4$ .

Now to investigate our generalized polynomial identity (GPI) (2.1), in all that follows, we assume R a noncommutative prime ring with extended centroid C,  $\operatorname{char}(R) \neq 2$ . Moreover, we assume that  $f(x_1, \ldots, x_n)$  is a multilinear polynomial over C which is not central valued on R.

**Lemma 2.2.** If  $a, b \in C$  and R satisfies (2.1), then one of the following holds:

- (1)  $p, v \in C$  with (a + b)(p + q) = u + v;
- (2)  $f(x_1, \ldots, x_n)^2$  is central valued in R with  $v (a+b)p = (a+b)q u = \alpha \in C$ .

*Proof.* If  $a, b \in C$ , then by hypothesis

$$(a+b)(px+xq)x = x(ux+xv)$$

for all  $x \in f(R)$ . In this case by Lemma 2.1, one of the following holds:

- (i)  $(a+b)p, v \in C$  and  $v-(a+b)p=(a+b)q-u=\alpha \in C$ . Since  $F \neq 0$ ,  $a+b \neq 0$  and so  $(a+b)p \in C$  implies  $p \in C$ .
- (ii)  $f(x_1, ..., x_n)^2$  is central valued on R and there exists  $\alpha \in C$  such that  $v (a+b)p = (a+b)q u = \alpha \in C$ .

**Lemma 2.3.** If  $q \in C$  and R satisfies (2.1), then one of the following holds:

- (1)  $b, u, v \in C$  with (a + b)(p + q) = v + u;
- (2)  $a, p, u \in C$  with (a + b)(p + q) = v + u;
- (3)  $u \in C$  with  $f(x_1, ..., x_n)^2$  being central valued on R and a(p+q) + (p+q)b = u + v.

*Proof.* If  $q \in C$ , then our hypothesis becomes

$$a(p+q)x^{2} + px^{2}b + x^{2}(bq - v) - xux = 0$$

for all  $x \in f(R)$ . Then by Proposition 2.7 in [10], we conclude that  $u \in C$ . Then our hypothesis reduces to

$$a(p+q)x^{2} + px^{2}b + x^{2}(bq - v - u) = 0$$

for all  $x \in f(R)$ . Then by applying Lemma 2.9 in [7], we conclude one of the following:

- (i)  $b, u, bq v u \in C$  with a(p+q) + pb + (bq v u) = 0, i.e., (a+b)(p+q) = v + u. Since  $b, q, u \in C$ , we have  $v \in C$ .
- (ii)  $a(p+q), u, p \in C$  with a(p+q)+pb+(bq-v-u)=0, i.e., (a+b)(p+q)=v+u. In this case G(x)=(p+q)x for all  $x\in R$ . As  $G\neq 0$ , thus  $0\neq p+q\in C$ . Hence  $a(p+q)\in C$  implies  $a\in C$ .
- (iii)  $u \in C$  and  $f(x_1, \dots, x_n)^2$  is central valued on R with a(p+q)+pb+(bq-v-u)=0, i.e., a(p+q)+(p+q)b=u+v.

Thus the lemma is proved.

**Lemma 2.4.** Let R be a prime ring with extended centroid C and  $a, b, p, q, u, v \in R$ . If

$$apx^2 + axqx + px^2b + xqxb - xux - x^2v = 0$$

for all  $x \in f(R)$  is a trivial generalized polynomial identity, then either  $a, b \in C$  or  $q \in C$ . Proof. Let  $a \notin C$  and  $q \notin C$ . By hypothesis, we have

$$\zeta(x_1, \dots, x_n) = apf(x_1, \dots, x_n)^2 + af(x_1, \dots, x_n)qf(x_1, \dots, x_n)$$
$$+ pf(x_1, \dots, x_n)^2b + f(x_1, \dots, x_n)qf(x_1, \dots, x_n)b$$
$$- f(x_1, \dots, x_n)uf(x_1, \dots, x_n) - f(x_1, \dots, x_n)^2v = 0$$

for all  $x_1, \ldots, x_n \in R$ . Since R and U satisfy the same generalized polynomial identity (see [4]), U satisfies  $\zeta(x_1, \ldots, x_n) = 0$ . By our assumption  $\zeta(x_1, \ldots, x_n)$  is a trivial GPI for U. Let  $T = U *_C C\{x_1, x_2, \ldots, x_n\}$ , the free product of U and  $C\{x_1, \ldots, x_n\}$ , the free C-algebra in noncommuting indeterminates  $x_1, x_2, \ldots, x_n$ . Then,  $\zeta(x_1, \ldots, x_n)$  is zero element in  $T = U *_C C\{x_1, \ldots, x_n\}$ . This implies that  $\{ap, a, p, 1\}$  is linearly C-dependent. Then there exist  $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in C$  such that  $\alpha_1 ap + \alpha_2 a + \alpha_3 p + \alpha_4 \cdot 1 = 0$ . If  $\alpha_1 = \alpha_3 = 0$ , then  $\alpha_2 \neq 0$  and so  $a = -\alpha_2^{-1}\alpha_4 \in C$ , a contradiction. Therefore, either  $\alpha_1 \neq 0$  or  $\alpha_3 \neq 0$ . Without loss of generality, we assume that  $\alpha_1 \neq 0$ . Then  $ap = \alpha a + \beta p + \gamma$ , where  $\alpha = -\alpha_1^{-1}\alpha_2$ ,  $\beta = -\alpha_1^{-1}\alpha_3$ ,  $\gamma = -\alpha_1^{-1}\alpha_4$ . Then

$$(\alpha a + \beta p + \gamma)f(x_1, \dots, x_n)^2 + af(x_1, \dots, x_n)qf(x_1, \dots, x_n)$$
  
+  $pf(x_1, \dots, x_n)^2 b + f(x_1, \dots, x_n)qf(x_1, \dots, x_n)b$   
-  $f(x_1, \dots, x_n)uf(x_1, \dots, x_n) - f(x_1, \dots, x_n)^2 v = 0$ 

in T. This implies that  $\{a, p, 1\}$  is linearly C-dependent. Then there exist  $\beta_1, \beta_2, \beta_3 \in C$  such that  $\beta_1 a + \beta_2 p + \beta_3 = 0$ . By same argument as before, since  $a \notin C$ , we have  $\beta_2 \neq 0$  and hence  $p = \alpha' a + \beta'$  for some  $\alpha', \beta' \in C$ . Thus our identity becomes

$$(\alpha a + \beta \alpha' a + \beta \beta' + \gamma) f(x_1, \dots, x_n)^2 + a f(x_1, \dots, x_n) q f(x_1, \dots, x_n)$$

$$+ (\alpha' a + \beta') f(x_1, \dots, x_n)^2 b + f(x_1, \dots, x_n) q f(x_1, \dots, x_n) b$$

$$- f(x_1, \dots, x_n) u f(x_1, \dots, x_n) - f(x_1, \dots, x_n)^2 v = 0.$$

Since  $\{a, 1\}$  is linearly C-independent, we have

$$(\alpha + \beta \alpha') a f(x_1, \dots, x_n)^2 + a f(x_1, \dots, x_n) q f(x_1, \dots, x_n) + \alpha' a f(x_1, \dots, x_n)^2 b = 0,$$

that is

$$af(x_1,\ldots,x_n)\big((\alpha+\beta\alpha'+q)f(x_1,\ldots,x_n)+\alpha'f(x_1,\ldots,x_n)b\big)=0$$

in T. Moreover, since  $q \notin C$ , the term  $af(x_1, \ldots, x_n)qf(x_1, \ldots, x_n)$  cannot be canceled and hence  $af(x_1, \ldots, x_n)qf(x_1, \ldots, x_n) = 0$  in T which implies q = 0, a contradiction. Thus either  $a \in C$  or  $q \in C$ .

Similarly, we can prove that either  $b \in C$  or  $q \in C$ .

**Lemma 2.5.** [6, Lemma 1] Let K be an infinite field and  $m \geq 2$ . If  $A_1, \ldots, A_k$  are not scalar matrices in  $M_m(K)$  then there exists some invertible matrix  $P \in M_m(K)$  such that any matrices  $PA_1P^{-1}, \ldots, PA_kP^{-1}$  have all non-zero entries.

**Proposition 2.6.** Let  $R = M_m(C)$  be the ring of all  $m \times m$  matrices over the infinite field C and  $f(x_1, \ldots, x_n)$  a non-central multilinear polynomial over C. If there exist  $a, b, p, q, u, v \in R$  such that

$$apx^2 + axqx + px^2b + xqxb - xux - x^2v = 0$$

for all  $x \in f(R)$ , then either a, b are central or q is central.

*Proof.* By our hypothesis, R satisfies the generalized polynomial identity

$$apf(x_1, ..., x_n)^2 + af(x_1, ..., x_n)qf(x_1, ..., x_n)$$
  
+  $pf(x_1, ..., x_n)^2b + f(x_1, ..., x_n)qf(x_1, ..., x_n)b$   
-  $f(x_1, ..., x_n)uf(x_1, ..., x_n) - f(x_1, ..., x_n)^2v = 0.$ 

We assume first that  $a \notin Z(R)$  and  $q \notin Z(R)$ . Now we shall show that this case leads to a contradiction.

Since  $a \notin Z(R)$  and  $q \notin Z(R)$ , by Lemma 2.5 there exists a C-automorphism  $\phi$  of  $M_m(C)$  such that  $\phi(a)$ ,  $\phi(q)$  have all non-zero entries. Clearly, R satisfies the generalized polynomial identity

(2.2) 
$$\phi(ap)f(x_1, \dots, x_n)^2 + \phi(a)f(x_1, \dots, x_n)\phi(q)f(x_1, \dots, x_n) + \phi(p)f(x_1, \dots, x_n)^2\phi(b) + f(x_1, \dots, x_n)\phi(q)f(x_1, \dots, x_n)b - f(x_1, \dots, x_n)\phi(u)f(x_1, \dots, x_n) - f(x_1, \dots, x_n)^2\phi(v) = 0.$$

By  $e_{ij}$ , we mean the usual matrix unit with 1 in (i, j)-entry and zero elsewhere. Since  $f(x_1, \ldots, x_n)$  is not central valued, by [15] (see also [17]), there exist a sequence of matrices

 $v_1, \ldots, v_n$  in  $M_m(C)$  and  $\gamma \in C - \{0\}$  such that  $f(v_1, \ldots, v_n) = \gamma e_{pq}$ , with  $p \neq q$ . Moreover, since the set  $\{f(r_1, \ldots, r_n) : r_1, \ldots, r_n \in M_m(C)\}$  is invariant under the action of all C-automorphisms of  $M_m(C)$ , then for any  $i \neq j$  there exist  $r_1, \ldots, r_n$  in  $M_m(C)$  such that  $f(r_1, \ldots, r_n) = e_{ij}$ . Hence by (2.2), we have

(2.3) 
$$\phi(a)e_{ij}\phi(q)e_{ij} + e_{ij}\phi(q)e_{ij}b - e_{ij}\phi(u)e_{ij} = 0$$

and then left multiplying by  $e_{ij}$ , it follows  $e_{ij}\phi(a)e_{ij}\phi(q)e_{ij}=0$ , which is a contradiction, since  $\phi(a)$  and  $\phi(q)$  have all non-zero entries. Thus we conclude that either  $a \in Z(R)$  or  $q \in Z(R)$ .

If we consider  $b \notin Z(R)$  and  $q \notin Z(R)$ , then by same argument as above we have a contradiction with the fact  $e_{ij}\phi(q)e_{ij}\phi(b)e_{ij}=0$  obtained from (2.3). Thus we conclude either  $b \in Z(R)$  or  $q \in Z(R)$ .

Thus,  $q \notin Z(R)$  implies  $a \in Z(R)$  and  $b \in Z(R)$ . Thus the conclusion follows.

**Proposition 2.7.** Let  $R = M_m(C)$  be the ring of all matrices over the field C with  $\operatorname{char}(R) \neq 2$  and  $f(x_1, \ldots, x_n)$  a non-central multilinear polynomial over C. If there exist  $a, b, p, q, u, v \in R$  such that

$$apx^2 + axqx + px^2b + xqxb - xux - x^2v = 0$$

for all  $x \in f(R)$ , then either  $a, b \in C \cdot I_m$  or  $q \in C \cdot I_m$ .

*Proof.* In case C is infinite, the conclusions follow by Proposition 2.6.

So we assume that C is finite. Let K be an infinite field which is an extension of the field C. Let  $\overline{R} = M_m(K) \cong R \otimes_C K$ . Notice that the multilinear polynomial  $f(x_1, \ldots, x_n)$  is central-valued on R if and only if it is central-valued on  $\overline{R}$ . Consider the generalized polynomial

$$\Psi(x_1, \dots, x_n) = apf(x_1, \dots, x_n)^2 + af(x_1, \dots, x_n)qf(x_1, \dots, x_n)$$

$$+ pf(x_1, \dots, x_n)^2 b + f(x_1, \dots, x_n)qf(x_1, \dots, x_n)b$$

$$- f(x_1, \dots, x_n)uf(x_1, \dots, x_n) - f(x_1, \dots, x_n)^2$$

which is a generalized polynomial identity for R.

Moreover, it is a multi-homogeneous of multi-degree (2, ..., 2) in the indeterminates  $x_1, ..., x_n$ . Hence the complete linearization of  $\Psi(x_1, ..., x_n)$  yields a multilinear generalized polynomial  $\Theta(x_1, ..., x_n, y_1, ..., y_n)$  in 2n indeterminates, moreover

$$\Theta(x_1,\ldots,x_n,x_1,\ldots,x_n)=2^n\Psi(x_1,\ldots,x_n).$$

Clearly the multilinear polynomial  $\Theta(x_1, \ldots, x_n, y_1, \ldots, y_n)$  is a generalized polynomial identity for R and  $\overline{R}$  too. Since  $\operatorname{char}(C) \neq 2$  we obtain  $\Psi(r_1, \ldots, r_n) = 0$  for all  $r_1, \ldots, r_n \in \overline{R}$  and then conclusion follows from Proposition 2.6.

In particular, we have the following

Corollary 2.8. Let  $R = M_m(C)$  be the ring of all matrices over the field C with  $char(R) \neq 2$ . If there exist  $a, b, p, q, u, v \in R$  such that

$$apx^2 + axqx + px^2b + xqxb - xux - x^2v = 0$$

for all  $x \in R$ , then either  $a, b \in C \cdot I_m$  or  $q \in C \cdot I_m$ .

Similarly, we have the following

Corollary 2.9. Let  $R = M_m(C)$  be the ring of all matrices over the field C with  $char(R) \neq 2$ . If there exist  $a', a, b, p, q, u, v \in R$  such that

$$a'x^{2} + axqx + px^{2}b + xqxb - xux - x^{2}v = 0$$

for all  $x \in R$ , then either  $a, b \in C \cdot I_m$  or  $q \in C \cdot I_m$ .

**Lemma 2.10.** Let R be a primitive ring of  $\operatorname{char}(R) \neq 2$  with nonzero socle  $\operatorname{Soc}(R)$ , which is isomorphic to a dense ring of linear transformations of a vector space V over C, such that  $\operatorname{dim}_C V = \infty$ . Let  $a', a, b, p, q, u, v \in R$ . If

$$a'x^2 + axqx + px^2b + xqxb - xux - x^2v = 0$$

for all  $x \in R$ , then either  $a, b \in C$  or  $q \in C$ .

*Proof.* Recall that if any element  $r \in R$  commutes the nonzero ideal Soc(RC), i.e., [r, Soc(RC)] = (0), then  $r \in C$ . Hence on contrary, we assume that there exist  $h_0, h_1, h_2 \in Soc(R)$  such that

- (i) either  $[a, h_0] \neq 0$  or  $[b, h_1] \neq 0$ ;
- (ii)  $[q, h_2] \neq 0$

and prove that a number of contradiction arises. Since V is infinite dimensional over C, for any  $e = e^2 \in \operatorname{Soc}(R)$ , we have  $eRe \cong M_k(C)$  with  $k = \dim_C Ve$ . By Litoff's Theorem [12], there exists an idempotent  $e \in \operatorname{Soc}(R)$  such that

- $h_0, h_1, h_2 \in eRe;$
- $h_0a, ah_0, h_1a, ah_1, h_2a, ah_2 \in eRe$ ;
- $h_0b, bh_0, h_1b, bh_1, h_2b, bh_2 \in eRe$ ;
- $h_0q, qh_0, h_1q, qh_1, h_2q, qh_2 \in eRe$ ,

where  $eRe \cong M_k(C)$ ,  $k = \dim_C Ve$ . Since R satisfies  $e\{a'(exe)^2 + aexeqexe + p(exe)^2b + exeqexeb - exeuexe - (exe)^2v\}e = 0$ , the subring eRe satisfies  $ea'ex^2 + eaexeqex + epex^2ebe + xeqexebe - xeuex - <math>x^2eve = 0$ . By Corollary 2.9, we conclude that one of the following holds:

- (i)  $eae, ebe \in eC$  which contradicts with the choice of  $h_0$  and  $h_1$ ;
- (ii)  $eqe \in eC$  which contradicts with the choices of  $h_2$ .

**Lemma 2.11.** Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that F, G and H are three nonzero inner generalized derivations of R such that F(G(f(r))f(r)) = f(r)H(f(r)) for all  $r = (r_1, \ldots, r_n) \in R^n$ , then one of the following holds:

- (1) there exist  $\lambda \in C$  and  $a, b \in U$  such that  $F(x) = \lambda x$ , G(x) = xa and H(x) = bx for all  $x \in R$  with  $\lambda a = b$ ;
- (2) there exist  $\lambda, \alpha \in C$  and  $p, q, u, v \in U$  such that  $F(x) = \lambda x$ , G(x) = px + xq and H(x) = ux + xv for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  being central valued in R and  $v \lambda p = \lambda q u = \alpha \in C$ ;
- (3) there exist  $\lambda \in C$  and  $a, p \in U$  such that F(x) = ax, G(x) = px and  $H(x) = \lambda x$  for all  $x \in R$  with  $ap = \lambda$ ;
- (4) there exist  $\lambda \in C$  and  $a, u \in U$  such that F(x) = xa,  $G(x) = \lambda x$  and H(x) = xu for all  $x \in R$  with  $a\lambda = u$ ;
- (5) there exist  $a, b, p, v \in U$  such that F(x) = ax + xb, G(x) = px and H(x) = xv for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  being central valued on R and ap + pb = v.

*Proof.* Suppose that for some  $a, b, p, q, u, v \in U$ , F(x) = ax + xb, G(x) = px + xq and H(x) = ux + xv for all  $x \in R$ . By hypothesis, we have

$$a(pf(x_1,...,x_n) + f(x_1,...,x_n)q)f(x_1,...,x_n)) + ((pf(x_1,...,x_n) + f(x_1,...,x_n)q)f(x_1,...,x_n))b$$
  
=  $f(x_1,...,x_n)(uf(x_1,...,x_n) + f(x_1,...,x_n)v),$ 

that is,

$$apf(x_1, ..., x_n)^2 + af(x_1, ..., x_n)qf(x_1, ..., x_n)$$
  
+  $pf(x_1, ..., x_n)^2b + f(x_1, ..., x_n)qf(x_1, ..., x_n)b$   
-  $f(x_1, ..., x_n)uf(x_1, ..., x_n) - f(x_1, ..., x_n)^2v = 0$ 

for all  $x_1, \ldots, x_n \in R$ . Since R and U satisfy the same generalized polynomial identities (see [4]), therefore, U satisfies

$$apf(x_1, \dots, x_n)^2 + af(x_1, \dots, x_n)qf(x_1, \dots, x_n) + pf(x_1, \dots, x_n)^2b + f(x_1, \dots, x_n)qf(x_1, \dots, x_n)b - f(x_1, \dots, x_n)uf(x_1, \dots, x_n) - f(x_1, \dots, x_n)^2v = 0.$$

If this is a trivial generalized polynomial identity for U, then by Lemma 2.4, either  $a, b \in C$  or  $q \in C$ .

Next we assume that (2.4) is a non-trivial GPI for U.

Since both U and  $U \otimes_C \overline{C}$  are prime and centrally closed [11, Theorems 2.5 and 3.5], we may replace R by U or  $U \otimes_C \overline{C}$  according as C finite or infinite. Then R is centrally closed over C and R satisfies (2.4). By Martindale's Theorem [18], R is then a primitive ring with nonzero socle  $\operatorname{soc}(R)$  and with C as its associated division ring. Then, by Jacobson's Theorem [13, p. 75], R is isomorphic to a dense ring of linear transformations of a vector space V over C. Assume first that V is finite dimensional over C, that is,  $\dim_C V = m$ . By density of R, we have  $R \cong M_m(C)$ . Since  $f(r_1, \ldots, r_n)$  is not central valued on R, R must be noncommutative and so  $m \geq 2$ . In this case, by Proposition 2.7, we get that  $a, b \in C$  or  $q \in C$ . If V is infinite dimensional over C, then by Lemma 2.10, we conclude that either  $a, b \in C$  or  $q \in C$ .

Thus up to now, we have proved that in any cases either  $a, b \in C$  or  $q \in C$ .

Case 1:  $a, b \in C$ . In this case by Lemma 2.2, we have the following cases:

- (i)  $p, v \in C$  with (a + b)(p + q) = u + v; Thus F(x) = ax + xb = (a + b)x, G(x) = px + xq = x(p+q) and H(x) = ux + xv = (u+v)x for all  $x \in R$ . This is our conclusion (1).
- (ii)  $f(x_1, ..., x_n)^2$  is central valued in R with  $v (a + b)p = (a + b)q u = \alpha \in C$ . Thus F(x) = ax + xb = (a + b)x, G(x) = px + xq and H(x) = ux + xv for all  $x \in R$ . This is our conclusion (2).

Case 2:  $q \in C$ . In this case by Lemma 2.3, we have the following cases:

- (i)  $b, q, u, v \in C$  with  $(a + b)(p + q) = v + u = \lambda \in C$ . Thus F(x) = (a + b)x, G(x) = (p + q)x and H(x) = (u + v)x for all  $x \in R$ . This is our conclusion (3).
- (ii)  $a, u, p, q \in C$  with (a + b)(p + q) = v + u. Thus F(x) = x(a + b), G(x) = (p + q)x and H(x) = x(u + v) for all  $x \in R$ . This is our conclusion (4).
- (iii)  $q, u \in C$  with  $f(x_1, \ldots, x_n)^2$  being central valued on R and a(p+q)+(p+q)b=u+v. Thus F(x)=ax+xb, G(x)=(p+q)x and H(x)=x(u+v) for all  $x \in R$ . This is our conclusion (5).

In particular we have

Corollary 2.12. Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, ..., x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that F is a nonzero inner generalized derivation of R such that F([p, f(r)]f(r)) = f(r)[q, f(r)] for all  $r = (r_1, ..., r_n) \in R^n$ , then there exists  $\lambda \in C$  such that  $F(x) = \lambda x$  for all  $x \in R$  with  $f(x_1, ..., x_n)^2$  being central valued in R and  $(\lambda p + q) \in C$ .

Corollary 2.13. Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that F is a nonzero inner generalized derivation of R such that F([p, f(r)]f(r)) = f(r)[p, f(r)] for all  $r = (r_1, \ldots, r_n) \in R^n$ , then there exists  $\lambda \in C$  such that  $F(x) = \lambda x$  for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  being central valued in R and  $(\lambda + 1)p \in C$ .

**Lemma 2.14.** Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, \ldots, x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that G and H are two generalized derivations of R and F(x) = cx + xc' for all  $x \in R$ , for some  $c, c' \in U$  is a nonzero inner generalized derivation of R, such that F(G(f(r))f(r)) = f(r)H(f(r)) for all  $r = (r_1, \ldots, r_n) \in R^n$ , then one of the following holds:

- (1) there exist  $\lambda \in C$  and  $a, b \in U$  such that  $F(x) = \lambda x$ , G(x) = xa and H(x) = bx for all  $x \in R$  with  $\lambda a = b$ ;
- (2) there exist  $\lambda, \alpha \in C$  and  $p, q, u, v \in U$  such that  $F(x) = \lambda x$ , G(x) = px + xq and H(x) = ux + xv for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  being central valued in R and  $v \lambda p = \lambda q u = \alpha \in C$ .
- (3) there exist  $\lambda \in C$  and  $a, p \in U$  such that F(x) = ax, G(x) = px and  $H(x) = \lambda x$  for all  $x \in R$  with  $ap = \lambda$ .
- (4) there exist  $\lambda \in C$  and  $a, u \in U$  such that F(x) = xa,  $G(x) = \lambda x$  and H(x) = xu for all  $x \in R$  with  $a\lambda = u$ .
- (5) there exist  $a, b, p, v \in U$  such that F(x) = ax + xb, G(x) = px and H(x) = xv for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  being central valued on R and ap + pb = v.

*Proof.* In view of [16, Theorem 3], we may assume that there exist  $a, b \in U$  and derivations d',  $\delta$  of U such that G(x) = ax + d'(x) and  $H(x) = bx + \delta(x)$ . Since R and U satisfy the same generalized polynomial identities (see [4]) as well as the same differential identities (see [15]), we may assume that

$$(2.5) \quad c \left\{ af(r)^2 + d'(f(r))f(r) \right\} + \left\{ af(r)^2 + d'(f(r))f(r) \right\} c' = f(r)bf(r) + f(r)\delta(f(r))$$

for all  $r = (r_1, \ldots, r_n) \in U^n$ , where d',  $\delta$  are two derivations on U.

If G and H both are inner generalized derivations of R, then by Lemma 2.11 we obtain our conclusions (1)–(5). Thus we assume that not both of F and G are inner. Then d' and  $\delta$  cannot be both inner derivations of U. Now we consider the following two cases:

Case I: Assume that d' and  $\delta$  are C-dependent modulo inner derivations of U, say  $\alpha d' + \beta \delta = ad_q$ , where  $\alpha, \beta \in C$ ,  $q \in U$  and  $ad_q(x) = [q, x]$  for all  $x \in R$ .

Subcase i: Let  $\alpha \neq 0$ . Then  $d'(x) = \lambda \delta(x) + [p, x]$  for all  $x \in U$ , for some  $\lambda \in C$  and  $p \in U$ .

Then  $\delta$  cannot be inner derivation of U. From (2.5), we obtain

(2.6) 
$$c\{af(r)^{2} + \lambda\delta(f(r))f(r) + [p, f(r)]f(r)\} + \{af(r)^{2} + \lambda\delta(f(r))f(r) + [p, f(r)]f(r)\}c'$$
$$= f(r)bf(r) + f(r)\delta(f(r))$$

for all  $r = (r_1, \ldots, r_n) \in U^n$ .

Since  $f(r_1, \ldots, r_n)$  is a multilinear polynomial over C, we have  $\delta(f(r_1, \ldots, r_n)) = f^{\delta}(r_1, \ldots, r_n) + \sum_i f(r_1, \ldots, \delta(r_i), \ldots, r_n)$ , where  $f^{\delta}(r_1, \ldots, r_n)$  is the polynomials obtained from  $f(r_1, \ldots, r_n)$  replacing each coefficients  $\alpha_{\sigma}$  with  $\delta(\alpha_{\sigma})$ . Thus by Kharchenko's Theorem [14], we can replace  $\delta(f(r_1, \ldots, r_n))$  by  $f^{\delta}(r_1, \ldots, r_n) + \sum_i f(r_1, \ldots, r_n)$  in (2.6) and then U satisfies blended components

$$c\left\{\lambda \sum_{i} f(r_{1}, \dots, y_{i}, \dots, r_{n}) f(r_{1}, \dots, r_{n})\right\}$$

$$+\left\{\lambda \sum_{i} f(r_{1}, \dots, y_{i}, \dots, r_{n}) f(r_{1}, \dots, r_{n})\right\} c'$$

$$= f(r_{1}, \dots, r_{n}) \sum_{i} f(r_{1}, \dots, y_{i}, \dots, r_{n}).$$

Replacing  $y_i$  with  $[q, y_i]$  for some  $q \notin C$  in (2.7), we obtain

$$c\lambda[q, f(r)]f(r) + [q, f(r)]f(r)\lambda c' = f(r)[q, f(r)].$$

By Corollary 2.13,  $f(x_1, ..., x_n)^2$  is central valued in R with  $c\lambda, c'\lambda \in C$  and  $(\lambda(c+c')+1)q \in C$ . Since  $q \notin C$ ,  $(\lambda(c+c')+1)q \in C$  implies  $(\lambda(c+c')+1)=0$ , i.e.,  $\lambda(c+c')=-1$ . Then by (2.7),

$$(c+c')\lambda \sum_{i} f(r_1,\ldots,y_i,\ldots,r_n) f(r_1,\ldots,r_n) = f(r_1,\ldots,r_n) \sum_{i} f(r_1,\ldots,y_i,\ldots,r_n)$$

which implies

$$f(r_1, \dots, r_n) \sum_i f(r_1, \dots, y_i, \dots, r_n) + \sum_i f(r_1, \dots, y_i, \dots, r_n) f(r_1, \dots, r_n) = 0.$$

In particular, for  $y_1 = r_1$  and  $y_2 = \cdots = y_n = 0$ , we have  $2f(r_1, \ldots, r_n)^2 = 0$  for all  $r_1, \ldots, r_n \in U$ , implying  $f(r_1, \ldots, r_n) = 0$  for all  $r_1, \ldots, r_n \in U$ , a contradiction.

Subcase ii: Let  $\alpha = 0$ . Then  $\delta(x) = [q', x]$  for all  $x \in U$ , where  $q' = \beta^{-1}q$ . Since  $\delta$  is inner, d' cannot be inner derivation. From (2.5), we obtain

(2.8) 
$$c\{af(r)^{2} + d'(f(r))f(r)\} + \{af(r)^{2} + d'(f(r))f(r)\}c'$$
$$= f(r)bf(r) + f(r)[q', f(r)]$$

for all  $r = (r_1, \ldots, r_n) \in U^n$ .

Since  $d'(f(r_1,\ldots,r_n)) = f^{d'}(r_1,\ldots,r_n) + \sum_i f(r_1,\ldots,d'(r_i),\ldots,r_n)$ , by Kharchenko's Theorem [14], we can replace  $d'(f(r_1,\ldots,r_n))$  by  $f^{d'}(r_1,\ldots,r_n) + \sum_i f(r_1,\ldots,y_i,\ldots,r_n)$  in (2.8) and then U satisfies blended component

$$c\sum_{i} f(r_1, \dots, y_i, \dots, r_n) f(r_1, \dots, r_n)$$

$$+ \sum_{i} f(r_1, \dots, y_i, \dots, r_n) f(r_1, \dots, r_n) c' = 0.$$

Replacing  $y_i$  with  $[a', r_i]$  for some  $a' \notin C$ , U satisfies

$$c[a', f(r_1, \dots, r_n)]f(r_1, \dots, r_n) + [a', f(r_1, \dots, r_n)]f(r_1, \dots, r_n)c' = 0.$$

Then by Corollary 2.12,  $f(x_1, ..., x_n)^2$  is central valued in R with  $c, c' \in C$  and  $(c+c')a' \in C$ . Since  $a' \notin C$ , c+c'=0 implying F=0, a contradiction.

Case II: Assume next that d' and  $\delta$  are C-independent modulo inner derivations of U. Then applying Kharchenko's Theorem [14], we have from (2.5) that U satisfies blended components

$$c\sum_{i} f(r_1, \dots, y_i, \dots, r_n) f(r_1, \dots, r_n) + \sum_{i} f(r_1, \dots, y_i, \dots, r_n) f(r_1, \dots, r_n) c'$$

$$= f(r_1, \dots, r_n) \sum_{i} f(r_1, \dots, z_i, \dots, r_n).$$

In particular, for  $y_1 = \cdots = y_n = 0$ , U satisfies  $f(r_1, \ldots, r_n) \sum_i f(r_1, \ldots, z_i, \ldots, r_n) = 0$ . In particular,  $f(r_1, \ldots, r_n)^2 = 0$  for all  $r_1, \ldots, r_n \in U$ , implying  $f(r_1, \ldots, r_n) = 0$ , a contradiction.

**Lemma 2.15.** Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, ..., x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that F and H are two generalized derivations of R and G(x) = cx + xc' for all  $x \in R$ , for some  $c, c' \in U$  is a nonzero inner generalized derivation of R, such that F(G(f(r))f(r)) = f(r)H(f(r)) for all  $r = (r_1, ..., r_n) \in R^n$ , then one of the following holds:

- (1) there exist  $\lambda \in C$  and  $a, b \in U$  such that  $F(x) = \lambda x$ , G(x) = xa and H(x) = bx for all  $x \in R$  with  $\lambda a = b$ ;
- (2) there exist  $\lambda, \alpha \in C$  and  $p, q, u, v \in U$  such that  $F(x) = \lambda x$ , G(x) = px + xq and H(x) = ux + xv for all  $x \in R$  with  $f(x_1, \dots, x_n)^2$  being central valued in R and  $v \lambda p = \lambda q u = \alpha \in C$ ;
- (3) there exist  $\lambda \in C$  and  $a, p \in U$  such that F(x) = ax, G(x) = px and  $H(x) = \lambda x$  for all  $x \in R$  with  $ap = \lambda$ ;
- (4) there exist  $\lambda \in C$  and  $a, u \in U$  such that F(x) = xa,  $G(x) = \lambda x$  and H(x) = xu for all  $x \in R$  with  $a\lambda = u$ ;
- (5) there exist  $a, b, p, v \in U$  such that F(x) = ax + xb, G(x) = px and H(x) = xv for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  being central valued on R and ap + pb = v.

*Proof.* In view of [16, Theorem 3], we may assume that there exist  $a, b \in U$  and derivations d',  $\delta$  of U such that F(x) = ax + d(x) and  $H(x) = bx + \delta(x)$ . Since R and U satisfy the same generalized polynomial identities (see [4]) as well as the same differential identities (see [15]), we may assume that

$$(2.9) a\{cf(r)^2 + f(r)c'f(r)\} + d\{cf(r)^2 + f(r)c'f(r)\} = f(r)bf(r) + f(r)\delta(f(r))$$

for all  $r = (r_1, \dots, r_n) \in U^n$ , where d,  $\delta$  are two derivations on U.

If F and H both are inner generalized derivations of R, then by Lemma 2.11 we obtain our conclusions (1)–(5). Thus we assume that not both of F and H are inner. Then d and  $\delta$  cannot be both inner derivations of U. Now we consider the following two cases:

Case I: Assume that d and  $\delta$  are C-dependent modulo inner derivations of U, say  $\alpha d + \beta \delta = ad_q$ , where  $\alpha, \beta \in C$ ,  $q \in U$  and  $ad_q(x) = [q, x]$  for all  $x \in R$ . If  $\beta = 0$ , then  $\alpha \neq 0$  and thus d is inner. In this case conclusion follows by Lemma 2.14. Next we assume that  $\beta \neq 0$ . Then there exist some  $\lambda \in C$  and  $p \in U$  such that  $\delta(x) = \lambda d(x) + [p, x]$  for all  $x \in U$ . The by (2.9), U satisfies

$$a\{cf(r)^{2} + f(r)c'f(r)\} + d(c)f(r)^{2} + cd(f(r))f(r) + cf(r)d(f(r))$$

$$+ d(f(r))c'f(r) + f(r)d(c')f(r) + f(r)c'd(f(r))$$

$$= f(r)bf(r) + f(r)\lambda d(f(r)) + f(r)[p, f(r)].$$

Since  $f(r_1, ..., r_n)$  is a multilinear polynomial over C, we have  $d(f(r_1, ..., r_n)) = f^d(r_1, ..., r_n) + \sum_i f(r_1, ..., d(r_i), ..., r_n)$ , where  $f^d(r_1, ..., r_n)$  is the polynomials obtained from  $f(r_1, ..., r_n)$  replacing each coefficients  $\alpha_\sigma$  with  $d(\alpha_\sigma)$ . Thus by Kharchenko's

Theorem [14], we can replace  $d(f(r_1, \ldots, r_n))$  by  $f^d(r_1, \ldots, r_n) + \sum_i f(r_1, \ldots, y_i, \ldots, r_n)$  in (2.10) and then U satisfies blended components

(2.11)  $c \sum_{i} f(r_{1}, \dots, y_{i}, \dots, r_{n}) f(r_{1}, \dots, r_{n}) + c f(r_{1}, \dots, r_{n}) \sum_{i} f(r_{1}, \dots, y_{i}, \dots, r_{n})$   $+ \sum_{i} f(r_{1}, \dots, y_{i}, \dots, r_{n}) c' f(r_{1}, \dots, r_{n}) + f(r_{1}, \dots, r_{n}) c' \sum_{i} f(r_{1}, \dots, y_{i}, \dots, r_{n})$   $= f(r_{1}, \dots, r_{n}) \lambda \sum_{i} f(r_{1}, \dots, y_{i}, \dots, r_{n}).$ 

In particular, for  $y_1 = r_1$  and  $y_2 = \cdots = y_n = 0$ , U satisfies

$$(2c - \lambda)f(r_1, \dots, r_n)^2 + f(r_1, \dots, r_n)(2c')f(r_1, \dots, r_n) = 0,$$

which implies

$$((2c - \lambda)f(r_1, \dots, r_n) + f(r_1, \dots, r_n)(2c'))f(r_1, \dots, r_n) = 0.$$

By Lemma 2.1, we conclude that  $2c' = \lambda - 2c \in C$ . Since  $\operatorname{char}(R) \neq 2$ ,  $c, c' \in C$ . Then by (2.11), U satisfies

$$(c+c')\sum_{i} f(r_1, \dots, y_i, \dots, r_n) f(r_1, \dots, r_n)$$
  
  $+ (c+c'-\lambda) f(r_1, \dots, r_n) \sum_{i} f(r_1, \dots, y_i, \dots, r_n) = 0.$ 

Replacing  $y_i$  with  $[q, x_i]$  for some  $q' \notin C$ , we have

$$(c+c')[q', f(r_1, \dots, r_n)]f(r_1, \dots, r_n) + (c+c'-\lambda)f(r_1, \dots, r_n)[q', f(r_1, \dots, r_n)] = 0,$$

that is,

$$[(c+c')q', f(r_1, \dots, r_n)]f(r_1, \dots, r_n) + f(r_1, \dots, r_n)[(c+c'-\lambda)q', f(r_1, \dots, r_n)] = 0.$$

By Lemma 2.1, one of the following holds: (i) (c+c')q',  $(c+c'-\lambda)q' \in C$ ; in this case as  $q' \notin C$ , c+c'=0, implying G=0, a contradiction. (ii)  $f(r_1,\ldots,r_n)^2$  is central valued and  $(c+c'-\lambda)q'-(c+c')q' \in C$ , i.e.,  $\lambda q' \in C$ . In this case as  $q' \notin C$ ,  $\lambda = 0$ . Thus  $\lambda = 2(c+c') = 0$  implying c+c'=0. Hence G=0, a contradiction.

**Lemma 2.16.** Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and  $f(x_1, ..., x_n)$  a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and H(x) = bx + xb' for all  $x \in R$ , for some  $b, b' \in U$  is a nonzero inner generalized derivation of R, such that F(G(f(r))f(r)) = f(r)H(f(r)) for all  $r = (r_1, ..., r_n) \in R^n$ , then one of the following holds:

- (1) there exist  $\lambda \in C$  and  $a, b \in U$  such that  $F(x) = \lambda x$ , G(x) = xa and H(x) = bx for all  $x \in R$  with  $\lambda a = b$ ;
- (2) there exist  $\lambda, \alpha \in C$  and  $p, q, u, v \in U$  such that  $F(x) = \lambda x$ , G(x) = px + xq and H(x) = ux + xv for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  being central valued in R and  $v \lambda p = \lambda q u = \alpha \in C$ ;
- (3) there exist  $\lambda \in C$  and  $a, p \in U$  such that F(x) = ax, G(x) = px and  $H(x) = \lambda x$  for all  $x \in R$  with  $ap = \lambda$ ;
- (4) there exist  $\lambda \in C$  and  $a, u \in U$  such that F(x) = xa,  $G(x) = \lambda x$  and H(x) = xu for all  $x \in R$  with  $a\lambda = u$ :
- (5) there exist  $a, b, p, v \in U$  such that F(x) = ax + xb, G(x) = px and H(x) = xv for all  $x \in R$  with  $f(x_1, \ldots, x_n)^2$  being central valued on R and ap + pb = v.

*Proof.* In view of [16, Theorem 3], we may assume that there exist  $a, b \in U$  and derivations d',  $\delta$  of U such that F(x) = cx + d(x) and G(x) = ax + d'(x). Since R and U satisfy the same generalized polynomial identities (see [4]) as well as the same differential identities (see [15]), we may assume that

$$(2.12) c\{af(r)^2 + d'(f(r))f(r)\} + d\{af(r)^2 + d'(f(r))f(r)\} = f(r)bf(r) + f(r)^2b'$$

for all  $r = (r_1, \ldots, r_n) \in U^n$ , where d, d' are two derivations on U.

If d or d' is inner, then F or G is inner and then by Lemmas 2.14 and 2.15, we obtain our conclusions (1)–(5). Thus we assume that both of d and d' are outer. Now we consider the following two cases:

Case I: Assume that d and d' are C-dependent modulo inner derivations of U, then  $d = \alpha d' + a d_{p'}$ . Then (2.12) becomes

(2.13) 
$$c\{af(r)^{2} + d'(f(r))f(r)\} + \alpha d'\{af(r)^{2} + d'(f(r))f(r)\} + [p', af(r)^{2} + d'(f(r))f(r)]$$
$$= f(r)bf(r) + f(r)^{2}b'.$$

We know that 
$$d'(f(r_1, ..., r_n)) = f^{d'}(r_1, ..., r_n) + \sum_i f(r_1, ..., d'(r_i), ..., r_n)$$
, and 
$$d'^2(f(r_1, ..., r_n)) = f^{d'^2}(r_1, ..., r_n) + 2\sum_i f^{d'}(r_1, ..., d'(r_i), ..., r_n) + \sum_i f(r_1, ..., d'^2(r_i), ..., r_n) + \sum_i f(r_1, ..., d'(r_i), ..., d'(r_i), ..., r_n).$$

By applying Kharchenko's Theorem [14], we can replace  $d(f(r_1, \ldots, r_n))$  with  $f^d(r_1, \ldots, r_n) + \sum_i f(r_1, \ldots, r_i)$  and  $d'^2(f(r_1, \ldots, r_n))$  with

$$f^{d'^{2}}(r_{1},...,r_{n}) + 2\sum_{i} f^{d'}(r_{1},...,y_{i},...,r_{n})$$
$$+ \sum_{i} f(r_{1},...,t_{i},...,r_{n}) + \sum_{i\neq j} f(r_{1},...,y_{i},...,y_{j},...,r_{n})$$

in (2.13) and then U satisfies blended component

$$\alpha \sum_{i} f(r_1, \dots, t_i, \dots, r_n) f(r_1, \dots, r_n) = 0.$$

This implies  $\alpha f(x_1, \ldots, x_n)^2 = 0$ , implying  $\alpha = 0$ . Then d is inner, a contradiction.

Case II: Assume that d and d' are C-independent modulo inner derivations of U. Then applying Kharchenko's Theorem [14] to (2.12), we can replace

$$d'(f(r_1, ..., r_n)) = f^{d'}(r_1, ..., r_n) + \sum_i f(r_1, ..., y_i, ..., r_n),$$
  
$$d(f(r_1, ..., r_n)) = f^{d}(r_1, ..., r_n) + \sum_i f(r_1, ..., t_i, ..., r_n),$$

and

$$dd'(f(r_1, ..., r_n)) = f^{dd'}(r_1, ..., r_n) + \sum_i f^{\delta}(r_1, ..., y_i, ..., r_n)$$

$$+ \sum_i f^{d'}(r_1, ..., t_i, ..., r_n) + \sum_{i \neq j} f(r_1, ..., y_i, ..., t_j, ..., r_n)$$

$$+ \sum_i f(r_1, ..., w'_i, ..., r_n).$$

Then U satisfies blended component  $\sum_i f(r_1, \dots, w'_i, \dots, r_n) f(r_1, \dots, r_n) = 0$ . In particular,  $f(r_1, \dots, r_n)^2 = 0$  implying  $f(r_1, \dots, r_n) = 0$ , a contradiction.

*Proof of Theorem* 1.1. If any one of F or G or H is inner, then conclusion follows by Lemmas 2.14, 2.15 and 2.16.

Thus we assume that F, G and H are all outer generalized derivations of R. Then by [16], we have F(x) = cx + d(x), G(x) = ax + d'(x) and  $H(x) = bx + \delta(x)$  for some  $a, b, c \in U$  and  $d, d', \delta$  are three derivations of U. By hypothesis, we have

$$(2.14) \quad c\{af(r)^2 + d'(f(r))f(r)\} + d\{af(r)^2 + d'(f(r))f(r)\} = f(r)bf(r) + f(r)\delta(f(r))$$

for all  $r = (r_1, \ldots, r_n) \in U^n$ . Now we consider the following two cases:

Case 1: Let d' and  $\delta$  be C-dependent modulo inner derivations of U, i.e.,  $\alpha d' + \beta \delta = ad_{p'}$ .

Now  $\alpha = 0$  implies that  $\delta$  is inner, a contradiction as H cannot be inner. Thus  $\alpha \neq 0$ . Then  $d' = \lambda \delta + ad_p$ , where  $\lambda = -\beta \alpha^{-1} \in C$  and  $p = p'\alpha^{-1} \in U$ . Therefore, (2.14) gives

$$c\{af(r)^{2} + \lambda\delta(f(r))f(r) + [p, f(r)]f(r)\} + d(af(r)^{2} + \lambda\delta(f(r))f(r) + [p, f(r)]f(r))$$
  
=  $f(r)bf(r) + f(r)\delta(f(r))$ 

for all  $r = (r_1, \ldots, r_n) \in U^n$ , that is,

$$(2.15) c(af(r)^{2} + \lambda\delta(f(r))f(r) + [p, f(r)]f(r)) + d(af(r)^{2} + [p, f(r)]f(r))$$

$$+ d(\lambda)\delta(f(r))f(r) + \lambda(d\delta)(f(r))f(r) + \lambda\delta(f(r))d(f(r))$$

$$= f(r)bf(r) + f(r)\delta(f(r))$$

for all  $r = (r_1, \ldots, r_n) \in U^n$ . We know that

$$d(f(r_1,...,r_n)) = f^d(r_1,...,r_n) + \sum_i f(r_1,...,d(r_i),...,r_n)$$

and

$$\delta d(f(r_1, \dots, r_n)) = f^{\delta d}(r_1, \dots, r_n) + \sum_i f^d(r_1, \dots, \delta(r_i), \dots, r_n)$$

$$+ \sum_i f^{\delta}(r_1, \dots, d(r_i), \dots, r_n) + \sum_i f(r_1, \dots, \delta d(r_i), \dots, r_n)$$

$$+ \sum_i f(r_1, \dots, \delta(r_i), \dots, d(r_j), \dots, r_n).$$

Let  $\delta$  and d be C-independent modulo inner derivations of U. By applying Kharchenko's Theorem [14] to (2.15), we can replace  $d(f(r_1,\ldots,r_n))$  with  $f^d(r_1,\ldots,r_n) + \sum_i f(r_1,\ldots,y_i,\ldots,r_n)$  and  $\delta d(f(r_1,\ldots,r_n))$  with

$$f^{\delta d}(r_1, \dots, r_n) + \sum_{i} f^{d}(r_1, \dots, s_i, \dots, r_n) + \sum_{i} f^{\delta}(r_1, \dots, y_i, \dots, r_n) + \sum_{i} f(r_1, \dots, t_i, \dots, r_n) + \sum_{i} f(r_1, \dots, s_i, \dots, y_j, \dots, r_n)$$

in (2.15) and then U satisfies blended component

(2.16) 
$$\lambda \sum_{i} f(r_1, \dots, t_i, \dots, r_n) f(r_1, \dots, r_n) = 0.$$

In particular, for  $t_1 = r_1$  and  $t_2 = \cdots = t_n = 0$  in (2.16), we have  $\lambda f(r_1, \ldots, r_n)^2 = 0$ . If  $\lambda \neq 0$ , then  $f(r_1, \ldots, r_n)^2 = 0$  which implies  $f(r_1, \ldots, r_n) = 0$  for all  $r_1, \ldots, r_n \in U$  (see [5]), a contradiction. Thus  $\lambda = 0$ . In this case G becomes inner, a contradiction. Now let  $\delta$  and d be C-dependent, i.e.,  $\alpha_1\delta + \beta_1d = ad_{q'}$ . Now,  $\alpha_1 = 0$ , implies d is inner, a contradiction. Thus  $\alpha_1 \neq 0$  and so  $\delta = \mu d + [q, x]$  for some  $\mu \in C$  and  $q \in U$ . Then by (2.15), U satisfies

$$c(af(r)^{2} + \lambda\mu d(f(r))f(r) + \lambda[q, f(r)]f(r) + [p, f(r)]f(r))$$

$$+ d(af(r)^{2} + [p, f(r)]f(r)) + d(\lambda)\mu d(f(r))f(r) + d(\lambda)[q, f(r)]f(r)$$

$$+ \lambda d(\mu d(f(r)) + [q, f(r)])f(r) + \lambda(\mu d(f(r)) + [q, f(r)])d(f(r))$$

$$= f(r)bf(r) + f(r)(\mu d(f(r)) + [q, f(r)])$$

for all  $r = (r_1, \ldots, r_n) \in U^n$ .

Since 
$$d(f(r_1, ..., r_n)) = f^d(r_1, ..., r_n) + \sum_i f(r_1, ..., d(r_i), ..., r_n)$$
 and 
$$d^2(f(r_1, ..., r_n)) = f^{d^2}(r_1, ..., r_n) + 2\sum_i f^d(r_1, ..., d(r_i), ..., r_n) + \sum_i f(r_1, ..., d^2(r_i), ..., r_n) + \sum_{i \neq i} f(r_1, ..., d(r_i), ..., d(r_i), ..., r_n),$$

by applying Kharchenko's Theorem [14], we can replace  $d(f(r_1, \ldots, r_n))$  with  $f^d(r_1, \ldots, r_n) + \sum_i f(r_1, \ldots, r_i)$  and  $d^2(f(r_1, \ldots, r_n))$  with

$$d^{2}(f(r_{1},...,r_{n})) = f^{d^{2}}(r_{1},...,r_{n}) + 2\sum_{i} f^{d}(r_{1},...,y_{i},...,r_{n}) + \sum_{i} f(r_{1},...,t_{i},...,r_{n}) + \sum_{i\neq j} f(r_{1},...,y_{i},...,y_{j},...,r_{n}),$$

and then U satisfies blended component

$$\lambda \mu \sum_{i} f(r_1, \dots, t_i, \dots, r_n) f(r_1, \dots, r_n) = 0.$$

In particular,  $\lambda \mu f(r_1, \dots, r_n)^2 = 0$ . This implies  $\lambda \mu = 0$  and so either  $\lambda = 0$  or  $\mu = 0$ . Now  $\lambda = 0$  gives G is inner, a contradiction. Again  $\mu = 0$ , gives H is inner, a contradiction.

Case 2: Let d' and  $\delta$  be C-independent modulo inner derivations of U. We divide the proof into two subcases.

Subcase i. Let d, d' and  $\delta$  be C-independent modulo inner derivations of U. In this case we rewrite (2.14) as

$$c(af(r)^{2} + d'(f(r))f(r)) + d(a)f(r)^{2} + ad(f(r))f(r)$$
  
+  $af(r)d(f(r)) + dd'(f(r))f(r) + d'(f(r))d(f(r))$   
=  $f(r)bf(r) + f(r)\delta(f(r))$ 

for all  $r = (r_1, \ldots, r_n) \in U^n$ .

By applying Kharchenko's Theorem [14], we can replace  $dd'(f(x_1,\ldots,x_n))$  by

$$f^{dd'}(r_1, \dots, r_n) + \sum_{i} f^{d'}(r_1, \dots, x_i, \dots, r_n) + \sum_{i} f^{d}(r_1, \dots, t_i, \dots, r_n) + \sum_{i \neq j} f(r_1, \dots, t_i, \dots, x_j, \dots, r_n) + \sum_{i} f(r_1, \dots, w_i, \dots, r_n)$$

in above equality and then U satisfies the blended component

(2.17) 
$$\sum_{i} f(r_1, \dots, w_i, \dots, r_n) f(r_1, \dots, r_n) = 0.$$

In particular for  $w_1 = r_1$  and  $w_2 = \cdots = w_n = 0$ , U satisfies  $f(r_1, \ldots, r_n)^2 = 0$  implying  $f(r_1, \ldots, r_n) = 0$ , a contradiction.

Subcase ii. Let d, d' and  $\delta$  be C-dependent modulo inner derivations of U, i.e.,  $\alpha_1 d + \alpha_2 d' + \alpha_3 \delta = a d_{a'}$  for some  $\alpha_1, \alpha_2, \alpha_3 \in C$ . Then  $\alpha_1 \neq 0$ , otherwise d' and  $\delta$  are C-dependent modulo inner derivation of U, a contradiction. Then we can write  $d = \beta_1 d' + \beta_2 \delta + a d_{a''}$  for some  $\beta_1, \beta_2 \in C$  and  $a'' \in U$ . Then by (2.14), we have

$$c\{af(r)^{2} + d'(f(r))f(r)\} + \beta_{1}d'\{af(r)^{2} + d'(f(r))f(r)\}$$

$$+ \beta_{2}\delta\{af(r)^{2} + d'(f(r))f(r)\} + [a'', af(r)^{2} + d'(f(r))f(r)]$$

$$= f(r)bf(r) + f(r)\delta(f(r))$$

for all  $r = (r_1, \ldots, r_n) \in U^n$ .

Using Kharchenko's Theorem [14], we substitute the following values in (2.18)

$$d'(f(r_1, ..., r_n)) = f^{d'}(r_1, ..., r_n) + \sum_i f(r_1, ..., y_i, ..., r_n),$$

$$\delta(f(r_1, ..., r_n)) = f^{\delta}(r_1, ..., r_n) + \sum_i f(r_1, ..., t_i, ..., r_n),$$

$$\delta d'(f(r_1, ..., r_n)) = f^{\delta d'}(r_1, ..., r_n) + \sum_i f^{\delta}(r_1, ..., y_i, ..., r_n)$$

$$+ \sum_i f^{d'}(r_1, ..., t_i, ..., r_n) + \sum_{i \neq j} f(r_1, ..., y_i, ..., t_j, ..., r_n)$$

$$+ \sum_i f(r_1, ..., w'_i, ..., r_n),$$

$$d'^2(f(r_1, ..., r_n)) = f^{d'^2}(r_1, ..., r_n) + 2\sum_i f^{d'}(r_1, ..., y_i, ..., r_n)$$

$$+ \sum_i f(r_1, ..., z'_i, ..., r_n) + \sum_{i \neq j} f(r_1, ..., y_i, ..., r_n).$$

Therefore, U satisfies the blended components

$$\beta_1 \sum_i f(r_1, \dots, z_i', \dots, r_n) f(r_1, \dots, r_n) = 0$$

and

$$\beta_2 \sum_i f(r_1, \dots, w_i', \dots, r_n) f(r_1, \dots, r_n) = 0.$$

If  $\beta_1 \neq 0$ , then from above, U satisfies

$$\sum_{i} f(r_1, \dots, z'_i, \dots, r_n) f(r_1, \dots, r_n) = 0.$$

This is same as (2.17) and hence by same argument as above, it leads to a contradiction. Thus we conclude that  $\beta_1 = 0$ . Similarly, from above relation, we conclude that  $\beta_2 = 0$ . Then d is inner, contradicting with the fact that F is outer. This complete the proof of the theorem.

## References

- [1] N. Argaç and V. De Filippis, Actions of generalized derivations on multilinear polynomials in prime rings, Algebra Collog. 18 (2011), Special Issue no. 1, 955–964.
- [2] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics 196, Marcel Dekker, New York, 1996.
- [3] L. Carini and V. de Filippis, Centralizers of generalized derivations on multilinear polynomials in prime rings, Sib. Math. J. **53** (2012), no. 6, 1051–1060.
- [4] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723–728.
- [5] C.-L. Chuang and T.-K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math. 24 (1996), no. 2, 177–185.
- [6] V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40 (2012), no. 6, 1918–1932.
- [7] B. Dhara, Generalized derivations acting on multilinear polynomials in prime rings, Czechoslovak Math. J. **68** (2018), no. 1, 95–119.
- [8] B. Dhara and N. Argaç, Generalized derivations acting on multilinear polynomials in prime rings and Banach algebras, Commun. Math. Stat. 4 (2016), no. 1, 39–54.
- [9] B. Dhara, N. Argac and E. Albas, Vanishing derivations and co-centralizing generalized derivations on multilinear polynomials in prime rings, Comm. Algebra 44 (2016), no. 5, 1905–1923.

- [10] B. Dhara and V. De Filippis, b-generalized derivations acting on multilinear polynomials in prime rings, Algebra Colloq. 25 (2018), no. 4, 681–700.
- [11] T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49–63.
- [12] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar. 14 (1963), 369–371.
- [13] N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications 37, American Mathematical Society, Providence, R.I., 1964.
- [14] V. K. Kharchenko, Differential identities of prime rings, Algebra Logic 17 (1978), no. 2, 155–168.
- [15] T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica **20** (1992), no. 1, 27–38.
- [16] \_\_\_\_\_, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057–4073.
- [17] U. Leron, Nil and power-central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97–103.
- [18] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.

### Basudeb Dhara

Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B., India

E-mail address: basu\_dhara@yahoo.com

### Nripendu Bera and Sukhendu Kar

Department of Mathematics, Jadavpur University, Kolkata, 700032, W.B., India *E-mail address*: nripendub@gmail.com, karsukhendu@yahoo.co.in

### Brahim Fahid

Superior School of Technology, Ibn Tofail University, Kenitra, Morocco

E-mail address: brahim.fahid@uit.ac.ma