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Long Time Behavior of Entire Solutions to Bistable Reaction Diffusion

Equations

Yang Wang* and Xiong Li

Abstract. The first aim in the paper is to prove the local exponential asymptotic

stability of some entire solutions to bistable reaction diffusion equations via the super-

sub solution method. If the integral of the reaction term f over the interval [0, 1] is

positive, we not only obtain the similar asymptotic stability result found by Yagisita

in 2003, but also simplify the proof. The asymptotic stability result for the case∫ 1

0
f(u) du < 0 is also obtained, which is not considered by Yagisita. After that, the

asymptotic behavior of entire solutions as t → +∞ is investigated, since the other

side was completely known. Here, the result is established by use of the asymptotic

stability of constant solutions and pairs of diverging traveling front solutions, instead

of constructing the super-sub solutions as usual. Finally, for the special bistable case

f(u) = u(1− u)(u− α), α ∈ (0, 1), we prove the entire solution continuously depends

on α.

1. Introduction

In this paper we focus on the following reaction diffusion equation

(1.1) ∂tu = ∂xxu+ f(u), x ∈ R,

where f ∈ C2(R), f(0) = f(α) = f(1) = 0, α is the unique zero point of f in the interval

(0, 1), and f ′(0), f ′(1) < 0.

In this case, (1.1) is called a bistable equation and the background can be found in

[2,5,21] and references therein. This model can illustrate that a nerve has been treated with

certain toxins as stated in [5]. It can also be used to describe a bistable active transmission

line introduced in [21]. For more general reaction terms, Aronson and Weinberger in [1]

used it to describe the heterozygote inferiority case and also pointed out that some flame

propagation problems in chemical reactor theory can be demonstrated by equations of the
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form (1.1). If the reaction term f has no any zeros in the interval (0, 1), also in [1], they

used it to describe the heterozygote intermediate case and at this time, (1.1) becomes the

famous KPP-Fisher equation, which is monostable and had been studied in [10,17].

In recent years, the existence, uniqueness, stability and other properties of traveling

wave solutions of (1.1) have been investigated extensively, for example, see [1,2,6–10,17].

A function φ(ξ), ξ = x + ct, is called a traveling wave solution of (1.1) connecting 0

and 1 with the wave speed c, if it satisfies

(1.2) φ′′(ξ)− cφ′(ξ) + f(φ(ξ)) = 0, lim
ξ→−∞

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = 1,

which is actually monotone increasing proved in [8,22]. Moreover, the monotone traveling

wave solution is also known as the traveling front solution.

However, it is not enough to understand the dynamical structure of (1.1) by only

considering traveling wave solutions. Recently, the existence of entire solutions, which

are classical solutions and defined for all (x, t) ∈ R × R, is widely discussed. From the

dynamical view, the study of entire solutions is essential for a full understanding of the

transient dynamics and the structures of the global attractor as mentioned in [19,20].

In [14], for the monostable reaction diffusion equation, Hamel and Nadirashvili proved

the existence of entire solutions by the comparison theorem, supersolution and subsolution,

which consists of traveling front solutions and solutions to the diffusion-free equation.

Meanwhile, they also pointed out that the solutions to (1.1) depending only on t and

traveling wave solutions are typical examples of entire solutions and showed various entire

solutions of (1.1) in their subsequent paper [15]. If
∫ 1

0 f(u) du > 0, which implies that

wave speeds of any traveling front solutions of (1.1) must be positive, Yagisita in [28]

revealed that the annihilation process is approximated by a backward global solution of

(1.1), which is in fact an entire solution.

For Allen-Cahn equation

(1.3) ∂tu = ∂xxu+ u(1− u)(u− α), α ∈ (0, 1),

which is a special example of (1.1), Fukao, Morita and Ninomiya in [11] proposed a simple

proof for the existence of entire solutions, which was already found in [28] by using the

super-sub solution method and the exact traveling front solutions. Moreover, Guo and

Morita in [13] extended the conclusions in [14,28] to more general case. If
∫ 1

0 f(u) du < 0,

which implies that wave speeds c of any traveling front solutions of (1.1) must be negative,

Chen and Guo in [3] used the quite different method to construct the super-sub solutions

to obtain the existence and uniqueness of entire solutions to (1.1), which are different

from those in [11, 13, 28]. Very recently, Matano and Poláčik in [19] proved that there is

an entire solution connecting the origin to the solution only depending on x of (1.1), and
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Chen et al. in [4] proved that there are no entire solutions originating from more than four

traveling front solutions.

In this paper we will firstly investigate the asymptotic behavior of entire solutions to

(1.1) as t → +∞, since the exact asymptotic behavior as t → −∞ was found in [3, 13].

We conjecture that the long time behavior of entire solutions to (1.1) found in [3,13] may

be controlled by some asymptotic stable states of (1.1) defined in [6]. Luckily, Fife in [6]

pointed out several kinds of asymptotic stable states, including constant solutions u ≡ 0,

u ≡ 1, traveling wave solutions, diverging pairs of traveling wave solutions. With these

results, the long time behavior of these entire solutions can be established.

Secondly, Yagisita in [28] proved that the entire solution to (1.1) is local exponential

asymptotic stable by the asymptotic stability of the constructed invariant manifold. Also

the local Lyapunov stability of entire solutions to (1.1) with nonlocal delays was obtained

in [26] by the super-sub solution method. By means of establishing the different super-sub

solutions of (1.1) from that in [26], we further prove the local exponential asymptotic

stability of the entire solutions to (1.1) found in [3, 13]. Eventually, we will prove the

entire solution to (1.3) continuously depend on α followed the method offered by [14].

The rest is organized as follows. For the reader’s convenience, in Section 2, we introduce

some known results about the asymptotic stability of constant solutions, traveling wave

solutions and diverging pairs of traveling wave solutions to (1.1). Then, in Section 3,

we investigate the long time behavior of entire solutions to (1.1) and prove the local

exponential asymptotic stability of entire solutions by the super-sub solution method. In

the end, in Section 4, we prove the continuity of the entire solution to (1.3) in α.

2. Some known results

In the sequel, we will investigate the long time behavior of entire solutions to (1.1) in the

Banach space

UC(R) := {u ∈ C(R) : u is bounded and uniformly continuous in R}

with the norm ‖u‖ := supx∈R |u(x)|. For this purpose, we present the initial condition

(2.1) u(x, 0) = u0(x), x ∈ R,

where u0(x) ∈ UC(R), and let the function u(x, t;u0) be the solution of equation (1.1)

with the initial condition (2.1). Now we introduce an interior Schauder estimate in the

following lemma without the proof.

Lemma 2.1. Suppose that u(x, t;u0) is a bounded solution to (1.1) with (2.1) for (x, t) ∈
R × [0,+∞), and ‖u( · , t;u0)‖ ≤ M0 for some constant M0 > 0 and all t ≥ 0. Assume
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that the reaction term f ∈ C2(R), and there exists a positive constant M1 such that

‖f‖, ‖f ′‖ and ‖f ′′‖ ≤ M1 on [−M0,M0]. Then there is a positive constant M2 such

that ‖∂tu( · , t;u0)‖, ‖∂xu( · , t;u0)‖, ‖∂xxu( · , t;u0)‖ ≤ M2 for all t ∈ [1,+∞), where M2

depends on M0 and M1 only.

Here and thereafter, M stands for general positive constant and Mi, i = 1, 2, . . ., stand

for special positive constants.

In this paper we mainly are concerned with the local exponential asymptotic stability

of entire solutions to (1.1). Now we introduce the definition of the local exponential

asymptotic stability.

Definition 2.2. Suppose v(x, t) is an entire solution to (1.1). If there are δ > 0, M > 0,

a > 0 and t0 > 0 such that when ‖u0(·)− v( · , 0)‖ ≤ δ,

‖u( · , t;u0)− v( · , t)‖ ≤Me−at, ∀ t ≥ t0,

then v(x, t) is called local exponential asymptotic stable.

Now we list the known results about the stability of constant solutions, traveling wave

solutions and diverging pairs of traveling wave solutions (constructed by traveling wave

solutions and their reflects), which will be used later.

First of all, we state the asymptotic stability of constant solutions u ≡ 0 and u ≡ 1,

which had been proved in [7].

Lemma 2.3. Suppose that 0 ≤ u0 ≤ 1 is a continuous function. If
∫ 1

0 f(u) du ≥ 0 and

lim infx→±∞ u0(x) > α, then

lim
t→+∞

‖u( · , t;u0)− 1‖ = 0;

if
∫ 1

0 f(u) du ≤ 0 and lim supx→±∞ u0(x) < α, then

lim
t→+∞

‖u( · , t;u0)‖ = 0.

Moreover if infx∈R u0(x) > α, then limt→+∞ ‖u( · , t;u0) − 1‖ = 0; if supx∈R u0(x) < α,

then limt→+∞ ‖u( · , t;u0)‖ = 0.

The global exponential asymptotic stability of traveling wave solutions of (1.1) had

been proved in [8].

Lemma 2.4. Suppose that φ is the solution to (1.2) and 0 ≤ u0 ≤ 1 is a continuous func-

tion. If lim supx→−∞ u0(x) < α, lim infx→+∞ u0(x) > α, then there are some constants

x0, M3 > 0 and ω1 > 0 such that

|u(x, t;u0)− φ(x+ ct− x0)| < M3e
−ω1t, t ≥ 0, x ∈ R;
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if lim supx→+∞ u0(x) < α, lim infx→−∞ u0(x) > α, then there are some constants x1,

M4 > 0 and ω2 > 0 such that

|u(x, t;u0)− φ(−x+ ct− x1)| < M4e
−ω2t, t ≥ 0, x ∈ R.

In addition, the local asymptotic stability of traveling wave solutions of (1.1) had been

proved in [22, 23] by the different ways compared with the method in [8]. The stability

of traveling wave solutions in Rn can be found in [18, 25, 27]. For more general reaction

terms, the authors in the papers [12,24] proved the stability of traveling wave solutions.

As stated in [6], there are four kinds of bounded stationary solutions of equation (1.1),

which are solutions of

(2.2)
d2u

dx2
+ f(u) = 0,

that is, the solution with a single minimum point, the solution with a single maximum

point, the periodic solution and the monotone solution. In fact, the solution with a single

maximum point or a single minimum point is the homoclinic orbit. More importantly, the

author also proved that the solution of (2.2) with a maximum or minimum at a finite value

of x are unstable, which means that only the monotone solution, namely the heteroclinic

orbit, is stable. From the views of parabolic equations, the monotone solution of (2.2) is

the solution to (1.2) with c = 0 and the stability had been proved in [8]. Specially, for

(1.3) with α 6= 1/2, the author in [16] pointed out that φ(ξ) is the solution of (2.2) with

φ(+∞) = φ(−∞) if and only if c = 0. However, in the classical two species Lotka-Volterra

competition model, there exists a similar homoclinic orbit with c 6= 0.

Finally, when
∫ 1

0 f(u) du 6= 0, the authors in [8] discussed the asymptotic stability of

diverging pairs of traveling wave solutions, where the initial function u0(x) is assumed

to lie above the line u = α for x in the large symmetrical interval about the origin and

lim supx→±∞ u0(x) < α, or lie below the line u = α for x in the large symmetrical interval

about the origin and lim infx→±∞ u0(x) > α, that is, there are two pairs of positive

constants β̂1, β̌1, L1, L2 such that u0(x) > α + β̂1 for |x| < L1, or u0(x) < α − β̌1 for

|x| < L2, where the large constants L1, L2 depend on β̂1, β̌1 and f . However, the explicit

expressions of L1, L2 are not given in [8]. Now, according to the proof of Lemma 6.1 in [8],

the lower bounds of L1, L2 can be obtained, respectively.

In what follows, the estimates of the two lower bounds are given. It is easy to see that

the characteristic equations of the linearized equations of (1.2) at u = 0 and u = 1 are

λ2 − cλ+ f ′(0) = 0, µ2 − cµ+ f ′(1) = 0.

The corresponding eigenvalues are

λ1 =
c+

√
c2 − 4f ′(0)

2
, λ2 =

c−
√
c2 − 4f ′(0)

2
,
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µ1 =
c+

√
c2 − 4f ′(1)

2
, µ2 =

c−
√
c2 − 4f ′(1)

2
.

Therefore, there are some positive constants M5, M6, M7 and M8 such that

(2.3)
M5e

µ2ξ ≤ 1− φ(ξ) ≤M6e
µ2ξ, ξ ≥ 0,

M7e
λ1ξ ≤ φ(ξ) ≤M8e

λ1ξ, ξ ≤ 0,

which are also given in [13].

Since f ′(α) > 0, then

(2.4) w := max
u∈[0,1]

f ′(u) > 0.

Also since limu→1−
f(u)
1−u = −f ′(1) and limu→0+

f(u)
u = f ′(0), then the functions f(u)

1−u and
f(u)
u are continuous in the interval [0, 1] if we define the function f(u)

1−u as −f ′(1) at u = 1,
f(u)
u as f ′(0) at u = 0. Thus there is a positive constant M9 such that

|f(u)| ≤M9(1− u), |f(u)| ≤M9u, u ∈ [0, 1].

Give any β̂1 > 0, choose q̂0, q̂1 as 0 < 1− q̂1 < 1− q̂0 < α + β̂1, let µ̂1 > 0, β̂ and M̂

be corresponding to µ1, β and M in the proof of Lemma 6.1 in [8] respectively, choose µ̂2,

M̂ ′, ϕ̂0 as

0 < µ̂2 < min{−µ2c, µ̂1}, M̂ ′ =
w +M9

cβ̂µ2

M6 −
w + µ̂2

β̂µ̂2

q̂0 < 0,

ϕ̂0 < min

{
M̂ ′, M̂ ′ − 1

µ2
ln
q̂1 − q̂0

M6
, M̂ ′ − 1

µ2
ln

(µ̂1 − µ̂2)q̂0

M6M9

}
,

then a lower bound of L1 can be obtained as below

L1 ≥ M̂ ≥ max

{
−ϕ̂0,−

1

λ1
ln

1− α− β̂1

M8
− ϕ̂0

}
.

Similarly, give any 0 < β̌1 < α, choose q̌0, q̌1 as 0 < α− β̌1 < q̌0 < q̌1 < α, let µ̌1 > 0, M̌

and β̌ be corresponding to µ′1, M ′ and β′ in the proof of Lemma 6.1 in [8] respectively,

choose µ̌2, M̌ ′, ϕ̌0 as

0 < µ̌2 < min{−λ1c, µ̌1}, M̌ ′ =
w +M9

cλ1β̌
M8 −

w + µ̌2

β̌µ̌2

q̌0 < 0,

ϕ̌0 < min

{
M̌ ′, M̌ ′ +

1

λ1
ln
q̌1 − q̌0

M8
, M̌ ′ +

1

λ1
ln

(µ̌1 − µ̌2)q̌0

M8M9

}
,

then a lower bound of L2 is given by

L2 ≥ M̌ ≥ max

{
−ϕ̌0,

1

µ2
ln
α− β̌1

M6
− ϕ̌0

}
.

Therefore we can refine Theorem 3.2 in [8] and obtain the following lemma.
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Lemma 2.5. Suppose that φ is the solution to (1.2), and 0 ≤ u0 ≤ 1 is a continuous

function. If
∫ 1

0 f(s) ds > 0, lim supx→±∞ u0(x) < α and u0(x) > α+ β̂1 for |x| < L1, then

there are some constants x2, x3 and positive constants M10, ω3 such that

|u(x, t;u0)− φ(x+ ct− x2)| < M10e
−ω3t, x < 0, t ≥ 0;

|u(x, t;u0)− φ(−x+ ct− x3)| < M10e
−ω3t, x > 0, t ≥ 0.

If
∫ 1

0 f(s) ds < 0, lim infx→±∞ u0(x) > α and u0(x) < α− β̌1 for |x| < L2, then there are

some constants x4, x5 and positive constants M11, ω4 such that

|u(x, t;u0)− φ(x+ ct− x4)| < M11e
−ω4t, x > 0, t ≥ 0;

|u(x, t;u0)− φ(−x+ ct− x5)| < M11e
−ω4t, x < 0, t ≥ 0.

More interestingly, the author in [6] conjectured that when the bounded initial function

u0 is away from α for large |x|, the asymptotic stable solution may only be one of the

four kinds: u ≡ 0, u ≡ 1, the traveling wave solution, the diverging pairs of traveling

wave solutions, while other solutions are unstable. Although the conjecture is partially

solved in the paper [7], it has been not completely solved and is still open. Moreover, we

also remark that (1.1) admits a traveling wave solution φ̂ connecting α and 1, and there

are some results about u(x, t;u0) converging to φ̂ when α ≤ u0 ≤ 1, referring to [17].

The authors in [20] also presented that if u0(x) < α for x in some interval of x-axis,

then whether u(x, t;u0) converges to φ̂ or not? For example, if u0 satisfies the following

condition

lim
x→+∞

u0(x) = 1, lim
x→−∞

u0(x) = α,

and there exists x̃ such that when x ≤ x̃, u0(x) < α,

then whether u(x, t;u0) converges to φ̂ or not? Thus this open problem contains the

opposite side of the above conjecture. That is, suppose that the initial condition u0(x) is

bounded and, when |x| is sufficiently large, u0(x) is not far away from α at least on one

side of x-axis, then wether u(x, t;u0) converges to φ̂ or not? In a word, the proof of this

open problem will enforce the understanding of the conjecture.

3. The local exponential asymptotic stability of entire solutions to the bistable

equation

In this section, we will discuss the local exponential asymptotic stability of entire solutions

to (1.1) found in [3, 13] respectively, and their asymptotic behaviors when t converges to

+∞.
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Before stating the main results, we do some preparations. Firstly, in order to prove the

existence of entire solutions, the authors in [13] constructed two pairs of different super-

sub solutions corresponding to f ′(0) ≤ f ′(1) and f ′(0) > f ′(1), respectively. Moreover, it

follows from [8] that

if

∫ 1

0
f(u) du T 0, then c T 0.

Hence we will discuss the long time behaviors and stabilities of entire solutions under the

following four cases:

(C1)
∫ 1

0 f(u) du > 0 and f ′(0) > f ′(1);

(C2)
∫ 1

0 f(u) du > 0 and f ′(0) ≤ f ′(1);

(C3)
∫ 1

0 f(u) du < 0 and f ′(0) > f ′(1);

(C4)
∫ 1

0 f(u) du < 0 and f ′(0) ≤ f ′(1).

Secondly, for the sake of the proof of the uniqueness of entire solutions, similar to [3],

we introduce the metable dynamics of (1.1). We call the solution u(x, t) of (1.1) satisfying

the condition M+, if there exist constants d1 > 0 and T1 ∈ R, functions l1(t) and m1(t)

such that for all t ≤ T1,

u(x, t)

≤ α1, ∀x ∈ [min{l1(t) + d1,m1(t)− d1},max{l1(t) + d1,m1(t)− d1}],

≥ α2, ∀x ∈ (−∞, l1(t)] ∪ [m1(t),+∞),

where α1 and α2 are some constants satisfying f 6= 0 in (0, α1] ∪ [α2, 1). Similarly, the

solution u(x, t) of (1.1) is called to satisfy the condition M−, if there exist constants d2 > 0

and T2 ∈ R, functions l2(t) and m2(t) such that for all t ≤ T2,

u(x, t)

≤ α1, ∀x ∈ (−∞, l2(t)] ∪ [m2(t),+∞],

≥ α2, ∀x ∈ [min{l2(t) + d2,m2(t)− d2},max{l2(t) + d2,m2(t)− d2}],

where α1 and α2 are some constants satisfying f 6= 0 in (0, α1] ∪ [α2, 1).

We initially discuss entire solutions found in Theorem 1.1 from [13]. By the method of

the proof of the uniqueness in [3] and Lemma 2.3, we can prove the uniqueness of entire

solutions and obtain the following result.

Theorem 3.1. Suppose that
∫ 1

0 f(u) du > 0. Let φ be the solution to (1.2) with the wave

speed c. Then for any given constants y1 and y2, there is a unique entire solution (up

to a translation in t and x) u1(x, t) of (1.1) defined for all (x, t) ∈ R × R such that
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0 < u1(x, t) < 1, ∂tu1(x, t) > 0 and

lim
t→−∞

{
sup
x≥0
|u1(x, t)− φ(x+ ct+ y1)|+ sup

x≤0
|u1(x, t)− φ(−x+ ct+ y2)|

}
= 0,(3.1)

lim
t→+∞

sup
x∈R
|u1(x, t)− 1| = 0.

Proof. We first consider the case (C1). When t ≤ 0, it follows from [13] that the superso-

lution and subsolution of (1.2) are

u1(x, t) = min{φ(x+ p1(t)) + φ(−x+ p1(t)), 1},

u1(x, t) = max{φ(x+ ct+ x6), φ(−x+ ct+ x6)},

where the function p1(t) (t ≤ 0) is the solution to

(3.2) p′1(t) = c+M12e
λ1p1(t), t < 0, p1(0) ≤ 0,

c is the wave speed, λ1 =
c+
√
c2−4f ′(0)

2 , and the expression of M12 > 0 is too long, which

can be found in [13], and x6 = p1(0)− 1
λ1

ln(1 + M12
c ).

Substituting t = 0 into the expression of the subsolution u1(x, t), we have

lim inf
x→±∞

u1(x, 0) ≥ lim inf
x→±∞

u1(x, 0) = lim
x→±∞

max{φ(x+ x6), φ(−x+ x6)} = 1 > α.

Since
∫ 1

0 f(s) ds > 0, it follows from Lemma 2.3 that

lim
t→+∞

‖u1( · , t)− 1‖ = 0,

which is the asymptotic behavior of the entire solution u1(x, t) when t converges to +∞.

On the other hand, as t→ −∞, the asymptotic behavior had been already proved in [13].

Since u1(x, t + t1) < u1(x, t) for arbitrary t1, then the method in [13] to prove the

uniqueness of entire solutions is no longer valid. Here we adopt the method in [3] to prove

the uniqueness, and only need to verify that u1(x, t) satisfies the condition M+.

By the assumption on f , there are some constants α1 < α < α2 such that f 6= 0 in

(0, α1] ∪ [α2, 1). Then from the monotonicity of φ, there exists a positive constant x̃ such

that φ(x̃+ x6) ≥ α2. Set

l1(t) = ct− x̃, m1(t) = −ct+ x̃.

For any t ≤ 0, obviously m1(t) ≥ 0 ≥ l1(t). On one hand, since

u1(x, t) ≥ max{φ(x+ ct+ x6), φ(−x+ ct+ x6)},
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then u1(x, t) ≥ α2 for any x ∈ (−∞, l1(t)] ∪ [m1(t),+∞). On the other hand, according

to (3.1), for any ε ∈ (0, α), there exists a T11 < 0 such that for any t ≤ T11,

sup
x≥0
|u1(x, t)− φ(x+ ct+ y1)| ≤ ε, sup

x≤0
|u1(x, t)− φ(−x+ ct+ y2)| ≤ ε.

Then take d1 sufficiently large such that

max{φ(x̃− d1 + y1), φ(x̃− d1 + y2)} < α1 − ε.

It is clear that there is a T12 < 0 such that l1(t) + d1 ≤ 0 ≤ m1(t) − d1 for any t ≤ T12.

Choose T1 ≤ min{T11, T12}. Then, for t ≤ T1 and 0 ≤ x ≤ m1(t)− d1,

u1(x, t) ≤ φ(m1(t)− d1 + ct+ y1) + ε = φ(x̃− d1 + y1) + ε ≤ α1,

and for t ≤ T1 and l1(t) + d1 ≤ x ≤ 0,

u1(x, t) ≤ φ(−l1(t)− d1 + ct+ y2) + ε = φ(x̃− d1 + y2) + ε ≤ α1.

Thus, u1(x, t) ≤ α1 for all t ≤ T1 and x ∈ [l1(t) + d1,m1(t) − d1]. Therefore, the entire

solution u1(x, t) satisfies the condition M+, and from the proofs in the papers [3,26], it is

unique up to a space-time translation.

Finally, we will prove the monotonicity of u1(x, t) with respect to t via the method

in [14]. From the proof of the existence of entire solutions in the papers [3,13] and so on,

the authors chose the function u(x, t + n;un(x,−n)) := un(x, t) as the unique classical

solution to the following initial problem

(3.3)

∂tun = ∂xxun + f(un), x ∈ R, t > −n,

un(x,−n) = u1(x,−n), x ∈ R.

Then by Lemma 2.1 and the process of diagonalization, there exists a subsequence of {un}
converging in the space C2,1

loc (R × R). In fact, the limit of this subsequence is the entire

solution as we desired. Obviously, u1(x,−n) is the subsolution to (3.3). Therefore,

un(x,−n) = u1(x,−n) ≤ u(x, t+ n;un(x,−n)), t ≥ −n.

Specially, for any ε > 0, at t = ε− n,

un(x,−n) ≤ u(x, ε;un(x,−n)).

Since u(x, t+ n+ ε;un(x,−n)) satisfies

∂tun = ∂xxun + f(un) and un(x,−n+ ε) = u(x, ε;un(x,−n)),



Long Time Behavior of Entire Solutions to Bistable Reaction Diffusion Equations 1459

then by the comparison theorem, un(x, t) ≤ un(x, t + ε), for t ≥ −n and x ∈ R. By the

arbitrariness of ε, one can conclude that for each n ∈ N, t ≥ −n and x ∈ R, ∂tun ≥ 0. By

the convergence of {un}, then ∂tu > 0 or ∂tu ≡ 0. Moreover, by the comparison theorem,

for all (x, t) ∈ R× R, we have

(3.4) max{φ(x+ ct+ x6), φ(−x+ ct+ x6)} = u1(x, t) ≤ u1(x, t) < 1.

Thus, on one hand, limt→+∞ u1(x, t) = 1 derived from (3.4). On the other hand, for

any intervals referring to x in R, since limt→−∞ u1(x, t) = 0 followed from p1(t) → −∞
as t → −∞, then limt→−∞ u1(x, t) = 0. Therefore, by applying the strong maximum

theorem, we arrive at ∂tu1(x, t) > 0 for all (x, t) ∈ R× R.

Now we deal with the case (C2). According to [13], u1(x, t) is unique and satisfies

(3.1), and the supersolution and subsolution for t ≤ 0 are

u1(x, t) = φ(x+ p2(t)) + φ(−x+ p2(t)), u1(x, t) = φ(x+ p3(t)) + φ(−x+ p3(t)),

where the functions p2(t) and p3(t) satisfy

(3.5)

p′2(t) = c+M13e
λ1p2(t),

p2(0) ≤ 0,

p′3(t) = c−M13e
λ1p3(t),

p3(0) ≤ min
{

0, 1
λ1

ln
(

c
M13

)}
,

and the expression of M13 > 0 can be found in [13].

It is easy to see that

lim inf
x→±∞

u1(x, 0) = lim
x→±∞

{φ(x+ p3(0)) + φ(−x+ p3(0))} = 1 > α,

which together with Lemma 2.3 implies that

lim
t→+∞

‖u1( · , t)− 1‖ = 0.

Eventually repeating the similar arguments as above, one can prove the monotonicity

of u1(x, t) with respect to t.

Now we will consider the stability of the unique entire solution u1(x, t) obtained in

Theorem 3.1 by using the method in [26], and obtain the following result.

Theorem 3.2. Suppose that
∫ 1

0 f(u) du > 0. Then the unique entire solution u1(x, t)

obtained in Theorem 3.1 is local exponential asymptotic stable.

Proof. To begin with, we introduce some notations. Due to f ∈ C2(R) and f ′(0), f ′(1) < 0,

there exists a θ > 0 such that f ′(u) < 0 on [−θ, 2θ] ∪ [1− 2θ, 1 + θ]. Therefore,

(3.6) v := max

{
max

[−θ,2θ]
f ′(u), max

[1−2θ,1+θ]
f ′(u)

}
< 0.
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Let φ(ξ) be the solution to (1.2). When φ(x + ct) or φ(−x + ct) ∈ [θ, 1 − θ], there is an

M14 > 0 such that

φ(x+ ct) + φ(−x+ ct) ≥M14.

In the sequel of this paper, we still use these notations.

We first consider the case (C1). For t ≥ 0, we will prove that the following functions

u+
1 (x, t) = min{1, u1(x, t+ γ1(t)) + q1(t)},

u−1 (x, t) = max{0, u1(x, t− γ1(t))− q1(t)}

are the supersolution and subsolution to (1.1) with the initial condition u0(x) = u1(x, 0)

respectively, where the function q1(t) is the solution to the following initial problem

(3.7) q′1(t)− vq1(t) = 0, t > 0, q1(0) = q10,

0 ≤ q10 ≤ θ may be arbitrary, and the function γ1(t) is to be determined later.

Here, we mainly prove that the function u+
1 (x, t) is the supersolution, and the rest is

similar. When u+
1 (x, t) ≡ 1, the conclusion is obvious. Thus, we only consider u+

1 (x, t) =

u1(x, t + γ1(t)) + q1(t). Firstly, when u1(x, t) ∈ [0, θ] or [1 − θ, 1], from (3.6), (3.7) and

∂tu1(x, t) > 0, we can get

∂tu
+
1 − ∂xxu

+
1 − f(u+

1 ) = γ′1(t)∂tu1 + ∂tu1 − ∂xxu1 + q′1(t)− f(u1 + q1(t))

≥ q′1(t)− vq1(t) = 0,

where we need γ′1(t) > 0.

On the other hand, when u1(x, t) ∈ [θ, 1− θ], due to ∂tu1(x, t) > 0, there is a constant

M15 > 0 such that ∂tu1(x, t) ≥M15. Thus it follows from (2.4) and (3.6) that

∂tu
+
1 − ∂xxu

+
1 − f(u+

1 ) = γ′1(t)∂tu1 + ∂tu1 − ∂xxu1 + q′1(t)− f(u1 + q1(t))

≥M15γ
′
1(t) + vq1(t)− wq1(t) = 0,

where we need the function γ1(t) satisfying

(3.8) γ′1(t) =
w − v
M15

q10e
vt, t > 0, γ1(0) = q10.

Solving the equations (3.7) and (3.8) yields that q1(t) = q10e
vt and γ1(t) = q10(1 + γ0 −

γ0e
vt), where γ0 = v−w

M15v
> 0, since v < 0 and w > 0. Also since ∂tu1(x, t) > 0, then

u1(x, 0) ≤ u1(x, q10) + q10 = u+
1 (x, 0).

Hence, u+
1 (x, t) is the supersolution of (1.1) with the initial condition u0(x) = u1(x, 0).

Similarly, one can prove that u−1 (x, t) is the subsolution of (1.1) with the initial condition

u0(x) = u1(x, 0).
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Now we prove the local stability of the entire solution u1(x, t). For any given ε > 0,

from Lemma 2.1, there exists a positive constant δ1 ≤ ε
2M2

, such that for any |t2| ≤ δ1

and t ∈ [1 + t2,+∞),

(3.9) ‖u1( · , t+ t2)− u1( · , t)‖ = ‖∂tu1( · , t+ t∗)‖|t2| ≤
ε

2
,

where t∗ ∈ (−t2, t2). Choose q10 = δ ≤ min
{

δ1
1+γ0

, ε2
}

, and the initial function u0(x)

satisfies ‖u0( · )− u1( · , 0)‖ < δ. Since ∂tu1(x, t) > 0, then

u1(x, 0) + δ ≤ u1(x, δ) + δ, u1(x,−δ)− δ ≤ u1(x, 0)− δ.

Therefore, for all x ∈ R, we have

u1(x,−δ)− δ ≤ u1(x, 0)− δ ≤ u0(x) ≤ u1(x, 0) + δ ≤ u1(x, δ) + δ.

Thus u+
1 (x, t) and u−1 (x, t) are also the supersolution and subsolution of (1.1) with the

initial condition u0(x). Consequently,

max{0, u1(x, t− δ(1 + γ0 − γ0e
vt))− δevt}

≤ u(x, t;u0) ≤ min{1, u1(x, t+ δ(1 + γ0 − γ0e
vt)) + δevt}.

(3.10)

By noting that δ(1 + γ0 − γ0e
vt) ≤ δ1, it follows from (3.9) that

u1(x, t)− ε ≤ u(x, t;u0) ≤ u1(x, t) + ε.

In a word, for any ε > 0, there exists a δ > 0, when ‖u0(·)− u1( · , 0)‖ < δ, then

‖u( · , t;u0)− u1( · , t)‖ ≤ ε, t ≥ 0,

which means that the entire solution u1(x, t) is local stable.

In the end, we will show that the entire solution u1(x, t) is local exponential asymptotic

stable. First of all, from (2.3) and (3.4), there is a T3 > 0 with cT3 + x6 > 0 such that for

any t ≥ T3, we have

(3.11) 0 ≤ 1− u1(x, t) ≤ 1− u1(x, t) ≤M6e
µ2(|x|+ct+x6) ≤M6e

µ2ct.

The next step is to prove that

(3.12) u1(x, t− δ(1 + γ0 − γ0e
vt))− δevt > 0

holds for large t, which implies u−1 (x, t) = u1(x, t− δ(1 + γ0 − γ0e
vt)). Indeed, we remark

that

(3.13) ∂t(u1(x, t− q10(1 + γ0 − γ0e
vt))− q10e

vt) = (1 + q10γ0ve
vt)∂tu1 − q10ve

vt.
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Since γ0 = v−w
M15v

, then

1 + q10γ0ve
vt = 1− q10

w − v
M15

evt.

Hence we can choose a constant T4 ≥ max
{

0, 1
v ln M15

(w−v)θ

}
such that when t ≥ T4, by

noting that w > 0, v < 0, M15 > 0 as well as 0 ≤ q10 ≤ θ, we have

q10
w − v
M15

evt ≤ θw − v
M15

evt ≤ θw − v
M15

evT4 ≤ 1.

Therefore, when t ≥ T4, from v < 0 and ∂tu1(x, t) > 0 as well as (3.13), we can obtain

∂t(u1(x, t− q10(1 + γ0 − γ0e
vt))− q10e

vt) > 0.

Moreover, by noting limt→+∞ u1(x, t− q10(1 + γ0 − γ0e
vt)) = 1, thus, there is a constant

T5 ≥ max
{
T3, T4, δ(1 + γ0), δ(1 + γ0)− x6

c

}
such that for t ≥ T5, (3.12) holds.

Therefore, for t ≥ T5 ≥ δ(1 + γ0), it follows from (3.10) and (3.12) that

|1− u(x, t;u0)| ≤ |1− u1(x, t− δ(1 + γ0 − γ0e
vt)) + δevt|

≤M6e
µ2(|x|+ct−cδ(1+γ0−γ0evt)+x6) + δevt

≤M6e
µ2ct + δevt.

(3.14)

Thus, when ‖u0(·)− u1( · , 0)‖ < δ, for t ≥ T5, from (3.11) and (3.14), we have

‖u( · , t;u0)− u1( · , t)‖ ≤ ‖1− u1( · , t)‖+ ‖1− u( · , t;u0)‖ ≤ 2M6e
µ2ct + δevt.

Hence u1(x, t) is local exponential asymptotic stable.

Next we discuss the stability of u1(x, t) under the case (C2). The proof of the local

stability is similar, we only need to consider the local exponential stability. By directly

calculating (3.5), we know that

p3(t) = p3(0) + ct− 1

λ1
ln

{
1− M13

c
eλ1p3(0)(1− ecλ1t)

}
.

Set

g(t) =
1

λ1
ln

{
1− M13

c
eλ1p3(0)(1− ecλ1t)

}
.

Then

g′(t) =
cM13e

λ1p3(0)eλ1t

c−M13eλ1p3(0) +M13eλ1p3(0)ecλ1t
> 0,

since p3(0) < 1
λ1

ln c
M13

. Thus, g(t) < g(∞) = 1
λ1

ln
{

1−M13
c eλ1p3(0)

}
:= x7. Consequently,

for t ≤ 0, p3(t) > ct+ x8, where x8 := p3(0)− x7. As a result, for t ≤ 0,

u1(x, t) > max{φ(x+ ct+ x8), φ(−x+ ct+ x8)}.
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Then by the comparison theorem, for (x, t) ∈ R× R, we have

u(x, t) ≥ max{φ(x+ ct+ x8), φ(−x+ ct+ x8)}.

Thus in the case (C2), we also get an inequality similar to (3.4). The rest of the proof is

similar.

Remark 3.3. Under the cases (C1) and (C2), since
∫ 1

0 f(u) du > 0, the entire solution

u1(x, t) found in Theorem 3.1 satisfies

lim
t→+∞

‖u1( · , t)− 1‖ = 0.

In fact, this conclusion coincides with that in [28]. Thus the super-sub solution method is

a valid way to simplify the proof.

Remark 3.4. Under the case (C1), since the subsolution is

u1(x, t) = max{φ(x+ ct+ x6), φ(−x+ ct+ x6)},

the existence, uniqueness and stability of entire solutions to (1.1) can be found in [26] as

well. Here in order to prove the local asymptotic stability of entire solutions, the different

supersolution and subsolution are constructed compared with [26], and the proof is also

more simple.

Remark 3.5. For (1.3), that is, f(u) = u(1 − u)(u − α), α ∈ (0, 1), it is easy to see that∫ 1
0 f(s) ds = (1− 2α)/12 and f ′(0) = −α, f ′(1) = −1 + α. Obviously,

f ′(0) S f ′(1) if and only if

∫ 1

0
f(u) du S 0 if and only if α T

1

2
.

Therefore if
∫ 1

0 f(u) du > 0, then f ′(0) > f ′(1), which implies that only the case (C1) will

occur.

For the case
∫ 1

0 f(u) du < 0, the authors in [3] had found the entire solution u2(x, t) to

(1.1). Now we will discuss the long time behavior and the local exponential asymptotic

stability of the entire solution in the following theorem.

Theorem 3.6. Assume that
∫ 1

0 f(u) du < 0 and φ is the solution to (1.2), then (1.1)

admits a unique entire solution u2(x, t) satisfying ∂tu2(x, t) < 0, u2(x, t) = u2(−x, t),
0 < u2(x, t) < 1, and for (x, t) ∈ R× (−∞,−4Mφ(0)],

u2(x, t+ h1(t)) < φ(−x+ ct)φ(x+ ct) < u2(x, t− h1(t)),

where h1(t) = 4Mφ(ct), limt→+∞ ‖u2( · , t)‖ = 0,

(3.15) lim
t→−∞

{
sup
x≥0
|u2(x, t)− φ(−x+ ct)|+ sup

x≤0
|u2(x, t)− φ(x+ ct)|

}
= 0.

Moreover, the unique entire solution u2(x, t) is local exponential asymptotic stable.
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Proof. Firstly, it follows from [3] that

lim
t→−∞

sup
x∈R
|u2(x, t)− φ(x+ ct)φ(−x+ ct)| = 0,

which implies that

lim
t→−∞

sup
x≥0
|u2(x, t)− φ(−x+ ct)|

≤ lim
t→−∞

sup
x≥0
|u2(x, t)− φ(−x+ ct)φ(x+ ct)|+ lim

t→−∞
sup
x≥0
|φ(−x+ ct)||1− φ(x+ ct)| = 0.

Similarly, limt→−∞ supx≤0 |u2(x, t) − φ(x + ct)| = 0. Thus, the entire solution u2(x, t)

satisfies (3.15).

Since
∫ 1

0 f(u) du < 0, then the wave speed c < 0, and at the same time, according

to [3], the entire solution u2(x, t) satisfies for t ≤ −4Mφ(0) < 0,

u2(x, t+ h1(t)) < φ(−x+ ct)φ(x+ ct) < u(x, t− h1(t)).

Hence, for any τ ≤ −4Mφ(0) < 0, we have

u2(x, τ + h1(τ)) < φ(x+ cτ),

which together with the comparison theorem yields that for all t > τ , u2(x, t + h1(τ)) <

φ(x+ct). Since h1(t) = 4Mφ(ct), setting τ → −∞ leads to u2(x, t) ≤ φ(x+ct). Similarly,

u2(x, t) ≤ φ(−x+ ct). Thus, for all (x, t) ∈ R× R,

(3.16) u2(x, t) ≤ min{φ(x+ ct), φ(−x+ ct)}.

Specially, u2(x, 0) ≤ min{φ(x), φ(−x)}, which implies that limx→±∞ u2(x, 0) = 0 < α.

Hence, due to Lemma 2.3, limt→+∞ ‖u2( · , t)‖ = 0.

Now, repeating the processes of the proof in Theorem 3.1, there are some constants

α1 < α < α2 such that f 6= 0 in (0, α1] ∪ [α2, 1). Then from the monotonicity of φ, there

exists a positive constant x̂ such that φ(−x̂) ≤ α1. Set

l2(t) = −ct− x̂, m2(t) = ct+ x̂,

then for any t ≤ 0, obviously m2(t) ≥ 0 ≥ l2(t), and according to (3.16), u2(x, t) ≤ α1 for

any x ∈ (−∞, l2(t)]∪ [m2(t),+∞). On the other hand, according to (3.15), for any ε > 0,

there exists a T13 < 0 such that for any t ≤ T13,

sup
x≥0
|u2(x, t)− φ(−x+ ct)| ≤ ε, sup

x≤0
|u2(x, t)− φ(x+ ct)| ≤ ε,

which together with the monotonicity of φ implies that

u2(x, t) ≥ φ(−m2(t) + d2 + ct)− ε ≥ α2
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holds for x ≤ −m2(t) + d2 = −ct + x̂ + d2 with some sufficiently large positive constant

d2. Similarly, u2(x, t) ≥ α2 for x ≥ l2(t) + d2. Since there is a T14 < 0 satisfying

l2(t) + d2 ≤ 0 ≤ m2(t) − d2 for any t ≤ T14, if we choose T2 ≤ min{T13, T14}, then

u2(x, t) ≥ α2 for any t ≤ T2 and x ∈ [l2(t) + d2,m2(t)− d2]. Therefore, the entire solution

u2(x, t) satisfies the condition M−, and from the proof in the papers [3, 26], it is unique

up to a space-time translation.

Finally, we are going to prove the local asymptotic exponential stability of u2(x, t).

First of all, for all (x, t) ∈ R × R, from Theorem 1 in [3], ∂tu2(x, t) < 0. Thus there

exists a negative constant M16 such that when u2(x, t) ∈ [θ, 1− θ], ∂tu2(x, t) ≤ M16 < 0.

Similarly, it is not hard to prove that the following two functions

u+
2 (x, t) = min{1, u2(x, t− γ2(t)) + q1(t)},

u−2 (x, t) = max{0, u2(x, t+ γ2(t))− q1(t)}

are the supersolution and subsolution of (1.1) with the initial condition u0(x) = u2(x, 0),

respectively. At this time, the function q1(t) also satisfies (3.7), while the function γ2(t)

satisfies

γ′2(t) =
w − v
−M16

q10e
vt, t > 0, γ2(0) = q10,

where the parameters q10, θ are defined in the above, as well as w and v are defined in

(2.4) and (3.6) separately. Then from the proof in Theorem 3.2 or [26], we know that

u2(x, t) is local Lyapunov stable. Now we prove the local exponential asymptotic stability

of u2(x, t). With the similar proof, it is not hard to see that there is a constant T6 such

that for t ≥ T6, u+
2 (x, t) = u2(x, t− γ2(t)) + q1(t). By choosing T7 = max{T6, δ(1 + γ̃0)},

where γ̃0 = w−v
M16v

> 0, and noting c < 0, then when t ≥ T7, with the help of (2.3) and

(3.16), we finally arrive at

‖u(x, t;u0)− u2(x, t)‖ ≤ ‖u2(x, t)‖+ ‖u(x, t;u0)‖

≤ u2(x, t) + u2(x, t− δ(1 + γ̃0 − γ̃0e
vt)) + δevt

≤ 2M8e
λ1ct + δevt,

which implies the local exponential asymptotic stability of u2(x, t). Thus we have finished

the proof.

4. The continuous dependence of the entire solution of Allen-Cahn equation

In this section we will prove the continuity of the entire solution to (1.3) in α. Let φα be

the traveling front solution to (1.3), which in fact satisfies

φ′′α(ξ)− cφ′α(ξ) + φα(ξ)(1− φα(ξ))(φα(ξ)− α) = 0,

lim
ξ→−∞

φα(ξ) = 0, lim
ξ→+∞

φα(ξ) = 1, φ′α(ξ) > 0.
(4.1)
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In the rest of this section, we only consider α ∈ (0, 1/2). For (4.1), the corresponding

λ1 =
√

2/2 and

max
u∈[0,1]

(u(1− u)(u− α))′ =
1

3
(1− α+ α2), max

u∈[0,1]
(u(1− u)(u− α))′′ = 2(1 + α).

Let uk(x, t) := uαk(x, t) be the entire solution to (1.3) with the parameter αk, and the

sequence {αk} converges to α ∈ (0, 1/2), as k converges to +∞. For any α ∈ (0, 1/2),

choose M0 = 1 and M1 = 3 in Lemma 2.1, there is a subsequence of {uk(x, t)} which

converges to ũα(x, t) uniformly in any compact sets of R × R, which is also an entire

solution to (1.3). Moreover, ũα(x, t) satisfies

max{φα(x+ ct+ x6), φα(−x+ ct+ x6)} ≤ ũα(x, t) ≤ min{ũ(x, t), 1},

where ũ(x, t) = φ(x+p1(t))+φ(−x+p1(t)), x6 and p1(t) are defined in (3.2) in Theorem 3.1.

For convenience, choose p1(0) = 0, then

x6 = − 1

λ1
ln

(
1 +

M12

c

)
, p1(t) = ct− 1

λ1
ln

{
1 +

M12

c
(1− eλ1ct)

}
.

Furthermore, from [13], we know that for some positive constant M17,

(4.2) |p1(t)− ct− x6| ≤M17e
λ1ct, t < 0.

In addition, if the reaction item f(u) in (1.1) is u(1−u)(u−α), from [3,13], the entire

solution u1(x, t) of (1.1) is the limit of un(x, t), which actually satisfies

∂tun = ∂xxun + un(1− un)(un − α), x ∈ R, t > −n,

un(x,−n) = max{φα(x− cn+ x6), φα(−x− cn+ x6)}, x ∈ R.

Thus,

|ũα(x,−n)− un(x,−n)| ≤

ũ(x,−n)− φα(x− cn+ x6) if x ≥ 0,

ũ(x,−n)− φα(−x− cn+ x6) if x < 0.

In what follows, we will estimate ũα(x, t) and u1(x, t) at any (x, t) ∈ R× R. To finish

it, by noting the convergence of {un}, we need to estimate ũα(x, t) and un(x, t). Let

vn(x, t) = ũα(x, t)− un(x, t), then it solves

∂tvn = ∂xxvn + ũα(1− ũα)(ũα − α)− un(1− un)(un − α),

v(x,−n) ≤

ũ(x,−n)− φα(x− cn+ x6) if x ≥ 0,

ũ(x,−n)− φα(−x− cn+ x6) if x < 0.
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Since ũα(1 − ũα)(ũα − α) − un(1 − un)(un − α) ≤ 1
3(1 − α + α2)vn, then, estimating

vn(x, t) is changed into estimating the solution wn(x, t) of the following linear parabolic

equation

∂twn = ∂xxwn +
1

3
(1− α+ α2)wn,

wn(x,−n) =

ũ(x,−n)− φα(x− cn+ x6) if x ≥ 0,

ũ(x,−n)− φα(−x− cn+ x6) if x < 0.

The solution wn(x, t) can be presented as

wn(x, t) =
1√

4π(t+ n)
e

1
3

(1−α+α2)(t+n)

∫
R
wn(y,−n)e

− (x−y)2
4(t+n) dy

=
1√

4π(t+ n)
e

1
3

(1−α+α2)(t+n)

∫ +∞

0

(
ũ(y,−n)− φα(y − cn+ x6)

)
e
− (x−y)2

4(t+n) dy

+
1√

4π(t+ n)
e

1
3

(1−α+α2)(t+n)

∫ 0

−∞

(
ũ(y,−n)− φα(−y − cn+ x6)

)
e
− (x−y)2

4(t+n) dy

:= I1(x, t) + I2(x, t).

We firstly consider the integral I1(x, t). Let z = y − cn+ x6, then

I1(x, t) =
1√

4π(t+ n)
e

1
3

(1−α+α2)(t+n)

∫ +∞

−cn+x6

[
φα(−z − cn− x6 + p1(−n))

+ φα(z − cn+ x6 + p1(−n))− φα(z)
]
e
− (x−z−cn+x6)

2

4(t+n) dz.

In order to further estimate I1, since (1.3) is the special case of (1.1), then φα satisfies

(2.3). Combining (2.3) and (4.2) gives

I1(x, t) ≤ 1√
4π(t+ n)

e
1
3

(1−α+α2)(t+n)

×
∫ +∞

−cn+x6

(
M8e

λ1(−z−cn+x6+p1(−n)) +M17 sup
R
φ′e−cλ1n

)
e
− (x−z−cn+x6)

2

4(t+n) dz

≤ 1√
4π(t+ n)

e
1
3

(1−α+α2)te

[
1
3

(1−α+α2)−cλ1
]
n

×
∫ +∞

−cn+x6

(
M8e

λ1(−z+x6+p1(−n)) +M17 sup
R
φ′
)
e
− (x−z−cn+x6)

2

4(t+n) dz

≤M18e
1
3

(1−α+α2)te

[
1
3

(1−α+α2)−cλ1
]
n,

where M18 ≥M17 supR φ
′ +M8e

λ1
(
x6− 1

λ1
ln
{

1+
M12
c

(1−e−λ1cn)
})

.

Moreover, by noting c =
√

2(1/2− α) and λ1 =
√

2/2, for α ∈ (0,
√

6/2− 1),

1

3
(1− α+ α2)− cλ1 =

1

6
(2α2 + 4α− 1) < 0.
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Therefore, for any fixed (x, t) ∈ R × R and α ∈ (0,
√

6/2 − 1), limn→+∞ I1(x, t) = 0.

Similarly, limn→+∞ I2(x, t) = 0. In a word, as n converges to +∞, for α ∈ (0,
√

6/2− 1),

wn converges to 0, thus limn→+∞ vn = 0. Hence ũα(x, t) = u1(x, t). Therefore,

Theorem 4.1. The entire solution u1(x, t) of (1.3) is continuous in α ∈ (0,
√

6/2− 1).
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