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Vector Critical Points and Cone Efficiency in Nonsmooth Vector

Optimization

Tadeusz Antczak* and Marcin Studniarski

Abstract. In this paper, a nonsmooth vector optimization problem with cone and

equality constraints is considered. We establish some relations between the notions of

vector critical points in the sense of Fritz John and in the sense of Karush-Kuhn-Tucker

and weakly K-efficient and K-efficient solutions for the constrained vector optimiza-

tion problem in which every component of the involved functions is locally Lipschitz.

These relationships are stated under cone-FJ-pseudo-invexity and cone-KT -pseudo-

invexity hypotheses defined for the considered vector optimization problem with cone

inequality and also equality constraints and via the Clarke generalized gradient for

vector-valued functions.

1. Introduction

Optimization problems, in which decisions are made taking into account several conflicting

criteria, rather than by optimizing a single objective, are called multiobjective program-

ming or vector optimization. An optimal solution in such an optimization problem is

ordinarily chosen from the set of all (weak) Pareto optimal solutions to it. Characteri-

zations of (weak) Pareto optimal solutions for constrained multiobjective programming

problems are of practical interest, since multipliers associated with them have useful

economic interpretations. Therefore, multiobjective programming has grown remark-

ably in different directions in the settings of optimality conditions and duality theory

in last three decades. Several papers appeared in optimization theory, which concerned

Fritz John and Karush-Kuhn-Tucker optimality conditions for multiobjective optimiza-

tion, but the authors considered the (weak) Pareto case in all of them (see, for exam-

ple, [2, 5, 6, 14, 21–24, 26–28, 31, 34, 35], and others). In [26], by using the Ekeland vari-

ational principle, Minami derived generalized conditions of the Fritz-John type given by

Clarke’s generalized gradient formula, which are necessary for weak Pareto solutions in

the considered nondifferentiable vector optimization problem.
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However, in recent years, some of the authors extended the results concerning (weak)

efficiency optimality to the more complicated case with arbitrary cones. Craven and

Yang [15] introduced generalized cone-invex functions and established a generalized alter-

native theorem involving such nonsmooth generalized convex functions. Yen and Sach [38]

defined the concepts of cone-generalized invexity and cone-nonsmooth invexity for vector-

valued functions with locally Lipschitz components. Giorgi and Guerraggio [19] intro-

duced the concepts of K-α-invexity, K-α-pseudoinvexity and K-α-quasiinvexity in the

differentiable case and, using the introduced concepts of generalized convexity, obtained

optimality and duality results for considered vector optimization problem over cones in

terms of Jacobians of the functions involved. In [36], Suneja et al. defined the concept of

Q-nonsmooth pseudoinvexity and, by using this concept, they established necessary and

sufficient optimality conditions involving Clarke’s generalized gradients for the considered

multiobjective programming problem with generalized cone constraint. In [9], for solving

a class of multiobjective programing problems involving cone-invexity, Chen et al. used the

so-called modified objective function method introduced by Antczak [1]. In [3], Antczak

proved optimality conditions for proper efficiency for a new class of nonconvex nondiffer-

entiable multiobjective programming problems involving constraints with respect to cones

in arbitrary Banach spaces. Recently, under pseudoinvexity hypotheses and via the Clarke

generalized Jacobian, Gutiérrez et al. [20] established some relations between several no-

tions of vector critical points and efficient, weakly efficient and ideal efficient solutions of

the considered unconstrained vector optimization problem with a locally Lipschitz objec-

tive function. Thus, they provided a characterization of (strong) pseudoinvexity through

the property that every vector critical point is a weak efficient (and also efficient) solu-

tion in the considered unconstrained vector optimization problem. In [37], Tung and Luu

established necessary optimality conditions for weakly efficient solutions in terms of the

Clarke subdifferentials for the considered nonsmooth multiobjective optimization problem

with a cone constraint, an equality constraint and a set constraint.

In this paper, we consider a new class of nonconvex nondifferentiable vector optimiza-

tion problems with both cone constraint and equality constraint. Each component of the

functions constituting the considered vector optimization problem is a locally Lipschitz

function defined on a finite-dimensional space and, moreover, the order cone is assumed

to be pointed, closed and convex. We define the notions of cone-FJ-pseudoinvexity and

cone-KT -pseudoinvexity with respect to cones for a nonsmooth vector optimization prob-

lem with both cone inequality constraints and also with equality constraints through the

Clarke generalized gradient of a vector-valued function with locally Lipschitz components.

We prove that a vector optimization problem with cone inequality and also equality con-

straints is cone-FJ-pseudoinvex if and only if every Fritz John vector critical point is a
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global weakly K-efficient solution. Further, we also prove that a vector optimization prob-

lem with cone inequality and also equality constraints is KT -pseudoinvex with respect to

cones if and only if every Kuhn-Tucker vector critical point is its global K-efficient solu-

tion. Thus, we extend the characterization of vectorial critical points to a new class of

nonsmooth constrained vector optimization problems with both cone inequality constraint

and also equality constraint. Furthermore, we also generalize a lot of previous optimal-

ity conditions, concerning the scalar case and the multiobjective Pareto one established

for vector optimization problem with cone inequality only. Namely, we generalize the

results established by Osuna-Gómez et al. [29] and Arana-Jiménez et al. [4], which were

stated in Pareto differentiable problems, and also by Suneja et al. [36], where nondifferen-

tiable vector optimization problems were considered with inequality cone constraints only.

Further, we also extend the results established by Gutiérrez et al. [20] for a nonsmooth

unconstrained vector optimization problem with a locally Lipschitz objective function to

the case a nondifferentiable constrained vector optimization problem with cone inequality

and equality constraints. Also we generalize the Fritz John type necessary optimality

conditions for a weak Pareto solution in nondifferentiable vector optimization problems

with both inequality and equality constraints established by Minami [26]. Namely, we give

both Fritz John type and Kuhn-Tucker type necessary optimality conditions for weakly K-

efficiency in nondifferentiable multiobjective programming problems with cone and equal-

ity constraints by the proof which is, in part, as in [26].

2. Preliminaries

In this section, we provide some definitions and some results that we shall use in the

sequel.

Let Rk+ = {(x1, . . . , xk) ∈ Rk : xi ≥ 0, i = 1, . . . , k}. A nonempty subset K of Rk is

called a cone if αK ⊂ K for all α ≥ 0. K is called a convex cone if K is a cone and

K +K ⊂ K. K is called a pointed cone if K is a cone and K ∩ (−K) = {0} and solid if

intK 6= ∅.
For the closed convex cone K ⊂ Rk with nonempty interior (intK 6= ∅) which induces

a partial order in Rk, we define

(a) x 5K y if and only if y − x ∈ K;

(b) x ≤K y if and only if y − x ∈ K \ {0};

(c) x <K y if and only if y − x ∈ intK.

Lemma 2.1. [9,25] Let K be a convex cone of Rk with intK 6= ∅. Then, for any x, y ∈ X,

the following statements are true:
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(i) y − x ∈ K and y ∈ − intK imply x ∈ − intK;

(ii) y − x ∈ K and x /∈ − intK imply y /∈ − intK;

(iii) y − x ∈ K and y ∈ −K imply x ∈ −K;

(iv) y − x ∈ − intK and x ∈ − intK imply y ∈ − intK.

Definition 2.2. Let K ⊆ Rk be a closed convex cone with nonempty interior and let

intK and K denote the interior and closure of a cone K, respectively. The positive dual

cone K+ of a cone K is defined as

K+ := {y ∈ Rk : yTx ≥ 0 for all x ∈ K}.

Definition 2.3. [7] Let S be a nonempty set of Rk. The set

(2.1) S0 := {y ∈ Rk : yTx ≥ −1 for all x ∈ S}

is called the polar set of S.

Now, we re-call the so-called bipolar theorem.

Lemma 2.4. [16] Let K be any closed convex cone and K+ its dual, and let x, y ∈ Rk.

Then

(2.2) x ∈ K ⇐⇒ yTx ≥ 0 for all y ∈ K+.

Furthermore, if intK 6= ∅, then

(2.3) x ∈ intK ⇐⇒ yTx > 0 for all y ∈ K+ \ {0}.

In [16], it was given the following result.

Corollary 2.5. Let K be any closed convex cone and K+ its dual, and let x, y ∈ Rk.

Then (2.2) can be replaced by

(2.4) x ∈ K ⇐⇒ yTx ≥ 0 for all y ∈ K+, ‖y‖ = 1.

Note that (2.2) may be regarded as a simple translation of Farkas’ lemma (see [32]) to

the language of convex cones.

Lemma 2.6. Let K be a convex cone with intK 6= ∅ and K+ be the dual cone of K.

Then, we have the following:

(1) If x ∈ intK, then yTx > 0 for all y ∈ K+ \ {0}.
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(2) If y ∈ intK+, then yTx > 0 for all x ∈ K \ {0}.

Lemma 2.7 (Cartesian product). For closed convex cones K1 and K2, their Cartesian

product K = K1 ×K2 is a closed convex cone, and K+ = K+
1 ×K

+
2 .

A particular case of generating set for a convex cone is given by the following definition.

Definition 2.8. It is said that a nonempty convex subset B of a convex cone K is a base

for K if each element x ∈ K \ {0} has a unique representation of the form x = αb with

α > 0 and b ∈ B.

As it follows from the above definition, if K has a base, then K = cone(B), that is,

K = {αb : α ≥ 0, b ∈ B}.
It is well-known, if B is a base for a convex cone, then 0 /∈ B. In particular, a convex

cone K which has a base is necessarily pointed.

Now, we give the condition under which dual cones are nontrivial. Such a result was

given, for example, by Peressini [30] and Rudin [33].

Lemma 2.9. Let K ⊂ Rk be a closed pointed convex cone and K+ be the dual cone of K.

If intK 6= ∅ and k0 ∈ intK, k0 6= 0, then the set

(2.5) B = {b ∈ K+ : bTk0 = 1}

is a compact convex base for K+.

Proof. In order to prove that the set B is a base of K+, we need to prove that the properties

of a base are fulfilled. First, note that 0 /∈ B. Now, we show that any nonzero element

of K+ has a unique representation of the form αb with α > 0 and b ∈ B. In order to do

this, let y be any nonzero element of K+. Then, by (2.3), it follows that yTx > 0 for

every x ∈ intK. Then, let us take α = yTk0 > 0. Therefore, we define b := α−1y. Hence,

y = αb. Moreover, we have that bTk0 = 1. Since b ∈ K+ and α = yTk0, we get that

b ∈ B. Now, suppose that y = α1b1 for some α1 > 0 and b1 ∈ B. Then, we have that

α = yTk0 = α1b
T
1 k0 = α1, whence b = b1. Thus, we have shown that any nonzero element

of K+ has a unique representation of αb with α > 0 and b ∈ B. This means by definition

that the set B given by (2.5) is a base of K+.

Now, we show that B is a compact convex base for K+. By assumption, k0 ∈ intK,

k0 6= 0. Hence, the set Γ = K − k0 is a neighborhood of 0n ∈ Rn. Then, by definition,

(see, for example, [7]), the polar set of Γ is defined by

Γ0 = {y ∈ Rk : yTx ≥ −1 for all x ∈ Γ}.

Hence, by the definition of the set Γ, we have

Γ0 = {y ∈ Rk : yTk − yTk0 ≥ −1 for all k ∈ K}.



188 Tadeusz Antczak and Marcin Studniarski

Thus,

(2.6) Γ0 = {y ∈ R+ : yTk ≥ yTk0 − 1 for all k ∈ K}.

Now, we show that

(2.7) Γ0 = {y ∈ K+ : yTk0 ≤ 1}.

We proceed by contradiction. Suppose that there exists y /∈ K+ satisfying the inequality in

(2.6). This means that there exists k ∈ K such that yTk < 0. Since K is a cone, therefore,

the foregoing inequality is also satisfied if it is multiplied by any sufficiently large α > 0.

This means that the value of yTk can be sufficiently small. This is a contradiction to the

inequality yTk ≥ yTk0 − 1 for all k ∈ K in which all yTk are bounded below. Then, (2.7)

we get if we set k = 0 in (2.6), which is possible, because any cone contains 0.

Then, by Banach-Alaoglu Theorem (see, for example, [17, 33]), the polar set of Γ is a

compact set. Hence, the set B as a closed subset of Γ0 is also compact. Moreover, it is

obviously a convex set. Thus, B is a compact convex set not containing the origin. Since

we have already proved that the set B is a base for K+, this means that it is a compact

convex base for K+.

We now re-call a Gordan-type alternative theorem, the so-called theorem of alternatives

for linear strict generalized inequalities (see [8, 13,19]).

Theorem 2.10 (Theorem of alternatives for linear strict generalized inequalities). Let A

be an element (matrix) of Rk×n, K+ is the dual cone of K ⊆ Rk. Then one and only one

of the following statements is true:

(i) There exists x ∈ Rn such that Ax <K 0.

(ii) There exists y ∈ K+, y 6= 0, such that AT y = 0.

Now, we re-call some definitions and properties for locally Lipschitz functions. Let

X be a nonempty subset of Rn and u be an arbitrary given point of X. Namely, the

function f : X → R is said to be locally Lipschitz on X if, for every u ∈ X, there

exist a neighborhood U ⊂ X of u and a constant Ku > 0 such that the inequality

‖f(y)− f(z)‖ ≤ Ku‖y − z‖ holds for all y, z ∈ U .

Definition 2.11. [12] The Clarke generalized directional derivative [12] of a locally

Lipschitz function f : X → R at u ∈ X in the direction v ∈ Rn, denoted f0(u; v), is given

by

f0(u; v) = lim sup
y→u
λ↓0

f(y + λv)− f(y)

λ
.
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Definition 2.12. [12] The Clarke generalized subgradient of a locally Lipschitz function

f : X → R at u ∈ X, denoted ∂f(u), is the set

∂f(u) = {y ∈ Rn : f0(u; v) ≥ yT v for all v ∈ Rn}.

It is well-known that f0(u; v) = maxy∈∂f(u) y
T v (see [12]).

Lemma 2.13. [12] Let f : X → R be a locally Lipschitz function on a nonempty set

X ⊂ Rn, u be an arbitrary point of X and α ∈ R. Then ∂(αf)(u) = α∂f(u).

Corollary 2.14. Let f : X → R be a locally Lipschitz function on a nonempty open set

X ⊂ Rn, u be an arbitrary point of X. Then ∂(−f)(u) = −∂f(u).

Proposition 2.15. [12] Let fi : X → R, i = 1, . . . , k, be locally Lipschitz functions on a

nonempty set X ⊂ Rn, u be an arbitrary point of X ⊂ Rn. Then

∂

(
k∑
i=1

fi

)
(u) ⊆

k∑
i=1

∂fi(u).

Equality holds in the above relation if all but at most one of the functions fi is strictly

differentiable at u.

Corollary 2.16. [12] For any scalars αi, one has

∂

(
k∑
i=1

αifi

)
(u) ⊆

k∑
i=1

αi∂fi(u),

and equality holds if all but at most one of the fi is strictly differentiable at u.

Proposition 2.17. [11] Let U be a sequentially compact space, and let g : Rn × U → R

have the following properties:

(a) g(x, u) is upper semi-continuous in (x, u),

(b) g is locally Lipschitz in x, uniformly for u in U ,

(c) g0
x(x, u, · ) = g′x(x, u, · ), where g′x(x, u, · ) denotes the usual one-sided directional

derivative of g,

(d) ∂gx(x, u) is upper semi-continuous in (x, u).

Then, the function f : Rn → R defined by f(x) := maxu∈U g(x, u) is also locally Lipschitz

at any x ∈ Rn. In addition,

∂f(x) = conv{∂gx(x, u) : u ∈ I(x)},

where I(x) := {u ∈ U : g(x, u) = f(x)}.
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Corollary 2.18. Let I be a nonempty index set (not necessarily finite). Further, let the

functions fi : R
n → R, i ∈ I, be locally Lipschitz at a point x ∈ Rn and the function

f : Rn → R be defined by f(x) := maxi∈I fi(x). If I(x) := {i ∈ I : f(x) = fi(x)} = {i0},
then ∂f(x) = ∂fi0(x).

Theorem 2.19. [12] Let the function f : Rn → R be locally Lipschitz at a point x ∈ Rn

and attain its (local) minimum at x. Then 0 ∈ ∂f(x).

Now, we present the definition of the Clarke generalized subgradient of a vector-valued

function such that each its component is locally Lipschitz. Let f : X → Rk be a vector-

valued function such that each its component fi, i = 1, . . . , k, is a locally Lipschitz function

on X.

Definition 2.20. [36] The Clarke generalized subgradient of a function f = (f1, . . . , fk) :

X → Rk at u ∈ X is the set

∂f(u) = ∂f1(u)× · · · × ∂fk(u),

where ∂fi(u) is the generalized gradient of fi, i = 1, . . . , k, at u.

In the next theorem, we re-call the Ekeland’s variational principle (see [18,26]).

Theorem 2.21. Let F : Rn → R be lower semicontinuous and bounded below on Rn. If

u ∈ Rn satisfies the inequality

F (u) ≤ inf
x∈Rn

F (x) + ε

for some ε > 0, then there exists z ∈ Rn such that

‖u− z‖ ≤
√
ε, F (z) ≤ F (u)

and the inequality

F (x) > F (z)−
√
ε‖x− z‖

holds for all x ∈ Rn, x 6= z.

3. Relationships between solutions of the considered vector optimization problem

and its vector critical points

In this section, we define a nondifferentiable vector optimization problem with both cone

constraints and equality constraints and study some relationships between its (weakly)

K-efficient solutions and its vector critical points.
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In the paper, we consider the following nondifferentiable multiobjective programming

problem:

(3.1) K-minimize f(x) subject to − g(x) ∈ C, h(x) = 0p,

where f : Rn → Rk, g : Rn → Rm, h : Rn → Rp, each component of the functions men-

tioned above is locally Lipschitz on Rn, K and C are pointed closed convex cones with

nonempty interiors in Rk and Rm, respectively.

Let Ω := {x ∈ Rn : −g(x) ∈ C, h(x) = 0p} be the set of all feasible solutions in the

problem (3.1).

Remark 3.1. If K = Rk+, then we have a multiobjective Pareto problem. In the case when

K = R+ and m = 1, the problem (3.1) reduces to a scalar optimization problem.

Definition 3.2. A feasible point x is said to be a weakly K-efficient solution of the

problem (3.1) if and only if there is no other x ∈ Ω such that f(x)− f(x) ∈ − intK.

Definition 3.3. A feasible point x is said to be a K-efficient solution of the problem (3.1)

if and only if there is no other x ∈ Ω such that f(x)− f(x) ∈ −K \ {0}.

Now, we introduce the definition of a vector critical point in the sense of Fritz John (or

shortly, a vector Fritz John critical point) for the considered multiobjective programming

problem (3.1).

Definition 3.4. Let x be a feasible solution of the problem (3.1). If there exist λ ∈ K+,

µ ∈ C+ and ϑ ∈ Rq, not all zero, such that

(3.2) 0n ∈ λ
T
∂f(x) + µT∂g(x) + ϑ

T
∂h(x),

then x is said to be a vector Fritz John critical point or, in other words, a vector critical

point in the sense of Fritz John (with Lagrange multipliers λ ∈ K+, µ ∈ C+ and ϑ ∈ Rp)
for the considered multiobjective programming problem (3.1).

In other words, relation (3.2) means that, there exist A ∈ ∂f(x), B ∈ ∂g(x), D ∈ ∂h(x)

such that λ
T
A+ µTB + ϑ

T
D = 0n.

Now, we prove the Fritz John necessary optimality condition for a feasible solution x

to be a weakly K-efficient solution of the considered multiobjective programming prob-

lem (3.1). In this way, we generalize a similar result established by Minami [26] for weak

Pareto-optimal solutions of nondifferentiable multicriteria optimization problems to the

case of weakly K-efficient solutions in vector optimization problems with cone constraints.

Theorem 3.5. Let x ∈ Ω be a weakly K-efficient solution of the considered nondifferen-

tiable multiobjective programming problem (3.1). Further, we assume that the functions
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constituting (3.1) are regular in the sense of Clarke (see [12, Definition 2.3.4]). Then

x is also a vector Fritz John critical point of the considered multiobjective programming

problem (3.1), that is, there exist λ ∈ K+, µ ∈ C+ and ϑ ∈ Rp, not all zero, such that the

relation (3.2) is satisfied.

Proof. By assumption, x ∈ Ω is a weakly K-efficient solution of the problem (3.1). Then,

by Definition 3.2, the relation

f(x)− f(x) /∈ − intK

holds for all x ∈ Ω. Let us denote ξ = (λ, µ, ϑ) ∈ K+ × C+ × Rp such that ‖ξ‖ = 1.

Further, let us pick k0 ∈ intK such that

(3.3) 0 < max
(λ,µ,ϑ)∈K+×C+×Rp

‖(λ,µ,ϑ)‖=1

λTk0 ≤ 1.

The existence of such an element k0 ∈ intK follows from the fact that K is a pointed

closed convex cone with a nonempty interior. Then, for any ε > 0, we define the following

function

(3.4) Fε(x) = max
(λ,µ,ϑ)∈K+×C+×Rp

‖(λ,µ,ϑ)‖=1

{λT (f(x)− f(x) + εk0) + µT g(x) + ϑTh(x)}.

Note that Fε is a locally Lipschitz function.

Now, we prove that Fε(x) > 0 for any ε > 0 and all x ∈ Rn. We proceed by contradic-

tion. Suppose, contrary to the result, that Fε0(x0) ≤ 0 for some ε0 > 0 and some x0 ∈ Rn.

We now show that, for all (λ, µ, ϑ) ∈ K+ × C+ × Rp and ‖(λ, µ, ϑ)‖ = 1, µT g(x0) ≤ 0,

ϑTh(x0) = 0 and, moreover, λT (f(x0)− f(x)) < 0.

In fact, let us take ξ ∈ K+ × C+ ×Rp, ‖ξ‖ = 1 such that ξ = (0, 0, ϑ). Then, ϑ ∈ Rp,
ϑ 6= 0 and, moreover,

max
(0,0,ϑ)∈K+×C+×Rp

‖(λ,µ,ϑ)‖=1

{ϑTh(x0)}

≤ max
(λ,µ,ϑ)∈K+×C+×Rp

‖(λ,µ,ϑ)‖=1

{λT (f(x0)− f(x) + εk0) + µT g(x0) + ϑTh(x0)} ≤ 0.

This implies that ϑTh(x0) = 0. Thus, by ϑ 6= Rp \ {0} and ϑTh(x0) = 0, we conclude that

h(x0) = 0.

Now, let us take ξ ∈ K+×C+×Rp, ‖ξ‖ = 1 such that ξ = (0, µ, 0). Then, µ ∈ C+\{0}
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and, moreover,

max
(0,µ,0)∈K+×C+×Rp

‖(λ,µ,ϑ)‖=1

{µT g(x0)}

≤ max
(λ,µ,ϑ)∈K+×C+×Rp

‖(λ,µ,ϑ)‖=1

{λT (f(x0)− f(x) + εk0) + µT g(x0) + ϑTh(x0)} ≤ 0.

Thus, we conclude by µ ∈ C+ \ {0} and µT g(x0) ≤ 0 using (2.4) that g(x0) ∈ −C. Hence,

by g(x0) ∈ −C and h(x0) = 0, we conclude that x0 ∈ Ω.

Now, let us take ξ ∈ K+×C+×Rp, ‖ξ‖ = 1 such that ξ = (λ, 0, 0). Then, λ ∈ K+\{0}
and, moreover,

max
(λ,0,0)∈K+×C+×Rp

‖(λ,µ,ϑ)‖=1

{λT (f(x0)− f(x) + εk0)}

≤ max
(λ,µ,ϑ)∈K+×C+×Rp

‖(λ,µ,ϑ)‖=1

{λT (f(x0)− f(x) + εk0) + µT g(x0) + ϑTh(x0)} ≤ 0.

Hence, we get that λT (f(x0)−f(x)+εk0) ≤ 0. Since ε > 0, k0 ∈ intK and λ ∈ K+, λ 6= 0,

by Lemma 2.6, we have that λT (f(x0) − f(x)) < 0. Further, since λT (f(x0) − f(x)) < 0

and λ ∈ K+ \ {0}, by (2.3), it follows that f(x0)− f(x) ∈ − intK. Since x0 ∈ Ω, we have

a contradiction to the assumption that x is a weakly K-efficient solution of the considered

nondifferentiable multiobjective programming problem (3.1). Hence, we have shown that

Fε(x) > 0 for all ε > 0 and all x ∈ Rn.

This means that the function Fε is bounded below for each ε > 0. Thus, by (3.3) and

(3.4), we have that, for any x ∈ Rn,

Fε(x) ≤ inf
x∈Rn

Fε(x) + ε.

Then, since Fε satisfies all assumptions of Theorem 2.21, there exists zε ∈ Rn such that

(3.5) ‖x− zε‖ ≤
√
ε,

and the inequality

(3.6) Fε(x) +
√
ε‖x− zε‖ > Fε(zε)

holds for all x ∈ Rn, x 6= zε. Note that the function Fε(·) +
√
ε‖ ·−zε‖ is locally Lipschitz.

Moreover, by (3.6), it follows that zε is a global minimizer of the function Fε(·)+
√
ε‖ ·−zε‖

over Rn. Hence, by Theorem 2.19, we have that

(3.7) 0 ∈ ∂(Fε(x) +
√
ε‖x− zε‖)(zε).
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Thus, by Corollary 2.16, it follows that

(3.8) ∂(Fε(x) +
√
ε‖x− zε‖)(zε) ⊆ ∂Fε(zε) +

√
εB(0, 1),

where B(0, 1) is the unit ball in Rn. Combining (3.7) and (3.8), we get

(3.9) 0 ∈ ∂Fε(zε) +
√
εB(0, 1).

Now, we have to calculate the subdifferential of Fε at zε. In order to do it, let us denote

Γε(x) = (f(x)− f(x) + εk0, g(x), h(x)) for ε ≥ 0. Hence, by (3.4), we have

(3.10) Fε(x) = max
ξ∈K+×C+×Rp

‖ξ‖=1

ξTΓε(x).

We have already shown that Fε(x) > 0 for all x ∈ Rn. Therefore, Fε(zε) > 0. Then, note

that the linear function ξ → ξTΓε(zε) attains a maximum at some point ξε = (λε, µε, ϑε)

on the set {ξ = (λ, µ, ϑ) ∈ K+ × C+ ×Rp : ‖ξ‖ = 1}. Thus, we have

(3.11) max
ξ∈K+×C+×Rp

‖ξ‖=1

ξTΓε(zε) = ξTε Γε(zε).

Moreover, ξε is a unique point at which this function attains a maximum. Therefore, by

(3.10), (3.11) and Corollary 2.18, we get

(3.12) ∂Fε(zε) = ∂

 max
ξ∈K+×C+×Rp

‖ξ‖=1

ξTΓε(zε)

 = ∂
(
(ξε)

TΓε
)
(zε).

Hence, using the above introduced denotations, we obtain

(3.13) ∂
(
(ξε)

TΓε
)
(zε) = ∂

(
(λε)

T f + (µε)
T g + (ϑε)

Th
)
(zε).

Thus, by (3.5), it follows that zε → x as ε→ 0. Also we have in such a case that Γ(zε)→
(0, g(x), h(x)) and, moreover, ξε tends to some ξ = (λ, µ, ϑ) ∈ {(λ, µ, ϑ) : ‖(λ, µ, ϑ)‖ = 1}
(taking some subsequence, if it is necessary). By the definition of Γε, it follows that

Γ0(x) = (f(x)− f(x), g(x), h(x)). Then, note that ∂
(
(ξε)

TΓε
)
(zε) = ∂

(
(ξε)

TΓ0

)
(zε). As it

follows from [12, Proposition 2.1.5], x → ∂Γ0(x) is an upper semicontinuous function at

x. Hence, (ξ, x) → ∂(ξTΓ0)(x) is also an upper semicontinuous function at (ξ, x). Then,

by (3.9), (3.12) and (3.13), it follows that

(3.14) 0 ∈ ∂
(
ξ
T

Γ0

)
(x) = ∂

(
λ
T
f + µT g + ϑ

T
h
)
(x).

Hence, by Corollary 2.16, (3.14) gives (3.2). This completes the proof of this theorem.
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Now, we introduce the definition of a vector critical point in the sense of Kuhn-Tucker

(or shortly, a vector Kuhn-Tucker critical point) for the considered multiobjective pro-

gramming problem (3.1).

Definition 3.6. Let x be a feasible solution in problem (3.1). If there exist λ ∈ K+ \{0},
µ ∈ C+ and ϑ ∈ Rp such that

(3.15) 0n ∈ λ
T
∂f(x) + µT∂g(x) + ϑ

T
∂h(x),

then x is said to be a vector Kuhn-Tucker critical point or, in other words, a vector critical

point in the sense of Kuhn-Tucker (with Lagrange multipliers λ ∈ K+ \ {0}, µ ∈ C+ and

ϑ ∈ Rp) for the considered multiobjective programming problem (3.1).

Remark 3.7. In other words, condition (3.15) means that there exist A ∈ ∂f(x), B ∈ ∂g(x),

D ∈ ∂h(x) such that λ
T
A+ µTB + ϑ

T
D = 0n.

Now, we present the Kuhn-Tucker necessary optimality condition for a feasible solu-

tion x to be a weakly K-efficient solution of the considered multiobjective programming

problem (3.1). Before proving this result, we give the constraint qualification (NMFCQ)

which is a nonsmooth version of the Mangasarian-Fromovitz constraint qualification.

Constraint Qualification (NMFCQ). It is said that the nonsmooth Mangasarian-

Fromovitz constraint qualification (NMFCQ) holds at x ∈ Ω for (3.1) if there exists d ∈ Rn

such that

(a) BT
j d < 0, ∀Bj ∈ ∂gj(x), j = 1, . . . ,m,

(b) DTd = 0, ∀D ∈ ∂h(x),

(c) for each D ∈ ∂h(x), the rows of D are linearly independent.

Theorem 3.8. Let x ∈ Ω be a weakly K-efficient solution of the considered nondiffer-

entiable multiobjective programming problem (3.1) and the functions constituting (3.1) be

regular in the sense of Clarke. Further, we assume that the constraint qualification

(NMFCQ) holds at x for (3.1). Then x is also a vector Kuhn-Tucker critical point of the

considered multiobjective programming problem (3.1), that is, there exist λ ∈ K+ \ {0},
µ ∈ C+ and ϑ ∈ Rp such that the relation (3.15) is satisfied.

Remark 3.9. In [36], Suneja et al. considered a nonsmooth vector optimization problem

with cone constraints only. For such nondifferentiable vector optimization problems, under

the concept of nonsmooth K-generalized invexity, they established Fritz John type and

Kuhn-Tucker type necessary optimality conditions for a nonsmooth vector minimization

problem by using the Generalized Alternative Theorem given by Craven and Yang [15].

Further, by using the nonsmooth K-generalized invexity notion and also utilizing new
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concepts of nonsmooth K-quasi-invexity and (strictly or strongly) nonsmooth K-pseudo-

invexity, Suneja et al. [36] also proved a number of sufficient optimality conditions for a

nonsmooth vector optimization problem wherein Clarke’s generalized gradient is used.

Further, note that we consider a more general nondifferentiable multiobjective pro-

gramming problem than the one in [36]. Namely, we analyze optimality results also for

a nonsmooth vector optimization problem with both cone and equality constraints in the

opposite to a nonsmooth vector optimization problem with only cone constraints consid-

ered by Suneja et al. [36]. In fact, we have derived new characterizations of a vector critical

point in the Fritz John sense and a vector critical point in the sense of Kuhn-Tucker for

such a nonsmooth vector optimization problems. We have proved in Theorem 3.5 the

conditions for a weakly K-efficient solution to be a vector Fritz John critical point in

the considered nonsmooth vector optimization problem with both cone and equality con-

straints. Note that we haven’t used any generalized convexity concept in proving these

results, in opposition to the similar results earlier established, for example, in [10,36].

Note that Fritz John and Kuhn-Tucker critical points provide necessary conditions to

locate weakly K-efficient solutions of the considered multiobjective programming prob-

lem (3.1), but these conditions are not sufficient. Therefore, in order to ensure the suffi-

ciency of the necessary optimality conditions mentioned above, we introduce new concepts

of generalized convexity for the considered nondifferentiable vector optimization problem

with both cone and equality constraints, namely, the notions of cone-FJ-pseudoinvexity

and cone-KT -pseudoinvexity.

Definition 3.10. Let T− and T+ be sets of indices (one of them can be empty) such that

T− ∩ T+ = ∅, T− ∪ T+ = {1, . . . , p} and x ∈ Ω. If there exists η : Ω × Ω → Rn such that

the following relation

(3.16)


f(x)− f(x) ∈ − intK,

−g(x) ∈ C,

h(x) = 0p

=⇒



Aη(x, x) ∈ − intK,

Bη(x, x) ∈ − intC,

−Dtη(x, x) ∈ − intR+, ∀ t ∈ T−,

Dtη(x, x) ∈ − intR+, ∀ t ∈ T+

holds for all x ∈ Ω and every A ∈ ∂f(x), B ∈ ∂g(x), Dt ∈ ∂ht(x), t ∈ T− ∪ T+, then

the problem (3.1) is said to be (K ×C ×Rr+ ×Rw+)-FJ-pseudoinvex at the point x on Ω,

where r = |T−| and w = |T+|.
If the relation (3.16) is satisfied at each x ∈ Ω, then the problem (3.1) is said to be

(K × C ×Rr+ ×Rw+)-FJ-pseudoinvex on Ω, where r = |T−| and w = |T+|.

Remark 3.11. If the relation (3.16) is satisfied at x ∈ Ω on Ω for some r and w with

r+w = p, then the problem (3.1) is said to be (K×C×Rp+)-FJ-pseudoinvex at the point

x on Ω.
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Remark 3.12. If the set T− is empty, then (3.16) reduces to the relation
f(x)− f(x) ∈ − intK,

−g(x) ∈ C,

h(x) = 0p

=⇒


Aη(x, x) ∈ − intK,

Bη(x, x) ∈ − intC,

Dη(x, x) ∈ − intRp+,

which holds for all x ∈ Ω and every A ∈ ∂f(x), B ∈ ∂g(x), D ∈ ∂h(x). In such a case,

the problem (3.1) is said to be (K × C ×Rp+)-FJ+-pseudoinvex at the point x on Ω.

Remark 3.13. If the set T+ is empty, then (3.16) reduces to the relation
f(x)− f(x) ∈ − intK,

−g(x) ∈ C,

h(x) = 0p

=⇒


Aη(x, x) ∈ − intK,

Bη(x, x) ∈ − intC,

−Dη(x, x) ∈ − intRp+,

which holds for all x ∈ Ω and every A ∈ ∂f(x), B ∈ ∂g(x), D ∈ ∂h(x). In such a case,

the problem (3.1) is said to be (K × C ×Rp+)-FJ−-pseudoinvex at the point x on Ω.

Definition 3.14. Let T− and T+ be sets of indices (one of them can be empty) such that

T− ∩ T+ = ∅, T− ∪ T+ = {1, . . . , p} and x ∈ Ω. If there exists η : Ω × Ω → Rn such that

the relation

(3.17)


f(x)− f(x) ∈ −K \ {0},

−g(x) ∈ C,

h(x) = 0p

=⇒



Aη(x, x) ∈ − intK,

Bη(x, x) ∈ − intC,

−Dtη(x, x) ∈ − intR+, ∀ t ∈ T−,

Dtη(x, x) ∈ − intR+, ∀ t ∈ T+

holds for all x ∈ Ω and every A ∈ ∂f(x), B ∈ ∂g(x), Dt ∈ ∂ht(x), t ∈ T− ∪ T+, then the

problem (3.1) is said to be (K × C × Rr+ × Rw+)-KT -pseudoinvex at the point x ∈ Ω on

Ω, where r = |T−| and w = |T+|.
If the relation (3.17) is satisfied at each x ∈ Ω, then the problem (3.1) is said to be

(K × C ×Rr+ ×Rw+)-KT -pseudoinvex on Ω, where r = |T−| and w = |T+|.

Remark 3.15. If the relation (3.16) is satisfied at x ∈ Ω on Ω for some r and w with

r + w = p, then the problem (3.1) is said to be (K × C × Rp+)-KT -pseudoinvex at the

point x on Ω.

Remark 3.16. If the set T− is empty, then (3.17) reduces to the relation
f(x)− f(x) ∈ −K \ {0},

−g(x) ∈ C,

h(x) = 0p

=⇒


Aη(x, x) ∈ − intK,

Bη(x, x) ∈ − intC,

Dη(x, x) ∈ − intRp+
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which holds for all x ∈ Ω and every A ∈ ∂f(x), B ∈ ∂g(x), D ∈ ∂h(x). In such a case,

the problem (3.1) is said to be (K × C ×Rp+)-KT+-pseudoinvex at the point x on Ω.

Remark 3.17. If the set T+ is empty, then (3.17) reduces to the relation
f(x)− f(x) ∈ −K \ {0},

−g(x) ∈ C,

h(x) = 0p

=⇒


Aη(x, x) ∈ − intK,

Bη(x, x) ∈ − intC,

−Dη(x, x) ∈ − intRp+

which holds for all x ∈ Ω and every A ∈ ∂f(x), B ∈ ∂g(x), D ∈ ∂h(x). In such a case,

the problem (3.1) is said to be (K × C ×Rp+)-KT−-pseudoinvex at the point x on Ω.

In order to prove both the necessity and sufficiency for (weakly) K-efficiency, we utilize

the concept of nonsmooth generalized convexity defined above. Further, for each ϑ ∈ Rp,
let us introduce the following denotations: T ϑ+ = {t ∈ {1, . . . , p} : ϑt ≥ 0} and T ϑ− = {t ∈
{1, . . . , p} : ϑt < 0}. Note that one of the sets T ϑ+ and T ϑ− may be empty.

Theorem 3.18. Let x ∈ Ω be a vector Fritz John critical point with Lagrange multipliers

λ ∈ K+, µ ∈ C+ and ϑ ∈ Rp with λ and µ not both equal to 0. Further, let T ϑ+ =

{t ∈ {1, . . . , p} : ϑt ≥ 0} and T ϑ− = {t ∈ {1, . . . , p} : ϑt < 0}. If we assume that the

problem (3.1) is (K×C×Rr+×Rw+)-FJ-pseudoinvex at x on Ω, where r = |T ϑ−|, w = |T ϑ+|
and r + w = p, then x is a weakly K-efficient solution of the problem (3.1).

Proof. Assume that x ∈ Ω is a vector Fritz John critical point in problem (3.1) with

the Lagrange multipliers λ ∈ K+, µ ∈ C+ and ϑ ∈ Rp. Further, by assumption, the

problem (3.1) is (K×C×Rw+×Rr+)-FJ-pseudoinvex at x on Ω, where r = |T ϑ−|, w = |T ϑ+|
and r + w = p. This means that relations (3.16) are fulfilled at x ∈ Ω on Ω with

respect to the same function η. We show that x is a weakly K-efficient solution of the

problem (3.1). Suppose, contrary to the result, that x is not a weakly K-efficient solution

of the problem (3.1). Then, by Definition 3.2, there exists x̃ ∈ Ω such that

(3.18) f(x̃)− f(x) ∈ − intK.

By x̃ ∈ Ω and x ∈ Ω, it follows that

(3.19) − g(x̃) ∈ C, −g(x) ∈ C, h(x) = 0.

Hence, by Definition 3.10, (3.18) and (3.19) imply that the relations

(3.20)



Aη(x̃, x) ∈ − intK,

Bη(x̃, x) ∈ − intC,

−Dtη(x̃, x) ∈ − intR+, ∀ t ∈ T ϑr ,

Dtη(x̃, x) ∈ − intR+, ∀ t ∈ T ϑw
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hold for any A ∈ ∂f(x), B ∈ ∂g(x), Dt ∈ ∂ht(x), ∀ t ∈ T ϑ−, Dt ∈ ∂ht(x), ∀ t ∈ T ϑ+. Since

λ ∈ K+, µ ∈ C+, ϑ− ∈ R|T
ϑ
−|, ϑ+ ∈ R|T

ϑ
+| with λ and µ not both equal to 0, relations in

(3.20) yield that the inequality[
λ
T
A+ µTB + ϑ

T
D
]
η(x̃, x) < 0

holds for any A ∈ ∂f(x), B ∈ ∂g(x), Dt ∈ ∂ht(x), ∀ t ∈ T ϑ−, Dt ∈ ∂ht(x), ∀ t ∈ T ϑ+, which

contradicts the assumption that x is a vector Fritz John critical point x (with Lagrange

multipliers λ ∈ K+, µ ∈ C+ and ϑ ∈ Rp). This means that x is a weakly K-efficient

solution of the problem (3.1) and completes the proof of this theorem.

Remark 3.19. As it follows from the proof of Theorem 3.18, in order to prove that x ∈ Ω,

being a vector Fritz John critical point (with the Lagrange multipliers λ ∈ K+, µ ∈ C+

and ϑ ∈ Rp), is a weakly K-efficient solution in the problem (3.1), it is sufficient to assume

that the problem (3.1) is (K ×C ×Rr+ ×Rw+)-FJ-pseudoinvex at x on Ω, where r = |T ϑ−|
and w = |T ϑ+|.

Theorem 3.20. Let every vector Fritz John critical point of the considered multiobjective

programming problem (3.1) be its weakly K-efficient solution. Then, the problem (3.1) is

(K×C×Rrx+ ×R
wx
+ )-FJ-pseudoinvex at each point x ∈ Ω on Ω, where rx and wx are any

integers such that rx + wx = p. In other words, the problem (3.1) is (K × C × Rp+)-FJ-

pseudoinvex on Ω.

Proof. Assume that every vector Fritz John critical point of the problem (3.1) is its K-

weakly efficient solution. Let x be any feasible solution in the problem (3.1). We show

that the problem (3.1) is (K × C × Rrx+ × R
wx
+ )-FJ-pseudoinvex at each point x ∈ Ω on

Ω, where rx and wx are any integers such that rx +wx = p. In other words, we show that

there exists a function η : Ω× Ω→ Rn such that (3.16) is fulfilled.

First, we consider the case when x is a vector Fritz John critical point of the prob-

lem (3.1). Hence, by assumption, x ∈ Ω is a weakly K-efficient solution of the prob-

lem (3.1). Therefore, by Definition 3.2, the following relation

f(x)− f(x) /∈ − intK

holds for all x ∈ Ω. Then we set rx and wx as any integers such that rx + wx = p and,

moreover, η is assumed to be any function η : Ω× Ω→ Rn.

Now, we consider the case when x and x are any feasible points for (3.1) such that

f(x)− f(x) ∈ − intK. Therefore, by Definition 3.2, x is not a weakly K-efficient solution

in the problem (3.1). By assumption, we conclude from here that x is not a vector Fritz

John critical point. Hence, by Definition 3.4, it follows that

0n /∈ λ
T
∂f(x) + µT∂g(x) + ϑ

T
∂h(x).
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In other words, the relation

λ
T
A+ µTB + ϑ

T
D 6= 0n

holds for all A ∈ ∂f(x), B ∈ ∂g(x), D ∈ ∂h(x). Let us denote ϑ =
(
ϑ
rx , ϑ

wx
)
∈ Rp, where

ϑ
rx is an rx = |T ϑ−|-dimensional vector such that each its component is negative and ϑ

wx is

a wx = |T ϑ+|-dimensional vector such that is each its component is nonnegative. Further,

let hrx− =
(
ht : t ∈ T ϑ−

)
: Rn → Rrx and hwx

+ =
(
ht : t ∈ T ϑ+

)
: Rn → Rwx . Thus, the above

relation can be re-written in the following form

λ
T
A+ µTB +

(
− ϑrx

)T
(−Drx

− ) +
(
ϑ
wx
)T
Dwx

+ 6= 0n

and it holds for all A ∈ ∂f(x), B ∈ ∂g(x), Drx
− ∈ ∂hrx(x), Dwx

+ ∈ ∂hwx(x), where Drx
− and

Dwx
+ are rx × n and wx × n-dimensional matrices, respectively. Hence, by Theorem 2.10,

it follows that there exists yx ∈ Rn such that

(3.21)


A

B

−Drx
−

Dwx
+

 yx ∈
(
− intK ×− intC × (− intRrx+ )× (− intRwx

+ )
)
.

Thus, (3.21) yields, respectively,

(3.22) Ayx ∈ − intK, Byx ∈ − intC, −Drx
− yx ∈ − intRrx+ , Dwx

+ yx ∈ − intRwx
+ .

If we set yx = η(x, x) ∈ Rn in (3.22), then relations (3.16) are fulfilled. Thus, we have

shown that there exists η : Ω × Ω → Rn such that relations (3.16) are fulfilled. Then, by

Definition 3.10, the problem (3.1) is (K ×C ×Rwx
+ ×R

rx
+ )-FJ-pseudoinvex at each x ∈ Ω

on Ω, where rx and wx are any integers satisfying rx + wx = p. Thus, the problem (3.1)

is (K × C ×Rp+)-FJ-pseudoinvex on Ω (see Remark 3.11).

Now, we present a class of nondifferentiable multiobjective programming problems in

which every component of the involved functions is locally Lipschitz which are character-

ized by the property that each vector Kuhn-Tucker critical point is a K-efficient point in

such vector optimization problems.

Theorem 3.21. Let x ∈ Ω be a vector Kuhn-Tucker critical point with the Lagrange

multipliers λ ∈ K+ \ {0}, µ ∈ C+ and ϑ ∈ Rp and let T ϑw =
{
t ∈ {1, . . . , p} : ϑt ≥

0
}

and T ϑr =
{
t ∈ {1, . . . , p} : ϑt < 0

}
. Further, assume that the problem (3.1) is

(K × C × Rr+ × Rw+)-KT -pseudoinvex at x on Ω, where r = |T ϑ−| and w = |T ϑ+|. Then x

is a K-efficient solution of the problem (3.1).
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Proof. Assume that the problem (3.1) is (K×C×Rw+×Rr+)-KT -pseudoinvex at the point

x ∈ Ω on Ω with respect to the same function η, where w = |T ϑ+|, r = |T ϑ−|. Further, assume

that x is a vector Kuhn-Tucker critical point with the Lagrange multipliers λ ∈ K+ \ {0},
µ ∈ C+ and ϑ ∈ Rp in the problem (3.1). We show that x is a K-efficient solution of the

problem (3.1). Suppose, contrary to the result, that x is not a K-efficient solution of the

problem (3.1). Then, by Definition 3.3, there exists x̃ ∈ Ω such that

(3.23) f(x̃)− f(x) ∈ −K \ {0}.

By x ∈ Ω and x̃ ∈ Ω, we have

(3.24) − g(x̃) ∈ C, −g(x) ∈ C, h(x) = 0.

Hence, by Definition 3.14, (3.23) and (3.24) yield that the relations

Aη(x̃, x) ∈ − intK,(3.25)

Bη(x̃, x) ∈ − intC,(3.26)

−Dtη(x̃, x) ∈ − intR+, ∀ t ∈ T ϑ−,(3.27)

Dtη(x̃, x) ∈ − intR+, ∀ t ∈ T ϑ+(3.28)

hold for any A ∈ ∂f(x), B ∈ ∂g(x), Dt ∈ ∂ht(x), t ∈ T ϑ− ∪ T ϑ+, respectively. Since

λ ∈ K+ \ {0} and µ ∈ C+, by Lemma 2.6, (3.25) and (3.26) yield

(3.29) λ
T
Aη(x̃, x) + µTBη(x̃, x) < 0.

Thus, (3.27) and (3.28) imply, respectively,

ϑ
T
t Dtη(x̃, x) ≤ 0, ∀ t ∈ T ϑ−,(3.30)

ϑ
T
t Dtη(x̃, x) ≤ 0, ∀ t ∈ T ϑ+.(3.31)

Adding both sides of (3.29)–(3.31), we obtain that the inequality[
λ
T
A+ µTB + ϑ

T
D
]
η(x̃, x) < 0

holds for any A ∈ ∂f(x), B ∈ ∂g(x), D ∈ ∂h(x), which contradicts the assumption that

x is a vector Kuhn-Tucker critical point x (with Lagrange multipliers λ ∈ K+ \ {0},
µ ∈ C+ and ϑ ∈ Rp). This means that x is a K-efficient solution of the problem (3.1) and

completes the proof of this theorem.

Theorem 3.22. Let every vector Karush-Kuhn-Tucker critical point of the considered

multiobjective programming problem (3.1) be its K-efficient solution. Then, the prob-

lem (3.1) is (K × C × Rrx+ × R
wx
+ )-KT -pseudoinvex at each point x ∈ Ω on Ω, where rx

and wx are any integers such that rx + wx = p. In other words, the problem (3.1) is

(K × C ×Rp+)-KT -pseudoinvex on Ω.
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Proof. Proof of this theorem is similar to the proof of Theorem 3.20.

Now, we present an example of a nonconvex nondifferentiable multiobjective program-

ming problem to illustrate the results established in the paper.

Example 3.23. Consider the following nonconvex nondifferentiable vector optimization

problem

(3.32) K-minimize f(x) subject to − g(x) ∈ C, h(x) = {0}R,

where f = (f1, f2) : R2 → R2, g = (g1, g2) : R2 → R2, h : R2 → R are defined as follows:

f1(x1, x2) =

−2x2
1 − 2x2

2 − 1
2x1 − 1

2x2 − 1 if x1 ≥ 0, x2 ≥ 0,

−x2
1 − x2

2 − 1 otherwise,

f2(x1, x2) =

x2
1 + x2

2 − 2x1 − 2x2 + 1 if x1 ≥ 0, x2 ≥ 0,

x2
1 + x2

2 − x1 − x2 + 1 otherwise,

g1(x1, x2) =

−x2
1 − x2

2 − 1
4x1 − 1

4x2 if x1 ≥ 0, x2 ≥ 0,

−x2
1 − x2

2 otherwise,

g2(x1, x2) =

−2x2
1 − 2x2

2 − 3
2x1 − 3

2x2 if x1 ≥ 0, x2 ≥ 0,

−x2
1 − x2

2 − x1 − x2 otherwise,

h1(x1, x2) = |x1| − |x2|.

Further, K and C are closed convex cones with nonempty interiors in R2 defined as follows:

K = {(x, y) ∈ R2 : y ≥ x ≥ 0}, C = {(x, y) ∈ R2 : y ≥ x ≥ 0}.

Then, the set of all feasible solutions Ω = {(x1, x2) ∈ R2 : [(x1 ≥ 0 ∧ x2 ≥ 0) ∨ (x1 + x2 ≥
0)] ∧ |x1| − |x2| = 0} and x = (x1, x2) = (0, 0) ∈ Ω. Further, by Definition 2.12, we have

∂f1(0, 0) =

[
−1

2
, 0

]
×
[
−1

2
, 0

]
, ∂f2(0, 0) = [−2,−1]× [−2,−1],

∂g1(0, 0) =

[
−1

4
, 0

]
×
[
−1

4
, 0

]
, ∂g2(0, 0) =

[
−3

2
,−1

]
×
[
−3

2
,−1

]
,

∂h1(0, 0) = [−1, 1]× [−1, 1].

Note that x = (x1, x2) = (0, 0) is a vector Kuhn-Tucker critical point in the considered

nonconvex nondifferentiable vector optimization problem (3.32). Indeed, if we set

λ = (−1, 1) ∈ K+, µ = (−1, 1) ∈ C+, ϑ1 = 2,
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then, by Definition 3.6, x = (x1, x2) = (0, 0) is a vector Kuhn-Tucker critical point in

the problem (3.32) (with Lagrange multipliers λ ∈ K+, µ ∈ C+ and ϑ ∈ R given above).

Further, let η : Ω× Ω→ R2 be defined by

η(x, x) =

x2
1 − x2

1

x2
2 − x2

2

 .
Then, it can be shown, by Definition 3.14, that the problem (3.32) is (K × C × R1

+)-

KT+-pseudoinvex at the point x ∈ Ω on Ω with respect to η given above. Thus, by

Theorem 3.21, it follows that x is a K-efficient solution of the considered nonconvex

nondifferentiable vector optimization problem (3.32).

4. Conclusions

In the paper, a nonsmooth multiobjective programming problem with both cone and

equality constraints has been considered. Definitions of vector critical points in the sense

of Fritz John and in the sense of Kuhn-Tucker have been introduced for such a nondif-

ferentiable vector optimization problem. Subsequently, the relationships between these

vector critical points and (weakly) K-efficient solutions in the considered nonsmooth mul-

tiobjective programming problem have been derived. Namely, the necessary and sufficient

optimality conditions have been proved for critical points in the sense of Fritz John and

in the sense of Kuhn-Tucker. In order to prove the necessary and sufficient optimality

conditions for (weakly) K-efficiency by the help of vector critical points, new concepts of

generalized convexity, namely cone-FJ-pseudoinvexity and cone-KT -pseudoinvexity have

been introduced for the considered nonsmooth vector optimization problem with both cone

and equality constraints. Thus, the characterization of vector critical points have been

extended to the largest class of nonconvex nodifferentiable vector optimization problems

with both cone and equality constraints, in comparison to the similar results existing in

the literature.
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[20] C. Gutiérrez, B. Jiménez, V. Novo and G. Ruiz-Garzón, Vector critical points and

efficiency in vector optimization with Lipschitz functions, Optim. Lett. 10 (2016),

no. 1, 47–62.

[21] V. I. Ivanov, On the optimality of some classes of invex problems, Optim. Lett. 6

(2012), no. 1, 43–54.

[22] M. H. Kim and G. M. Lee, On duality theorems for nonsmooth Lipschitz optimization

problems, J. Optim. Theory Appl. 110 (2001), no. 3, 669–675.

[23] D. S. Kim and S. Schaible, Optimality and duality for invex nonsmooth multiobjective

programming problems, Optimization 53 (2004), no. 2, 165–176.

[24] G. M. Lee, Nonsmooth invexity in multiobjective programming, J. Inform. Optim. Sci.

15 (1994), no. 1, 127–136.

[25] L. Li and J. Li, Equivalence and existence of weak Pareto optima for multiobjective

optimization problems with cone constraints, Appl. Math. Lett. 21 (2008), no. 6,

599–606.

[26] M. Minami, Weak Pareto-optimal necessary conditions in a nondifferentiable mul-

tiobjective program on a Banach space, J. Optim. Theory Appl. 41 (1983), no. 3,

451–461.

[27] S. K. Mishra, S. Wang and K. K. Lai, V -invex Functions and Vector Optimization,

Springer Optimization and its Applications 14, Springer, New York, 2008.

[28] , Generalized Convexity and Vector Optimization, Nonconvex Optimization

and its Applications 90, Springer-Verlag, Berlin, 2009.



206 Tadeusz Antczak and Marcin Studniarski
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