Extension of Eaves Theorem for Determining the Boundedness of Convex Quadratic Programming Problems

Huu-Quang Nguyen*, Van-Bong Nguyen and Ruey-Lin Sheu

Abstract. It is known that the boundedness of a convex quadratic function over a convex quadratic constraint (c-QP) can be determined by algorithms. In 1985, Terlaky transformed the said boundedness problem into an l_p programming problem and then apply linear programming, while Caron and Obuchowska in 1995 proposed another iterative procedure that checks, repeatedly, the existence of the implicit equality constraints. Theoretical characterization about the boundedness of (c-QP), however, does not have a complete result so far, except for Eaves' theorem, first by Eaves and later by Dostál, which answered the boundedness question only partially for a polyhedral-type of constraints. In this paper, Eaves' theorem is generalized to answer, necessarily and sufficiently, when the general (c-QP) with a convex quadratic constraint (not just a polyhedron) can be bounded from below, with a new insight that it can only be unbounded within an affine subspace.

1. Introduction

We are interested in looking for a necessary and sufficient condition to characterize the boundedness of the following convex quadratic programming problem (c-QP):

(1.1)
$$\min_{x \in I} f_0(x) = x^T Q_0 x + 2(b^0)^T x + \beta_0$$

s.t.
$$f_i(x) = x^T Q_i x + 2(b^i)^T x + \beta_i \le 0, \quad i = 1, 2, \dots, m,$$

where $Q_i \succeq 0 \in \mathbb{R}^{n \times n}$; $b^i \in \mathbb{R}^n$; $\beta_i \in \mathbb{R}$ for all i = 0, 1, 2, ..., m. Let $I = \{1, 2, ..., m\}$ and let the convex feasible set of (1.1) be denoted by

(1.2)
$$C_I = \{ x \in \mathbb{R}^n \mid f_i(x) = x^T Q_i x + 2(b^i)^T x + \beta_i \le 0, \forall i \in I \}.$$

Notice that, in (1.2), the notation C_I emphasizes the index set I. For convenience, we define $I_0 = I \cup \{0\}$ to include the objective function and

$$C_{I_0} = \{ x \in \mathbb{R}^n \mid f_i(x) = x^T Q_i x + 2(b^i)^T x + \beta_i \le 0, \forall i \in I_0 \}.$$

Received July 24, 2019; Accepted May 3, 2020.

Communicated by Jein-Shan Chen.

*Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. 90C20, 90C22, 90C32.

Key words and phrases. convex quadratic programming, l_p programming, Eaves theorem, recession cone. This work was supported by Taiwan Ministry of Science and Technology under grants MOST 105-2115-M-006-005-MY2; MOST 106-2811-M-006 -021 and MOST 107-2811-M-006-009.

Similarly, if $I' \subset I$, we can define $I'_0 = I' \cup \{0\}$. Moreover, let

$$C_{I'} = \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \forall i \in I' \} \text{ and } C_{I'_0} = \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \forall i \in I'_0 \}.$$

Those notations will facilitate the explanations to our results later.

When C_I is a polyhedron, i.e., $Q_i = 0$, $\forall i \in I$, it was known first by Eaves in [5] and later by Dostál in [4] (see Corollary 3.2) that (1.1) is bounded from below if and only if

(1.3)
$$((b^i)^T v \le 0, \forall i \in I) \land (Q_0 v = 0) \implies (b^0)^T v \ge 0$$

For the general convex set C_I , however, there is no counterpart yet, except for Kim et al. [6] who proposed a necessary but not sufficient; a sufficient but not necessary condition. See Corollary 3.3. Our main theorem below provides Condition (1.4) below to generalize (1.3) and answers the boundedness of (1.1) completely.

Theorem 1.1 (Main result). If C_I is nonempty, then (1.1) is bounded from below if and only if there exists a subset $\emptyset \neq I' \subset I$ such that all directions of recession in $0^+C_{I'_0}$ are perpendicular to the subspace spanned by vectors b_i , $i \in I'_0 := I' \cup \{0\}$. That is, (1.1) is bounded from below if and only if there exists $\emptyset \neq I' \subset I$ such that

(1.4)
$$v \in 0^+ C_{I'_0} \implies (b^i)^T v = 0, \quad \forall i \in I'_0.$$

In literature, the boundedness of (1.1) used to be handled algorithmically. By doing the Cholesky factorization for each Q_i , $i \in I_0$, (1.1) can be cast into an l_p programming problem (with p = 2). The l_p programming was first developed by Peterson and Ecker [9–11] and later by Terlaky [13] with a simpler proof. The dual of an l_p programming problem has a complicated objective function but its constraint set is a polyhedron. Since it was proved in [9–11,13] that an l_p programming problem is bounded from below if and only if its dual has a non-empty feasible domain, the boundedness of (1.1) can be thus determined by linear programming for testing the feasibility of the l_p dual programming. In spite that the problem can be so resolved, we see almost no mathematical insight by this approach because the information was largely hidden behind the transformation into the dual of an l_p programming.

Then, Caron and Obuchowska [2] in 1995 provided another iterative procedure for determining the boundedness of (1.1). Apparently, they did not know the above l_p programming approach. In each iteration of Caron and Obuchowska's Algorithm A, they identify "*implicit equality constraints*" in a system of linear (in)equalities by linear programming. They showed that Algorithm A in [2] would either stop in Step 2 if (1.1) is unbounded; or in Step 3 if (1.1) is bounded. If one views the l_p programming as a dual approach for determining the unboundedness of (1.1), Caron and Obuchowska's Algorithm A would be a nice primal algorithm. Although Caron and Obuchowska [2, Section 4] claimed that they have found the necessary and sufficient condition in the form of an algorithm for the boundedness of (1.1), yet a "mathematical" necessary and sufficient condition like Eaves' in (1.3) remains unknown until we prove Theorem 1.1 in this paper now. With Theorem 1.1, it becomes clear that Algorithm A simply checks the Condition (1.4) repeatedly and tries to find the largest index set $I' \subset I$ satisfying (1.4). Caron and Obuchowska's algorithm is thus a nice implementation of Theorem 1.1 and it surprisingly came much earlier than our work.

The major difference in testing the unboundedness over a polyhedron C_I ($Q_i = 0$, $\forall i \in I$) and over a general C_I lies in the fact that the former can be done by solely checking all recession directions of C_I whereas the latter cannot. A typical example in [1,8] is provided here for better illustration.

(1.5) min
$$f_0(x) = -x_1$$
 s.t. $f_1(x) = x_1^2 - x_2 \le 0$, $f_2(x) = -x_1 \le 0$, $f_3(x) = -x_2 \le 0$.

This example is unbounded from below, but not along any feasible ray. In fact, the only feasible ray of (1.5) is the positive x_2 -axis

$$v \in 0^+ C_I = \{(0,t) : t \ge 0\},\$$

along which the objective value

$$f_0(x_0 + \alpha v) = f_0(x_0) + \alpha^2 (v^T Q_0 v) + 2\alpha (v^T Q_0 x_0 + (b^0)^T v)$$

= $f_0(x_0), \quad \forall x_0 \in C_I, \ \forall \alpha \ge 0$

stays unchanged regardless $x_0 \in C_I$. Actually, problem (1.5) is unbounded from below along the parabola $f_1(x) = x_1^2 - x_2 = 0$, not along the direction of recession of C_I .

As a consequence of this example, when C_I is not a polyhedron, checking the unboundedness of the objective function $f_0(x)$ only for all recession directions of C_I is just a very weak necessary condition. By Theorem 1.1 and Condition (1.4), the necessary and sufficient condition for (1.1) to be unbounded is that, for all possible subsets $I' \in I$, at least one of $f_i(x)$, $i \in I' \cup \{0\}$ (not necessarily the objective function $f_0(x)$ itself) is unbounded from below along some common direction of recession in $0^+C_{I_0}$. The situation is way more complicated than that on a polyhedron C_I so that our result is highly non-trivial.

Our technical skill to penetrate deeper into the structure is to write the objective function f_0 , through a suitable coordinate transformation, as a canonical form having a sum-of-squares and one pure-linear term as follows (see (3.1)):

$$f_0(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_p x_p^2 + \mu x_{p+1}, \quad \lambda_i > 0, \ i = 1, \dots, p; \ \mu > 0$$

where $p+1 \leq n$. With this canonical form, Theorem 3.1 (another version of Theorem 1.1 in terms of the canonical form) asserts that $f_0(x)$ is (un)bounded from below on C_I if and only if x_{p+1} is (un)bounded below on C_I intersecting an affine subspace $\Theta(x^0)$, which involves only variables $x_{p+1}, x_{p+2}, \ldots, x_n$:

(1.6)
$$\Theta(x^0) = \{ x \in \mathbb{R}^n \mid x = x^0 + x_{p+1}e_{p+1} + \dots + x_n e_n \},\$$

where $x^0 \in C_I$ and e_i is the *i*th unit vector. It then reduces the boundedness of (1.1) to just checking the boundedness of a linear objective function x_{p+1} on $C \cap \Theta(x^0)$.

The paper is organized as follows. In Section 2, we give examples to first understand the result of Theorem 1.1 and Condition (1.4). Section 3 is designated for the proof of Theorem 1.1 in the canonical form, which is Theorem 3.1. Then, in Corollary 3.2, we use Theorem 3.1 to prove Theorem 2.1 of [4] (Eaves theorem). In Corollary 3.3, we use Theorem 3.1 to prove also Theorem 2.1 of [6] and finish the paper.

2. Examples

In this section, we use some examples to illustrate our main Theorem 1.1 and Condition (1.4).

Let C be a convex set with its recession cone

$$0^+C = \{ v \in \mathbb{R}^n : x + tv \in C, \forall x \in C, \forall t \ge 0 \}.$$

In particular, when $C = C_I$ is described by quadratic inequalities, its recession cone can be characterized by solving linear (in)equalities as follows [6, 12]:

$$0^+ C_I = \{ v \in \mathbb{R}^n : Q_i v = 0, (b^i)^T v \le 0, \forall i \in I \}.$$

Furthermore, when C_I is a polyhedron,

$$0^{+}C_{I} = \{ v \in \mathbb{R}^{n} : (b^{i})^{T} v \le 0, \forall i \in I \}.$$

Example 2.1.

min
$$f_0(x) = -x_1$$
 s.t. $f_1(x) = x_1^2 - x_2 \le 0$, $f_2(x) = -x_1 \le 0$, $f_3(x) = -x_2 \le 0$.

First, by $f_0 = f_2$, we know that $0^+C_{I_0} = 0^+C_I = \{(0, v_2) : v_2 \ge 0\}$. Moreover, since $b^0 = b^2 = (-1/2, 0), b^1 = b^3 = (0, -1/2)$, it is easy to see that Condition (1.4) fails for any subset $I' \subset I$. Applying Theorem 1.1, we conclude that the example is unbounded from below.

On the other hand, we see that $x^k = (k, k^2) \in C_I$ for all k > 0, and $\{f_0(x^k)\} \to -\infty$ as $k \to +\infty$. It verifies above conclusion.

Example 2.2.

(2.1) min
$$f_0(x) = x_1^2 + x_2$$
 s.t. $f_1(x) = x_1^2 - x_1 x_2 + 2x_2^2 - x_3 \le 0$, $f_2(x) = x_1^2 - x_2 - 1 \le 0$.

For this example, $0^+C_{I_0} = \{v = (0, 0, v_3)^T \in \mathbb{R}^3 \mid v_3 \ge 0\}$ and (1.4) is violated for the index i = 1. So we only consider $I' = \{2\}$. Then, $0^+C_{I'_0} = \{v = (0, 0, v_3)^T \in \mathbb{R}^3 \mid v_3 \in \mathbb{R}\}$. It is clear that $b^0 = (0, 1/2, 0), b^2 = (0, -1/2, 0)$ and, for $v \in 0^+C_{I'_0}$, there are $(b^i)^T v = 0$, i = 0, 2. By Theorem 1.1, we conclude that (2.1) is bounded from below.

On the other hand, since $x^0 = (0, 0, 0) \in C_I$, by (1.6), $\Theta(x^0) = \{(0, x_2, x_3) \mid x_2, x_3 \in \mathbb{R}\}$. We see that $C_I \cap \Theta(x^0) = \{(0, x_2, x_3) \mid 2x_2^2 - x_3 \leq 0, -x_2 - 1 \leq 0\}$, therefore x_2 is bounded from below on $C_I \cap \Theta(x^0)$. By Theorem 3.1, (2.1) is bounded from below, it verifies above conclusion.

3. Proof of Theorem 1.1

We first notice that, if f_0 is bounded from below on \mathbb{R}^n , it must be bounded below on C_I . To avoid triviality, we have the following assumptions.

- A1. there is at least one $i \in I$ such that $Q_i \neq 0$;
- A2. the constraint set C_I is unbounded, equivalently, $0^+C_I \neq \{0\}$ [12];
- A3. f_0 is unbounded from below on \mathbb{R}^n .

Now because the perpendicularity of directions of recession in $0^+C_{I'_0}$ to the subspace spanned by vectors b_i , $i \in I'_0 := I' \cup \{0\}$ and the boundedness of convex QCQP (1.1) are invariant with respect to an orthogonal linear transformation of the space, so we just need to prove our main theorem in the case f_0 has the canonical form.

We now show that $f_0(x)$ (unbounded from below on \mathbb{R}^n) can be always transformed into the canonical form

(3.1)
$$f_0(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_p x_p^2 + \mu x_{p+1}$$

where $p + 1 \le n, \mu > 0, \lambda_i > 0, i = 1, ..., p$. If $Q_0 \ne 0$, then there exists an orthogonal matrix P such that

$$P^T Q_0 P = \operatorname{diag}(\lambda_1, \dots, \lambda_p, 0, \dots, 0)$$

where $\lambda_1 > 0, \dots, \lambda_p > 0$. Let $y = P^T x$ and represent $f_0(y)$ in the new variable y as

$$f_0(y) = \lambda_1 y_1^2 + \dots + \lambda_p y_p^2 + 2c_1 y_1 + \dots + 2c_p y_p + c_{p+1} y_{p+1} + \dots + c_n y_n + \beta_0.$$

Now let $z_i = y_i + c_i/\lambda_i$ for i = 1, ..., p, and $z_i = y_i$ for i = p + 1, ..., n, we have

$$f_0(z) = \lambda_1 z_1^2 + \dots + \lambda_p z_p^2 + c_{p+1} z_{p+1} + \dots + c_n z_n + \alpha_0$$

for some $\alpha_0 \in \mathbb{R}$. Since $f_0(z)$ is assumed to be unbounded from below, there must be some $p + 1 \leq i \leq n$ such that $c_i \neq 0$. Let $c = c_{p+1}e_{p+1} + \cdots + c_ne_n$, $c \neq 0$. Create a new orthogonal basis $\{\theta_1, \theta_2, \ldots, \theta_n\}$ of \mathbb{R}^n as follows.

Let $\theta_1 = e_1, \theta_2 = e_2, \ldots, \theta_p = e_p, \ \theta_{p+1} = c/|c|$ and $\theta_{p+2}, \ldots, \theta_n$ are chosen such that $\{\theta_1, \theta_2, \ldots, \theta_n\}$ becomes an orthogonal basis. Then in this new basis, $f_0(z)$ has the form of (3.1) after we remove the constant term. If $Q_0 = 0$, we can similarly transform $f_0(x)$ to have only one linear term $f_0(x) = \mu x_1$.

Let us also call the canonical form of (1.1) below as

min
$$f_0(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_p x_p^2 + 2\mu x_{p+1}$$
 $(\mu > 0)$
s.t. $f_i(x) = x^T Q_i x + 2(b^i)^T x + \beta_i \le 0, \quad j \in I.$

Then,

(3.2)
$$Q_0 = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_p, 0, \dots, 0), \quad b^0 = \mu e_{p+1}$$

and p = 0 if $Q_0 = 0$. We see that, if $f_0(x)$ is unbounded from below on C_I , then x_{p+1} must be unbounded from below on C_I ; but not conversely. For example, let $f_0(x) = x_1^2 + x_2$ and $C_I = \{x \in \mathbb{R}^2 \mid x_1^2 - x_2 \leq 0\}$. Then x_2 is unbounded in C_I but $f_0(x)$ is bounded from below on C_I . So we need to find conditions for x_{p+1} to be unbounded from below on C_I in that case. For $x^0 \in C_I$, let $\Theta(x^0)$ be the affine subspace of n - p dimension passing through x^0 as defined in (1.6). When p = 0, $\Theta(x^0) = \mathbb{R}^n$ and $f_0(x)$ is simply reduced to $f_0(x) = 2\mu x_1$. We now arrive at our main result.

Theorem 3.1. Under Assumptions A1, A2, A3 and f_0 was transformed into the canonical form (3.1), the following three statements are equivalent.

- (i) The function f_0 is bounded from below on C_I .
- (ii) The variable x_{p+1} is bounded from below on $C_I \cap \Theta(x^0)$.
- (iii) There exists a subset $\emptyset \neq I' \subset I$ such that

(3.3)
$$v \in 0^+ C_{I' \cup \{0\}} \implies (e_{p+1})^T v = 0 \land ((b^i)^T v = 0, \forall i \in I').$$

Proof. The proof is constructed in the cycle (i) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (i) by way of contradiction.

(i) \Rightarrow (ii). Suppose that $f_0(x)$ is bounded from below on C_I but x_{p+1} is unbounded from below in $C_I \cap \Theta(x^0)$. Then there exists a sequence $\{x^k\} \subset C_I \cap \Theta(x^0)$ such that $x^k = x^0 + t_{p+1}^k e_{p+1} + \cdots + t_n^k e_n$ and $t_{p+1}^k \to -\infty$ as $k \to \infty$. Therefore,

$$f_0(x^k) = \lambda_1(x_1^0)^2 + \lambda_2(x_2^0)^2 + \dots + \lambda_p(x_p^0)^2 + \mu(x_{p+1}^0 + t_{p+1}^k) \to -\infty \quad \text{as } k \to \infty$$

which is a contradiction.

(ii) \Rightarrow (iii). Suppose that x_{p+1} is bounded from below on $C_I \cap \Theta(x^0)$ but (3.3) is violated for all $\emptyset \neq I' \subset I$. In the following we only focus on the case when $I' = I = \{1, 2, \ldots, m\}$. All other cases for different $I' \subset I$ can be proved similarly.

(For I' = I so $C_{I'} = C_I$) Suppose that $v^* \in 0^+ C_{I \cup \{0\}}$ and $(e_{p+1})^T v^* < 0$. Then, $Q_0 v^* = 0$ and $x^0 + tv^* \in C_I$ for all $t \ge 0$. By (3.2), we have $v_i^* = 0, \forall i = 1, 2, ..., p$. Thus, $x(t) = x^0 + tv^* \in C \cap \Theta(x^0)$ for all $t \ge 0$. Then

$$x(t)_{p+1} = x_{p+1}^0 + tv_{p+1}^* = x_{p+1}^0 + t(e_{p+1})^T v^* \to -\infty \quad \text{as } t \to \infty,$$

which is a contradiction to (ii). So, if x_{p+1} is bounded from below on $C_I \cap \Theta(x^0)$, then for all $v^* \in 0^+ C_{I \cup \{0\}}$, there must be $(e_{p+1})^T v^* = 0$ and thus the $(p+1)^{\text{th}}$ component of $v^*, v_{p+1}^* = 0$.

Suppose $j \in I$ is such that $v^* \in 0^+ C_{I \cup \{0\}}$ and $(b^j)^T v^* < 0$. Since x_{p+1} is bounded from below on $C_I \cap \Theta(x^0)$ and since, for convex optimization, the boundedness implies attainment (see [7]), there exists $x^* \in C_I \cap \Theta(x^0)$ such that

(3.4)
$$x^* \in \operatorname*{argmin}_{C_I \cap \Theta(x^0)}(x_{p+1}).$$

Recall that, under Assumption (ii), for $x^0 \in C_I$, and $v^* \in 0^+ C_{I \cup \{0\}}$, there is $x(t) = x^0 + tv^* \in C_I \cap \Theta(x^0)$, $\forall t \geq 0$ and $v_i^* = 0$, $i = 1, 2, \ldots, p, p + 1$. We claim that, $\forall x \in C_{I \setminus \{j\}} \cap \Theta(x^0)$, its $(p+1)^{\text{th}}$ component x_{p+1} is bounded from below by x_{p+1}^* . Specifically, we want to prove that

(3.5)
$$x_{p+1} \ge (x^* + v^*)_{p+1} = x_{p+1}^* = \min_{C_I \cap \Theta(x^0)} (x_{p+1}).$$

Otherwise, assume that there exists $\overline{x} \in C_{I \setminus \{j\}} \cap \Theta(x^0)$ such that

(3.6)
$$\overline{x}_{p+1} < (x^* + v^*)_{p+1} = x_{p+1}^*$$

Let $(\overline{x}, x^* + v^*)$ be the line segment which connects, but not includes, the two end points \overline{x} , $x^* + v^*$. Notice from (3.6) that $z_{p+1} < x_{p+1}^*$ for any $z \in (\overline{x}, x^* + v^*)$. Since $v^* \in 0^+ C_{I \cup \{0\}}$, we know that $Q_j v^* = 0$. Then,

$$f_j(x^* + v^*) = (x^* + v^*)^T Q_j(x^* + v^*) + 2(b^j)^T (x^* + v^*) + \beta_j$$

= $f_j(x^*) + 2(b^j)^T v^*$
< $f_j(x^*) \le 0.$

That is, $x^* + v^*$ is an interior point in $C_j = \{x \mid f_j(x) \leq 0\}$. By choosing $z \in (\overline{x}, x^* + v^*)$ sufficiently close to $x^* + v^*$, we have $f_j(z) < 0$ and $z_{p+1} < x_{p+1}^*$. Since $C_I \subset C_{I \setminus \{j\}}$, we have $x^* + v^* \in C_I \cap \Theta(x^0) \subset C_{I \setminus \{j\}} \cap \Theta(x^0)$, so that

$$(\overline{x}, x^* + v^*) \subset C_{I \setminus \{j\}} \cap \Theta(x^0).$$

Then, $z \in C_{I \setminus \{j\}} \cap \Theta(x^0)$, which, together with $f_j(z) < 0$, implies that $z \in C_I \cap \Theta(x^0)$ and $z_{p+1} < x_{p+1}^*$. This contradicts (3.4). We have thus obtained (3.5). That is,

$$\min_{C_{I\setminus\{j\}}\cap\Theta(x^0)}(x_{p+1}) \ge \min_{C\cap\Theta(x^0)}(x_{p+1}).$$

Conversely, since $C_I \cap \Theta(x^0) \subset C_{I \setminus \{j\}} \cap \Theta(x^0)$, there also is

$$\min_{C_{I \setminus \{j\}} \cap \Theta(x^0)} (x_{p+1}) \le \min_{C_I \cap \Theta(x^0)} (x_{p+1}).$$

As a result, under Assumption (ii), if (iii) is violated for the subset I' = I, there always exists $j \in I$ such that

$$\min_{C_{I\setminus\{j\}}\cap\Theta(x^{0})}(x_{p+1}) = \min_{C_{I}\cap\Theta(x^{0})}(x_{p+1}).$$

In fact, the same argument applies to all other subsets $I' \subset I$. In particular, for $\emptyset \neq I' = I \setminus \{j\}$, there exists again $k \in I \setminus \{j\}$ such that

$$\min_{C_{I'\setminus\{j,k\}}\cap\Theta(x^0)}(x_{p+1}) = \min_{C_{I\setminus\{j\}}\cap\Theta(x^0)}(x_{p+1}) = \min_{C_{I}\cap\Theta(x^0)}(x_{p+1}).$$

Continuing the process, we shall arrive at the following chain of equalities:

$$\min_{C_{I} \cap \Theta(x^{0})} (x_{p+1}) = \min_{C_{I \setminus \{j\}} \cap \Theta(x^{0})} (x_{p+1}) = \min_{C_{I \setminus \{j,k\}} \cap \Theta(x^{0})} (x_{p+1}) = \dots = \min_{\Theta(x^{0})} (x_{p+1}).$$

On the left-hand side, $\min_{C_I \cap \Theta(x^0)}(x_{p+1})$ is bounded from below by Assumption (ii), while on the right-hand side, the infimum of x_{p+1} over the affine space $\Theta(x^0)$ is negative infinity. The contradiction proves (ii) \Rightarrow (iii).

(iii) \Rightarrow (i). Let $\emptyset \neq I' \subset I$ be the index set satisfying (3.3) but the function $f_0(x)$ is unbounded from below on C_I . Let $I'_0 = I' \cup \{0\}$ and

$$C_{I'_0} = \{ x \in \mathbb{R}^n \mid f_0(x) \le 0, f_i(x) \le 0, \forall i \in I' \}.$$

Since $f_0(x)$ is unbounded below on C_I , it is unbounded below on $C_{I'_0}$. Therefore, $C_{I'_0}$ is an unbounded set and its recession cone $0^+C_{I'_0} \not\supseteq \{0\}$. Moreover, due to Assumption (3.3),

$$0^{+}C_{I'_{0}} = \{ v \in \mathbb{R}^{n} \mid Q_{i}v = 0, (b^{i})^{T}v = 0, \forall i \in I'_{0} \}$$

is a vector space. Let $\{v_1, \ldots, v_k\}$ be an orthonormal basis of $0^+C_{I'_0}$, and define $H_a^{v_j}$ to be the hyperplane passing through $a \in C_{I'_0}$ with the normal vector v_j :

$$H_a^{v_j} = \{x \in \mathbb{R}^n \mid v_j^T(x-a) = 0\}, \quad j = 1, 2, \dots, k$$

Then, $C_{I'_0} \cap H_a^{v_j} \neq \emptyset, \forall j = 1, 2, \dots, k$, so we can define, for each $1 \le \eta \le k$,

$$C_{I'_0}^{\eta}(a) := C_{I'_0} \cap \left(\bigcap_{j=1}^{\eta} H_a^{v_j}\right).$$

We first claim that

$$\inf_{x \in C^1_{I'_0}(a)} f_0(x) = \inf_{x \in C^1_{I'_0}(b)} f_0(x), \quad \forall \, a, b \in C_{I'_0}.$$

Notice that $H_b^{v_1}$ is a translation of $H_a^{v_1}$ along v_1 so that $H_a^{v_1} + \lambda v_1 = H_b^{v_1}$. We can assume $\lambda \ge 0$, otherwise just exchange the role of a and b. Now, we have

(3.7)
$$C^{1}_{I'_{0}}(a) + \lambda v_{1} = C^{1}_{I'_{0}}(b).$$

Indeed, if $x + \lambda v_1 \in C^1_{I'_0}(a) + \lambda v_1$ then $x \in C^1_{I'_0}(a)$ so $x \in C_{I'_0}$ and $x \in H^{v_1}_a$. Since $v_1 \in 0^+ C_{I'_0}$ and $\lambda \ge 0$, we have $x + \lambda v_1 \in C_{I'_0}$. By translation, we have $x + \lambda v_1 \in H^{v_1}_b$. So $x + \lambda v_1 \in C_{I'_0} \cap H^{v_1}_b = C^1_{I'_0}(b)$. Conversely, if $y \in C^1_{I'_0}(b)$ then $y \in C_{I'_0}$ and $y \in H^{v_1}_b$. Then there is $x \in H^{v_1}_a$ such that $y = x + \lambda v_1$. Note that $Q_i v_1 = 0$ and $(b^i)^T v_1 = 0$ for all $i \in I'_0$ so $f_i(x) = f_i(y)$ and this implies that $x \in C_{I'_0}$. So $x \in C_{I'_0} \cap H^{v_1}_a = C^1_{I'_0}(a)$ and therefore $y \in C^1_{I'_0}(a) + \lambda v_1$. The equation (3.7) is proved. Then we have

$$\inf_{x \in (C^1_{I'_0}(a) + \lambda v_1)} f_0(x) = \inf_{x \in C^1_{I'_0}(b)} f_0(x).$$

But $f_0(x + \lambda v_1) = f_0(x)$ for all $x \in C^1_{I'_0}(a)$, so it holds that

$$\inf_{x \in C^1_{I'_0}(a)} f_0(x) = \inf_{x \in C^1_{I'_0}(b)} f_0(x), \quad \forall \, a, b \in C_{I'_0}.$$

This shows that

(3.8)
$$\inf_{C^{1}_{I'_{0}}(a)} f_{0}(x) = \inf_{\bigcup_{b \in C_{I'_{0}}} C^{1}_{I'_{0}}(b)} f_{0}(x).$$

Now we note that $C_{I'_0} = \bigcup_{b \in C_{I'_0}} \{b\} \subset \bigcup_{b \in C_{I'_0}} H^{v_1}_b$ so

$$\bigcup_{b \in C_{I'_0}} C^1_{I'_0}(b) = \bigcup_{b \in C_{I'_0}} (C_{I'_0} \cap H^{v_1}_b) = C_{I'_0} \cap \left(\bigcup_{b \in C_{I'_0}} H^{v_1}_b\right) = C_{I'_0}.$$

Equation (3.8) can thus be written as

(3.9)
$$\inf_{C^{1}_{I'_{0}}(a)} f_{0}(x) = \inf_{\bigcup_{b \in C_{I'_{0}}} C^{1}_{I'_{0}}(b)} f_{0}(x) = \inf_{C_{I'_{0}}} f_{0}(x).$$

Since $C_{I'_0}^2(a) = C_{I'_0} \cap \left(\bigcap_{\iota=1}^2 H_a^{v_\iota}\right) = (C_{I'_0} \cap H_a^{v_1}) \cap H_a^{v_2} = C_{I'_0}^1(a) \cap H_a^{v_2}$ and using (3.9), we can replace $C_{I'_0}^1(a)$ with $C_{I'_0}$ and apply the same argument as above to have $\inf_{x \in C_{I'_0}^2(a)} f_0(x) = \inf_{x \in C_{I'_0}} f_0(x)$. Continuing the process, we arrive at

(3.10)
$$\inf_{x \in C_{I'_0}} f_0(x) = \inf_{x \in C^1_{I'_0}(a)} f_0(x) = \inf_{x \in C^2_{I'_0}(a)} f_0(x) = \dots = \inf_{x \in C^k_{I'_0}(a)} f_0(x).$$

By assumption that $\inf_{x\in C} f_0(x) = -\infty$, we have $\inf_{x\in C_{I'_0}} f_0(x) = -\infty$. From (3.10) we have $\inf_{x\in C_{I'_0}} f_0(x) = \inf_{x\in C_{I'_0}} f_0(x) = -\infty$ and $C_{I'_0}^k(a)$ must be an unbounded set. So there exists $0 \neq w \in 0^+(C_{I'_0}^k(a))$, see [1]. On the other hand,

$$0^+(C^k_{I'_0}(a)) = 0^+ \left(C_{I'_0} \cap H^{v_1}_a \cap \dots \cap H^{v_k}_a \right)$$

and $0^+(C_{I'_0} \cap H^{v_1}_a \cap \cdots \cap H^{v_k}_a) = 0^+C_{I'_0} \cap 0^+(H^{v_1}_a \cap \cdots \cap H^{v_k}_a)$, see [12]. Then, $w \in 0^+(C_{I'_0})$ and $w \in 0^+(H^{v_1}_a \cap \cdots \cap H^{v_k}_a) = \bigcap_{i=1}^k 0^+H^{v_i}_a$. We note that $0^+C_{I'_0} := V$ is a vector space and, since each $H^{v_i}_a$ is an affine subspace, $0^+H^{v_i}_a$ is a vector subspace which is a translation of $H^{v_i}_a$. So we have

$$0^+ (H_a^{v_1} \cap \dots \cap H_a^{v_k}) = \bigcap_{i=1}^k 0^+ H_a^{v_i} = V^\perp.$$

This implies that $0 \neq w \in V \cap V^{\perp}$. This contradiction indicates that $f_0(x)$ must be bounded on C_I under the hypothesis (iii).

To end this section, we will show that main results in [4] and [6] are corollaries of Theorem 1.1.

Corollary 3.2. [4, Theorem 2.1] If C_I is nonempty and $Q_i = 0$ for all $i \in I$, then (1.1) has a solution if and only if the following condition is satisfied:

(3.11)
$$((b^i)^T v \le 0, \forall i \in I, Q_0 v = 0) \implies (b^0)^T v \ge 0.$$

Proof. (\Rightarrow) When (1.1) has a solution, it means that (1.1) is bounded from below on C_I . Please see [7]. We need to prove that (3.11) occurs. Suppose on the contrary that there exists v^* such that

(3.12)
$$(b^i)^T v^* \le 0, \ \forall i \in I, \ Q_0 v^* = 0 \ \text{but} \ (b^0)^T v^* < 0.$$

Then (3.12) implies that (1.4) is violated for any $I' \subset I$. By the negation of Theorem 1.1, (1.1) must be unbounded from below, which is a contradiction.

(\Leftarrow) Assume that (3.11) holds. We need to prove that (1.1) has a solution. To avoid triviality, we assume that f_0 is unbounded from below on \mathbb{R}^n and f_0 adopts the canonical form: $f_0(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \cdots + \lambda_p x_p^2 + 2\mu x_{p+1}$ ($\mu > 0$). Then, $b^0 = 2\mu e_{p+1}$. Moreover, from (3.11), we immediately have

(3.13)
$$(v^T Q_0 = 0, v^T b^i \le 0, \forall i \in I_0 = I \cup \{0\}) \implies v^T b^0 = 0.$$

Let $x^0 \in C_I$ and define

$$\overline{C} = C_I \cap \Theta(x^0) \cap \{x : x_{p+1} \le x_{p+1}^0\}.$$

Since C_I is a polyhedron, \overline{C} is, too. By Minkowski-Weyl theorem, there exists $c^1, \ldots, c^j \in \mathbb{R}^n$ such that

$$\overline{C} = 0^+(\overline{C}) + \operatorname{conv}(c^1, \dots, c^j),$$

where conv denotes the convex hull. Since $\Theta(x^0)$ involves only variables $x_{p+1}, x_{p+2}, \ldots, x_n$, to keep $x + tv \in \Theta(x^0) \cap \{x : x_{p+1} \le x_{p+1}^0\}, x \in \Theta(x^0) \cap \{x : x_{p+1} \le x_{p+1}^0\}, t \ge 0$, it is necessary that $v_1 = v_2 = \cdots = v_p = 0$ and $v_{p+1} \le 0$. In other words, we have $v^T Q_0 = 0$ and $v^T b^0 = 2\mu v_{p+1} \le 0$ so that

$$0^+(\overline{C}) = \{ v : v^T Q_0 = 0, v^T b^i \le 0, \forall i \in I_0 \}.$$

Then, (3.13) implies that, for $v \in 0^+(\overline{C})$, there is $v_{p+1} = 0$. On the other hand, the convex hull $\operatorname{conv}(c^1, \ldots, c^j)$ is finitely generated and therefore bounded. As a result, the $(p+1)^{\text{th}}$ component of vectors in \overline{C} is bounded. Therefore x_{p+1} is bounded from below on $C_I \cap \Theta(x^0)$. Applying Theorem 3.1, we have f_0 is bounded from below on C_I , so (1.1) has a solution.

Corollary 3.3. [6, Theorem 2.1] Let $C_I \neq \emptyset$.

(i) If (1.1) has a solution, then

(3.14) $(v \in 0^+ C_I, Q_0 v = 0) \implies (b^0)^T v \ge 0.$

(ii) If either (3.14) holds and $b^0 = 0$ or the condition

$$(3.15) (v \in 0^+ C_I \setminus \{0\}, Q_0 v = 0) \implies (b^0)^T v > 0$$

is satisfied, then (1.1) has a solution.

Proof. The proof of (i) is analogous to the necessary part of the proof for Corollary 3.2.

For (ii), using the canonical form of f_0 , it is clear that $b^0 = 0$ implies that f_0 is bounded from below on \mathbb{R}^n and thus on C_I . When $b^0 \neq 0$ but (3.15) holds, this immediately implies that $0^+(C_{I_0}) \setminus \{0\} = \emptyset$. That is, $0^+(C_{I_0}) = \{0\}$. Then, $(\forall i \in I_0) \ Q_i v = 0, (b^i)^T v \leq 0 \Rightarrow$ $(b^i)^T v = 0$. By Theorem 1.1, f_0 is bounded from below on C_I and thus (1.1) has a solution.

4. Concluding remarks

In this paper, we generalize Eaves' theorem [4–6] to give a theoretical characterization for the boundedness of problem (1.1) and show clearly that if (1.1) is unbounded from below, the unboundedness happens only on a translation of the null space of Q_0 . On the other hand, our result provides another angle to see how the function $f_0(x)$ is unbounded on C_I if it is (see statement (ii) of Theorem 3.1) and also a complete answer to the question proposed by Kim et al. in [6]. Finally, we believe that our technique can be extended to complete the results obtained by Dong and Tam in their paper [3].

References

- R. J. Caron and W. Obuchowska, Unboundedness of a convex quadratic function subject to concave and convex quadratic constraints, European J. Oper. Res. 63 (1992), no. 1, 114–123.
- [2] _____, An algorithm to determine boundedness of quadratically constrained convex quadratic programmes, European J. Oper. Res. 80 (1995), no. 2, 431–438.
- [3] V. V. Dong and N. N. Tam, On the solution existence of convex quadratic programming problems in Hilbert spaces, Taiwanese J. Math. 20 (2016), no. 6, 1417–1436.
- [4] Z. Dostál, On solvability of convex noncoercive quadratic programming problems, J. Optim. Theory Appl. 143 (2009), no. 2, 413–416.
- [5] B. C. Eaves, On quadratic programming, Management Sci. 17 (1971), 698–711.
- [6] D. S. Kim, N. N. Tam and N. D. Yen, Solution existence and stability of quadratically constrained convex quadratic programs, Optim. Lett. 6 (2012), no. 2, 363–373.
- [7] Z.-Q. Luo and S. Zhang, On extensions of the Frank-Wolfe theorems, Comput. Optim. Appl. 13 (1999), no. 1-3, 87–110.
- [8] K. G. Murty, *Linear Complementarity, Linear and Nonlinear Programming*, Sigma Series in Applied Mathematics 3, Heldermann Verlag, Berlin, 1988.
- [9] E. L. Peterson and J. G. Ecker, Geometric programming: duality in quadratic programming and l_p-approximation I, Proceedings of the Princeton Symposium on Mathematical Programming (Princeton Univ., 1967), 445–480, Princeton University Press, Princeton, N.J., 1970.
- [10] _____, Geometric programming: duality in quadratic programming and l_papproximation II (Canonical programs), SIAM J. Appl. Math. **17** (1969), 317–340.
- [11] _____, Geometric programming: duality in quadratic programming and l_p approximation III: Degenerate programs, J. Math. Anal. Appl. **29** (1970), 365–383.
- [12] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series 28, Princeton University Press, Princeton, N.J., 1970.
- [13] T. Terlaky, $On l_p$ programming, European J. Oper. Res. **22** (1985), no. 1, 70–100.

Huu-Quang Nguyen Department of Mathematics, School of Natural Sciences Education, Vinh University, Vinh, Nghe An, Vietnam and Department of Mathematics, National Cheng Kung University, Taiwan *E-mail address*: quangdhv@gmail.com

Van-Bong Nguyen Department of Mathematics, Tay Nguyen University, Vietnam *E-mail address*: nvbong@ttn.edu.vn

Ruey-Lin Sheu Department of Mathematics, National Cheng Kung University, Taiwan *E-mail address*: rsheu@mail.ncku.edu.tw