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Asymptotic Behavior of the Initial-boundary Value Problem of

Landau-Lifshitz-Schrödinger Type

Yutian Lei

Abstract. This paper is concerned with the asymptotic behavior of the classical so-

lutions of a Landau-Lifshitz-Schrödinger-type problem with initial-boundary values

when the parameter ε goes to zero. We establish several uniform estimates of uε by

a conservation result and the standard parabolic method. Based on these results, we

obtain parabolic behavior in the dissipative case and non-parabolic behavior of the

semi-classical limits of those solutions respectively.

1. Introduction

Let G ⊂ R2 be a bounded and simply connected domain with smooth boundary ∂G,

B = {x ∈ R2 | |x| < 1}, S2 = {x = (x1 + ix2, x3) ∈ C × R | |x| = x21 + x22 + x23 = 1},
S1 = {x ∈ C × R | x21 + x22 = 1, x3 = 0}. Sometimes we write the vector value function

u = (u1 + iu2, u3) = (u′, u3). Define GT = G× (0, T ] with T ∈ (0,∞). We are concerned

with the limit behavior of the classical solution uε : GT → S2 of the following problem of

Landau-Lifshitz-Schrödinger type when the parameter ε→ 0

(1.1)



(a+ ib)u′t = ∆u′ + u′|∇u|2 + 1
ε2
u′u23 on GT ,

u3t = ∆u3 + u3|∇u|2 + 1
ε2
u3(u

2
3 − 1) on GT ,

u|∂G×R+ = g(x),

u(x, 0) = u0(x), x ∈ G,

where a > 0 and b are real constants, g = (g′, 0) ∈ C∞(∂G, S1), u0 = (u′0, 0) ∈ C∞(G,S1),

u0(x) = g(x) as x ∈ ∂G× {t = 0}, and deg(g′, ∂G) = 0.

Equation (1.1) is related to the study of the Schrödinger operator ∂t − (a + bi)∆

(cf. [7, 17]). When a = 1, b = 0 and S2 is replaced by {x ∈ R3 | |x| = 1}, (1.1) can be

rewritten as

(1.2)


ut = ∆u+ u|∇u|2 + 1

ε2
(uu23 − u3e3) on GT ,

u|∂G×R+ = g(x),

u(x, 0) = u0(x), x ∈ G,
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where e3 = (0, 0, 1). The system (1.2) arises in the study of high-energy physics (cf. [10,

16]). It controls the dynamics of planar ferromagnets and antiferromagnets. If the term
1
ε2

(uu23 − u3e3) is replaced by 1
ε2
u(1 − |u|2) and S2 is replaced by R2, (1.2) becomes the

Ginzburg-Landau system introduced in the theory of superconductors (see [2, 13, 18]).

When a = 0 and b = 1, it is associated with the Gross-Pitaevskii-type equation (cf. [9,18,

20]).

By virtue of deg(g′, ∂G) = 0, there exists θ1(x) ∈ C∞(∂G) and θ2(x) ∈ C∞(G) such

that g′ = eiθ1 on ∂G and u′0 = eiθ2 in G, where θ2|∂G = θ1. Clearly, the following problem
aθt = ∆θ on GT ,

θ|∂G×R+ = θ1,

θ(x, 0) = θ2(x), x ∈ G

has a unique solution θ(x, t). Set u′∗ = eiθ. Then u′∗ is the unique solution to the problem

(up to periods)

(1.3)


awt = ∆w + w|∇w|2 on GT ,

w|∂G×R+ = g′(x),

w(x, 0) = u′0(x), x ∈ G.

It is a heat flow of harmonic map.

In Section 2, we will establish a conservation of energy. Based on this result, uε

converges to (u′∗, 0) when ε→ 0 as in [1,8], where u′∗ is a heat flow of harmonic map. Thus,

investigating the asymptotic behavior of the solution uε of the Landau-Lifshitz-Schrödinger

problem is helpful to well understand the properties of the heat flow of harmonic maps.

On the contrary, we may also understand the asymptotic properties of uε by means of the

corresponding properties of u′∗.

Theorem 1.1. Assume uε : GT → S2 is a solution to (1.1), where T <∞ is independent

of ε. Then as ε→ 0,

uε ⇀ (u′∗, 0) weakly∗ in L∞(0, T ;H1(G,S2)),

∂

∂t
uε ⇀

∂

∂t
(u′∗, 0) weakly in L2(0, T ;L2(G,S2)),

uε → (u′∗, 0) in L2(0, T ;L2(G,S2)),

uε3 → 0 in Cα,α/2(GT ) for some 0 < α < 1.

Here, u′∗ solves (1.3).

The first three results can be deduced directly by using energy estimate. The last result

relies on the estimate of ‖uε3‖W 2,1
p (GT )

. This type of estimate has already been obtained
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for evolution problems of the Ginzburg-Landau-type (cf. [6]) and the Landau-Lifshitz-

type (cf. [11]). These problems are distinctly different. The Landau-Lifshitz equation is

more difficult to handle since it only satisfies the natural growth condition (with respect to

|∇u|2), unlike the Ginzburg-Landau equation satisfying the controllable growth condition.

The computations have been developed in the context of the harmonic maps and can be

generalized to included the anisotropic perturbation and the evolution in time (cf. [4,5,15]).

We will establish the analogous estimates for Landau-Lifshitz-Schrödinger problem (1.1)

in Section 3.

Finally, in Section 4, we rescale uε in time as in [3, 14]

vε(x, t) = uε(x, εt).

Then the function vε = (v′ε, vε3) satisfies

(1.4)



(a+ ib)1εv
′
t = ∆v′ + v′|∇v|2 + 1

ε2
v′v23 on GT ,

1
εv3t = ∆v3 + v3|∇v|2 + 1

ε2
v3(v

2
3 − 1) on GT ,

v|∂G×R+ = g(x),

v(x, 0) = u0(x), x ∈ G.

Let b 6= 0. Clearly, the following hyperbolic problem
θtt = 2

b2
∆θ on GT ,

θ|∂G×R+ = θ1,

θ(x, 0) = θ2(x), x ∈ G

has a unique solution θ(x, t). Set v′∗ = eiθ, then v′∗ is the unique solution to the problem

(up to periods)

(1.5)


iwt = −2w

b2

∫ t
0 [Im(w∆w)] dτ on GT ,

w|∂G×R+ = g′(x),

w(x, 0) = u′0(x), x ∈ G.

The following result shows the limit relation between vε and (v′∗, 0), and the non-

parabolic behavior of v′∗.

Theorem 1.2. Assume vε : GT → S2 is a solution to (1.4), where T <∞ is independent

of ε. If a 6= a2 + b2,

vε ⇀ (v′∗, 0) weakly∗ in L∞(0, T ;H1(G,S2)),

∂

∂t
vε ⇀

∂

∂t
(v′∗, 0) weakly in L2(0, T ;L2(G,S2)),

vε → (v′∗, 0) in L2(0, T ;L2(G,S2)),
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when ε → 0. Here, v′∗ is a harmonic map on G with the boundary value g′(x). On the

other hand, when a = 0, v′∗ must solve (1.5) as long as the convergence results above still

hold true.

2. Parabolic behavior

First we have a conservation result.

Proposition 2.1. Assume uε : G× R+ → S2 solves (1.1). Then we have

(2.1) sup
t>0

[∫ t

0

∫
G

(
a

∣∣∣∣ ∂∂tu′ε
∣∣∣∣2 +

∣∣∣∣ ∂∂tuε3
∣∣∣∣2
)
dxdτ + Eε(uε(x, t))

]
=

1

2
‖∇u0‖22.

Here

Eε(u) =
1

2

∫
G
|∇u|2 dx+

1

2ε2

∫
G
|u3|2 dx.

Proof. Taking the real part and imaginary part of the first equation in (1.1) and combining

the second equation in (1.1), we have the following three equations

au1t − bu2t = ∆u1 + u1|∇u|2 +
1

ε2
u1u

2
3,(2.2)

bu1t + au2t = ∆u2 + u2|∇u|2 +
1

ε2
u2u

2
3,(2.3)

u3t = ∆u3 + u3|∇u|2 +
1

ε2
u3(u

2
3 − 1).(2.4)

Multiply (2.2), (2.3) and (2.4) with u1t, u2t and u3t, respectively. Integrating over G, we

get

a

∫
G
|u1t|2 dx− b

∫
G
u1tu2t dx

=

∫
G
u1t∆u1 dx+

1

2

∫
G

(|u1|2)t|∇u|2 dx+
1

2ε2

∫
G

(|u1|2)tu23 dx,
(2.5)

b

∫
G
u1tu2t dx+ a

∫
G
|u2t|2 dx

=

∫
G
u2t∆u2 dx+

1

2

∫
G

(|u2|2)t|∇u|2 dx+
1

2ε2

∫
G

(|u2|2)tu23 dx,
(2.6)

∫
G
|u3t|2 dx =

∫
G
u3t∆u3 dx+

1

2

∫
G

(|u3|2)t|∇u|2 dx+
1

2ε2

∫
G

(|u3|2)t(u23 − 1) dx.(2.7)

Noting ut = gt = 0 on ∂G, we obtain by Green’s theorem that∫
G
uit∆ui dx = − d

2dt

∫
G
|∇ui|2 dx, i = 1, 2, 3.
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Insert into (2.5), (2.6) and (2.7), respectively. Noting |u| = 1, we have (|u|2)t = 0. Thus,

combining the three results yields∫
G
a
(
|u1t|2 + |u2t|2

)
dx+

∫
G
|u3t|2 dx = − d

dt
Eε(u(x, t)).

Integrating from 0 to t, we deduce that, for all t > 0,

∫ t

0

∫
G

(
a

∣∣∣∣ ∂∂tu′ε
∣∣∣∣2 +

∣∣∣∣ ∂∂tuε3
∣∣∣∣2
)
dxdτ + Eε(uε(x, t)) = Eε(u(x, 0)) =

1

2
‖∇u0‖22.

Proposition 2.1 is proved.

By the conservation result, we can see the parabolic behavior of uε when ε→ 0.

Proposition 2.2. Assume uε : GT → S2 is a solution to (1.1), where T < ∞. Then as

ε→ 0,

uε ⇀ (u′∗, 0) weakly∗ in L∞(0, T ;H1(G,S2)),

∂

∂t
uε ⇀

∂

∂t
(u′∗, 0) weakly in L2(0, T ;L2(G,S2)),

uε → (u′∗, 0) in L2(0, T ;L2(G,S2)).

Here, u′∗ solves (1.3).

Proof. By Proposition 2.1, we can find a subsequence εk such that as εk → 0,

(2.8)


uεk ⇀ w weakly∗ in L∞(0, T ;H1(G,S2)),

∂
∂tuεk ⇀

∂
∂tw weakly in L2(0, T ;L2(G,S2)),

uεk → w in L2(0, T ;L2(G,S2)).

We claim that w = (u′∗, 0), where u′∗ is the unique solution to (1.3). When ε → 0,

by (2.1) we know supt>0

∫
G u

2
εk3

dx → 0. This result shows w3 = 0 a.e. on GT . Since

uεk = u = (u′, u3) solves (1.1), for all φ ∈ C∞0 (GT ), we have∫
GT

(au1t − bu2t)φdxdt =

∫
GT

∆u1φdxdt+

∫
GT

u1|∇u|2φdxdt+
1

ε2

∫
GT

u1u
2
3φdxdt,∫

GT

(bu1t + au2t)φdxdt =

∫
GT

∆u2φdxdt+

∫
GT

u2|∇u|2φdxdt+
1

ε2

∫
GT

u2u
2
3φdxdt.

Take φ = u2ζ and φ = u1ζ in the first and second integral equations respectively. Here
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ζ ∈ C∞0 (GT ). Then,∫
GT

(au1 − bu2)(u2ζ)t dxdt

=

∫
GT

∇u1∇(u2ζ) dxdt−
∫
GT

u1|∇u|2u2ζ dxdt−
1

ε2

∫
GT

u1u
2
3u2ζ dxdt,∫

GT

(bu1 + au2)(u1ζ)t dxdt

=

∫
GT

∇u2∇(u1ζ) dxdt−
∫
GT

u2|∇u|2u1ζ dxdt−
1

ε2

∫
GT

u2u
2
3u1ζ dxdt.

Subtracting one from the other yields∫
GT

aζ(u1u2t − u2u1t) dxdt−
∫
GT

bζ(u1u1t + u2u2t) dxdt−
∫
GT

bζt(u
2
1 + u22) dxdt

=

∫
GT

∇ζ(u2∇u1 − u1∇u2) dxdt.

Letting ε→ 0 and using (2.8), we obtain

a

∫
GT

ζ(w′ ∧ w′t) dxdt =

∫
GT

∇ζ(∇w′ ∧ w′) dxdt.

Integrating by parts, we get that for all ζ ∈ C∞0 (GT ),

(2.9) a

∫
GT

ζ(w′ ∧ w′t) dxdt =

∫
GT

ζ div(w′ ∧∇w′) dxdt.

Let w′ = eiθ, then w′t = ieiθθt, ∇w′ = ieiθ∇θ, and

a(w′ ∧ w′t) = aθt, div(w′ ∧∆w′) = ∆θ.

Thus, (2.9) leads to

aθt = ∆θ.

Since the limit (u′∗, 0) is unique, the convergence above can be generalized to all ε

instead of the subsequence εk. This implies that u′∗ satisfies (1.3). Proposition 2.2 is

proved.

Next, we will show that |u′ε| is positive for sufficiently small ε. We first need a Lipschitz

continuity result which can be deduced by (2.1). In fact, this is predictable because the

W 1,∞-function is Lipschitz continuous (cf. Exercise 8 of Chapter 6 in [12]).

Proposition 2.3. Assume u = uε : GT → S2 is a solution to (1.1). Then there exists a

constant C > 0 independent of ε such that for any x1, x2 ∈ G and t ∈ [0, T ],

(2.10) |u(x1, t)− u(x2, t)| ≤ C|x1 − x2|.
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Proof. We give a complementary definition of u ≡ 0 on R2 \GT . Thus, u is defined on R2.

We first consider inner estimate. Let Jη be the mollification operator, and write

uη(x, t) = Jηu(x, t) =

∫ T

0

∫
R2

jη(x− y, t− τ)u(y, τ) dydτ,

where 0 < η < t < T − η. Denote uε by u. For any x1, x2 ∈ Gλ := {x ∈ G | dist(x, ∂G) ≥
λ}, there holds

uη(x1, t)− uη(x2, t)

=

∫ T

0

∫
R2

∫ 1

0

d

ds
jη(sx1 + (1− s)x2 − y, t− τ)u(y, τ) dsdydτ

= (x1 − x2)
∫ T

0

∫
R2

∫ 1

0
∇xjη(sx1 + (1− s)x2 − y, t− τ)u(y, τ) dsdydτ

= −(x1 − x2)
∫ 1

0

∫
R2

∫ T

0
∇yjη(sx1 + (1− s)x2 − y, t− τ)u(y, τ) dτdyds

= (x1 − x2)
∫ 1

0

∫
R2

∫ T

0
jη(sx1 + (1− s)x2 − y, t− τ)∇yu(y, τ) dτdyds.

Applying (2.1) we obtain

|uη(x1, t)− uη(x2, t)|

≤ |x1 − x2|
∫ 1

0

∫
R2

∫ T

0
|jη(sx1 + (1− s)x2 − y, t− τ)||∇yu(y, τ)| dτdyds

≤ C|x1 − x2|.

Here C > 0 is independent of η and ε. Letting η → 0, we can derive (2.10) for x1, x2 ∈ Gλ.

Next, we give the estimate near the boundary. Let x0 ∈ ∂G. Without loss of generality,

we assume G ∩ B2R(x0) = {(x1, x2) | x2 > 0} ∩ B2R(x0). Let J+
η be the mollification

operator

u+η (x, t) = J+
η u(x, t) =

∫ T

0

∫
R2

jη(x
1 − y1)jη(x2 − y2 + 2ε)jη(t− τ)u(y, τ) dydτ,

where 0 < t ≤ T . For any x1 = (x11, x
2
1), x2 = (x12, x

2
2) ∈ G ∩ B2R(x0), using the same

argument above, we can also deduce (2.10) near the boundary ∂G. Similarly, we also get

(2.10) near t = 0. Proposition 2.3 is complete.

Proposition 2.4. Assume uε : GT → S2 is a solution to (1.1). Then |u′ε| ≥ 1/2 in GT

as long as ε is sufficiently small.

Proof. We will prove that for each given t ∈ (0, T ],

(2.11) |u′ε(x, t)| ≥
1

2
, ∀x ∈ G
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as long as ε is sufficiently small. Otherwise, for some fixed t0 ∈ (0, T ], we can find xε ∈ G
satisfying

|u′ε(xε, t0)| <
1

2
.

According to Proposition 2.3, we have

|u′ε(x, t0)| ≤ |u′ε(x, t0)− u′ε(xε, t0)|+ |u′ε(xε, t0)|

≤ C|x− xε|+
1

2
<

3

4
for |x− xε| <

1

4C
.

(2.12)

On the other hand, (2.10) implies |u′ε(x, t0)|C0+1(G) ≤ C. By means of the compact

embedding theorem, we have

u′ε(x, t0)→ u′∗(x, t0) in Cα(G) as ε→ 0,

where α ∈ (0, 1). Proposition 2.2 shows that the limit u′∗ satisfies |u′∗(x, t0)| = 1. This

contradicts (2.12). Thus (2.11) holds true for any t ∈ (0, T ]. In view of the initial-boundary

condition, the proof of Proposition 2.4 is completed.

3. Uniform estimates

The main result of this section is the Hölder convergence of uε3 when ε → 0. First, we

establish a uniform estimate on the boundary.

Proposition 3.1. Assume that uε : GT → S2 is a solution to (1.1). Then, there exists a

constant C > 0 which is independent of ε such that

(3.1)

∫ T

0

∫
∂G

∣∣∣∣∂uε∂ν

∣∣∣∣2 dsdt ≤ C,
where ν is the unit outward normal vector on ∂G.

Proof. Let n ∈ C∞(G, ∂B1(0)) such that n = ν on ∂G, where ν is the unit outward

normal vector. Denote uε by u. Multiply (2.2), (2.3) and (2.4) with n · ∇u1, n · ∇u2 and

n · ∇u3 respectively and integrating on GT . Since

∫
G

∆ui(n · ∇ui) dx =

∫
∂G

∣∣∣∣∂ui∂ν

∣∣∣∣2 ds− ∫
G
∇ui · ∇(n · ∇ui) dx, i = 1, 2, 3,
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we have∫ T

0

∫
∂G

∣∣∣∣∂u∂ν
∣∣∣∣2 dsdt =

∫
GT

a(u′t · (n · ∇u′)) dxdt+

∫
GT

bdet(u′t(n · ∇u′)) dxdt

+

∫
GT

u3t(n · ∇u3) dxdt+

3∑
l=1

∫
GT

∇ul · ∇(n · ∇ul) dxdt

−
∫
GT

(|∇u|2(u · (n · ∇u))) dxdt− 1

ε2

∫
GT

u23(u · (n · ∇u)) dxdt

+
1

ε2

∫
GT

u3(n · ∇u3) dxdt.

Here det(u′, v′) = u1v2 − u2v1. Noting the smoothness of n, from (2.1) and the Cauchy

inequality, we can deduce∫
GT

[
|au1t + bu2t||n · ∇u1|+ |au2t + bu1t||n · ∇u2|+ |u3t||n · ∇u3|

]
dxdt ≤ C.

In addition, using (2.1) we also have

3∑
l=1

∫
G
∇ul · ∇(n · ∇ul) dx ≤ C

∫
G
|∇u|2 dx+

1

2

∣∣∣∣∫
G
n · ∇(|∇u|2) dx

∣∣∣∣
≤ C +

1

2

∫
∂G
|∇u|2 ds.

Noting |u| = 1, we get 1
2∇(|u|2) = 0. Therefore,

−
∫
G
|∇u|2(u · (n · ∇u)) dx = −1

2

∫
G
|∇u|2

(
n · ∇(|u|2)

)
dx = 0.

In view of u3 = 0 on ∂G, using (2.1) we can obtain that

− 1

ε2

∫
G
u23(u · (n · ∇u)) dx+

1

ε2

∫
G
u3(n · ∇u3) dx

= − 1

2ε2

∫
G
u23(n · ∇(|u|2)) dx+

1

2ε2

∫
G

(n · ∇u23) dx

=
1

2ε2

∫
∂G
u23 ds−

1

2ε2

∫
G
u23(divn) dx ≤ C.

Thus, by the boundary value condition in (1.1), we get∫ T

0

∫
∂G

∣∣∣∣∂u∂ν
∣∣∣∣2 dsdt ≤ C +

1

2

∫ T

0

∫
∂G

∣∣∣∣∂g∂τ
∣∣∣∣2 dsdt ≤ C,

where τ is the unit tangent vector on ∂G. Here C > 0 is independent of ε. Proposition 3.1

is proved.
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Next, we will establish the uniform W 2,1
2 -estimate of uε. Noting (2.1), we need the

following result.

Proposition 3.2. Assume that uε : GT → S2 is a solution to (1.1). Let (x0, t0) ∈ GT ,

QR = GT ∩(BR(x0)× [t0, t0+R2]). Then, for suitably small R > 0, there exists a constant

C = C(R, T ) > 0 which is independent of ε, such that

(3.2) ‖D2uε‖L2(QR) ≤ C.

Proof. Differentiate (2.2), (2.3), and (2.4) with respect to xj , then

au1xjt − bu2xjt = u1xixixj + (u1|∇u|2)xj +
1

ε2
(u1u

2
3)xj ,(3.3)

bu1xjt + au2xjt = u2xixixj + (u2|∇u|2)xj +
1

ε2
(u2u

2
3)xj ,(3.4)

u3xjt = u3xixixj + (u3|∇u|2)xj −
1

ε2
(u3|u′|2)xj .(3.5)

First we give the inner estimate. Let ζ = ζ(x) ∈ C∞0 (B2R(x0), [0, 1]) satisfy ζ = 1 in BR,

|∇ζ| ≤ CR−1. Multiply (3.3), (3.4) and (3.5) by ζ2u1xj , ζ
2u2xj and ζ2u3xj , respectively.

Then integrating over Q2R, we get

a

2

∫
Q2R

ζ2(|u1xj |2)t dxdt− b
∫
Q2R

ζ2u2xjtu1xj dxdt

=

∫
Q2R

ζ2u1xixixju1xj dxdt+

∫
Q2R

ζ2(u1|∇u|2)xju1xj dxdt+

∫
Q2R

ζ2

ε2
(u1u

2
3)xju1xj dxdt,

b

∫
Q2R

ζ2u1xjtu2xj dxdt+
a

2

∫
Q2R

ζ2(|u2xj |2)t dxdt

=

∫
Q2R

ζ2u2xixixju2xj dxdt+

∫
Q2R

ζ2(u2|∇u|2)xju2xj dxdt+

∫
Q2R

ζ2

ε2
(u2u

2
3)xju2xj dxdt,

and

1

2

∫
Q2R

ζ2(|u3xj |2)t dxdt =

∫
Q2R

ζ2u3xixixju3xj dxdt+

∫
Q2R

ζ2(u3|∇u|2)xju3xj dxdt

−
∫
Q2R

ζ2

ε2
(u3|u′|2)xju3xj dxdt.

Therefore, using Green’s theorem and noting (|u|2)xj = 0, we obtain

a

2

∫
B2R

ζ2|u′xj |
2(x, t0 + 4R2) dx+

1

2

∫
B2R

ζ2|u3xj |2(x, t0 + 4R2) dx

+

∫
Q2R

ζ2|uxixj |2 dxdt+
1

ε2

∫
Q2R

ζ2|u3xj |2 dxdt

=
a

2

∫
B2R

ζ2|u′xj |
2(x, t0) dx+

1

2

∫
B2R

ζ2|u3xj |2(x, t0) dx(3.6)
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+ b

∫
Q2R

ζ2 det(u′t, u
′
xjxj ) dxdt+ 2b

∫
Q2R

ζζxj det(u′t, u
′
xj ) dxdt

− 2

∫
Q2R

ζζxj (uxj · uxixj ) dxdt+

∫
Q2R

ζ2|∇u|2|uxj |2 dxdt

+
1

ε2

∫
Q2R

ζ2u23|uxj |2 dxdt.

Here B2R = G∩B2R(x0). Using Cauchy’s inequality and (2.1) to estimate the right-hand

side of (3.6), for any δ ∈ (0, 1), we obtain∣∣∣∣∫
Q2R

ζ2 det(u′t, u
′
xjxj ) dxdt

∣∣∣∣ ≤ δ ∫
Q2R

ζ2|uxjxj |2 dxdt+ Cδ

∫
Q2R

ζ2|u′t|2 dxdt,∣∣∣∣∫
Q2R

ζζxj det(u′t, u
′
xj ) dxdt

∣∣∣∣ ≤ δ ∫
Q2R

ζ2|∇u|2 dxdt+ Cδ

∫
Q2R

|∇ζ|2|u′t|2 dxdt,∣∣∣∣∫
Q2R

ζζxj (uxj · uxixj ) dxdt
∣∣∣∣ ≤ δ ∫

Q2R

ζ2|uxjxj |2 dxdt+ Cδ

∫
Q2R

|∇ζ|2|∇u|2 dxdt,∣∣∣∣∫
Q2R

ζ2|∇u|2|uxj |2 dxdt
∣∣∣∣ ≤ C ∫

Q2R

ζ2|∇u|4 dxdt.

To estimate the last term, we use the first equation of (1.1) and Proposition 2.4 to deduce

that

1

ε2
u23 =

1

|u′|2
∣∣u′[(a+ bi)u′t −∆u′ − u′|∇u|2

]∣∣ ≤ |u′|−1 [√a2 + b2|u′t|+ |∆u′|
]
.

Therefore, using Proposition 2.4 and Cauchy’s inequality, we obtain that for any δ ∈ (0, 1),

1

ε2

∫
Q2R

ζ2u23|uxj |2 dxdt ≤
∫
Q2R

ζ2|uxj |2|u′|−1
[√

a2 + b2|u′t|+ |∆u′|
]
dxdt

≤ δ
∫
Q2R

ζ2|u′t|2 dxdt+ δ

∫
Q2R

ζ2|∆u|2 dxdt

+ Cδ

∫
Q2R

ζ2|∇u|4 dxdt.

Substituting these estimates (with δ sufficiently small) into (3.6), and using (2.1), we can

deduce that

(3.7)

∫
Q2R

ζ2|D2u|2 dxdt ≤ C ′
(

1 +

∫
Q2R

ζ2|∇u|4 dxdt
)
.

Next we estimate the term
∫
Q2R

ζ2|∇u|4 dxdt. By taking φ = ζ|∇u|2 in the embedding

inequality (∫
G
φ2 dx

)1/2

≤ C
∫
G

(|∇φ|+ |φ|) dx, ∀φ ∈W 1,1(G),
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and using (2.1), we have∫
Q2R

ζ2|∇u|4 dxdt ≤ C
[∫

Q2R

(
|∇ζ||∇u|2 + 2ζ|∇u||D2u|+ ζ|∇u|2

)
dxdt

]2
≤ C + C ′′

∫
Q2R

|∇u|2 dxdt ·
∫
Q2R

ζ2|D2u|2 dxdt.

Since supt
∫
G |∇u|

2 dx ≤ C (cf. (2.1)), we see C ′′
∫
Q2R
|∇u|2 dxdt ≤ 1/(4C ′) if R suitably

small. Then, ∫
Q2R

ζ2|∇u|4 dxdt ≤ C +
1

4C ′

∫
Q2R

ζ2|D2u|2 dxdt.

Inserting this into (3.7), we get ∫
Q2R

ζ2|D2u|2 dxdt ≤ C.

Noting that ζ = 1 on BR(x0), we can see the inner estimate.

Next we give the estimate near the boundary. Let x0 ∈ ∂G. Without loss of generality,

we assume G∩B2R(x0) = {(x1, x2) | x2 > 0} ∩B2R(x0). Choose the cut-off function ζ(x)

as above. Then (3.6) can be rewritten as

a

2

∫
B2R

ζ2|u′xj |
2(x, t0 + 4R2) dx+

1

2

∫
B2R

ζ2|u3xj |2(x, t0 + 4R2) dx

+

∫
Q2R

ζ2|uxixj |2 dxdt+
1

ε2

∫
Q2R

ζ2|u3xj |2 dxdt

=
a

2

∫
B2R

ζ2|u′xj |
2(x, t0) dx+

1

2

∫
B2R

ζ2|u3xj |2(x, t0) dx

+ b

∫
Q2R

ζ2 det(u′t, u
′
2xjxj ) dxdt+ 2b

∫
Q2R

ζζxj det(u′t, u
′
xj ) dxdt

− 2

∫
Q2R

ζζxj (uxj · uxixj ) dxdt+

∫ t0+4R2

t0

∫
B2R∩{x2=0}

ζ2(uxj · uxjx2) dsdt

+

∫
Q2R

ζ2|∇u|2|uxj |2 dxdt+
1

ε2

∫
Q2R

ζ2u23|uxj |2 dxdt.

(3.8)

Except for the tenth, eleventh and twelfth terms on the right-hand side of (3.8), the others

can be handled as in the argument of the inner estimate. The tenth term is

∫ t0+4R2

t0

∫
B2R∩{x2=0}

ζ2
2∑
j=1

u1xju1xjx2 dsdt

=

∫ t0+4R2

t0

∫
B2R∩{x2=0}

ζ2
[
u1x1u1x1x2 + u1x2(∆u1 − u1x1x1)

]
dsdt.
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Integrating by parts and noting ζ = 0 at the two end points of the line segment B2R∩{x2 =

0}, we get ∫
B2R∩{x2=0}

ζ2u1x1u1x1x2 ds =
1

2

∫
B2R∩{x2=0}

ζ2(u21x1)x2 ds

= −1

2

∫
B2R∩{x2=0}

(ζ2)x2u
2
1x1 ds.

Since (2.2) implies ∆u1 = au1t − bu2t − u1|∇u|2 − 1
ε2
u1u

2
3 = −u1|∇u|2 on ∂G, we have∫

B2R∩{x2=0}
ζ2u1x2∆u1 ds = −

∫
B2R∩{x2=0}

ζ2u1x2u1|∇u|2 ds

= −1

2

∫
B2R∩{x2=0}

ζ2(u21)x2 |∇u|2 ds.

Similarly, we have the same results for the eleventh and twelfth terms. Noting |u| = 1,

and using (3.1) and Cauchy’s inequality, we know that these terms are

−
∫ t0+4R2

t0

∫
B2R∩{x2=0}

[
1

2
(ζ2)x2(ux1)2 +

1

2
ζ2(|u|2)x2 |∇u|2 + ζ2(ux2 · ux1x1)

]
dsdτ

≤ −1

2

∫ t0+4R2

t0

∫
B2R∩{x2=0}

(ζ2)x2(gx1)2 dsdτ

+ C

∫ t0+4R2

t0

∫
B2R∩{x2=0}

ζ2
[
(ux2)2 + (gx1x1)2

]
dsdτ ≤ C.

Inserting this result into (3.8), we can also deduce the estimate of the second-order terms

near the boundary. Thus, (3.2) is proved and hence Proposition 3.2 is complete.

Finally, we gave a uniform W 2,1
p -estimate for some p > 2. Although it seems difficult

to do for uε, we can handle uε3 since the second equation of (1.1) is parabolic.

Proposition 3.3. Assume that uε : GT → S2 is a solution to (1.1). Let (x0, t0) ∈ GT ,

QR,r = GT ∩ (BR(x0) × [t0, t0 + r]). Then we can find p > 2 and C > 0 (which is

independent of ε) such that

(3.9) ‖uε3‖W 2,1
p (QR/2,r/2)

≤ C.

Proof. The second equation in (1.1) is

(3.10) u3t = ∆u3 + u3|∇u|2 −
1

ε2
u3|u′|2.

Set ψ = 1
ε2
u3(x, t). Then

(3.11) ψ|u′|2 + ε2ψt = ε2∆ψ + ε2ψ|∇u|2.
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Let the cut-off function ζ ∈ C∞0 (QR,r) satisfy ζ = 1 on QR/2,r/2. Multiplying (3.11)

with ψp−1ζp (p > 2) and integrating on QR,r, we get∫
QR,r

ψpζp|u′|2 dxdt+ ε2
∫
QR,r

ψtψ
p−1ζp dxdt

= ε2
∫
QR,r

(∆ψ)ψp−1ζp dxdt+ ε2
∫
QR,r

ψpζp|∇u|2 dxdt.
(3.12)

Integrating by parts and noting ψ = 0 on ∂GT , we have

(3.13) ε2
∫
QR,r

ψtψ
p−1ζp dxdt = −ε2

∫
QR,r

ψpζp−1ζt dxdt,

and

ε2
∫
QR,r

(∆ψ)ψp−1ζp dxdt = −ε2
∫
QR,r

∇ψ∇(ψp−1ζp) dxdt

= −ε2(p− 1)

∫
QR,r

ψp−2ζp|∇ψ|2 dxdt

− ε2p
∫
QR,r

ψp−1ζp−1∇ψ∇ζ dxdt.

(3.14)

Inserting (3.13) and (3.14) into (3.12), and applying Young’s inequality, we can obtain

that for any δ ∈ (0, 1),∫
QR,r

ψpζp|u′|2 dxdt+ ε2(p− 1)

∫
QR,r

ψp−2ζp|∇ψ|2 dxdt

= ε2
∫
QR,r

[
ψpζp−1ζt − pψp−1ζp−1∇ψ∇ζ + ψpζp|∇u|2

]
dxdt

≤ δ
∫
QR,r

ψpζp dxdt+ C(δ)

∫
QR,r

ε2p
(
|ψ|p|ζt|p + pp|∇ψ|p|∇ζ|p + |ψ|pζp|∇u|2p

)
dxdt.

Obviously, ε2ψ = u3, ε
2∇ψ = ∇u3. Noting Proposition 2.4 and choosing δ sufficiently

small, we get

(3.15)

∫
QR,r

ψpζp dxdt ≤ C
∫
QR,r

(
|u3|p|ζt|p + |∇u3|p|∇ζ|p + |u3|pζp|∇u|2p

)
dxdt.

Using (2.1) and (3.2), we have ‖u‖
W 2,1

2 (QR,r)
≤ C. This implies that

(3.16) ‖u‖L2(t0,t0+r2;H2(G∩BR)) + ‖ut‖L2(t0,t0+r2;L2(G∩BR)) ≤ C.

Clearly, for all q > 4, H2(G∩BR) ⊂W 1,q(G∩BR) ⊂ L2(G∩BR) and the imbedding map

from H2(G ∩ BR) to L2(G ∩ BR) is compact. According to Corollary 4 in [19], by (3.16)

we obtain that

‖u‖C(t0,t0+r2;W 1,q(G∩BR)) ≤ C for all q > 4.
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Here C > 0 is independent of ε. This implies

(3.17) ‖∇u‖Lq(QR,r) ≤ C for all q > 4.

Noting ζ = 1 on QR/2,r/2, and using (3.15) and (3.17), we obtain that for some p > 2,

there exists a positive constant C which is independent of ε,

(3.18)

∫
QR/2,r/2

ψp dxdt ≤ C.

Set Fε(x, t) =
[
u3|∇u|2 − 1

ε2
u3|u′|2

]
(x, t). Then (3.10) becomes

(3.19) u3t = ∆u3 + Fε.

Using (3.17) and (3.18), we get ‖Fε‖Lp(GT ) ≤ C for some p > 2, where C is independent

of ε. Therefore, applying Lp theory for the parabolic equation (3.19), we know that (3.9)

is true. Proposition 3.3 is proved.

Proof of Theorem 1.1. According to Proposition 2.2, the first three results of Theorem 1.1

are proved.

By Proposition 3.3 and the t-anisotropy embedding inequality, we have

|uε3|γ,γ/2;GT
≤ C, 0 < γ < min{1, 2− 4/p},

where C > 0 is independent of ε. This and Proposition 2.2 imply that there exists a

subsequence uεk3 of uε3 such that

uεk3 → 0 in Cα,α/2(GT )

for all α ∈ (0, γ) when εk → 0. Since all the subsequences converge to the same limit 0,

the convergence above still hold for uε3. Theorem 1.1 is complete.

Remark 3.4. Noting |u′ε| =
√

1− u2ε3, we get

|u′ε| → 1 in Cα,α/2(GT ).

4. Non-parabolic behavior

Scale the solution uε to (1.1) in time

vε(x, t) = uε(x, εt).
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Then vε = (v′ε, vε3) satisfies

(4.1)



(a+ ib)1εv
′
t = ∆v′ + v′|∇v|2 + 1

ε2
v′v23 on GT ,

1
εv3t = ∆v3 + v3|∇v|2 + 1

ε2
v3(v

2
3 − 1) on GT ,

v|∂G×R+ = g(x),

v(x, 0) = u0(x), x ∈ G.

Similar to Proposition 2.1, we also have a conservation result.

Proposition 4.1. Assume vε : G× R+ → S2 satisfies (4.1). Then

(4.2) sup
t>0

[∫ t

0

∫
G

(
a

ε

∣∣∣∣ ∂∂tv′ε
∣∣∣∣2 +

1

ε

∣∣∣∣ ∂∂tvε3
∣∣∣∣2
)
dxdτ + Eε(vε(x, t))

]
=

1

2
‖∇u0‖22.

Here

Eε(v) =
1

2

∫
G
|∇v|2 dx+

1

2ε2

∫
G
|v3|2 dx.

Proof. Similar to the derivation of (2.2)–(2.4), we have the following three equations

a

ε
v1t −

b

ε
v2t = ∆v1 + v1|∇v|2 +

1

ε2
v1v

2
3,(4.3)

b

ε
v1t +

a

ε
v2t = ∆v2 + v2|∇v|2 +

1

ε2
v2v

2
3,(4.4)

1

ε
v3t = ∆v3 + v3|∇v|2 +

1

ε2
v3(v

2
3 − 1).(4.5)

Multiply (4.3), (4.4) and (4.5) with v1t, v2t and v3t, respectively. Integrating over G, we

have

a

ε

∫
G
|v1t|2 dx−

b

ε

∫
G
v1tv2t dx

=

∫
G
v1t∆v1 dx+

1

2

∫
G

(|v1|2)t|∇v|2 dx+
1

2ε2

∫
G

(|v1|2)tv23 dx,
(4.6)

b

ε

∫
G
v1tv2t dx+

a

ε

∫
G
|v2t|2 dx

=

∫
G
v2t∆v2 dx+

1

2

∫
G

(|v2|2)t|∇v|2 dx+
1

2ε2

∫
G

(|v2|2)tv23 dx,
(4.7)

1

ε

∫
G
|v3t|2 dx =

∫
G
v3t∆v3 dx+

1

2

∫
G

(|v3|2)t|∇v|2 dx+
1

2ε2

∫
G

(|v3|2)t(v23 − 1) dx.(4.8)

Noting vt = 0 on ∂G, we obtain by Green’s theorem that∫
G
vit∆vi dx = − d

2dt

∫
G
|∇vi|2 dx, i = 1, 2, 3.

Inserting these into (4.6), (4.7) and (4.8), respectively. Noting |v|2 = 1, we have∫
G

a

ε

(
|v1t|2 + |v2t|2

)
dx+

∫
G

1

ε
|v3t|2 dx = − d

dt
Eε(v(x, t)).
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Integrating from 0 to t, we deduce that, for all t > 0,∫ t

0

∫
G

(
a

ε

∣∣∣∣ ∂∂tv′ε
∣∣∣∣2 +

1

ε

∣∣∣∣ ∂∂tvε3
∣∣∣∣2
)
dxdτ + Eε(vε(x, t)) = Eε(v(x, 0)) =

1

2
‖∇u0‖22.

Proposition 4.1 is proved.

Proof of Theorem 1.2. By Proposition 4.1, we can find a positive constant C (independent

of ε) such that

‖vε‖L∞(0,T ;H1(G,S2)) ≤ C and

∥∥∥∥∂vε∂t
∥∥∥∥
L2(0,T ;L2(G,S2))

≤ C.

Hence, there is a subsequence εk such that as εk → 0,

vεk ⇀ h weakly∗ in L∞(0, T ;H1(G,S2)),

∂

∂t
vεk ⇀

∂

∂t
h weakly in L2(0, T ;L2(G,S2)),

vεk → h in L2(0, T ;L2(G,S2)).

Next, we prove that h = (v′∗, 0) satisfies the conditions in Theorem 1.2. When ε→ 0,

by (4.2) we get supt>0

∫
G v

2
3 dx→ 0. This result shows

h3 = 0 a.e. on GT .

Since vεk = v = (v′, v3) satisfies (4.1), multiply the first equation in (4.1) by v′. Taking

the real part and imaginary part, we get

a

2

(
|v′|2

ε

)
t

+
b

ε
(v1tv2 − v2tv1) = v1∆v1 + v2∆v2 + |v′|2|∇v|2 +

1

ε2
|v′|2v23,(4.9)

b

2

(
|v′|2

ε

)
t

+
a

ε
(v2tv1 − v1tv2) = v1∆v2 − v2∆v1.(4.10)

Multiplying the second equation in (4.1) by v3, we have

(4.11)
1

2

(
v23
ε

)
t

= v3∆v3 + v23|∇v|2 −
1

ε2
|v′|2v23.

Calculating by a× (4.9) + b× (4.10) + a× (4.11), we obtain

a− a2 − b2

2

(
v23
ε

)
t

= a(v1∆v1 + v2∆v2 + v3∆v3) + b(v1∆v2 − v2∆v1) + a|∇v|2.

In view of a 6= a2 + b2, it follows that(
v23
ε

)
t

=
2

a− a2 − b2
[
aRe(v′∆v′) + av3∆v3 + b Im(v′∆v′) + a|∇v|2

]
.
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Integrating from 0 to t, we get

(4.12)
v23
ε

=
2

a− a2 − b2

∫ t

0

[
aRe(v′∆v′) + av3∆v3 + b Im(v′∆v′) + a|∇v|2

]
dτ.

By Proposition 4.1, v23/ε ⇀ w in D′ for some nonnegative function w. By (4.12), we know

that

w =
2

a− a2 − b2

∫ t

0

[
aRe(v′∗∆v

′
∗) + b Im(v′∗∆v

′
∗) + a|∇v∗|2

]
dτ.

Multiplying the first equation in (4.1) by ε and letting ε→ 0, we get

(a+ ib)v′∗t =
2v′∗

a− a2 − b2

∫ t

0

[
aRe(v′∗∆v

′
∗) + b Im(v′∗∆v

′
∗) + a|∇v∗|2

]
dτ.

Moreover, if we write v∗ = (eiθ, 0), the result above implies

(ai− b)θt =
2b

a− a2 − b2

∫ t

0
∆θ dτ.

So we have the following non-parabolic results

aθt = 0, bθt =
2b

a2 + b2 − a

∫ t

0
∆θ dτ.

If a > 0, then θt = 0, and we know θ only depends on x. Moveover, when b 6= 0, we

have ∆θ = 0, i.e., v′∗ is a harmonic map. If a = 0, then b 6= 0 and hence

θtt =
2

b2
∆θ,

which implies that (v′∗, 0) satisfies (1.5).

Since the limit (v′∗, 0) is unique, the convergence above can be generalized to all ε

instead of the subsequence εk. Theorem 1.2 is proved.
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