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The Monochromatic Connectivity of Graphs

Zemin Jin*, Xueliang Li and Kaijun Wang

Abstract. In 2011, Caro et al. introduced the monochromatic connection of graphs.

An edge-coloring of a connected graph G is called a monochromatically connecting

(MC-coloring, for short) if there is a monochromatic path joining any two vertices.

The monochromatic connection number mc(G) of a graph G is the maximum integer

k such that there is a k-edge-coloring, which is an MC-coloring of G. Clearly, a

monochromatic spanning tree can monochromatically connect any two vertices. So

for a graph G of order n and size m, mc(G) ≥ m−n+ 2. Caro et al. proved that both

triangle-free graphs and graphs of diameter at least three meet the lower bound.

In this paper, we consider the monochromatic connectivity of graphs containing

triangles which meet the lower bound too. Also, in order to study the graphs of

diameter two, we present the formula for the monochromatic connectivity of join

graphs. This will be helpful to solve the problem for graphs of diameter two.

1. Introduction

An edge-colored connected graph G is rainbow connected if any two vertices of G are

connected by a rainbow path, i.e., a path whose edges have distinct colors. The rainbow

connection number of a graph G, denoted by rc(G), is the minimum number such that

there is a rainbow connected coloring of G. The concept of rainbow connection was

introduced by Chartrand et al. [4] in 2008. Since then, the rainbow connection numbers

were well studied and the number for several special graph classes has been determined

or characterized. More details about the rainbow connection numbers of graphs can be

found in [6].

In 2011, Caro et al. [3] introduced a natural opposite question of the rainbow con-

nection, which is called the monochromatic connection. An edge-coloring of a connected

graph G is called a monochromatically connecting (MC-coloring, for short) if there is a

monochromatic path joining any two vertices. The monochromatic connection number of a

graph G, denoted by mc(G), is the maximum number such that there is a monochromatic

connection coloring of G. Caro et al. [3] gave some upper and lower bounds for mc(G)
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characterized by other graph parameters. A straightforward lower bound for mc(G) is

|E(G)| − |V (G)| + 2, which can be verified by coloring the edges of a spanning tree with

one color, and coloring the remaining edges by new distinct colors. In particular, Caro

et al. [3] showed that both triangle-free graphs and graphs of diameter at least three

meet the lower bound. For more results about the monochromatic connectivity of graphs,

see [2, 5, 7]. In Section 3, we consider the problem for graphs containing triangles which

meets the lower bound too. Another open problem is about the monochromatic connec-

tivity of graphs of diameter two. In order to study this graph class, in Section 4, we will

consider the problem for the join graphs.

Now we present some definitions and notations necessary. Given a graph G and D ⊆
V (G), let G[D] be the subgraph of G induced by D. Denote by G the complement of graph

G. Here we always denote by m and n the edge number and vertex number of the graph

G, respectively. As proved in [3], an important property of an extremal MC-coloring (a

coloring that uses mc(G) colors) is that each color forms a tree. For a color c, let Tc be

the tree consisting of the edges colored c. The color c is nontrivial if Tc has at least two

edges. Otherwise, c is trivial.

2. Preliminaries and lemmas

An extremal coloring is simple if any two nontrivial color trees have at most one common

vertex. For the existence of the extremal MC-coloring of connected graphs, Caro et al. [3]

gave the following lemma.

Lemma 2.1. [3] Every connected graph has a simple extremal MC-coloring.

Moreover, we have the following properties of the simple extremal MC-coloring.

Lemma 2.2. Let f be a simple extremal MC-coloring of a graph G. Then

(1) Any two nontrivial color trees have at most one common vertex.

(2) If a vertex u lies in only one nontrivial color tree T , then u is adjacent to all the

vertices V (G) \ V (T ) in G.

Proof. The first statement is clear. We consider the second statement. Let u lie in only

one nontrivial color tree T in f . For any vertex v ∈ V (G)\V (T ), there is a monochromatic

u–v path, say P . Clearly, V (P ) * V (T ). If V (P ) 6= {u, v}, then the path P lies in a

nontrivial color tree different from T . This implies that the vertex u lies in at least two

nontrivial color trees, a contradiction.

The following lemma is obvious.
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Lemma 2.3. For any integers a, b ≥ 2,
(
a
2

)
+
(
b
2

)
≤
(
a+b−2

2

)
+ 1.

The graph G is called H-free if G does not contain any subgraph isomorphic to H.

Now we consider K−4 -free graphs and present the following Turán type result.

Lemma 2.4. [1] The size of a K−4 -free graph of order n is at most bn2/3c.

The hourglass graph is defined to be the union of two triangles with exactly one common

point. Next, we consider the hourglass-free graphs. That is to say, any two triangles are

either vertex disjoint or having a common edge.

By the known results about K3-free graphs, we have the following Turán type result.

Lemma 2.5. [1] The size of a K3-free graph of order n is at most bn2/4c.

According to Lemma 2.5, we have the following two lemmas.

Lemma 2.6. If G is a hourglass-free graph, then m ≤ bn2/4c+ n/2.

Proof. Since G has no two triangles that have exactly one common point, for any two

distinct triangles C and C ′, either C ∩ C ′ = ∅ or G[C ∪ C ′] = K4 or K−4 . Assume that

G has s independent triangles that have no any common point with other triangles and

assume that G has t copies of K4 or K−4 . Then 3s + 4t ≤ n. It is easy to see that,

when deleting at most s + 2t edges from G, we will get a triangle-free subgraph of G. It

follows from Lemma 2.5 that m− s− 2t ≤ bn2/4c. Since s+ 2t ≤ (n− s)/2, we have that

m ≤ bn2/4c+ (n− s)/2 ≤ bn2/4c+ n/2. So m ≤ bn2/4c+ n/2.

A graph is called 2K3-free if it does not contain independent triangles.

Lemma 2.7. Let G be a 2K3-free graph of order n ≥ 7. Then m ≤ bn2/4c+ n/2.

Proof. By Lemma 2.5, if G has at most one triangle, then the result holds obviously. Let

C and C ′ be two distinct triangles in G. Since G without two independent triangles, we

have that either |C ∩ C ′| = 1 or G[C ∪ C ′] = K4 or K−4 .

Assume that |C ∩ C ′| = 1. Let C = uvw and C ′ = uxy, where v, w 6= x, y. Let

S = {x, y, v, w}. Since G has no 2K3, we have that G − {u, v, w, x, y} is K3-free. Let

E1 = E(G− {u, v, w, x, y}) and so |E1| ≤ b(n− 5)2/4c. Since G has no 2K3, each vertex

of G− {u, v, w, x, y} has at most two neighbour in S. So the set E2 of the edges between

S and G− {u} − S is of size at most 2(n− 5), i.e., |E2| ≤ 2(n− 5).

If |E(G[S])| ≤ 4, then

m = |E1|+ |E2|+ d(u) + |E(G[S])|

≤
⌊

(n− 5)2

4

⌋
+ 2(n− 5) + (n− 1) + 4 ≤

⌊
n2

4

⌋
+

n

2
.
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If |E(G[S])| = 5, then G[S] has a triangle. So d(u) < n−1 or E1 = ∅, i.e., |E1|+d(u) ≤
b(n− 5)2/4c+ n− 2. Hence

m = |E1|+ |E2|+ d(u) + |E(G[S])|

≤
⌊

(n− 5)2

4

⌋
+ n− 2 + 2(n− 5) + 5 ≤

⌊
n2

4

⌋
+

n

2
.

If |E(G[S])| = 6, then G[S] = K4 and each vertex of G − {u} ∪ S is adjacent to at

most one vertex of S ∪ {u}, i.e., |E2| ≤ n− 5. Hence

m = |E1|+ |E2|+ d(u) + |E(G[S])|

≤
⌊

(n− 5)2

4

⌋
+ n− 1 + (n− 5) + 6 ≤

⌊
n2

4

⌋
+

n

2
.

Let G[C ∪C ′] = K4 or K−4 . Moreover, we can assume that any two triangles have two

common vertices. Then each vertex of V (G) \ V (C ∪ C ′) has at most two neighbours in

V (C∪C ′). It is easy to see that G−V (C∪C ′) is triangle free and so |E(G−V (C∪C ′))| ≤
b(n− 4)2/4c. Then m ≤ b(n− 4)2/4c+ 2(n− 4) + 6 ≤ bn2/4c+ n/2. This completes the

proof.

3. Results concerning triangles

For convenience, the waste of a exactly k-edge-colored graph G is defined to be |E(G)|−k.

We have the following result.

Theorem 3.1. Let G be a connected graph of order n ≥ 7 and |E(G)| = m. If G is

K−4 -free, then mc(G) = m− n + 2.

Proof. It is clear that mc(G) ≥ m − n + 2 and here we only need to show that mc(G) ≤
m− n+ 2, i.e., any MC-coloring of G contains at most m− n+ 2 colors, i.e., the waste of

G is at least n− 2.

Let f be a simple extremal MC-coloring of G. Since G is K−4 -free (G 6= Kn), f contains

at least one nontrivial color tree. Denote by T1, T2, . . . , Tk, k ≥ 1, all the nontrivial color

trees in G. Let |Ti| = ti. Clearly, the waste of the tree Ti is ti − 2. Also, the waste of G

is
∑k

i=1(ti − 2). This means that below we only need to show
∑k

i=1(ti − 2) ≥ n − 2. If

t1 = n, then we are done. So let t1 < n.

Claim 1. Each vertex must lie in a nontrivial color tree.

Proof of Claim 1. Otherwise, there is a vertex, say x, which does not appear in any non-

trivial colore tree. Then x is adjacent to all the vertices in G. It follows from k ≥ 1 and

t1 ≥ 3 that G must contain a subgraph isomorphic to K−4 , a contradiction.
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Claim 2. Each vertex appears in at least two distinct nontrivial color trees.

Proof of Claim 2. On the contrary, assume that there are vertices that appear in unique

nontrivial color trees.

Assume that there are two vertices u and v which appears in distinct unique nontrivial

color trees, say T1 and T2, respectively.

If V (T1) ∩ V (T2) = ∅, then G[{u} ∪ V (a path of order three in T2)] contains a K−4 , a

contradiction. So let V (T1) ∩ V (T2) = {w}. Clearly, w /∈ {u, v}.
Suppose that neither NT1(u) = {w} nor NT2(v) = {w}. Then there exist u0 ∈ V (T1) \

{w} and v0 ∈ V (T2) \ {w} with uu0 ∈ E(T1) and vv0 ∈ E(T2), respectively. From

Lemma 2.2, G[u, v, u0, v0] contains a K−4 , a contradiction. So either NT1(u) = {w} or

NT2(v) = {w}. Without loss of generality, let NT1(u) = {w}. Since t2 ≥ 3, take a path

P of order three through w in T2. From Lemma 2.2, G[V (P ) ∪ {u}] contains a K−4 , a

contradiction.

Thus the set, denoted by S, of all the vertices that appear in the unique nontrivial

color tree must lie in the same nontrivial color tree, say T1.

Suppose that k = 1. Then since each vertex appears in at least one nontrivial color

tree, we have that t1 = n, contradicting to the assumption t1 < n. So let k ≥ 2. Suppose

that S = V (T1). Then V (T2)∩V (T1) = ∅. Take a vertex u ∈ S and a path P of order three

in T2. From Lemma 2.2, the vertex u is adjacent to all vertices of P , i.e., G[V (P ) ∪ {u}]
contains a K−4 , a contradiction. So V (T1) \ S 6= ∅.

Clearly, each vertex in V (T1) \ S appears in at least two nontrivial color trees. Let

u ∈ S and v ∈ V (T1) \ S with uv ∈ E(T1). Let v ∈ V (T2). From t2 ≥ 3, we have that T2

contains a path P of order three through v. From Lemma 2.2, G[V (P ) ∪ {u}] contains a

K−4 , a contradiction. This completes the proof of the claim.

From Claim 2,
∑k

i=1 ti ≥ 2n. If k ≤ n/2 + 1, then
∑k

i=1(ti−2) ≥ 2n−2k ≥ n−2, and

we are done. So let k > n/2 + 1. From Lemma 2.4, m ≤ n2/3. Then |E(G)| ≥
(
n
2

)
−n2/3.

On the other hand, each nontrivial color tree Ti can monochromatically connect at most(
ti
2

)
−(ti−1) =

(
ti−1
2

)
pairs of non-neighbors in G. Notice that the two end vertices of each

edge in G lie in a nontrivial tree of G. So we have that
∑k

i=1

(
ti−1
2

)
≥ |E(G)| ≥

(
n
2

)
−n2/3.

Assume that
∑k

i=1(ti−2) < n−2. Then
∑k

i=1(ti−1) ≤ n−3+k and k ≤ n−3 because

ti ≥ 3. Since ti ≥ 3, it follows from Lemma 2.3 that
∑k

i=1

(
ti−1
2

)
≤ k − 1 +

(
n−k−1

2

)
. Note

that g(k) = k−1+
(
n−k−1

2

)
is a decreasing function of k for k ≤ n−3. From k > n/2+1, by

the convex function property we have that
∑k

i=1

(
ti−1
2

)
≤ k−1+

(
n−k−1

2

)
≤ n2/8−n+39/8.

So we get
(
n
2

)
−n2/3 ≤ |E(G)| ≤ n2/8−n+39/8, i.e., n2+12n ≤ 108. This contradicts

to n ≥ 7. Hence
∑k

i=1(ti − 2) ≥ n− 2.
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Theorem 3.2. Let G be a connected graph of order n ≥ 7. If G is hourglass-free and

G 6= Kn − E(Kn−2), then mc(G) = m− n + 2.

Proof. As mentioned in the proof of Theorem 3.1, we only need to show that the waste of

an MC-coloring of G is at least n− 2.

Let f be a simple extremal MC-coloring of G. Since G is hourglass-free (G 6= Kn), f

contains at least one nontrivial color tree. Denote by T1, T2, . . . , Tk, k ≥ 1, all the nontrivial

color trees in G. Let |Ti| = ti. Clearly, waste of the tree Ti is ti − 2. Also, the waste of G

is
∑k

i=1(ti − 2). This means that below we only need to show
∑k

i=1(ti − 2) ≥ n− 2. We

may assume that ti < n for 1 ≤ i ≤ k.

Suppose that there is a vertex, say u, which is not in any nontrivial color tree. Then

u is adjacent to all the other vertices in G and G − u is connected, since each pair of

V (G−u) are monochromatically connected in G−u. Since G is hourglass-free, G−u has

no two independent edges, i.e., G− u = K1,n−2. This implies that G = Kn −E(Kn−2), a

contradiction. So we assume that each vertex lies in at least one nontrivial color tree.

Claim 3. Each vertex appears in at least two distinct nontrivial color trees.

Proof of Claim 3. On the contrary, assume that there are vertices that appear in unique

nontrivial color trees. Denote by S the vertices that appear in the unique nontrivial color

tree.

Observation. All the vertices in S lie in the same nontrivial color tree.

Proof of Observation. Assume that there exist u, v ∈ S appearing in the distinct nontrivial

color trees, say T1 and T2, respectively.

Assume that V (T1) ∩ V (T2) = ∅. If T1 is not a star with the center u, then from

Lemma 2.2, we can easily find that G[V (T1) ∪ V (T2)] contains a hourglass subgraph, a

contradiction. So T1 = K1,t1−1 and T2 = K1,t2−1 with the center u and v, respectively. Let

ux ∈ E(T1). If x also appears only in the nontrivial color tree T1, then from Lemma 2.2,

we can easily find that G[V (T1) ∪ V (T2)] contains a hourglass subgraph, a contradiction.

So we can assume that x ∈ V (T3). From ti ≥ 3 and Lemma 2.2, we can take two vertices

y and z with xy ∈ E(T3) and vz ∈ E(T2). From Lemma 2.2, G[{x, y, u, v, z}] contains a

hourglass subgraph, a contradiction.

So let V (T1) ∩ V (T2) = {w}. Clearly, w /∈ {u, v}. Also, both G[V (T1 − w)] and

G[V (T2−w)] does not have independent edges, since otherwise from Lemma 2.2 there will

be a hourglass subgraph.

Suppose that there is a vertex u0 ∈ V (T1) \ {w} with uu0 ∈ E(T1). We claim that u0

also lies only in the nontrivial color tree T1. Otherwise, without loss of generality, assume

that u0 ∈ V (T1) ∩ V (T3). Clearly, there is a path P of order three through u0 in T3. If

P = u0xy, then from Lemma 2.2, uu0vu and uxyu are two triangles in G which form a
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hourglass subgraph in G, a contradiction. So P = xu0y. From Lemma 2.2, v is adjacent

to at least one of x, y, say y. Then from Lemma 2.2, yu0vy and uxu0u are two triangles in

G which form a hourglass subgraph in G, a contradiction. So u0 only lies in the nontrivial

color tree T1, i.e., u0 ∈ S∩V (T1). This implies that each neighbour of u in T1−w belongs

to S ∩ V (T1).

If there is a vertex u1 ∈ V (T1) \ {w, u0} with uu1 ∈ E(G), then from Lemma 2.2,

G[{u, u0, u1, v, x}] contains a hourglass subgraph, where x ∈ V (T2)\{v, w} and vx ∈ E(G),

a contradiction. So each vertex of V (T1) \ {w, u0} is not adjacent to u in G. Hence the

vertices u, u0 are not adjacent to any vertex of T1−{w, u, u0}. If there are two vertices x,

y of T1−{w, u, u0} are adjacent in G, then from Lemma 2.2, we have that both vxyv and

vuu0v are triangles which form a hourglass subgraph in G, a contradiction. So any two

vertices of T1 − {w, u, u0} are non-adjacent in G, i.e., each component of T1 − {w, u, u0}
is an isolated vertex. Without loss of generality, let uw ∈ E(T1).

Now we plan to show that T1 is just the path wuu0. On the contrary, assume that

there is a vertex z 6= w, u with zw ∈ E(T1). Let vv′ ∈ E(T2). If v′ 6= w, then by the

analysis above, we have that v′ also lies only in the nontrivial color tree T2, i.e., v′z ∈ E(G)

from Lemma 2.2. From Lemma 2.2, both uu0vu and vv′zv are two triangles with exactly

one common vertex, i.e., G contains a hourglass subgraph, a contradiction. So v′ = w.

Then from Lemma 2.2, both vwzv and vuu0v are triangles in G, a contradiction. Hence,

we have T1 = wuu0.

Suppose that there is v0 with vv0 ∈ E(T2−w). By the same analysis we have T2 = wvv0

and v0 also lies only in the nontrivial color tree T2. From Lemma 2.2, G[{u, u0, w, v0, v}]
contains a hourglass subgraph, a contradiction. So v is only adjacent to w in T2. Take a

vertex x ∈ V (T2) \ {v, w} so that x ∈ NT2(w). From Lemma 2.2, uwxu and uu0vu are

two triangles with exactly one common vertex, i.e., G contains a hourglass subgraph, a

contradiction. So NT1(u) = {w}, and for the same reason we have NT2(v) = {w}. Take two

vertices x ∈ NT1(w) \ {u} and y ∈ NT2(w) \ {v}. From Lemma 2.2, both uwyu and vwxv

are triangles in G, again a contradiction. This completes the proof of the observation.

Let S ⊆ V (T1). Suppose that k = 1. Then since each vertex appears in at least

one nontrivial color tree, we have that t1 = n, contradicting to the assumption t1 < n.

So let k ≥ 2. Suppose that S = V (T1). Take u, v ∈ S in T1 and a path xyz in T2.

From Lemma 2.2, G[{u, v, x, y, z}] contains a hourglass subgraph, a contradiction. So

V (T1) \ S 6= ∅.
Clearly, each vertex in V (T1) \ S appears in at least two nontrivial color trees. Let

u ∈ S and v ∈ V (T1) \ S with uv ∈ E(T1). Let v ∈ V (T2) and P be a path of order three

through v in T2. Notice that, from Lemma 2.2, the vertex u is adjacent to all the vertices

of V (T2).
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Suppose that G[V (T2)] contains a path P4 of order four. Since the vertex u is adjacent

to all the four vertices of this path P4, the graph G[u, V (P4)] contains a hourglass subgraph,

a contradiction. So G[V (T2)] does not contain any path of order four, i.e., G[V (T2)] = K3

or K1,t2−1. In particular, T2 is a star.

If there is a vertex u′ ∈ S \ {u} with u′v ∈ E(G), then from Lemma 2.2, G[{u, u′} ∪
V (P )] contains a hourglass subgraph, a contradiction. So NG(v) ∩ S = {u}.

Suppose that the graph G[S] is not empty. By the choice of u and v, we can assume

that there is a vertex u′ ∈ S with uu′ ∈ E(G). Then from Lemma 2.2, we have that

G[u′, u, V (P )] contains a hourglass subgraph, a contradiction. So E(G[S]) = ∅.
Suppose that there is a vertex v′ ∈ NG(u)∩V (T1) with v 6= v′. From E(G[S]) = ∅, we

have that v′ ∈ V (T1)\S. From Lemma 2.2, we have that v′ ∈ V (T1)∩V (Ti) for some i ≥ 3.

Take a path Q of order three through v′ in Ti. From Lemma 2.2, G[{u} ∪ V (P ) ∪ V (Q)]

contains a hourglass subgraph, a contradiction. So NG(u) ∩ V (T1) = {v}. Together with

NG(v) ∩ S = {u}, we have k ≥ 3.

Now we consider the nontrivial color tree Ti, i ≥ 3. If V (Ti) ∩ V (T1) = ∅ (i ≥ 3),

then the vertex u is adjacent to all the vertices of Ti in G. Take a path Q of order three

in Ti. Hence we have that u is adjacent all the vertices of P and Q. This implies that

G[{u} ∪ V (P ∪Q)] contains a hourglass subgraph, a contradiction. So V (Ti) ∩ V (T1) 6= ∅
for each i ≥ 3. Notice that any two nontrivial color trees have at most one common vertex.

Let vi ∈ V (Ti) ∩ V (T1) for i ≥ 3. Clearly, vi ∈ V (T1) \ S.

If G[V (Ti−vi)] contains an edge, say xy, for some i ≥ 3. From Lemma 2.2, x, y /∈ V (T1)

and u is adjacent to both x and y in G. Notice that u is adjacent to all vertices of P and

at most one of x and y belongs to V (P ). Hence, if x or y is not the center vertex of P , we

have that G[{u, x, y} ∪ V (P )] contains a hourglass subgraph, a contradiction. If x or y is

not the center vertex of P , say x, then it is clear that x 6= v1. Consider the monochromatic

path from y to v1 and let y′ be the neighbour of y on it. Then either y′ = v1 or y′ /∈ V (T1)

and no matter what happens, we have uy′ ∈ E(G). Hence G[{u, x, y, y′}∪ V (P )] contains

a hourglass subgraph, a contradiction. So G[V (Ti− vi)] is an empty graph for each i ≥ 3.

This implies that G[V (Ti)] is a star with the center vi ∈ V (T1 \ S) for each i ≥ 3.

Since t1 ≥ 3 and NG(u) ∩ V (T1) = {v}, there is a vertex w 6= u with vw ∈ E(T1).

Let xv ∈ E(P ). If wx ∈ E(G), then G[{u,w} ∪ V (P )] contains a hourglass subgraph,

a contradiction. So wx /∈ E(G). Let T3 be the nontrivial color tree monochromatically

connecting x and w. Remember that T3 is a star with the center v3 ∈ V (T1)\S. Hence v3 6=
w and so |V (T1) ∩ V (T3)| ≥ 2, a contradiction. This completes the proof of Claim 3.

From Claim 3,
∑k

i=1 ti ≥ 2n. If k ≤ n/2 + 1, then
∑k

i=1(ti − 2) ≥ 2n − 2k ≥
n − 2, and we are done. So let k > n/2 + 1. From Lemma 2.6, m ≤ n2/4 + n/2 and

then |E(G)| ≥
(
n
2

)
− n2/4 − n/2. On the other hand, each nontrivial color tree Ti can
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monochromatically connect at most
(
ti
2

)
− (ti − 1) =

(
ti−1
2

)
pairs of non-neighbors in G,

we have that
∑k

i=1

(
ti−1
2

)
≥ |E(G)| ≥

(
n
2

)
− n2/4− n/2.

Assume that
∑k

i=1(ti − 2) < n − 2. Then
∑k

i=1(ti − 1) ≤ n − 3 + k and k ≤ n − 3.

Since ti ≥ 3, it follows from Lemma 2.3 that
∑k

i=1

(
ti−1
2

)
≤ k − 1 +

(
n−k−1

2

)
. Note that

g(k) = k−1+
(
n−k−1

2

)
is a decreasing function of k for k ≤ n−3. From k > n/2+1, by the

convex function property we have that
∑k

i=1

(
ti−1
2

)
≤ k − 1 +

(
n−k−1

2

)
≤ n2/8− n + 39/8.

So
(
n
2

)
−n2/4−n/2 ≤ n2/8−n+39/8, a contradiction for n ≥ 7. Hence

∑k
i=1(ti−2) ≥

n− 2. This completes the proof of Theorem 3.2.

Finally, we present the following result.

Theorem 3.3. Let G be a connected 2K3-free graph of order n ≥ 7. If for any vertex u

of degree n− 1, G− u is disconnected, then mc(G) = m− n + 2.

Remark 3.4. The assumption that G− u is disconnected for any vertex u of degree n− 1

is necessary. Otherwise, we can monochromatically color the edges of a spanning tree of

G− u and color the other edges of G by distinct new colors. Then we get an MC-coloring

of G which contains m− n + 3 colors, i.e., mc(G) ≥ m− n + 3.

Proof of Theorem 3.3. As mentioned in the proof of Theorem 3.1, we only need to show

that the waste of an MC-coloring of G is at least n− 2.

Let f be a simple extremal MC-coloring of G. Since G is 2K3-free (G 6= Kn), f contains

at least one nontrivial color tree. Denote by T1, T2, . . . , Tk, k ≥ 1, all the nontrivial color

trees in G. Let |Ti| = ti. Clearly, the waste of the tree Ti is ti− 2. Also, the waste of G is∑k
i=1(ti−2). This means that below we only need to show

∑k
i=1(ti−2) ≥ n−2. Without

loss of generality, let ti < n for 1 ≤ i ≤ k.

Suppose that there is a vertex, say u, which is not in any nontrivial color tree. Then

u is adjacent to all the other vertices in G and, since each pair of V (G−u) are monochro-

matically connected in G − u, G − u is connected, a contradiction. So each vertex lies

in at least one nontrivial color tree. Denote by S the vertices that appear in the unique

nontrivial color tree.

Claim 4. All the vertices of S lie in the same nontrivial color tree.

Proof of Claim 4. On the contrary, assume that there exist u, v ∈ S appearing in the

distinct nontrivial color trees, say T1 and T2, respectively.

Claim 4.1. There are not two disjoint paths of order three through u and v in G[V (T1) \
V (T2)] and G[V (T2) \ V (T1)], respectively.

Proof of Claim 4.1. On the contrary, assume that there are two disjoint paths, say P and

Q, of order three through u and v in G[V (T1) \V (T2)] and G[V (T2) \V (T1)], respectively.
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It is impossible that both P − u and Q− v have edges, since otherwise it follows from

from Lemma 2.2 that G contains two disjoint triangles, a contradiction. So either P or Q

is a star with the center u or v, respectively. Without loss of generality, let T2 is a star

with the center v. Let Q = xvy and V (P ) = {u, u1, u2}.
Case 1: P = uu1u2.

Now we consider the color trees monochromatically connecting {x, y} and {u1, u2}.
From Lemma 2.2, we have uv, ux, uy, vu1, vu2 ∈ E(G). If x is adjacent to both u1 and u2,

then G contains a 2K3, a contradiction. So let x be not adjacent to a vertex u′ ∈ {u1, u2}.
Clearly, there is a monochromatic x–u′ path Pxu′ in G and let w be the neighbour vertex

of x on Pxu′ . Clearly, Pxu′ contains at least three vertex and lies in a nontrivial color tree.

From Lemma 2.2, w /∈ V (T1) ∪ V (T2) and uw ∈ E(G). So uxwu and vu1u2v are two

disjoint triangles in G, a contradiction.

Case 2: P = u1uu2.

Since u, v ∈ S, it follows from Lemma 2.2 that ux, uy, vu1, vu2 ∈ E(G). Notice

that uu1, uu2, vx, vy ∈ E(G). Since G does not contain 2K3, we can easily find that

G[{u1, u2, x, y}] does not contain two independent edges. This implies that each com-

ponent of G[{u1, u2, x, y}] is either an isolated vertex or a star. Moreover, at most one

component of G[{u1, u2, x, y}] is a star. Hence there is a vertex p ∈ {x, y, u1, u2} such that

G[{u1, u2, x, y}]− p does not contain any edges.

Here we let p = u1 and the other cases can be verified in the same way whose details

are omitted here. So xu2, yu2 /∈ E(G). So x and u2 are monochromatically connected in a

nontrivial color tree, say T3. Let P1 = xz · · ·u2 be the x–u2 path in T3. From Lemma 2.2,

y /∈ V (T3).

Since yu2 /∈ E(G), we have that y and u2 are monochromatically connected in a

nontrivial color tree and from Lemma 2.2, this tree is different from T1, T2, T3. Let

y, u2 ∈ V (T4). Let P2 = u2z
′ · · · y be the y–u2 path in T4. Clearly, x, z, u, v 6= z′.

From Lemma 2.2, both vxzv and uu2z
′u are triangles in G, i.e., G contains a 2K3, a

contradiction. This completes the proof of Claim 4.1.

In particular, it follows from Claim 4.1 that V (T1)∩V (T2) 6= ∅. So let V (T1)∩V (T2) =

{w}. Clearly, w /∈ {u, v}.

Claim 4.2. There is not any path of order four in G[V (Ti)] for i ≥ 3. In particular,

G[V (Ti)] = K1,ti−1 = Ti for i ≥ 3.

Proof of Claim 4.2. On the contrary, suppose that there is a path P = x1x2x3x4 of order

four in G[V (T3)].

Assume that w /∈ V (P ). If |V (P ) ∩ V (T1 ∪ T2)| ≤ 1, without loss of generality, let

|V (P )∩V (T1)| = x1 or |V (P )∩V (T1)| = x2, then from Lemma 2.2, we can easily find both
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vx1x2v and ux3x4u are triangles in G, a contradiction. So let |V (P ) ∩ V (T1 ∪ T2)| ≥ 2.

More precisely, we have that |V (P ) ∩ V (T1)| = 1 and |V (P ) ∩ V (T2)| = 1. If V (P ) ∩
V (T1 ∪ T2) 6= {x1, x2} or {x3, x4}, then from Lemma 2.2, we can easily find a 2K3 in G, a

contradiction. By the symmetry, let V (P )∩V (T1∪T2) = {x1, x2}, say x1 ∈ V (P )∩V (T1)

and x2 ∈ V (P ) ∩ V (T2). Clearly, ux3, vx3, ux4, vx4, vx1, ux2 ∈ E(G). Then vx2 /∈ E(G),

since otherwise both ux3x4u and vx1x2v are triangles, a contradiction. For the same

reason, ux1 /∈ E(G).

Let x5 be a neighbour of x1 in T1. Clearly, x5 6= u. If x5x2 ∈ E(G), then both x1x2x5x1

and vx3x4v are triangles, a contradiction. So x5x2 /∈ E(G). If x5 6= w, then x5 and x2 is

monochromatically connected in a nontrivial color tree different from T1, T2, T3. Denote

the monochromatic x2–x5 path by x5 · · ·x6x2. Clearly, x6 /∈ V (Ti), i = 1, 2, 3. From

Lemma 2.2, ux6 ∈ E(G). Then both ux6x2u and vx3x4v are triangles, a contradiction.

So x5 = w.

If x2w ∈ E(G), then both ux3x4u and wx1x2w are triangles, a contradiction. Then

x2w /∈ E(G). Denote by x7 a neighbour of x2 in T2 and clearly, x7 6= w. If x1x7 ∈ E(G),

then we get a contradiction easily. Let x8 be the neighbour of x1 on the monochromatic

x1–x7 path. Clearly, x8 /∈ V (Ti), i = 1, 2, 3. Now both ux3x4u and vx1x8v are triangles,

a contradiction.

So w ∈ V (P ). Moreover, this implies that each path of order four in G[V (Ti)], i ≥ 3,

must pass through the vertex w. Assume that there is a nontrivial color tree Ti for some

i ≥ 4 such that G[V (Ti)] contains a path Q of order four. Clearly, V (T3) ∩ V (Ti) = {w}.
Denote by x1x2 and x3x4 the edges of P − w and Q− w, respectively. From Lemma 2.2,

both u and v are adjacent to all the vertices {x1, x2, x3, x4} in G. Hence both ux1x2u and

vx3x4v are triangles in G, a contradiction. So we have that each G[V (Ti)], i ≥ 4, does not

contain any path of order four. That is to say, each G[V (Ti)], i ≥ 4, is a star.

Let V (P ) = {w, x, y, z}. Clearly, x, y, z /∈ V (T1) ∪ V (T2). It follows from Lemma 2.2

that ux, xy, uz, vx, vy, vz ∈ E(G). Without loss of generality, let xy,wz ∈ E(P ). If

wv ∈ E(G), then both vwzv and uxyu are triangles, a contradiction. So wv /∈ E(G).

Take a vertex a ∈ V (T2) \ {w, v} such that wa ∈ E(G). If za ∈ E(G), then both

awza and uxyu are triangles, a contradiction. So za /∈ E(G). Let zb be an edge on

the monochromatic path connecting z and a. Clearly, b /∈ V (T2). From Lemma 2.2,

vb ∈ E(G). Then both uxyu and vzbv are triangles in G, a contradiction. This completes

the proof of Claim 4.2.

Claim 4.3. There do not exist two disjoint paths of order three through u and v in

G[V (T1)] and G[V (T2)], respectively.

Proof of Claim 4.3. On the contrary, assume that there are two disjoint paths P and Q
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of order three through u and v in G[V (T1)] and G[V (T2)], respectively. From Claim 4.1,

we have that one of P and Q contains the vertex w. Without loss of generality, let

V (P ) = {u, x, y} and V (Q) = {w, v, z}. Since u, v ∈ S and w ∈ V (T1) ∩ V (T2), it follows

from Lemma 2.2 that uv′, vu′ ∈ E(G) for any u′ ∈ V (T1 − w), v′ ∈ V (T2 − w).

Case 1: P = uxy and Q = wvz.

Assume that xz /∈ E(G). Take an edge zz′ on the monochromatic path connecting z

and x. Clearly, z′ /∈ V (Ti), i = 1, 2. From Lemma 2.2, both uzz′u and vxyv are triangles

in G, a contradiction. So xz ∈ E(G). If there is a vertex w′ /∈ V (T2) ∪ {u, x} such that

ww′ ∈ E(G), then from Lemma 2.2 we have that vw′ ∈ E(G). Hence both uxzu and

vww′v are triangles in G, a contradiction. So NG(w) ⊆ V (T2) ∪ {u, x}. In particular,

NG(w)∩ V (T1) ⊆ {u, x}. Clearly, from Lemma 2.2, any two nontrivial color trees have at

most one common vertex. Since w is monochromatically connected to all the vertices of

G, we have that V (G) = V (T1) ∪ V (T2). This implies that k = 2. From Lemma 2.2, each

vertex of T1 − w is adjacent to all vertices of T2 − w.

Then G[V (T1−w)] is a star with the center vertex x. Otherwise, G[V (T1−w)] contains

two independent edges whose vertices are adjacent to both v and z and hence we can find

two disjoint triangles easily, a contradiction.

Clearly, NG(w)∩ V (T1) ⊆ {u, x}. If wx ∈ E(G), then we have that d(x) = n− 1. But

now G− x is connected, a contradiction. So wu ∈ E(G). Then both uvwu and xyzx are

triangles, a contradiction.

Case 2: P = xuy and Q = wvz.

Suppose that w is adjacent to a vertex w′ ∈ V (G−u)\V (T2) in G. Notice that w′ 6= x

or w′ 6= y. Without loss of generality, let w′ 6= x. If xz ∈ E(G), then both ww′vw and

uxzu are triangles in G, a contradiction. So xz /∈ E(G). From Claim 4.2, xw′′, w′′z ∈ E(G)

for some vertex w′′ /∈ V (T1) ∪ V (T2). From Lemma 2.2, uw′′ ∈ E(G). Hence both ww′vw

and uxw′′u are triangles in G, a contradiction. So NG(w)∩ V (G) \ V (T2) = {u}. Then in

order to avoid falling into Case 1 above, we can assume that T1 is a star with the center

u.

Clearly, from Lemma 2.2, any two nontrivial color trees have at most one common

vertex. Since w is monochromatically connected to all the vertices of G, we have that

V (G) = V (T1)∪V (T2). Then d(u) = n−1 and however, G−u is connected, a contradiction.

Case 3: P = uxy and Q = wzv.

Suppose that there is a vertex w′ ∈ V (G − x) \ V (T2) with ww′ ∈ E(G). Let a ∈
{u, y}\{w′}. If w′z ∈ E(G), then both ww′zw and vxav are triangles in G, a contradiction.

So w′z /∈ E(G). From Claim 4.2, w′ and z are monochromatically connected in a nontrivial

color tree, say T3, which is a star with the center w′′ /∈ V (T1) ∪ V (T2). If ww′′ ∈ E(G),

then both ww′′zw and vxav are triangles, a contradiction. So ww′′ /∈ E(G). Again from
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Claim 4.2, there is a vertex w′′′ /∈ V (T1) ∪ V (T2) ∪ V (T3) such that ww′′′, w′′w′′′ ∈ E(G).

Hence from Lemma 2.2, both uw′′w′′′u and vxyv are triangles, a contradiction. Thus

NG(w) ∩ V (G) \ V (T2) = {x}.
Clearly, from Lemma 2.2, any two nontrivial color trees have at most one common

vertex. Since w is monochromatically connected to all the vertices of G, we have that

V (G) = V (T1) ∪ V (T2). Then from Claim 4.2 and Lemma 2.2, we have that k = 2 and

hence z ∈ S. By the choice of u, v, we can replace v by z and then we fall into Case 1

above. So we are done.

Case 4: P = xuy and Q = wzv.

By choice of u, v and in order to avoiding to fall into Cases above, we can assume

that x, y, z /∈ S. From Lemma 2.2, at least one of {x, y, z} is adjacent to a vertex w′ /∈
V (T1) ∪ V (T2) in a nontrivial color tree, say T3.

Assume that xw′ ∈ E(T3) or yw′ ∈ E(T3). By the symmetry of x and y, let xw′ ∈
E(T3). Then uw′, vw′ ∈ E(G). If there is a vertex y′ ∈ V (G−w′) \ (V (T1) ∪ V (T2)) with

yy′ ∈ E(G), then vy′ ∈ E(G). Hence both uxw′u and vyy′v are triangles, a contradiction.

Thus we have that NG(y) \ (V (T1) ∪ V (T2)) ⊆ {w′}. If there is a vertex x′ ∈ V (G −
w′) \ (V (T1) ∪ V (T2)) with xx′ ∈ E(G), then vx′ ∈ E(G). Hence both uxw′u and vxx′v

are triangles, a contradiction. Thus we have that NG(x) \ (V (T1) ∪ V (T2)) ⊆ {w′}.
If there is a vertex z′ ∈ V (G − w′) \ (V (T1) ∪ V (T2)) with zz′ ∈ E(G), then vz′ ∈
E(G). Hence both uxw′u and vzz′v are triangles, a contradiction. Thus we have that

NG(z) \ (V (T1) ∪ V (T2)) ⊆ {w′}.
If yz ∈ E(G), then both uxw′u and vzyv are triangles, a contradiction. So yz /∈ E(G).

Then from Claim 4.2, it is only possible that y and z are monochromatically connected by

the monochromatic path yw′z. From Lemma 2.2, yw′z does not lie in T3. Now consider

the vertices x, z. It is only possible that xz ∈ E(G). Hence both uxzu and vyw′v are

triangles, a contradiction.

So zw′ ∈ E(T3). Notice that at least one of x, y is not in T3. Without loss of generality,

let x /∈ V (T3). If xw′ ∈ E(G), then both uxw′u and vyzv are triangles, a contradiction.

Hence x and w′ are monochromatically connected by a monochromatic path xw′′w′ with

w′′ /∈ V (T1) ∪ {z}. Then both uxw′′u and vzw′v are triangles, a contradiction.

Case 5: P = xuy and Q = vwz.

First we show that T1 is a star with the center u. Otherwise, let ab ∈ E(T1 − u).

Suppose that {x, y} = {a, b} and without loss of generality, let x = a and y = b. From

Lemma 2.2, vx, vy, uz ∈ E(G). If uw ∈ E(G), then both G[{u,w, z}] and G[{v, x, y}] are

triangles, a contradiction. So we can take a vertex w′ ∈ NT1(w) and it is clear that w′ 6= u

and vw′ ∈ E(G). Hence G([{v, w,w′}]) is a triangle. Without loss of generality, let y 6= w′.

If yz ∈ E(G), then both G[{u, y, z}] and G[{v, w,w′}] are triangles, a contradiction. So
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yz /∈ E(G). Then there is a monochromatic path from y to z and take the neighbour

vertex, say y′, of y on it. Clearly, y′ /∈ V (T1). From Lemma 2.2, uy′ ∈ E(G). Hence both

G[{u, y, y′}] and G[{v, w,w′}] are triangles, a contradiction. Thus, at least one of x, y

does not belong to {a, b}.
By the symmetry of x and y, we can let x /∈ {a, b}. If xz ∈ E(G), then both uxzu

and vabv are triangles, a contradiction. So xz /∈ E(G). From Claim 4.2, there is a

vertex w′ /∈ V (T1) ∪ V (T2) such that xw′z is a monochromatic path. From Lemma 2.2,

uw′ ∈ E(G). Hence both uxw′u and vabv are triangles, a contradiction. Hence T1 is a

star with the center u.

Hence V (T1)∪V (T2)\{u} ⊆ NG(u). From Lemma 2.2, V (G)\(V (T1)∪V (T2)) ⊆ NG(u),

V (G) \ (V (T1) ∪ V (T2)) ⊆ NG(v), and V (T1) ⊆ NG(v). This implies that d(u) = n − 1

and G− u is connected, a contradiction.

Case 6: P = uxy and Q = vwz.

Here we can assume that uy /∈ E(G), since otherwise we can fall into Case 5 above. If

uw ∈ E(G), then both uwzu and vxyv are triangles, a contradiction. Assume that there

is a vertex w′ ∈ V (T1) \ {u, x} such that ww′ ∈ E(G). Consider the monochromatic path

between x and z. If xz ∈ E(G), then both uxzu and vww′v are triangles, a contradiction.

So from Claim 4.2, there is a vertex w′′ /∈ V (T1)∪V (T2) such that xw′′z is a monochromatic

path. Hence from Lemma 2.2, uw′′ ∈ E(G). Then both uxw′′u and vww′v are triangles,

a contradiction. Hence NG(w) ∩ V (T1) = {x}.
Now consider the neighbour of u. Assume that there is a vertex u′ ∈ V (T1) \ {u, x, y}

with uu′ ∈ E(G). If u′z ∈ E(G), then both uu′zu and vwxv are triangles, a contradiction.

So u′z /∈ E(G). From Claim 4.2, there is a vertex w′′ /∈ V (T1) ∪ V (T2) such that u′w′′z

is a monochromatic path. Hence from Lemma 2.2, uw′′ ∈ E(G). Then both uu′w′′u and

vwxv are triangles, a contradiction. Hence NG(u) ∩ V (T1) = {x}.
Now consider the neighbour of y. Assume that there is a vertex y′ ∈ V (T1) \ {u, y, x}

with yy′ ∈ E(G). If xz ∈ E(G), then both uxzu and vyy′v are triangles, a contradiction.

So xz /∈ E(G). From Claim 4.2, there is a vertex w′ /∈ V (T1) ∪ V (T2) such that xw′z is a

monochromatic path. Hence from Lemma 2.2, uw′ ∈ E(G). Then both uxw′u and vwxv

are triangles, a contradiction. Hence NG(y) ∩ V (T1) = {x}.
Assume that there is an edge ab in T1 − x. Clearly, a, b 6= u, y. If xz ∈ E(G), then

both uxzu and vabv are triangles, a contradiction. So xz /∈ E(G). From Claim 4.2, there

is a vertex w′ /∈ V (T1) ∪ V (T2) such that xw′z is a monochromatic path. Hence from

Lemma 2.2, uw′ ∈ E(G). Then both uxw′u and vabv are triangles, a contradiction.

Thus we have that T1 is a star with the center x. Now we show that V (T2) ⊆ NG(x).

Otherwise, there is a vertex x′ ∈ V (T2) \ NG(x). Clearly, x′ 6= v, w. From Claim 4.2,

there is a vertex w′ /∈ V (T1) ∪ V (T2) such that xw′x′ is a monochromatic path. Hence
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from Lemma 2.2, uw′ ∈ E(G). Then both ux′w′u and vxwv are triangles, a contradiction.

Hence V (T2) ⊆ NG(x). If d(x) 6= n − 1, then there is a vertex x′ /∈ V (T1) ∪ V (T2) with

xx′ /∈ E(G). From Claim 4.2, there is a vertex x′′ such that xx′′x′ is a monochromatic

path. Clearly, x′′ /∈ V (T1). From Lemma 2.2, ux′′, ux′ ∈ E(G). Hence both ux′′x′u and

vwxv are triangles, a contradiction. Thus d(x) = n − 1. However, it is obviously that

G− x is connected, a contradiction. This completes the proof of Claim 4.3.

Immediately, from Claim 4.3 above, we have the following observation.

Observation. Each path of order three through u and v in G[V (T1)] and G[V (T2)],

respectively, contains the vertex w.

Let P and Q be a path of order three through u and v in G[V (T1)] and G[V (T2)],

respectively. Let V (P ) = {w, u, x} and V (Q) = {w, v, y}. From Lemma 2.2, uv, uy, vx ∈
E(G). By the symmetry, we distinguish the following cases.

Case a: P = uxw ⊆ T1 and Q = vyw ⊆ T2.

First we show that xy ∈ E(G). Otherwise, from Claim 4.2, there is a vertex w′ /∈
V (T1) ∪ V (T2) such that xw′y is a monochromatic path. If ww′ ∈ E(G), then from

Lemma 2.2 both uvxu and yww′y are triangles in G, a contradiction. So ww′ /∈ E(G).

From Claim 4.2, there is a vertex w′′ /∈ V (T1) ∪ V (T2) ∪ {w′} such that ww′′w′ is a

monochromatic path. Notice that from Lemma 2.2, uw′, uw′′, vw′, vw′′ ∈ E(G).

Now we consider the monochromatic y–w′′ path. If yw′′ ∈ E(G), then both wyw′′w and

uvxu are triangles in G, a contradiction. So yw′′ /∈ E(G). From Claim 4.2 and Lemma 2.2,

there is a vertex w′′′ 6= u, v, x, y, w,w′, w′′ such that yw′′′w′′ is a monochromatic path. From

Lemma 2.2, both uxw′u and yvw′′′y are triangles in G, a contradiction. Hence xy ∈ E(G).

Assume that there is a vertex w′ 6= x, y, u, v with ww′ ∈ E(G). Without loss of

generality, let w′ /∈ V (T2). If yw′ ∈ E(G), then both uvxu and yww′y are triangles in

G, a contradiction. So yw′ /∈ E(G). From Claim 4.2 and Lemma 2.2, there is a vertex

w′′ 6= u, v, x, y, w,w′ such that yw′′w′ is a monochromatic path. Hence from Lemma 2.2,

both uxyu and vw′w′′v form a 2K3 in G, a contradiction.

So NG(w) ⊆ {x, y, u, v}. Assume that there is a vertex w′ /∈ V (T1) ∪ V (T2). Then

ww′ /∈ E(G), and from Claim 4.2 there is a vertex w′′ such that ww′′w′ is a monochromatic

path. From Lemma 2.2, w′′ /∈ V (T1) ∪ V (T2). However, w′′ ∈ NG(w) ⊆ {x, y, u, v} ⊆
V (T1) ∪ V (T2), a contradiction. Hence V (G) = V (T1) ∪ V (T2).

From n ≥ 7, there is a vertex w∗ 6= w, u, v, x, y in G. Since NG(w) ⊆ {x, y, u, v}, w∗ is

adjacent to one of {x, y, u, v} in T1 or T2. Thus we can get a path of order three through

u or v in T1 − w or T2 − w, a contradiction.

Case b: P = uxw and Q = yvw.

From Observation, NT2(v) = {y, w}, NT2(y) = {v}, NT1(u) ⊆ {x,w} and NT1(x) =

{u,w}.
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First we show that xy ∈ E(G). Otherwise, from Claim 4.2, there is a vertex w′ /∈
V (T1) ∪ V (T2) such that xw′y is a monochromatic path. From Lemma 2.2, uw′, vw′ ∈
E(G). Then both uw′yu and vwxv are triangles in G, a contradiction. Hence xy ∈ E(G).

Suppose that there is a vertex w′ /∈ V (T1) ∪ V (T2). If ww′ ∈ E(G), then both vww′v

and uxyu are triangles, a contradiction. So ww′ /∈ E(G). From Claim 4.2 and Lemma 2.2,

there is a vertex w′′ /∈ V (T1) ∪ V (T2) such that ww′′w′ is a monochromatic path. From

Lemma 2.2, vw′′ ∈ E(G). Then both vww′′v and uxyu are triangles, a contradiction.

Hence V (G) = V (T1) ∪ V (T2). From Claim 4.2 and Lemma 2.2, we have that k = 2.

Hence u, v, x, y ∈ S and we fall into Case a above.

Case c: P = xuw and Q = yvw.

From two cases above, we can let x, y /∈ S. Assume that xy /∈ E(G). From Claim 4.2,

there is a vertex w′ /∈ V (T1) ∪ V (T2) such that xw′y is a monochromatic path. Let

xw′y ⊆ T3. From Claim 4.2, T3 is a star with the center w′.

Assume that there is a vertex y′ ∈ V (T2)\{w, v, y}. If xy′ ∈ E(G), then both uxy′u and

vyw′v are triangles in G, a contradiction. So xy′ /∈ E(G). We have that x ∈ V (T1∪T3) and

y′ ∈ V (T2). From Claim 4.2 and Lemma 2.2, there is a vertex y′′ /∈ V (T1)∪V (T2)∪V (T3)

such that xy′′y′ is a monochromatic path. Then it follows from Lemma 2.2 that both

uxy′′u and vyw′v are triangles in G, a contradiction. So V (T2) = {w, v, y}. By the

symmetry, we have that V (T1) = {w, u, x}.
Assume that there is a vertex x′ ∈ NG(x) \ (V (T1)∪ V (T2)∪ {w′}). From Lemma 2.2,

we have that both uxx′u and vyw′v are triangles, a contradiction. So NG(x) ⊆ V (T1) ∪
V (T2)∪ {w′}. By the symmetry of x and y, we have that NG(y) ⊆ V (T1)∪ V (T2)∪ {w′}.

Notice that n ≥ 7 and then there is a vertex z ∈ V (G)\{u, v, x, y, w,w′}. Since u, v ∈ S

and NG(y) ∪ NG(x) ⊆ V (T1) ∪ V (T2) ∪ {w′}, from Lemma 2.2 and Claim 4.2, xw′z is a

monochromatic path. Since xw′ ∈ E(T3), this implies that V (G) = V (T1)∪V (T2)∪V (T3).

Notice that from Lemma 2.2, w /∈ V (T3). If wz /∈ E(G), then from Claim 4.2, both w and

z are monochromatically connected in a nontrivial color tree, say T4, by a path wzz′z for

some vertex z′. Clearly, z′ ∈ V (Ti) for some i ∈ {1, 2, 3}. Hence |V (T4) ∩ V (Ti)| ≥ 2, a

contradiction to the statement of Lemma 2.2. Thus it must hold that wz ∈ E(G). Hence

from Lemma 2.2, both uwzu and vyw′v are triangles, a contradiction. Thus xy ∈ E(G).

Since x /∈ S, there is a vertex z /∈ V (T1) ∪ V (T2) such that xz ∈ E(G). If wz ∈ E(G),

then both uxyu and vwzv are triangles, a contradiction. So wz /∈ E(G). From Claim 4.2

and Lemma 2.2, there is a vertex w′ /∈ V (T1)∪ V (T2) such that ww′z is a monochromatic

path. From Lemma 2.2, both uxyu and vww′v are triangles, a contradiction.

Case d : P = uxw and Q = ywv.

We can assume NT2(v) = {w}, otherwise, we will fall into Case b above. If there is

a vertex z ∈ NT2(y) \ {w}, then from Lemma 2.2, both uyzu and vwxv are triangles, a
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contradiction. So NT2(y) ⊆ {v, w}. Hence T2 is a star with the center w.

Assume that xy /∈ E(G). From Claim 4.2, there is a vertex w′ /∈ V (T1 ∪ T2) such that

xw′y is a monochromatic path. From Lemma 2.2, both vxwv and uyw′u are triangles in

G, a contradiction. Thus xy ∈ E(G).

Suppose that there is a vertex w′′ /∈ NG(w) \ (V (T2) ∪ {x, u}) such that ww′′ ∈ E(G).

From Lemma 2.2, both vww′′v and uxyu are triangles in G, a contradiction. So NG(w) ⊆
V (T2)∪ {x, u}. From Observation, NG(u)∩ V (T1) ⊆ {x,w} and NG(x)∩ V (T1) = {u,w},
and hence T1 = uxw.

Since w is monochromatically connected to each vertex in G, we have that V (G) =

V (T1) ∪ V (T2). From Lemma 2.2, k = 2. Hence x ∈ S. From Lemma 2.2, d(x) = n − 1

and G− x is connected, a contradiction.

Case e: P = xuw and Q = ywv.

In order to avoid falling to Case d above, let x /∈ S. Without loss of generality, let

x ∈ V (T3) and xz ∈ E(T3). Clearly, z /∈ V (T1). If z /∈ V (T2), then from Lemma 2.2, both

vxzv and uwyu are triangles in G, a contradiction. So z ∈ V (T2). From Claim 4.2, T3 is

a star and hence there is a vertex z′ /∈ V (T1) ∪ V (T2) with zz′ ∈ E(T3). If wz′ ∈ E(G),

then both uxzu and vwz′v are triangles, a contradiction. So wz′ /∈ E(G). From Claim 4.2

and Lemma 2.2, there is a vertex z′′ /∈ V (T1)∪V (T2) such that wz′′z′ is a monochromatic

path. From Lemma 2.2, both uxzu and vwz′′v are triangles, a contradiction.

Case f : P = xwu and Q = ywv.

In order to avoid falling into cases above, we can assume that ux, vy /∈ E(G), NG(u)∩
V (T1) = NG(v) ∩ V (T2) = {w}. Suppose that there is a vertex z ∈ NG(x) \ V (T2), then

from Lemma 2.2, both vxzv and uwyu are triangles, a contradiction. So NG(x) ⊆ V (T2).

By the symmetry, we have that NG(a) ⊆ V (T2) for each vertex a ∈ NG(w) ∩ V (T1).

By the symmetry, we have that NG(b) ⊆ V (T1) for each vertex b ∈ NG(w) ∩ V (T2).

This implies that both T1 and T2 are stars with the center w. Moreover, this forces

V (G) = V (T1) ∪ V (T2). Hence dG(w) = n − 1 and k = 2. From Lemma 2.2, G − w is

connected, a contradiction. This completes the proof of Claim 4.

Claim 5. |S| ≤ 1.

Proof of Claim 5. On the contrary, let |S| ≥ 2. From Claim 4, let S ⊆ V (T1). Suppose

that k = 1. Then since each vertex appears in at least one nontrivial color tree, we have

that t1 = n, a contradiction. So let k ≥ 2.

Suppose that S = V (T1). Take a path uvw in T1 and a path xyz in T2. From

Lemma 2.2, G[u, v, w, x, y, z] contains a 2K3, a contradiction. So V (T1) \ S 6= ∅.
Take u, v ∈ S such that at least one of {u, v} is adjacent to a vertex of V (T1) \ S in

T1. We can choose u, v in G with one of the following cases.
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Case A: There are two different vertices x, y ∈ V (T1) \ {u, v} with x /∈ S and ux, vy ∈
E(G).

Suppose that y ∈ S. Since x /∈ S, there is a nontrivial color tree Ti (i ≥ 2) containing

x. Take x′, x′′ ∈ V (Ti − x) with xx′ ∈ E(G). Then from Lemma 2.2, both uxx′u and

vyx′′v are triangles in G, a contradiction. So y /∈ S.

From Lemma 2.2, any nontrivial color tree other than T1 cannot contain both x and

y. Since x, y /∈ S, we let x ∈ V (T2) and y ∈ V (T3). Let xx′ ∈ E(T2) and yy′ ∈ E(T3).

If x′ 6= y′, then both uxx′u and vyy′v are triangles, a contradiction. So x′ = y′, i.e.,

V (T2) ∩ V (T3) = {x′}. This implies that NT2(x) = {x′} and NT3(y) = {x′}. Hence there

are vertices x′′ ∈ V (T2−x) and y′′ ∈ V (T3− y) such that x′x′′ ∈ E(T2) and x′y′′ ∈ E(T3).

Clearly, x′, x′′, y′′ /∈ V (T1).

Suppose that yx′′ /∈ E(G). Then y and x′′ are monochromatically connected in a

nontrivial color tree, say T4. Clearly, V (T4)∩V (Ti) ⊆ {y, x′′}, i = 1, 2, 3. So we can take a

vertex w ∈ V (T4), w 6= x′, with x′′w ∈ E(T4). From Lemma 2.2, both ux′′wu and vy′′x′v

are triangles in G, a contradiction. So yx′′ ∈ E(G). From Lemma 2.2, both uxx′u and

vyx′′v are two disjoint triangles in G, a contradiction.

Case B : There is a vertex x ∈ V (T1) \ S with ux, vx ∈ E(G).

Here we can assume that NT1(u) = NT1(v) = {x}.
Let x ∈ V (T2). Suppose that T2 contains a path of order four, say x1x2x3x4. Since

ux, vx ∈ E(G), from Lemma 2.2, we have uxi, vxi ∈ E(G) for i = 1, 2, 3, 4. Hence both

ux1x2u and vx3x4v are triangles, a contradiction. So T2 must be a star.

Let wx ∈ E(T2) and take a vertex y ∈ V (T2) \ {w, x} with either xy ∈ E(G) or

wy ∈ E(G). Clearly, w, y /∈ V (T1) ∪ S. So there is a non-T2 nontrivial color tree, say

T3, containing y. Suppose that there is an edge ab ∈ E(T3 − V (T1)). Clearly, a, b /∈
V (T1) ∪ {w}. Then both uxwu and vabv are triangles, a contradiction. So T3 − V (T1)

cannot contain any edges, i.e., T3 is a star with the center z ∈ V (T1). Since x, y ∈ V (T2)

and y ∈ V (T3), we have z 6= x and hence z ∈ V (T1) \ {u, v, x}.
For the same reason, we have that each non-T2 nontrivial color tree containing y is a

star with the center vertex in V (T1) \ {u, v, x}.
Case B.1: wy ∈ E(G).

Let y′ ∈ V (T3) \ {y, z} and zy′ ∈ E(T3). If xy′ ∈ E(G), from Lemma 2.2, both uywu

and vxy′v are disjoint triangles in G, a contradiction. So xy′ /∈ E(G). Clearly, x and y′

are not monochromatically connected in Ti, i = 1, 2, 3. Let w′ be the neighbour of x on

the monochromatic x–y′ path. Clearly, w′ /∈ V (T1 ∪ T2 ∪ T3). From Lemma 2.2, both

uywu and vxw′v are disjoint triangles in G, a contradiction.

Case B.2: xy ∈ E(G) and wy /∈ E(G).

Then we can assume that NT2(w) = {x}. If there is a vertex w′ ∈ NG(w)\V (T1), then



The Monochromatic Connectivity of Graphs 803

from Lemma 2.2, both uww′u and vxyv are triangles, a contradiction. So NG(w) ⊆ V (T1).

Suppose that there is an edge ab ∈ E(G − V (T1)). Clearly, w 6= a, b. From Lemma 2.2,

both uabu and vxwv are triangles, a contradiction. Hence E(G− V (T1)) = ∅. Hence for

any a ∈ V (T1) and b /∈ V (T1), it must hold that ab ∈ E(G).

Notice that NT1(u) = NT1(v) = {x}. Suppose that there are two vertices a, b ∈
V (T1 − x) with ab ∈ E(G). Then both uxwu and yaby are triangles, a contradiction.

Hence T1 is a star with the center x. Thus we have that d(x) = n − 1 and G − x is

connected, a contradiction.

Case C : There is a vertex x ∈ V (T1) \ ({u, v} ∪ S) with vx, uv ∈ E(G).

Then we can assume that NT1(u) = {v}. Let x ∈ V (T2). From Lemma 2.2, we can

easily find that T2 does not contain a path of order four. So T2 is a star. Let wx ∈ E(T2)

and take a vertex y ∈ V (T2) \ {x,w} such that either xy ∈ E(G) or wy ∈ E(G). Clearly,

y /∈ V (T1) ∪ S. So there is a non-T2 nontrivial color tree, say T3, containing y.

If there is an edge ab ∈ E(T3 − V (T1)), then from Lemma 2.2, both uabu and vxwv

are triangles, a contradiction. Hence T3 is a star with the center z ∈ V (T1 − x). Let

y′ ∈ V (T3) \ {y, z}.
Case C.1: wy ∈ E(G).

Clearly, there is not any monochromatic x–y′ path in Ti for i = 1, 2, 3. Take a

monochromatic x–y′ path and let w′ be the neighbour vertex of x on it. From Lemma 2.2,

w′ /∈ V (T1) ∪ V (T2). Then from Lemma 2.2, both uwyu and vxw′v are triangles in G, a

contradiction.

Case C.2: xy ∈ E(G).

Then we can assume that NT2(w) = {x}. Suppose that there is an edge ab ∈
E(G[V (T2 − x)]). Then it is clear that a, b 6= w. From Lemma 2.2, both uabu and

vxwv are triangles, a contradiction. Hence G[V (T2)] is a star with the center x.

Suppose that there is an edge ab ∈ E(G − V (T1)). From Lemma 2.2, both uabu and

vxwv are triangles, a contradiction. So E(G− V (T1)) = ∅. Hence for any a ∈ V (T1) and

b /∈ V (T1), it must hold that ab ∈ E(G).

Suppose that there is an edge ab ∈ G[V (T1 − v)]. Then it is clear that a, b 6= u, v.

Hence both aby′a and uvwu are triangles, a contradiction. So G[V (T1)] is a star with the

center v. Hence d(v) = n− 1 and G− v is connected, a contradiction. This completes the

proof of Claim 5.

By Claim 5,
∑k

i=1 ti ≥ 2n − 1. If k ≤ (n + 1)/2, then
∑k

i=1(ti − 2) ≥ 2n − 1 − 2k ≥
n − 2, and we are done. So let k > (n + 1)/2. From Lemma 2.7, m ≤ n2/4 + n/2,

i.e., |E(G)| ≥
(
n
2

)
− n2/4 − n/2. On the other hand, each nontrivial color tree Ti can

monochromatically connect at most
(
ti
2

)
− (ti − 1) =

(
ti−1
2

)
pairs of non-neighbors in G,

we have that
∑k

i=1

(
ti−1
2

)
≥ |E(G)| ≥

(
n
2

)
− n2/4− n/2.
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Assume that
∑k

i=1(ti − 2) < n − 2. Then
∑k

i=1(ti − 1) ≤ n − 3 + k and k ≤ n − 3.

Since ti ≥ 3, it follows from Lemma 2.3 that
∑k

i=1

(
ti−1
2

)
≤ k − 1 +

(
n−k−1

2

)
. Let g(k) =

k − 1 +
(
n−k−1

2

)
is a decreasing function of k for k ≤ n − 3. From k > (n + 1)/2,

by the convex function property we have that that
∑k

i=1

(
ti−1
2

)
≤ k − 1 +

(
n−k−1

2

)
≤

max{n2/8− 3n/4 + 3, n2/8− n + 39/8}.
So
(
n
2

)
− n2/4 − n/2 ≤ max{n2/8 − 3n/4 + 3, n2/8 − n + 39/8}, a contradiction for

n ≥ 7. Hence
∑k

i=1(ti − 2) ≥ n− 2. This completes the proof of Theorem 3.3.

4. Join of graphs

First we consider the join graph of two connected graphs. The join of two disjoint graphs

G and H, denoted by G + H, is defined to be the graph G ∪H.

Let G1 and G2 be two disjoint graphs and G = G1 +G2. Given an MC-coloring of the

graph G. A nontrivial color tree T intersecting both G1 and G2 is called a star-type color

tree if |V (T ) ∩ V (G1)| = 1 or |V (T ) ∩ V (G2)| = 1, otherwise we call it non-star-type.

A nontrivial color tree T with |V (T ) ∩ V (G1)| ≥ 2 and |V (T ) ∩ V (G2)| ≥ 2 is called

a double-star-type color tree, if there are u ∈ V (T ) ∩ V (G1) and v ∈ V (T ) ∩ V (G2),

uv ∈ E(T ), such that both T − V (G1 − u) and T − V (G2 − v) are connected. Otherwise

we call it non-double-star-type. Also, the vertices u and v are called the centers of the

double-star-type color tree T .

Lemma 4.1. Let f be an extremal MC-coloring of G. Then any two nontrivial color trees

have at most two common vertices.

Proof. If f is simple, then we are done. So let f be not simple and then there are two

nontrivial color trees T1 and T2 in f with |V (T1) ∩ V (T2)| ≥ 1. If |V (T1) ∩ V (T2)| ≤ 2,

then we are done. Let |V (T1) ∩ V (T2)| ≥ 3. Since both T1 and T2 are trees, we have that

T1 ∪T2 contains at least two edges e1 and e2 such that F1 ∪F2−{e1, e2} is connected. So

we can recolor F1 ∪ F2 − {e1, e2}, e1 and e2 by distinct new colors. Hence we get another

edge-coloring of G, where G is still monochromatically connected. But the new edge-

coloring contains more colors than f . This contradicts to the fact that f is an extremal

MC-coloring of G.

Lemma 4.2. Let G1 and G2 be two disjoint graphs and G = G1 + G2. There is a simple

extremal MC-coloring of G such that each nontrivial color tree T intersecting both G1 and

G2 is either of the star-type or the double-star-type. Moreover, for any nontrivial color

tree T intersecting both G1 and G2, T − V (G3−i) is disconnected or |V (T ) ∩ V (Gi)| = 1

for i = 1, 2.



The Monochromatic Connectivity of Graphs 805

Proof. Let f be a simple extremal MC-coloring of G. Let Tc be a nontrivial color tree with

V (Tc) ∩ V (Gi) 6= ∅, i = 1, 2. Suppose that Tc is neither of star-type nor double-star-type.

We choose f with the minimum number of this kind of nontrivial color trees.

Let {B1,i | i = 1, 2, . . . , t1} denote the set of components of Tc − V (G2) and let {B2,i |
i = 1, 2, . . . , t2} denote the set of components of Tc−V (G1). Let E1 = E(Tc)\

⋃
i,j E(Bi,j).

Clearly, |E1| = t1 + t2 − 1.

Let vi,j ∈ Bi,j , 1 ≤ i ≤ 2 and 1 ≤ j ≤ ti, and S = {v1,1v2,j | j = 1, 2, . . . , t2}∪{v2,1v1,j |
j = 1, 2, . . . , t1}.

Clearly, |S| = t1 + t2 − 1 and |S \ E1| = |E1 \ S|. Let T ∗c = Tc − E1 + S. It is easy

to see that T ∗c is still a tree with the vertex set V (Tc). Also, each edge of S ∩ E1 is of

the color c. By the definition of f∗, each edge of S \ E1 is a trivial color tree in f . We

exchange the colors of S \ E1 and E1 \ S one-to-one. Then we get another edge-coloring

f∗ of G. From Lemma 2.2, each edge of E1 \ S is a trivial color tree in f∗. For each color

tree T in f∗ which is not an edge of E1 \ S, we have that either T = T ∗c or T is also a

color tree in f . So we have that the edge-coloring f∗ is a simple extremal MC-coloring

of G too. However, f∗ contains fewer non-star-type and non-double-star-type nontrivial

color trees, a contradiction to the choice of f . Hence each nontrivial color tree T with

V (T ) ∩ V (G1) 6= ∅ and V (T ) ∩ V (G2) 6= ∅ is either of star-type or double-star-type.

Take a nontrivial color tree T with V (T ) ∩ V (Gi) 6= ∅, i = 1, 2. Observe that if t1 = 1

and |V (B1,1)| = 1, then Tc is of star-type. If t1 = 1 and |V (B1,1)| > 1, recolor the edges of

B1,1 by a new color. Then we obtain another edge-coloring f∗ of the graph G and f∗ has

more colors than f . Notice that each monochromatic path connecting two vertices in f also

belongs to f∗, unless both the endpoints of it lie in B1,1 and Tc − V (B1,1), respectively.

On the other hand, we know that each vertex of V (B1,1) is adjacent to each vertex of

Tc − V (B1,1) in G. Hence, each two vertices are still monochromatically connected in f∗,

i.e., f∗ is an MC-coloring of G too. That is to say, we find an MC-coloring using colors

more than the extremal MC-coloring f of G, a contradiction.

Remark 4.3. As we do in the proof of Lemma 4.2, for any simple extremal MC-coloring

f of G = G1 + G2, we can normalize each non-double-star-type nontrivial color tree Tc in

f to a double-star-type nontrivial color tree T ∗c by exchanging colors of some edges of Tc

and some trivial color trees. Also, Tc − V (Gi) = T ∗c − V (Gi) for i = 1, 2. Repeating such

a procedure for all non-double-star-type color trees in f , finally we get a simple extremal

MC-coloring, which we call the normalized MC-coloring of f and is denoted by n(f).

Clearly, we have the following lemma.

Lemma 4.4. For each non-double-star-type nontrivial color tree Tc of the color c in f , the

nontrivial color tree T ∗c of the color c in n(f) is of the double-star-type and Tc − V (Gi) =

T ∗c − V (Gi) for i = 1, 2.



806 Zemin Jin, Xueliang Li and Kaijun Wang

Lemma 4.5. Let G1 and G2 be two disjoint graphs and G = G1+G2. Let G2 be connected.

Let f be a simple extremal MC-coloring of G. Then there is not any nontrivial color tree

Tc intersecting both G1 and G2 such that V (G2) ⊆ V (Tc).

Proof. From Lemma 4.4, without loss of generality, we assume that f is a normalized MC-

coloring of G. Let Tc be a nontrivial color tree intersecting both G1 and G2. Let {B1,i |
i = 1, 2, . . . , t1} denote the set of components of Tc−V (G2) and let {B2,i | i = 1, 2, . . . , t2}
denote the set of components of Tc − V (G1). Choose vi,j ∈ Bi,j so that v1,1 and v2,1 are

the centers of Tc, where 1 ≤ i ≤ 2 and 1 ≤ j ≤ ti. Let E1 = E(Tc) \
⋃

i,j E(Bi,j), where

E1 = {v1,1v2,j | j = 1, 2, . . . , t2} ∪ {v2,1v1,j | j = 1, 2, . . . , t1}.

Assume that V (G2) ⊆ V (Tc). Clearly, t2 ≥ 2. Then from Lemma 2.2, each edge of

E(G2) \ E(Tc) is a trivial color tree and any other nontrivial color tree contains at most

one vertex of G2 in f . Take a spanning tree T of G2. We recolor G2 ∪ Tc as follows.

Recolor T by a new color and recolor the edges (E(G2)\E(T ))∪{v1,1v2,i | i = 2, 3, . . . , t2}
by other distinct new colors. Denote by f∗ the obtained edge-coloring of G. Clearly, f∗

contains more colors than f . We now show that f∗ is also an MC-coloring of G.

Consider any two vertices, say x, y ∈ V (G). If {x, y} * V (Tc) or {x, y} ⊆ V (Tc) \
V (G2), then f∗ contains the same monochromatic x–y path as f . If {x, y} ⊆ V (G2),

then x and y are clearly monochromatic connected. If x, y belongs to V (Tc) \ V (G1) and

V (Tc) \ V (G2) respectively, then xy ∈ E(G) is a trivial color tree in f∗. So each two

vertices of G are monochromatically connected in f∗. Hence f∗ is also an MC-coloring

of G, which contains more colors than f , a contradiction to the assumption that f is an

extremal MC-coloring of G.

Lemma 4.6. Let G1 and G2 be two disjoint graphs and G = G1+G2. Let G2 be connected.

Then there is a simple extremal MC-coloring of G such that, for any nontrivial color tree

T intersecting both G1 and G2, it holds that |V (T ) ∩ V (G2)| = 1.

Remark 4.7. The statement |V (T ) ∩ V (G2)| = 1 implies that the graph G2 itself is

monochromatically connected under the current simple extremal MC-coloring of G.

Proof of Lemma 4.5. From Lemma 4.4, without loss of generality, we assume that f is a

normalized MC-coloring of G. We take f with the minimum number of nontrivial color

trees intersecting both G1 and G2 which contains at least two vertices of G2. Let T be a

nontrivial color tree intersecting both G1 and G2. Suppose that |V (T ) ∩ V (G2)| ≥ 2.

Let {B1,i | i = 1, 2, . . . , t1} denote the set of components of T − V (G2) and let {B2,i |
i = 1, 2, . . . , t2} denote the set of components of T −V (G1). Let vi,j ∈ Bi,j , 1 ≤ i ≤ 2 and

1 ≤ j ≤ ti, and E1 = E(T ) \
⋃

i,j E(Bi,j), where

E1 = {v1,1v2,j | j = 1, 2, . . . , t2} ∪ {v2,1v1,j | j = 1, 2, . . . , t1}.
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Clearly, t2 ≥ 2.

From Lemma 4.5, there is a vertex u ∈ V (G2) \V (T ). Now we consider the color tree,

say Tj , monochromatically connecting u and v2,j in f for 1 ≤ j ≤ t2. Denote by j the

color of Tj for 1 ≤ j ≤ t2 in f . Clearly, T is not of the color 1, 2, . . . , t2. Recolor all the

edges of T ′ =
⋃t2

i=1(B2,i ∪Ti) by the color 1 and recolor the edge v1,1v2,j by the color j for

j = 2, 3, . . . , t2.

Denote by f ′ the resulting edge-coloring of G. Clearly, f ′ contains the same number

of color as f and any two vertices of G are still monochromatically connected. That is to

say, f ′ is also an extremal MC-coloring of G. In particular, f ′ contains fewer nontrivial

color trees than f , which intersects both G1 and G2 and contains at least two vertices of

G2.

If f ′ is simple, then we get a contradiction to the choice of f . So f ′ is not simple. It is

obviously that any two nontrivial color trees other than T ′ contain at most one common

vertex. Hence there is a nontrivial color tree F which has two common vertices with T ′.

Take an edge e ∈ E(F ) such that T ′′ = T ′ ∪ F − e is a tree. Recolor all the edges of

F − e by the color of T ′. Then we get another extremal MC-coloring f ′′ of G. Clearly,

f ′′ contains nontrivial color trees no more than f ′, which intersects both G1 and G2 and

contains at least two vertices of G2.

Notice that T ′′ is a nontrivial color tree in f ′′ which contains more vertices of G2 than

T ′. Clearly, any two nontrivial color trees other than T ′′ contain at most one common

vertex in f ′′. If f ′′ is not simple, we repeat the same process above. After finite times,

we get a simple extremal MC-coloring f∗ of G with nontrivial color trees no more than

f ′, which intersects both G1 and G2 and contains at least two vertices of G2. Hence f∗

contains nontrivial color trees fewer than f , which intersects both G1 and G2 and contains

at least two vertices of G2. This leads to a contradiction to the choice of f . This completes

the proof of the lemma.

4.1. Two connected graphs

Based on the simple extremal MC-coloring illustrated in Lemma 4.6, we have the following

lemma.

Lemma 4.8. Let G1 and G2 be two disjoint connected graphs and G = G1 + G2. Then

there is a simple extremal MC-coloring of G such that for any nontrivial color tree T ,

either T ⊆ G1 or T ⊆ G2.

Proof. From Lemma 4.6, we assume that f is a normalized MC-coloring of G such that

any nontrivial color tree intersecting both G1 and G2 contains exactly one vertex of G2.

We take f with the minimum number of nontrivial color trees intersecting both G1 and

G2 which contains at least two vertices of G1.
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Let T be a nontrivial color tree with V (T ) ∩ V (G1) 6= ∅ and V (T ) ∩ V (G2) = {v2,1}.
Suppose that |V (T )∩V (G1)| ≥ 2. Let {B1,i | i = 1, 2, . . . , t} denote the set of components

of T − v2,1. Let v1,j ∈ B1,j , 1 ≤ j ≤ t, and E1 = E(T ) \ ∪tjE(B1,j), where E1 = {v2,1v1,j |
j = 1, 2, . . . , t}. Clearly, t ≥ 2.

From Lemma 4.5, there is a vertex u ∈ V (G1) \V (T ). Now we consider the color tree,

say Tj , monochromatically connecting u and v1,j in f for 1 ≤ j ≤ t. Denote by j the

color of Tj for 1 ≤ j ≤ t in f . Clearly, T is not of the color 1, 2, . . . , t. Recolor all the

edges of T ′ =
⋃t

i=1(B1,i ∪Ti) by the color 1 and recolor the edge v2,1v1,j by the color j for

j = 2, 3, . . . , t. Denote by f ′ the resulting edge-coloring of G. Since each nontrivial color

tree in f intersecting both G1 and G2 contains exactly one vertex of G2, we have that

(1′) if T ′ contains vertices of G2, then each component of T ′ − V (G1) contains only one

vertex belonging to G2;

(2′) any other nontrivial color tree other than T ′ in f ′ intersecting both G1 and G2

contains exactly one vertex of G2;

(3′) f(xy) = f ′(xy) for any edge xy ∈ E(G2);

(4′) the edge-coloring f ′ contains fewer nontrivial color trees than f , which intersects

both G1 and G2 and contains at least two vertices of G1.

Clearly, f ′ contains the same number of color as f and any two vertices of G are still

monochromatically connected. That is to say, f ′ is also an extremal MC-coloring of G. If

f ′ is simple, then we get a contradiction to the choice of f . So f ′ is not simple.

It is obviously that any two nontrivial color trees other than T ′ in f ′ contain at most

one common vertex. Hence there is a nontrivial color tree F which has two common

vertices with T ′. Take an edge e ∈ E(F ) such that T ′′ = T ′ ∪ F − e is a tree. Recolor all

the edges of F − e by the color of T ′. Then we get another extremal MC-coloring f ′′ of G.

Since each nontrivial color tree in f intersecting both G1 and G2 contains exactly one

vertex of G2, we have that

(1′′) the edge-coloring f ′′ contains nontrivial color trees no more than f ′, which intersects

both G1 and G2 and contains at least two vertices of G1;

(2′′) if T ′′ contains vertices of G2, then each component of T ′′−V (G1) contains only one

vertex belonging to G2;

(3′′) any other nontrivial color tree other than T ′′ in f ′′ intersecting both G1 and G2

contains exactly one vertex of G2;

(4′′) f(xy) = f ′′(xy) for any edge xy ∈ E(G2).
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Notice that T ′′ is a nontrivial color tree in f ′′ which contains more vertices of G1 than T ′.

Clearly, any two nontrivial color trees other than T ′′ in f ′′ contain at most one common

vertex. If f ′′ is not simple, we repeat the same process above. After finite times, we get

a simple extremal MC-coloring f∗ of G. We have that

(1∗) the edge-coloring f∗ contains nontrivial color trees no more than f ′ (hence, fewer

than f), which intersects both G1 and G2 and contains at least two vertices of G1;

(2∗) f(xy) = f ′′(xy) for any edge xy ∈ E(G2).

From the recoloring procedure we have that there is at most one nontrivial color tree T ∗

in f∗ intersecting both G1 and G2, which contains at least two vertices from both G1 and

G2. Moreover, we have that

(3∗) each component of T ∗ − V (G1) is a vertex belonging to G2;

(4∗) any other nontrivial color tree other than T ∗ in f∗ intersecting both G1 and G2

contains exactly one vertex of G2.

Now we start to normalize the edge-coloring f∗ such that each nontrivial color tree

intersecting both G1 and G2 is of the star-type. Clearly, we only need to consider the tree

T ∗ if it exists.

Let v ∈ T ∗ ∩ V (G2). Since f∗ is simple, from Lemma 2.2, for any edge xy ∈ E(T ∗),

where x ∈ T ∗ ∩ V (G2) and y lies in a component of T ∗ − x which does not contain the

vertex v, the edge vy is a trivial color tree in f∗. Exchange the colors of xy and vy and then

finally we get another edge-coloring f∗∗ of G. Since f(xy) = f∗(xy) = f∗∗(xy) for any edge

xy ∈ E(G2), from the choice of f we have that G2 itself is monochromatically connected

under the edge-coloring f and f∗∗. Hence, f∗∗ is also a simple extremal MC-coloring of

G.

Clearly, f∗∗ contains nontrivial color trees fewer than f , which intersects both G1 and

G2 and contains at least two vertices of G1, and each nontrivial color tree intersecting

both G1 and G2 contains at most one vertex of G2. This leads to a contradiction to the

choice of f . This completes the proof of Lemma 4.8.

From Lemma 4.8, we have the following main theorem.

Theorem 4.9. Let G1 and G2 be two disjoint connected graphs and G = G1 + G2. Then

mc(G) = mc(G1) + mc(G2) + |V (G1)||V (G2)|.

Proof. From Lemma 4.8, there is a simple extremal MC-coloring f of G such that each edge

between G1 and G2 is a trivial color tree. Hence both G1 and G2 are monochromatically

connected itself under the edge-coloring f . Thus we have that Gi contains at most mc(Gi)
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colors for i = 1, 2. Hence mc(G) ≤ mc(G1) + mc(G2) + |V (G1)||V (G2)|. On the other

hand, it is obviously that mc(G) ≥ mc(G1) + mc(G2) + |V (G1)||V (G2)|. This completes

the proof of the theorem.

4.2. A connected graph and a disconnected graph

By the similar proof of Lemma 4.8, we have the following lemma.

Lemma 4.10. Let G1 and G2 be two disjoint graphs and G = G1 + G2. If G1 is dis-

connected and G2 is connected, then there is a simple extremal MC-coloring of G such

that there is only one nontrivial color tree T intersecting both G1 and G2. Moreover,

V (G1) ⊆ V (T ) and |V (T ) ∩ V (G2)| = 1.

Proof. From Lemma 4.6, we assume that f is a normalized MC-coloring of G such that

any nontrivial color tree T intersecting both G1 and G2 contains exactly one vertex of G2.

We take f with the minimum number of nontrivial color trees intersecting both G1 and

G2 which contains at least two vertices of G1.

Let T be a nontrivial color tree with V (T ) ∩ V (G1) 6= ∅ and V (T ) ∩ V (G2) = {v2,1}.
Suppose that |V (T )∩V (G1)| ≥ 2. Let {B1,i | i = 1, 2, . . . , t} denote the set of components

of T − v2,1. Let v1,j ∈ B1,j , 1 ≤ j ≤ t, and E1 = E(T ) \ ∪tjE(B1,j), where E1 = {v2,1v1,j |
j = 1, 2, . . . , t}. Clearly, t ≥ 2.

If V (G1) ⊆ V (T ), then we are done. So let u ∈ V (G1) \ V (T ). Now we consider the

color tree, say Tj , monochromatically connecting u and v1,j in f for 1 ≤ j ≤ t. Denote by

j the color of Tj for 1 ≤ j ≤ t in f . Clearly, T is not of the color 1, 2, . . . , t. Recolor all

the edges of T ′ =
⋃t

i=1(B1,i ∪ Ti) by the color 1 and recolor the edge v2,1v1,j by the color

j for j = 2, 3, . . . , t. Denote by f ′ the resulting edge-coloring of G. Since each nontrivial

color tree in f intersecting both G1 and G2 contains exactly one vertex of G2, we have

that

(1′) if T ′ contains vertices of G2, then each component of T ′ − V (G1) contains only one

vertex belonging to G2;

(2′) any other nontrivial color tree other than T ′ in f ′ intersecting both G1 and G2

contains exactly one vertex of G2;

(3′) f(xy) = f ′(xy) for any edge xy ∈ E(G2);

(4′) the edge-coloring f ′ contains fewer nontrivial color trees than f , which intersects

both G1 and G2 and contains at least two vertices of G1.

Clearly, f ′ contains the same number of color as f and any two vertices of G are still

monochromatically connected. That is to say, f ′ is also an extremal MC-coloring of G. If

f ′ is simple, then we get a contradiction to the choice of f . So f ′ is not simple.
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It is obviously that any two nontrivial color trees other than T ′ in f ′ contain at most

one common vertex. Hence there is a nontrivial color tree F which has two common

vertices with T ′. Take an edge e ∈ E(F ) such that T ′′ = T ′ ∪ F − e is a tree. Recolor all

the edges of F − e by the color of T ′. Then we get another extremal MC-coloring f ′′ of G.

Since each nontrivial color tree in f intersecting both G1 and G2 contains exactly one

vertex of G2, we have that

(1′′) the edge-coloring f ′′ contains nontrivial color trees no more than f ′, which intersects

both G1 and G2 and contains at least two vertices of G1;

(2′′) if T ′′ contains vertices of G2, then each component of T ′′−V (G1) only contains one

vertex belonging to G2;

(3′′) any nontrivial color tree other than T ′′ in f ′′ intersecting both G1 and G2 contains

exactly one vertex of G2;

(4′′) f(xy) = f ′′(xy) for any edge xy ∈ E(G2).

Notice that T ′′ is a nontrivial color tree in f ′′ which contains more vertices of G1 than T ′.

Clearly, any two nontrivial color trees other than T ′′ in f ′′ contain at most one common

vertex. If f ′′ is not simple, we repeat the same process above. After finite times, we get

a simple extremal MC-coloring f∗ of G. We have that

(1∗) the edge-coloring f∗ contains nontrivial color trees no more than f ′ (hence, fewer

than f), which intersects both G1 and G2 and contains at least two vertices of G1;

(2∗) f(xy) = f ′′(xy) for any edge xy ∈ E(G2).

From the recoloring procedure we have that there is at most one nontrivial color tree T ∗

in f∗ intersecting both G1 and G2, which contains at least two vertices from both G1 and

G2. Moreover, we have that

(3∗) each component of T ∗ − V (G1) is a vertex belonging to G2;

(4∗) any other nontrivial color tree other than T ∗ in f∗ intersecting both G1 and G2

contains exactly one vertex of G2.

Now we start to normalize the edge-coloring f∗ such that each nontrivial color tree

intersecting both G1 and G2 is of the star-type. Clearly, we only need to consider the tree

T ∗ if it exists.

Let v ∈ T ∗ ∩ V (G2). Since f∗ is simple, from Lemma 2.2, for any edge xy ∈ E(T ∗),

where x ∈ T ∗ ∩ V (G2) and y lies in a component of T ∗ − x which does not contain the

vertex v, the edge vy is a trivial color tree in f∗. Exchange the colors of xy and vy and then
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finally we get another edge-coloring f∗∗ of G. Since f(xy) = f∗(xy) = f∗∗(xy) for any edge

xy ∈ E(G2), from the choice of f we have that G2 itself is monochromatically connected

under the edge-coloring f and f∗∗. Hence, f∗∗ is also a simple extremal MC-coloring of

G.

Clearly, f∗∗ contains nontrivial color trees fewer than f , which intersects both G1 and

G2 and contains at least two vertices of G1, and each nontrivial color tree intersecting

both G1 and G2 contains at most one vertex of G2. This leads to a contradiction to the

choice of f . This completes the proof of Lemma 4.10.

We have the following theorem.

Theorem 4.11. Let G1 and G2 be two disjoint graphs and G = G1+G2. If G1 is connected

and G2 is disconnected, then mc(G) = mc(G1) + |E(G2)|+ |V (G1)||V (G2)| − |V (G2)|+ 1.

Proof. From Lemma 4.10, there is a simple extremal MC-coloring f of G such that G1

itself is monochromatically connected and there is nontrivial color tree of the star-type

containing all the vertices of G2. Hence mc(G) ≤ mc(G1) + |E(G2)| + |V (G1)||V (G2)| −
|V (G2)| + 1. On the other hand, it is obviously that mc(G) ≥ mc(G1) + |E(G2)| +

|V (G1)||V (G2)| − |V (G2)|+ 1. This completes the proof of the theorem.

4.3. Two disconnected graphs

Lemma 4.12. Let G1 and G2 be two disjoint graphs and G = G1 + G2. If both G1 and

G2 are disconnected, then there is a simple extremal MC-coloring of G such that there is

a nontrivial color tree T with V (G1) ⊆ V (T ).

Proof. From Lemma 4.4, we assume that f is a normalized MC-coloring of G such that

any nontrivial color tree T intersecting both G1 and G2 is of the star-type or the double-

star-type. Since G1 is disconnected, there are nontrivial color trees intersecting both G1

and G2 which contain at least two vertices of G1. We take f with the minimum number

of nontrivial color trees intersecting both G1 and G2 which contains at least two vertices

of G1. Let T be a nontrivial color tree intersecting both G1 and G2 which contains at

least two vertices of G1.

If V (G1) ⊆ V (T ), then we are done. So let u ∈ V (G1) \ V (T ). Let {B1,i | i =

1, 2, . . . , t} denote the set of components of T − V (G2). From Lemma 4.2, t ≥ 2. Let

v2,1 ∈ V (T ) ∩ V (G2) and E1 = {v2,1v1,j | j = 1, 2, . . . , t} ⊆ E(T ), where v1,j ∈ B1,j for

1 ≤ j ≤ t.

Now we consider the color tree, say Tj , monochromatically connecting u and v1,j in f

for 1 ≤ j ≤ t. Denote by j the color of Tj for 1 ≤ j ≤ t in f . Clearly, T is not of the

color 1, 2, . . . , t. Recolor all the edges of T ′ =
⋃t

i=1(B1,i ∪ Ti) by the color 1 and recolor
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the edge v2,1v1,j by the color j for j = 2, 3, . . . , t. Denote by f ′ the resulting edge-coloring

of G. We have the following statements.

(1′) The edge-coloring f ′ contains fewer nontrivial color trees than f , which intersects

both G1 and G2 and contains at least two vertices of G1.

(2′) The edge-coloring f ′ contains the same number of color as f and any two vertices

of G are still monochromatically connected. That is to say, f ′ is also an extremal

MC-coloring of G.

If f ′ is simple, then we get a contradiction to the choice of f . So f ′ is not simple. It

is obviously that any two nontrivial color trees other than T ′ in f ′ contain at most one

common vertex. Hence there is a nontrivial color tree F which has two common vertices

with T ′. Take an edge e ∈ E(F ) such that T ′′ = T ′ ∪F − e is a tree. Recolor all the edges

of F − e by the color of T ′. Then we get another extremal MC-coloring f ′′ of G. We have

the following statements.

(1′′) The edge-coloring f ′′ contains fewer nontrivial color trees than f , which intersects

both G1 and G2 and contains at least two vertices of G1.

(2′′) The edge-coloring f ′′ is also an extremal MC-coloring of G.

Notice that T ′′ is a nontrivial color tree in f ′′ which contains more vertices of G1

than T ′. Clearly, any two nontrivial color trees other than T ′′ in f ′′ contain at most one

common vertex. If f ′′ is not simple, we repeat the same process above. After finite times,

we get a simple extremal MC-coloring f∗ of G. We have that

(1∗) The edge-coloring f∗ contains fewer nontrivial color trees than f , which intersects

both G1 and G2 and contains at least two vertices of G1.

(2∗) The edge-coloring f∗ is also an extremal MC-coloring of G.

This leads to a contradiction to the choice of f . This completes the proof of the lemma.

Furthermore, we have the following lemma.

Lemma 4.13. Let G1 and G2 be two disjoint graphs and G = G1 + G2. If both G1 and

G2 are disconnected, then there is a simple extremal MC-coloring of G such that there is

a nontrivial color tree T with V (G1) ∪ V (G2) ⊆ V (T ).

Proof. From Lemma 4.12, we can assume that f is a simple extremal MC-coloring of G

and T is a nontrivial color tree in f with V (G1) ⊆ V (T ). Suppose that V (G2) * V (T ).

Since G2 is disconnected, there are two vertices x, y from different components of G2 such
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that x ∈ V (T ) ∩ V (G2) and y ∈ V (G2) \ V (T ). Then any monochromatic path between

x and y must contain a vertex of G1 and hence, it contains at least two vertices of the

nontrivial color tree T , a contradiction to the fact that f is a simple extremal MC-coloring

of G. Hence V (G1) ∪ V (G2) ⊆ V (T ). This completes the proof of the lemma.

It follows from Lemma 4.13 that, if G is a join graph of two disjoint disconnected

graphs, there is a simple extremal MC-coloring of G which contains a monochromatic

spanning tree. Hence we have the following main result.

Theorem 4.14. Let G1 and G2 be two disjoint disconnected graphs and G = G1 + G2.

Then mc(G) = |E(G)| − |V (G1)| − |V (G2)|+ 2.
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