Gradient Estimates for the Nonlinear Parabolic Equation with Two Exponents on Riemannian Manifolds

Songbo Hou

Abstract. In this paper, we study the nonlinear parabolic equation with two exponents on complete noncompact Riemannian maniflods. The special types of such equation include the Fisher-KPP equation, the parabolic Allen-Cahn equation and the Newell-Whitehead equation. We get the Souplet-Zhang's gradient estimates for the positive solutions to such equation. We also obtain the Liouville theorem for positive ancient solutions. Our results extend those of Souplet-Zhang (Bull. London. Math. Soc. 38 (2006), 1045–1053) and Zhu (Acta Math. Sci. Ser. B 36 (2016), no. 2, 514–526).

1. Introduction

Let M be a complete noncompact Riemannian manifold. In this paper, we consider the following nonlinear parabolic equation

(1.1)
$$\frac{\partial u}{\partial t} = \Delta u(x,t) + \lambda(x,t)u^p + \eta(x,t)u^q$$

on M, where the functions λ and η are C^1 in x and C^0 in t, p and q are positive constants with $p \ge 1$, $q \ge 1$. If $\lambda = -\eta = c$, p = 1 and q = 2, where c is a positive constant, then the equation (1.1) becomes

(1.2)
$$\frac{\partial u}{\partial t} = \Delta u + cu(1-u)$$

which is called the Fisher-KPP equation [6, 11]. It describes the propagation of an evolutionarily advantageous gene in a population and has many applications. Cao, Liu, Pendleton and Ward [4] derived some differential Harnack estimates for positive solutions to (1.2) on Riemannian manifolds. Geng and the author [7] extended the result of [4]. If $\lambda = 1, \eta = -1, p = 1$ and q = 3, then (1.1) becomes

$$\frac{\partial u}{\partial t} = \Delta u - (u^3 - u)$$

which is called the parabolic Allen-Cahn equation. A Harnack inequality for this equation was studied in [1]. The gradient estimates for the elliptic Allen-Cahn equation on

Communicated by Duy-Minh Nhieu.

Received February 12, 2019; Accepted April 5, 2020.

²⁰¹⁰ Mathematics Subject Classification. 35K55, 58J35.

Key words and phrases. gradient estimate, nonlinear parabolic equation, Liouville theorem.

Riemannian manifolds were obtained by the author in [9]. The special type of (1.1) also includes the Newell-Whitehead equation [16]

$$\frac{\partial u}{\partial t} = \Delta u + au - bu^3$$

where a and b are positive constants. It is used to model the change of concentration of a substance. The reader may refer to [2] for the recent results for such equation.

The gradient estimate is an important method in study on parabolic and elliptic equations. It was first proved by Yau [19] and Cheng-Yau [5], and was further developed by Li-Yau [13], Li [12], Hamilton [8], Negrin [15], Souplet and Zhang [17], Ma [14], Yang [18], etc. In [17], Souplet and Zhang considered the heat equation

(1.3)
$$\frac{\partial u}{\partial t} = \Delta u$$

and proved the following result.

Theorem 1.1. Let M be an n-dimensional Riemannian manifold with $n \ge 2$ and Ricci $(M) \ge -k, k \ge 0$. If u is any positive solution to (1.3) in $Q_{R,T} \equiv B(x_0, R) \times [t_0 - T, t_0] \subset M \times (-\infty, +\infty)$ and $u \le N$ in $Q_{R,T}$, then there holds

$$\frac{|\nabla u(x,t)|}{u(x,t)} \le c\left(\frac{1}{R} + \frac{1}{T^{1/2}} + \sqrt{k}\right) \left(1 + \log\frac{N}{u(x,t)}\right)$$

in $Q_{R/2,T/2}$, where c = c(n).

Later, using the method of Souplet and Zhang, Zhu [20] studied the equation

(1.4)
$$\left(\Delta - \frac{\partial}{\partial t}\right)u(x,t) + h(x,t)u^p(x,t) = 0, \quad p > 1$$

on compete noncomapct Riemannian manfolds, where the function h(x, t) is assumed to be C^1 in the first variable and C^0 in the second variable. He proved the following result.

Theorem 1.2. Let M be an n-dimensional Riemannian manifold with $n \ge 2$ and Ricci $(M) \ge -k$, $k \ge 0$. If u is any positive solution to (1.4) in $Q_{R,T} \equiv B(x_0, R) \times [t_0 - T, t_0] \subset M \times (-\infty, +\infty)$ and $u \le N$ in $Q_{R,T}$, then for any $\beta \in (0, 2)$, there exists a constant $c = c(n, p, \beta)$ such that

$$(1.5) \qquad \frac{|\nabla u(x,t)|^2}{u(x,t)^{\beta}} \le cN^{2-\beta} \left(\frac{1}{R^2} + \frac{1}{T} + k + N^{p-1} \|h^+\|_{L^{\infty}(Q_{R,T})} + N^{\frac{2}{3}(p-1)} \|\nabla h\|_{L^{\infty}(Q_{R,T})}^{2/3}\right)$$

in $Q_{R/2,T/2}$, where $h^+ = \max\{h, 0\}$.

The same method was also used by Huang and Ma [10] to obtain gradient estimates for the equations

$$\frac{\partial u}{\partial t} = \Delta u + \lambda u^{\alpha}$$
 and $\frac{\partial u}{\partial t} = \Delta u + au \log u + bu$

under the Ricci flow, where λ , α , a and b are constants.

In this paper, we get the following result.

Theorem 1.3. Let M be an n-dimensional Riemannian manifold with $n \ge 2$ and Ricci $(M) \ge -k$, $k \ge 0$. Suppose that $\lambda(x,t)$ and $\eta(x,t)$ are C^1 in x and C^0 in t, pand q are positive constants with $p \ge 1$, $q \ge 1$. If u is any positive solution to (1.1) in $Q_{R,T} \equiv B(x_0, R) \times [t_0 - T, t_0] \subset M \times (-\infty, +\infty)$ and $u \le N$ in $Q_{R,T}$, then there exists a constant c = c(n, p, q) such that

(1.6)
$$\frac{|\nabla u(x,t)|}{u(x,t)} \le c \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \sqrt{k} + N^{(p-1)/2} \|\lambda^+\|_{L^{\infty}(Q_{R,T})}^{1/2} + N^{(q-1)/2} \|\eta^+\|_{L^{\infty}(Q_{R,T})}^{1/2} + N^{\frac{1}{3}(p-1)} \|\nabla\lambda\|_{L^{\infty}(Q_{R,T})}^{1/3} + N^{\frac{1}{3}(q-1)} \|\nabla\eta\|_{L^{\infty}(Q_{R,T})}^{1/3} \right) \left(1 + \log \frac{N}{u} \right)$$

in $Q_{R/2,T/2}$, where $\lambda^+ = \max\{\lambda, 0\}, \ \eta^+ = \max\{\eta, 0\}.$

Note that the estimate (1.5) is equivalent to

$$\frac{|\nabla u(x,t)|}{u(x,t)} \le c \left(\frac{N}{u}\right)^{1-\beta/2} \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \sqrt{k} + N^{(p-1)/2} \|h^+\|_{L^{\infty}(Q_{R,T})}^{1/2} + N^{\frac{1}{3}(p-1)} \|\nabla h\|_{L^{\infty}(Q_{R,T})}^{1/3}\right).$$

Applying Theorem 1.3 to (1.4) yields

$$\frac{|\nabla u(x,t)|}{|u(x,t)|} \le c \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \sqrt{k} + N^{(p-1)/2} \|h^+\|_{L^{\infty}(Q_{R,T})}^{1/2} + N^{\frac{1}{3}(p-1)} \|\nabla h\|_{L^{\infty}(Q_{R,T})}^{1/3}\right) \left(1 + \log \frac{N}{u}\right).$$

Since $\lim_{x\to+\infty} \frac{\log x}{x^{1-\beta/2}} = 0$, if N/u is large enough, then we have

$$1 + \log \frac{N}{u} \le \left(\frac{N}{u}\right)^{1-\beta/2}$$

So in this sense, the estimate (1.6) improves (1.5).

We also get the Liouville type theorem.

Theorem 1.4. Let M be an n-dimensional Riemannian manifold with nonnegative Ricci curvature. Suppose that λ , η are nonpositive constants and one of them is negative, then (1.1) does not admit any positive ancient solution with $u(x,t) = e^{o(d(x) + \sqrt{|t|})}$ near infinity.

The method of the proofs of main theorems comes from [10, 17, 20].

2. Proofs of main theorems

2.1. Proof of Theorem 1.3

Let $\widetilde{u} = u/N$. Then \widetilde{u} satisfies

(2.1)
$$\frac{\partial \widetilde{u}}{\partial t} = \Delta \widetilde{u} + \widetilde{\lambda} \widetilde{u}^p + \widetilde{\eta} \widetilde{u}^q$$

where $\widetilde{\lambda} = \lambda N^{p-1}$, $\widetilde{\eta} = \eta N^{q-1}$. Noting $\widetilde{u} \leq 1$, we let

(2.2)
$$f = \log \widetilde{u}, \quad \omega = |\nabla \ln(1-f)|^2.$$

In view of (2.1), we have

(2.3)
$$\Delta f + |\nabla f|^2 + \widetilde{\lambda} e^{(p-1)f} + \widetilde{\eta} e^{(q-1)f} - f_t = 0.$$

By (2.2) and (2.3), we have

$$\begin{split} \omega_t &= \frac{2f_i(f_t)_i}{(1-f)^2} + \frac{2f_j^2 f_t}{(1-f)^3} \\ &= \frac{2f_i(f_{jji} + 2f_j f_{ji} + \widetilde{\lambda}_i e^{(p-1)f} + \widetilde{\lambda}(p-1)e^{(p-1)f} f_i + \widetilde{\eta}_i e^{(q-1)f} + \widetilde{\eta}(q-1)e^{(q-1)f} f_i)}{(1-f)^2} \\ &+ \frac{2f_j^2(f_{ii} + f_i^2 + \widetilde{\lambda} e^{(p-1)f} + \widetilde{\eta} e^{(q-1)f})}{(1-f)^3}. \end{split}$$

It follows from the similar calculation that

$$\Delta\omega = \frac{2f_{ij}^2 + 2f_j f_{jii}}{(1-f)^2} + \frac{8f_i f_{ij} f_j + 2f_j^2 f_{ii}}{(1-f)^3} + \frac{6f_i^2 f_j^2}{(1-f)^4}$$
$$= \frac{2f_{ij}^2 + 2f_j f_{iij} + 2R_{ij} f_i f_j}{(1-f)^2} + \frac{8f_i f_{ij} f_j + 2f_j^2 f_{ii}}{(1-f)^3} + \frac{6f_i^2 f_j^2}{(1-f)^4}$$

where Bochner's identity is used. Noting that $R_{ij}f_if_j \ge -kf_i^2$, we have

$$\Delta \omega - \omega_t \geq \frac{2f_{ij}^2 - 4f_i f_j f_{ij} - 2e^{(p-1)f} f_i \widetilde{\lambda}_i - 2\widetilde{\lambda}(p-1)e^{(p-1)f} f_i^2}{(1-f)^2} - \frac{2e^{(q-1)f} f_i \widetilde{\eta}_i + 2\widetilde{\eta}(q-1)e^{(q-1)f} f_i^2 + 2kf_i^2}{(1-f)^2} + \frac{8f_i f_{ij} f_j - 2f_j^2 f_i^2 - 2\widetilde{\lambda}e^{(p-1)f} f_j^2 - 2\widetilde{\eta}e^{(q-1)f} f_j^2}{(1-f)^3} + \frac{6f_i^2 f_j^2}{(1-f)^4}.$$

From (2.2), we deduce that

(2.5)
$$-\frac{2f}{1-f}\nabla f\nabla\omega = \frac{4f_if_{ij}f_j}{(1-f)^2} + \frac{4f_i^2f_j^2 - 4f_if_{ij}f_j}{(1-f)^3} - \frac{4f_i^2f_j^2}{(1-f)^4}.$$

Combining (2.4) and (2.5), we have

$$\begin{split} \Delta \omega - \omega_t - \frac{2f}{1-f} \nabla f \nabla \omega &\geq \frac{2f_{ij}^2 - 2e^{(p-1)f} f_i \widetilde{\lambda}_i - 2\widetilde{\lambda}(p-1)e^{(p-1)f} f_i^2}{(1-f)^2} \\ &- \frac{2e^{(q-1)f} f_i \widetilde{\eta}_i + 2\widetilde{\eta}(q-1)e^{(q-1)f} f_i^2 + 2kf_i^2}{(1-f)^2} \\ &+ \frac{4f_i f_{ij} f_j + 2f_j^2 f_i^2 - 2\widetilde{\lambda}e^{(p-1)f} f_j^2 - 2\widetilde{\eta}e^{(q-1)f} f_j^2}{(1-f)^3} + \frac{2f_i^2 f_j^2}{(1-f)^4}. \end{split}$$

Hölder's inequality implies that

$$\left|\frac{4f_if_{ij}f_j}{(1-f)^3}\right| \le \frac{2f_{ij}^2}{(1-f)^2} + \frac{2f_i^2f_j^2}{(1-f)^4}.$$

Thus we have

$$\begin{split} \Delta \omega &- \omega_t - \frac{2f}{1-f} \nabla f \nabla \omega \\ &\geq -\frac{2e^{(p-1)f} f_i \widetilde{\lambda}_i + 2e^{(q-1)f} f_i \widetilde{\eta}_i}{(1-f)^2} - \frac{2\widetilde{\lambda}(p-1)e^{(p-1)f} f_i^2 + 2\widetilde{\eta}(q-1)e^{(q-1)f} f_i^2 + 2k f_i^2}{(1-f)^2} \\ (2.6) &+ \frac{2f_i^2 f_j^2 - 2\widetilde{\lambda} e^{(p-1)f} f_j^2 - 2\widetilde{\eta} e^{(q-1)f} f_j^2}{(1-f)^3} \\ &= 2(1-f)\omega^2 - 2\widetilde{\lambda} \left(p - 1 + \frac{1}{1-f} \right) e^{(p-1)f} \omega - 2\widetilde{\eta} \left(q - 1 + \frac{1}{1-f} \right) e^{(q-1)f} \omega \\ &- \frac{2e^{(p-1)f} f_i \widetilde{\lambda}_i + 2e^{(q-1)f} f_i \widetilde{\eta}_i}{(1-f)^2} - 2k\omega. \end{split}$$

Now we choose a smooth cut-off function $\psi = \psi(x, t)$ with compact support in $Q_{R,T}$ such that

(1)
$$\psi = \psi(r,t), 0 \le \psi \le 1$$
 with $\psi = 1$ in $Q_{R/2,T/2}$, where $r = d(x, x_0)$;

- (2) ψ is decreasing with respect to r;
- (3) for any $0 < \alpha < 1$, $|\partial_r \psi|/\psi^{\alpha} \le C_{\alpha}/R$, $|\partial_r^2 \psi|/\psi^{\alpha} \le C_{\alpha}/R^2$;
- (4) $|\partial_t \psi| / \psi^{1/2} \le C/T.$

Using (2.6), we get

$$\begin{split} &\Delta(\psi\omega) - 2\frac{\nabla\psi}{\psi} \cdot \nabla(\psi\omega) - (\psi\omega)_t \\ &\geq 2(1-f)\psi\omega^2 - 2\widetilde{\lambda}\left(p-1+\frac{1}{1-f}\right)e^{(p-1)f}\psi\omega - 2\widetilde{\eta}\left(q-1+\frac{1}{1-f}\right)e^{(q-1)f}\psi\omega \\ &\quad - 2k\psi\omega - \frac{2e^{(p-1)f}f_i\widetilde{\lambda}_i + 2e^{(q-1)f}f_i\widetilde{\eta}_i}{(1-f)^2}\psi + \frac{2f}{1-f}\nabla f\nabla(\psi\omega) - \frac{2f\omega}{1-f}\nabla f\nabla\psi \end{split}$$

$$-\frac{2|\nabla\psi|^2}{\psi}\omega + (\Delta\psi)\omega - \psi_t\omega.$$

Suppose that $\psi\omega$ attains the maximum at (x_1, t_1) . The argument in [3] implies that we can assume x_1 is not in the cut-locus of M. Then we have $\Delta(\psi\omega) \leq 0$, $(\psi\omega)_t \geq 0$ and $\nabla(\psi\omega) = 0$ at (x_1, t_1) . It follows that

$$(2.7) \qquad 2(1-f)\psi\omega^2 \le 2\widetilde{\lambda}\left(p-1+\frac{1}{1-f}\right)e^{(p-1)f}\psi\omega+2\widetilde{\eta}\left(q-1+\frac{1}{1-f}\right)e^{(q-1)f}\psi\omega + 2k\psi\omega + \frac{2e^{(p-1)f}f_i\widetilde{\lambda}_i+2e^{(q-1)f}f_i\widetilde{\eta}_i}{(1-f)^2}\psi + \frac{2f\omega}{1-f}\nabla f\nabla\psi + \frac{2|\nabla\psi|^2}{\psi}\omega - (\Delta\psi)\omega + \psi_t\omega.$$

In view of $p \ge 1, q \ge 1$ and $f \le 0$, we have

$$(2.8) \qquad \begin{aligned} & 2\widetilde{\lambda}\left(p-1+\frac{1}{1-f}\right)e^{(p-1)f}\psi\omega+2\widetilde{\eta}\left(q-1+\frac{1}{1-f}\right)e^{(q-1)f}\psi\omega\\ & \leq 2\widetilde{\lambda}^+p\psi\omega+2\widetilde{\eta}^+q\psi\omega\\ & \leq \frac{1}{16}\psi\omega^2+16\psi(\widetilde{\lambda}^+p)^2+\frac{1}{16}\psi\omega^2+16\psi(\widetilde{\eta}^+q)^2\\ & \leq \frac{1}{8}\psi\omega^2+16(\widetilde{\lambda}^+p)^2+16(\widetilde{\eta}^+q)^2 \end{aligned}$$

where $\tilde{\lambda}^+ = \max{\{\tilde{\lambda}, 0\}}, \, \tilde{\eta}^+ = \max{\{\tilde{\eta}, 0\}}$. Straightforward calculations show

$$(2.9) \qquad \frac{2e^{(p-1)f}f_{i}\widetilde{\lambda}_{i}+2e^{(q-1)f}f_{i}\widetilde{\eta}_{i}}{(1-f)^{2}}\psi \\ \leq \frac{f_{i}^{4}}{2(1-f)^{4}}\psi + \frac{3|\nabla\widetilde{\lambda}|^{4/3}}{2(1-f)^{4/3}}\psi + \frac{f_{i}^{4}}{2(1-f)^{4}}\psi + \frac{3|\nabla\widetilde{\eta}|^{4/3}}{2(1-f)^{4/3}}\psi \\ \leq \frac{f_{i}^{4}}{(1-f)^{4}}\psi + \frac{3}{2}(|\nabla\widetilde{\lambda}|^{4/3}+|\nabla\widetilde{\eta}|^{4/3}) \\ \leq (1-f)\psi\omega^{2} + \frac{3}{2}(|\nabla\widetilde{\lambda}|^{4/3}+|\nabla\widetilde{\eta}|^{4/3}), \\ \left|\frac{2f\omega}{1-f}\nabla f\nabla\psi\right| \leq 2\omega^{3/2}|f||\nabla\psi| = 2[\psi(1-f)\omega^{2}]^{3/4}\frac{|f||\nabla\psi|}{[\psi(1-f)]^{3/4}} \\ \leq \frac{1}{8}(1-f)\psi\omega^{2} + c\frac{(f|\nabla\psi|)^{4}}{[\psi(1-f)]^{3}} \\ \leq \frac{1}{8}(1-f)\psi\omega^{2} + c\frac{f^{4}}{R^{4}(1-f)^{3}}, \\ (2.11) \qquad 2k\psi\omega \leq \frac{1}{8}(1-f)\psi\omega^{2} + ck^{2}. \end{cases}$$

By the estimates of Souplet and Zhang [17], we have

(2.12)
$$\frac{|\nabla\psi|^2}{\psi}\omega \le \frac{1}{8}\psi\omega^2 + c\frac{1}{R^4} \le \frac{1}{8}(1-f)\psi\omega^2 + c\frac{1}{R^4},$$

(2.13)
$$-(\Delta\psi)\omega \le \frac{1}{8}\psi\omega^2 + c\frac{1}{R^4} + ck\frac{1}{R^2} \le \frac{1}{8}(1-f)\psi\omega^2 + c\frac{1}{R^4} + ck\frac{1}{R^2},$$

(2.14)
$$|\psi_t|\omega \le \frac{1}{8}\psi\omega^2 + c\frac{1}{T^2} \le \frac{1}{8}(1-f)\psi\omega^2 + c\frac{1}{T^2}.$$

Combining (2.7)–(2.14), we obtain

$$\begin{aligned} \frac{1}{8}(1-f)\psi\omega^2 &\leq 16(\widetilde{\lambda}^+p)^2 + 16(\widetilde{\eta}^+q)^2 + \frac{3}{2}\left(|\nabla\widetilde{\lambda}|^{4/3} + |\nabla\widetilde{\eta}|^{4/3}\right) \\ &+ c\frac{f^4}{R^4(1-f)^3} + ck^2 + c\frac{1}{R^4} + ck\frac{1}{R^2} + c\frac{1}{T^2}. \end{aligned}$$

Hence

$$\begin{split} \psi\omega^{2}(x_{1},t_{1}) &\leq cN^{2p-2} \|\lambda^{+}\|_{L^{\infty}(Q_{R,T})}^{2} + cN^{2q-2} \|\eta^{+}\|_{L^{\infty}(Q_{R,T})}^{2} + cN^{\frac{4}{3}(p-1)} \|\nabla\lambda\|_{L^{\infty}(Q_{R,T})}^{4/3} \\ &+ cN^{\frac{4}{3}(q-1)} \|\nabla\eta\|_{L^{\infty}(Q_{R,T})}^{4/3} + c\frac{f^{4}}{R^{4}(1-f)^{4}} + ck^{2} + c\frac{1}{R^{4}} + c\frac{1}{T^{2}}. \end{split}$$

By above estimate, there holds for all (x, t) in $Q_{R,T}$,

$$\begin{split} \psi^2 \omega^2(x,t) &\leq c N^{2p-2} \|\lambda^+\|_{L^{\infty}(Q_{R,T})}^2 + c N^{2q-2} \|\eta^+\|_{L^{\infty}(Q_{R,T})}^2 + c N^{\frac{4}{3}(p-1)} \|\nabla\lambda\|_{L^{\infty}(Q_{R,T})}^{4/3} \\ &+ c N^{\frac{4}{3}(q-1)} \|\nabla\eta\|_{L^{\infty}(Q_{R,T})}^{4/3} + c \frac{1}{R^4} + c \frac{1}{T^2} + ck^2. \end{split}$$

Noting that $\psi(x,t) = 1$ in $Q_{R/2,T/2}$, we get

$$\frac{|\nabla f(x,t)|}{1-f(x,t)} \leq \frac{c}{R} + \frac{c}{\sqrt{T}} + c\sqrt{k} + cN^{(p-1)/2} \|\lambda^+\|_{L^{\infty}(Q_{R,T})}^{1/2} + cN^{(q-1)/2} \|\eta^+\|_{L^{\infty}(Q_{R,T})}^{1/2} + cN^{\frac{1}{3}(p-1)} \|\nabla\lambda\|_{L^{\infty}(Q_{R,T})}^{1/3} + cN^{\frac{1}{3}(q-1)} \|\nabla\eta\|_{L^{\infty}(Q_{R,T})}^{1/3}.$$

Finally we have

$$\frac{|\nabla u(x,t)|}{u(x,t)} \le c \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \sqrt{k} + N^{(p-1)/2} \|\lambda^+\|_{L^{\infty}(Q_{R,T})}^{1/2} + N^{(q-1)/2} \|\eta^+\|_{L^{\infty}(Q_{R,T})}^{1/2} + N^{\frac{1}{3}(p-1)} \|\nabla\lambda\|_{L^{\infty}(Q_{R,T})}^{1/3} + N^{\frac{1}{3}(q-1)} \|\nabla\eta\|_{L^{\infty}(Q_{R,T})}^{1/3} \right) \left(1 + \log \frac{N}{u} \right).$$

2.2. Proof of Theorem 1.4

We prove it by contradiction. Suppose that u is a positive solution to (1.1). Noting that λ and η are nonpositive constants, it follows from Theorem 1.3 that

(2.15)
$$\frac{|\nabla u(x,t)|}{u(x,t)} \le c\left(\frac{1}{R} + \frac{1}{\sqrt{T}}\right)\left(1 + \log\frac{N}{u}\right).$$

By the same argument as in the proof of Theorem 1.2 in [17] and Theorem 1.8 in [20], fixing (x_0, t_0) and applying (2.15) to u on $B(x_0, R) \times [t_0 - R^2, t_0]$, we get

$$\frac{|\nabla u(x_0, t_0)|}{u(x_0, t_0)} \le \frac{C}{R} [1 + o(R)].$$

It follows that $|\nabla u(x_0, t_0)| = 0$ by letting $R \to \infty$. Noting (x_0, t_0) is arbitrary, we have u(x, t) = u(t). Then by (1.1), we get $\frac{du}{dt} = \lambda u^p + \eta u^q$. Without loss of generality, we assume that $\lambda < 0$.

If p > 1, integrating $\frac{du}{dt}$ on [t, 0] with t < 0 implies that

$$\frac{1}{1-p}(u^{1-p}(0) - u^{1-p}(t)) \le -\lambda t.$$

Then

$$u^{p-1}(t) \le u^{p-1}(0) + (1-p)\lambda t.$$

This yields that if t is large enough, $u^{p-1}(t) < 0$ which contradicts that u is positive.

If p = 1, we get for t < 0

$$\log u(0) - \log u(t) \le -\lambda t.$$

Hence $u(t) \ge u(0)e^{\lambda t}$, which contradicts $u(x,t) = e^{o(d(x) + \sqrt{|t|})}$ near infinity. We finish the proof.

References

- M. Băileşteanu, A Harnack inequality for the parabolic Allen-Cahn equation, Ann. Global Anal. Geom. 51 (2017), no. 4, 367–378.
- [2] D. Booth, J. Burkart, X. Cao, M. Hallgren, Z. Munro, J. Snyder and T. Stone, A differential Harnack inequality for the Newell-Whitehead equation, arXiv:1712.04024.
- [3] E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45–56.
- [4] X. Cao, B. Liu, I. Pendleton and A. Ward, Differential Harnack estimates for Fisher's equation, Pacific J. Math. 290 (2017), no. 2, 273–300.
- [5] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354.
- [6] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), no. 4, 355–369.

- [7] X. Geng and S. Hou, Gradient estimates for the Fisher-KPP equation on Riemannian manifolds, Bound. Value Probl. 2018 (2018), no. 25, 12 pp.
- [8] R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113–126.
- S. Hou, Gradient estimates for the Allen-Cahn equation on Riemannian manifolds, Proc. Amer. Math. Soc. 147 (2019), no. 2, 619–628.
- [10] G. Huang and B. Ma, Hamilton-Souplet-Zhang's gradient estimates for two types of nonlinear parabolic equations under the Ricci flow, J. Funct. Spaces 2016 (2016), Art. ID 2894207, 7 pp.
- [11] A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moscou Sér. Internat. A 1 (1937), 1–25; English transl. in: P. Pelcé, Dynamics of Curved Fronts, 105–130, Perspectives in Physics, Academic Press, 1988.
- [12] J. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal. 100 (1991), no. 2, 233–256.
- [13] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201.
- [14] L. Ma, Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal. 241 (2006), no. 1, 374–382.
- [15] E. R. Negrín, Gradient estimates and a Liouville type theorem for the Schrödinger operator, J. Funct. Anal. 127 (1995), no. 1, 198–203.
- [16] A. C. Newell and J. A. Whitehead, *Finite bandwidth, finite amplitude convection*, J. Fluid Mech. **38** (1969), no. 2, 279–303.
- [17] P. Souplet and Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006), no. 6, 1045–1053.
- [18] Y. Yang, Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds, Proc. Amer. Math. Soc. 136 (2008), no. 11, 4095–4102.
- [19] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228.

[20] X. Zhu, Gradient estimates and Liouville theorems for linear and nonlinear parabolic equations on Riemannian manifolds, Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 2, 514–526.

Songbo Hou

Department of Applied Mathematics, College of Science, China Agricultural University, Beijing, 100083, China

 $E\text{-}mail \ address: \texttt{housb@cau.edu.cn}$