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Well-posedness and Attractors for a Memory-type Thermoelastic

Timoshenko Beam Acting on Shear Force

Soh Edwin Mukiawa* and Cyril Dennis Enyi

Abstract. In this paper, we study the large time behavior of a thermoelastic Timo-

shenko system with memory effects where the thermoelastic coupling is acting on shear

force instead of the bending moment. We establish the existence of finite-dimensional

global attractor and an exponential attractor.

1. Introduction

In this work, we consider a thermoelastic Timoshenko system with memory effects, where

the thermoelastic coupling is acting on shear force instead of the bending moment. Pre-

cisely, we consider

(1.1)



ρ1utt − k(ux + v)x + γθx = 0, x ∈ (0, 1), t > 0,

ρ2vtt − bvxx + k(ux + v)− γθ

+
∫ +∞
0 h(s)vxx(x, t− s) ds+ g(v) = f(x), x ∈ (0, 1), t > 0,

ρ3θt − βθxx + γ(ux + v)t = 0, x ∈ (0, 1), t > 0

with initial data

(1.2)

u(x, 0) = u0(x), v(x, 0) = v0(x), θ(x, 0) = θ0(x), x ∈ (0, 1),

ut(x, 0) = u1(x), vt(x, 0) = v1(x), x ∈ (0, 1)

and boundary conditions

(1.3)

ux(0, t) = v(0, t) = θ(0, t) = 0, t ≥ 0,

ux(1, t) = v(1, t) = θ(1, t) = 0, t ≥ 0,

where u = u(x, t) is the transverse displacement, v = v(x, t) is the rotation angle and

θ = θ(x, t) is the difference temperature. The physical coefficients ρ1, ρ2, k, γ, β and

b are positive constants, h, g and f are given functions to be specified later. There are
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quite a number of results that exist in the literature concerning thermoelastic Timoshenko

beam problems. However, a great number of those results are related to the existence,

polynomial and exponential stability as well as general stability. For these types of system,

see for example [1, 2, 10, 11, 13, 14] and the references therein. For g = f = 0 and finite

memory, system (1.1) has been studied by many authors and various types of stability

results have been established. Messaoudi and Fareh [16,17] considered

(1.4)


ρ1utt − k(ux + v)x + γθx = 0, x ∈ (0, 1), t > 0,

ρ2vtt − bvxx + k(ux + v)− γθ +
∫ t
0 h(s)vxx(x, t− s) ds = 0, x ∈ (0, 1), t > 0,

ρ3θt − βθxx + γ(ux + v)t = 0, x ∈ (0, 1), t > 0

with Dirichlet boundary conditions and proved a general stability result which depends

on the speeds of wave propagation. Apalara [3] studied (1.4) with Neumann-Dirichlet-

Dirichlet boundary conditions and established a general stability result without imposing

any condition on the speed of propagation. The result in [3] shows that the boundary

conditions neutralized the effect of the speed. For more existence and stability results

related to system (1.4) we refer the reader to [1, 4, 6, 7, 12, 14, 15, 18–21] and references

therein. Feng and Yang [9] considered nonlinear Timoshenko beam with a time-delay term

and proved the existence of global attractors and exponential attractors. To the best of

our knowledge, there are very few results concerning long-time dynamics of thermoelastic

Timoshenko beam system in the literature. See for instance the work of Fatori et al. [8].

The main goal in this paper is to study the long-time dynamics of the thermoelastic

Timoshenko beam system (1.1)–(1.3). Our expected outcomes are as follows:

(i) Under suitable assumptions on the relaxation function h and the nonlinear function

g, we shall establish the existence of global unique weak solution in appropriate

spaces.

(ii) By using the asymptotic smoothness and the stabilizability inequality, we prove the

existence of a finite dimensional global attractor.

(iii) The existence of an exponential attractor will be also established.

We should mention that, by imposing a Neumann-Dirichlet-Dirichlet boundary condi-

tions (1.3), we are able to establish our results without any additional condition on the

speed of wave propagation, this in itself is quite interesting. In addition, the results of this

paper were obtained using a method similar to those used in the study of viscoelastic prob-

lems with memory. The remaining part of this work is organized as follows: In Section 2,

we recall some basic tools and assumptions on the relaxation and nonlinear functions g

and h respectively. In Section 3, we establish the well-posedness for system (1.1)–(1.3). In
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Section 4, we show the existence of global attractor for system (1.1)–(1.3). In Section 5,

we show that the global attractor has a finite fractal dimension. Finally, in Section 6, we

establish the existence of an exponential attractor for system (1.1)–(1.3).

Throughout this work, we denote the inner product and norm in L2(0, 1) by ( · , · ) and

‖ · ‖ respectively. Also, the letter C or Ci, i = 1, 2, 3, . . ., are positive generic constants

that may change from one line to another, or perhaps within same line.

2. Problem setting and preliminaries

In this section, we recall some useful materials and conditions. For this, we assume that

the relaxation function h admits the assumptions:

(A1) The function h : [0,+∞)→ (0,+∞) is an absolutely continuous function satisfying

h(0) > 0, b−
∫ ∞
0

h(s) ds = b0 > 0

and there exists a positive constant ξ such that for almost every y ∈ R+,

(2.1) h′(y) + ξh(y) ≤ 0.

(A2) We assume g ∈ C1(R) and the function G(s) =
∫ s
0 g(τ) dτ satisfies for some constants

C1, C2 > 0

(2.2) lim inf
|s|→+∞

G(s)

s2
≥ 0, lim inf

|s|→+∞

sg(s)− C1G(s)

s2
≥ 0, g′(s) ≥ −C2.

It’s easy to deduce from (2.2) that for any ρ > 0, there exist constants Cρ, C
′
ρ > 0

such that

G(s) + ρs2 ≥ −Cρ,(2.3)

sg(s)− C1G(s) + ρs2 ≥ −C ′ρ, ∀ s ∈ R.(2.4)

For instance, the function g(s) = s|s|γ , 0 ≤ γ < +∞, satisfies (2.2).

Denote

m(φ) =

∫ 1

0
φ(x) dx and φ = φ−m(φ).

Integrating equation (1.1)1 over (0, 1) and making use of the boundary conditions (1.2),

we obtain

(2.5)
d2

dt2

∫ 1

0
u(x, t) dx = 0, i.e., m(utt) = 0.
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We solve (2.5), taking into consideration the initial data of u in (1.2), we get

m(ut) = m(u1) and m(u) = tm(u1) +m(u0).

Let

ηt(x, s) = v(x, t)− v(x, t− s), t, s ≥ 0.

For simplicity of notations, we will sometimes suppress the superscript t of ηt and write η

instead of ηt. Therefore, we have

(2.6) ηt(x, s) + ηs(x, s)− vt(x, t) = 0, t, s ≥ 0.

Therefore, using (2.6) and replacing u by u in (1.1), we have that (u, v, θ, η) satisfies

(2.7)



ρ1utt − k(ux + v)x + γθx = 0, x ∈ (0, 1), t > 0,

ρ2vtt − b0vxx + k(ux + v)− γθ

−
∫ +∞
0 h(s)ηxx(x, s) ds+ g(v) = f(x), x ∈ (0, 1), t > 0,

ρ3θt − βθxx + γ(ux + v)t = 0, x ∈ (0, 1), t > 0,

ηt + ηs − vt = 0, x ∈ (0, 1), t, s > 0

with initial data

(2.8)


u(x, 0) = u0(x), v(x, 0) = v0(x), θ(x, 0) = θ0(x), x ∈ [0, 1],

ut(x, 0) = u1(x), vt(x, 0) = v1(x), x ∈ [0, 1],

η(x, 0) = 0, η0(x, s) = v0(x)− v(x,−s), x ∈ [0, 1]

and boundary conditions

(2.9)

ux(0, t) = v(0, t) = θ(0, t) = η(0, s) = 0, t, s ≥ 0,

ux(1, t) = v(1, t) = θ(1, t) = η(1, s) = 0, t, s ≥ 0.

We know that m(u) = 0, thus we have the Poincaré inequality

‖φ‖2 ≤ λ0‖φx‖2 for any φ ∈ H1(0, 1).

In the rest of this work, λ1 denotes the Poincaré constant, i.e.,

‖φ‖ ≤
√
λ1‖φx‖ for any φ ∈ H1

0 (0, 1).

Set

U = (u, ϕ, v, ψ, θ, η)T .
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Then, system (2.7)–(2.9) transforms into the Cauchy problem

(2.10) Ut +AU = F (U), U(x, 0) = U0(x),

where

U0 = (u0, u1, v0, v1, θ0, η
0)T , F (U) =

(
0, 0, 0,− 1

ρ2
g(v) +

1

ρ2
f(x), 0, 0

)T
,

and the linear operator A is given by

AU =



−ϕ

− k
ρ1

(ux + v)x + γ
ρ1
θx

−ψ

− b
ρ2
vxx + k

ρ2
(ux + v)− γ

ρ2
θ − 1

ρ2

∫ +∞
0 h(s)ηxx(x, s) ds

− β
ρ3
θxx + γ

ρ3
(ϕx + ψ)

ηs − ψ


.

We consider the following space

H1
∗ (0, 1) = {w ∈ H1(0, 1) | wx(0) = wx(1) = 0},

and set

H = H1
∗ (0, 1)× L2(0, 1)×H1

0 (0, 1)× L2(0, 1)× L2(0, 1)×M,

where M = L2
h(R+, H1

0 (0, 1)) is defined by

L2
h(R+, H1

0 (0, 1)) =

{
w : R+ → H1

0 (0, 1)

∣∣∣∣ ∫ 1

0

∫ ∞
0

h(s)|wx(x, s)|2 dsdx < +∞
}

endowed with the inner product

〈w, z〉M =

∫ 1

0

∫ ∞
0

h(s)wx(x, s)zx(x, s) dsdx.

As well, we defined the space

D(M) = {η, ηs ∈M, η(x, 0) = 0}.

We define the inner product

〈(u, ϕ, v, ψ, θ, η), (û, ϕ̂, v̂, ψ̂, θ̂, η̂)〉H

= ρ1

∫ 1

0
ϕϕ̂ dx+ ρ2

∫ 1

0
ψψ̂ dx+ ρ3

∫ 1

0
θθ̂ dx+ b0

∫ 1

0
vxv̂x dx

+ k

∫ 1

0
(ux + v)(ûx + v̂) dx+

∫ 1

0

∫ +∞

0
h(s)ηx(x, s)η̂x(x, s) dsdx,
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which together with H form a Hilbert space. Moreover, the domain of the linear operator

A is defined by

D(A) :=

{
U ∈ H | u ∈ H2(0, 1), ϕ ∈ H1

∗ (0, 1), v ∈ H2(0, 1), ψ ∈ H1
0 (0, 1),

θ ∈ H1
0 (0, 1), η ∈ D(M), ηx ∈ H1(0, 1)

}
.

3. Wellposedness

The theorem below is the wellposedness result for problem (1.2)–(1.3).

Theorem 3.1. Assume (A1) and (A2) hold and f ∈ L2(0, 1). If U0 ∈ H, then the Cauchy

problem (2.10) has a unique weak solution

U ∈ C([0,+∞);H).

Furthermore, if U0 ∈ D(A), then

U ∈ C([0,+∞);D(A)) ∩ C1((0,+∞);H).

Proof. In other to prove Theorem 3.1, we will show that the linear operator A is monotone

and maximal, then further show that the function F is globally Lipschitz. For the maxi-

mality and monotonicity of A, see [9]. We turn our attention to show that F is Lipschitz.

Let R > 0 and consider

BR = {W = (w1, w2, w3, w4, w5, w6) ∈ D(A) : ‖W‖H ≤ R}.

Let W,Z ∈ BR, using the embedding of H1
∗ (0, 1) in L∞(0, 1) and the fact that g ∈ C1(R),

we have

‖F (W )− F (Z)‖2H =
1

ρ2

∫ 1

0
|g(w3)− g(z3)|2 dx

≤ 1

ρ2
‖g′(ω)‖L∞(0,1)‖w3 − z3‖2L2(0,1) ≤ C(R)‖W − Z‖2H,

(3.1)

where ω = aw3 + (1 − a)z3, a ∈ (0, 1). Hence F is locally Lipschitz. It follows from

Hille-Yosida Theorem, the existence of a local unique weak solution, i.e.,

U ∈ C([0, Tm);H), Tm > 0.

We now prove that the solution is indeed global, to do this, we show that ‖U(t)‖H is

uniformly bounded independent of time.

Now, we multiply (2.7)1 by ut, then integrate by parts over (0, 1) while taking into

account the boundary conditions, we obtain

(3.2)
1

2

d

dt

(
ρ1‖ut‖2 + k‖ux + v‖2

)
= k(ux + v, vt)− (θx, ut).
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Next, multiply (2.7)2 by vt, integrate by parts over (0, 1), using the boundary conditions

and (2.7)4, we arrive at

1

2

d

dt

[
ρ2‖vt‖2 + b0‖vx‖2 + 2(G(v), 1) + ‖ηx‖2M − 2(v, f)

]
= −k(ux + v, vt) + γ(θ, vt) +

1

2

∫ 1

0

∫ ∞
0

h′(s)|ηx(x, s)|2 dsdx.
(3.3)

Finally, we multiply (2.7)3 by θ, integrate by parts over (0, 1), and taking into account

the boundary conditions, we obtain

(3.4)
1

2

d

dt
(ρ3‖θ‖2) = −β‖θx‖2 + γ(θx, ut)− γ(θ, vt).

Addition of (3.2)–(3.4) gives

(3.5)
d

dt
E(t) =

1

2

∫ 1

0

∫ ∞
0

h′(s)|ηx(x, s)|2 dsdx− β‖θx‖2 ≤ 0, ∀ t ≥ 0,

where

E(t) =
1

2

[
ρ1‖ut‖2 + ρ2‖vt‖2 + ρ3‖θ‖2 + b0‖vx‖2 + ‖ηx‖2M + k‖ux + v‖2

]
+

1

2
[2(G(v), 1)− (2v, f)].

We integrate (3.5) over (0, t) and obtain

(3.6) E(t) + β

∫ t

0
‖θx(s)‖2 ds ≤ E(0), ∀ t ≥ 0.

From (2.3), Hölder, Poincaré and Young inequalities, we get

E(t) ≥ 1

2

[
ρ1‖ut‖2 + ρ2‖vt‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

]
+

(
b0
2
− δ − 2ρλ1

)
‖vx‖2 − 2Cρ − c‖f‖2.

We choose δ and ρ small enough such that b0/2− δ − 2ρλ1 > 0, hence

(3.7) E(t) ≥ C0‖(u, ut, v, vt, θ, η)‖2H − C.

Using Hölder, Poincaré, Young inequalities, embedding of H1(0, 1) in L∞(0, 1), and (2.4)

we have that

−2(v, f) ≤ δλ1‖vx‖2 + c‖f‖2,

2(G(v), 1) ≤ c
∫ 1

0
v2|g′(αv)| dx+ c

∫ 1

0
|v||g(0)| dx+ c

∫ 1

0
v2 dx+ C ′′ρ

≤ cλ1
(
‖g′(αv)‖L∞(0,1) + 1

)
‖vx‖2 + c,
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where α ∈ (0, 1). It follows that

E(t) ≤ 1

2

[
ρ1‖ut‖2 + ρ2‖vt‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

]
+

[
b0
2

+ cλ1
(
δ + ‖g′(αv)‖L∞(0,1) + 1

)]
‖vx‖2 + c‖f‖2 + c.

Thus, we have

(3.8) E(t) ≤ c0‖(u, ut, v, vt, θ, η)‖2H + c,

where c0 = c0(‖g′(αv)‖L∞(0,1)). Combining (3.6), (3.7) and (3.8), we arrive at

‖U(t)‖2H + C

∫ t

0
‖θx(s)‖2 ds ≤ c

(
‖U0‖2H + 1

)
≤ C, ∀ t ≥ 0.

Therefore, ‖U(t)‖2H is bounded uniformly independent of time. The above computations

were obtained for regular solutions. However, by density argument the result remains true

for weak solutions. This completes the proof.

4. Global attractor

In this section, we turn our attention to proving the existence of the global attractor for

the system (2.7). Keeping in mind Theorem 3.1, there exists a solution semi-group

S(t) : H → H

defined by

S(t)U0 = U(t), ∀ t ≥ 0,

where U is the unique solution to system (2.7)–(2.9).

Lemma 4.1. The semigroup S(t) is strongly continuous in H.

Proof. Let U j = (uj , ujt , v
j , vjt , θ

j , ηj)T , j = 1, 2 be two solutions of system (2.7)–(2.9).

Then U = U1 − U2 satisfies

(4.1)



ρ1utt − k(ux + v)x + γθx = 0, x ∈ (0, 1), t > 0,

ρ2vtt − b0vxx + k(ux + v)− γθ

−
∫ +∞
0 h(s)ηxx(x, s) ds+ g(v1)− g(v2) = 0, x ∈ (0, 1), t > 0,

ρ3θt − βθxx + γ(ux + v)t = 0, x ∈ (0, 1), t > 0,

ηt + ηs − vt = 0, x ∈ (0, 1), t, s > 0

with initial data U0 = U1
0 − U2

0 .
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We multiply (4.1)1 by ut, (4.1)2 by vt, and (4.1)3 by θ, making use of (4.1)4, then

perform integration by parts over (0, 1). Addition of the results from these leads to

1

2

d

dt

[
ρ1‖ut‖2 + ρ2‖vt‖2 + b0‖vx‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

]
+ (g(v1)− g(v2), vt)

= −β‖θx‖2 +
1

2

∫ 1

0

∫ ∞
0

h′(s)|ξx(x, s)|2 dsdx.

Therefore

1

2

d

dt

[
ρ1‖ut‖2 + ρ2‖vt‖2 + b0‖vx‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

]
≤ −(g(v1)− g(v2), vt).

Performing same computations as in (3.1), we deduce that

1

2

d

dt

[
ρ1‖ut‖2 + ρ2‖vt‖2 + b0‖vx‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

]
≤ c
[
ρ1‖ut‖2 + ρ2‖vt‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

]
,

(4.2)

where c is positive constant depending on U1
0 and U2

0 . Applying Gronwall’s lemma to

(4.2), we obtain

‖U(t)‖2H ≤ ect(‖U0‖2H), ∀ t ≥ 0.

This completes the proof.

At this point, we recall some standard definitions and theorems that will be used to

prove the existence of the global attractor.

Definition 4.2. Let X be a Banach space. A set B ⊂ X is an absorbing set for the

semigroup S(t) : X → X if for any bounded set B ⊂ X there exists a time t0(B) such that

S(t)B ⊂ B for all t ≥ t0(B).

Definition 4.3. A compact subset A of H is the global attractor for a semigroup S(t)

acting on a Hilbert space H if the following conditions are satisfied.

(i) A is invariant for S(t); i.e.,

S(t)A = A, ∀ t ≥ 0.

(ii) A attracts any bounded subset of H; i.e.,

lim
t→∞

dH(S(t)B,A) = 0, ∀B ⊂ H

where dH is the Hausdorff semi-distance defined by

dH(A,B) = sup
a∈A

inf
b∈B
‖a− b‖H .

Theorem 4.4. [5] Let S(t) be a dissipative semigroup on a metric space H. Then, S(t)

has a compact global attractor in H if and only if it is asymptotically smooth in H.
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4.1. Absorbing set

We will now show that the semigroup generated by the system (2.7)–(2.9) possesses an

absorbing set. We prove some technical lemmas as follows.

Lemma 4.5. We define the functional I1(t) by

I1(t) = −ρ3
∫ 1

0
θ

∫ x

0
ut(y) dydx.

I1(t) along the solution of system (2.7)–(2.9), satisfies the estimate

(4.3) I ′1(t) ≤ −
γ

2
‖ut‖2 + ε1‖ux + v‖2 + c

(
1 +

1

ε1

)
‖θx‖2 + c‖vt‖2

for any ε1 > 0.

Proof. We differentiate I1(t) with respect to t, then make use of (2.7)1 and (2.7)3 and

recalling that m(u) = 0, we obtain

I ′1(t) = −ρ3
∫ 1

0
θ

∫ x

0
utt(y) dydx− ρ3

∫ 1

0
θt

∫ x

0
ut(y) dydx

= −kρ3
ρ1

∫ 1

0
θ(ux + v) dx+

γρ3
ρ1
‖θ‖2 + β

∫ 1

0
θxut dx

− γ‖ut‖2 + γ

∫ 1

0
vt

∫ x

0
ut(y) dydx.

Using Poincaré and Young inequalities, we get for any ε2,

I ′1(t) ≤ ε2‖ux + v‖2 +
c

ε2
‖θx‖2 + c‖θx‖2 +

γ

4
‖ut‖2 − γ‖ut‖2

+ cγ‖vt‖2 +
γ

4

∫ 1

0

(∫ x

0
ut(y) dy

)2

dx.
(4.4)

Using Cauchy-Schwarz inequality, the last term in (4.4) is estimated as

γ

4

∫ 1

0

(∫ x

0
ut(y) dy

)2

dx ≤ γ

4

∫ 1

0

(∫ x

0
12 dy

)(∫ x

0
u2t (y) dy

)
dx

≤ γ

4

∫ 1

0

(∫ 1

0
dx

)(∫ 1

0
u2t (x) dx

)
dx =

γ

4

∫ 1

0
u2t (x) dx.

Hence (4.4) gives

I ′1(t) ≤ −
γ

2
‖ut‖2 + ε2‖ux + v‖2 + c

(
1 +

1

ε2

)
‖θx‖2 + c‖vt‖2.
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Lemma 4.6. We define the functional I2(t) by

I2(t) = −ρ1
∫ 1

0
(ux + v)

∫ x

0
ut(y) dydx.

I2(t) along the solution of system (2.7)–(2.9), satisfies the estimate

(4.5) I ′2(t) ≤ −
k

2
‖ux + v‖2 + c‖θx‖2 + c‖ut‖2 + c‖vt‖2.

Proof. We differentiate I2(t) with respect to t, then making use of (2.7)1 and noting that

m(u) = 0, we obtain

I ′2(t) = −ρ1
∫ 1

0
(ux + v)

∫ x

0
utt(y) dydx− ρ1

∫ 1

0
(ux + v)t

∫ x

0
ut(y) dydx

= −k‖ux + v‖2 + γ

∫ 1

0
(ux + v)θ dx+ ρ1‖ut‖2 − ρ1

∫ 1

0
vt

∫ x

0
ut(y) dydx.

Using Poincaré, Young and Cauchy-Schwarz inequalities, we get

I ′2(t) ≤ −
k

2
‖ux + v‖2 + c‖θx‖2 + ρ1‖ut‖2 + c‖vt‖2 + c

∫ 1

0

(∫ x

0
ut(y) dy

)2

dx

≤ −k
2
‖ux + v‖2 + c‖θx‖2 + c‖ut‖2 + c‖vt‖2.

Lemma 4.7. We define the functional I3(t) by

I3(t) = −ρ2
∫ 1

0
vt

∫ +∞

0
h(s)η(x, s) dsdx.

I3(t) along the solution of system (2.7)–(2.9), satisfies the estimate

∂

∂t
I3(t) ≤ −

ρ2(b− b0)
2

‖vt‖2 + ε1‖vx‖2 + ε2‖ux + v‖2 + ε2‖θx‖2

+ ε2‖f‖2 + ε2|g(0)|2 + c

[
1 +

1

ε2
+

1

ε1

(
1 + ‖g′(αv)‖2L∞(0,1)

)]
‖ηx‖2M

− c
∫ 1

0

∫ +∞

0
h′(s)|ηx(x, s)|2 dsdx

(4.6)

for any ε1, ε2 > 0, where α ∈ (0, 1).

Proof. We differentiate I3(t) with respect to t, then making use of (2.7)4, we obtain

∂

∂t
I3(t) = −ρ2

∫ 1

0
vtt

∫ +∞

0
h(s)η(x, s) dsdx− ρ2

∫ 1

0
vt

∫ +∞

0
h(s)ηt(x, s) dsdx

= −ρ2
∫ 1

0
vtt

∫ +∞

0
h(s)η(x, s) dsdx− ρ2

∫ 1

0
vt

∫ +∞

0
h(s)(vt(t)− ηs(x, s)) dsdx

= −ρ2(b− b0)‖vt‖2 − ρ2
∫ 1

0
vtt

∫ +∞

0
h(s)η(x, s) dsdx
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+ ρ2

∫ 1

0
vt

[
h(s)η(x, s)

∣∣+∞
0
−
∫ +∞

0
h′(s)η(x, s) ds

]
dx

= −ρ2(b− b0)‖vt‖2 − ρ2
∫ 1

0
vtt

∫ +∞

0
h(s)η(x, s) dsdx

− ρ2
∫ 1

0
vt

∫ +∞

0
h′(s)η(x, s) dsdx.

Now, making use of (2.7)2 and integration by parts, we arrive at

∂

∂t
I3(t) = −ρ2(b− b0)‖vt‖2 − ρ2

∫ 1

0
vt

∫ +∞

0
h′(s)η(x, s) dsdx︸ ︷︷ ︸
J1

+ b0

∫ 1

0
vx

∫ +∞

0
h(s)ηx(x, s) dsdx︸ ︷︷ ︸
J2

+ k

∫ 1

0
(ux + v)

∫ +∞

0
h(s)η(x, s) dsdx︸ ︷︷ ︸

J3

− γ
∫ 1

0
θ

∫ +∞

0
h(s)η(x, s) dsdx︸ ︷︷ ︸
J4

+

∫ 1

0

(∫ +∞

0
h(s)ηx(x, s) ds

)2

dx︸ ︷︷ ︸
J5

+

∫ 1

0
g(v)

∫ +∞

0
h(s)η(x, s) dsdx︸ ︷︷ ︸
J6

−
∫ 1

0
f(x)

∫ +∞

0
h(s)η(x, s) dsdx︸ ︷︷ ︸
J7

.

(4.7)

Using Poincaré, Young and Cauchy-Schwarz inequalities, we estimate J1, J2, . . . , J7 as

follows:

J1(t) ≤
ρ2(b− b0)

2
‖vt‖2 − ch(0)

∫ 1

0

∫ +∞

0
h′(s)|ηx(x, s)|2 dsdx,

J2(t) ≤
ε1
2
‖vx‖2 +

c(b− b0)
ε1

∫ 1

0

∫ +∞

0
h(s)|ηx(x, s)|2 dsdx,

J3(t) ≤ ε1‖ux + v‖2 +
c(b− b0)λ1

ε1

∫ 1

0

∫ +∞

0
h(s)|ηx(x, s)|2 dsdx,

J4(t) ≤ ε2‖θx‖2 +
c(b− b0)λ1

ε2

∫ 1

0

∫ +∞

0
h(s)|ηx(x, s)|2 dsdx,

J5(t) ≤
∫ 1

0

∫ +∞

0

√
h(s)

[√
h(s)ηx(x, s)

]
dsdx

≤
∫ 1

0

(∫ +∞

0
h(s) ds

)(∫ +∞

0
h(s)η2x(x, s) ds

)
dx

≤ (b− b0)
∫ 1

0

∫ +∞

0
h(s)|ηx(x, s)|2 dsdx,

J6(t) =

∫ 1

0
(g(v)− g(0))

∫ +∞

0
h(s)η(x, s) dsdx+

∫ 1

0
−g(0)

∫ +∞

0
h(s)η(x, s) dsdx

≤
∫ 1

0
g′(αv)v

∫ +∞

0
h(s)η(x, s) dsdx+ ε2|g(0)|2
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+
c

ε2

∫ 1

0

(∫ +∞

0
h(s)η(x, s) ds

)2

dx

≤ ε1
2
‖vx‖2 +

c(b− b0)λ1(1 + ‖g′(αv)‖2L∞(0,1))

ε1

∫ 1

0

∫ +∞

0
h(s)|ηx(x, s)|2 dsdx

+ ε2|g(0)|2,

J7(t) ≤ ε2‖f‖2 +
c(b− b0)λ1

ε2

∫ 1

0

∫ +∞

0
h(s)|ηx(x, s)|2 dsdx.

Substituting J1, J2, . . . , J7 in (4.7), the expected estimate (4.6) follows immediately.

Lemma 4.8. We define the functional I4(t) by

I4(t) = ρ2

∫ 1

0
vvt dx.

I4(t) along the solution of system (2.7)–(2.9), satisfies the estimate

(4.8) I ′4(t) ≤ −
b0
4
‖vx‖2 + ρ2‖vt‖2 + c‖ux + v‖2 + c‖θx‖2 + c‖f‖2 + (b− b0)‖ηx‖2M + c′′ρ.

Proof. We differentiate I4(t) with respect to t, then make use of (2.7)2, we obtain

I ′4(t) = ρ2

∫ 1

0
v2t dx+ ρ2

∫ 1

0
vvtt dx

= ρ2‖vt‖2 − b0‖vx‖2 − k
∫ 1

0
(ux + v)v + γ

∫ 1

0
vθ

−
∫ 1

0
vx

∫ +∞

0
h(s)ηx(x, s) dsdx−

∫ 1

0
vg(v) dx+

∫ 1

0
vf(x) dx.

Next, using Poincaré and Young inequalities, we obtain

I ′4(t) ≤ −
b0
2
‖vx‖2 + ρ2‖vt‖2 + c‖ux + v‖2 + c‖θx‖2 + c‖f‖2

−
∫ 1

0
vg(v) dx+ c

∫ 1

0

(∫ +∞

0
h(s)ηx(x, s) ds

)2

dx.

(4.9)

Now, taking into account Cauchy-Schwarz inequality and condition (2.4), we deduce∫ 1

0

(∫ +∞

0
h(s)ηx(x, s) ds

)2

dx ≤ (b− b0)‖ηx‖2M,

−
∫ 1

0
vg(v) dx ≤ (C1 + 1)λ1ρ‖vx‖2 + C ′ρ + Cρ for any ρ > 0.

Hence the estimate (4.9) yields

I ′4(t) ≤ −
(
b0
2
− cρ

)
‖vx‖2 + ρ2‖vt‖2 + c‖ux + v‖2 + c‖θx‖2 + c‖f‖2

+ (b− b0)‖ηx‖2M + C ′ρ + Cρ.

We choose ρ small enough such that b0/2− cρ ≥ b0/4 and (4.8) follows immediately.



1192 Soh Edwin Mukiawa and Cyril Dennis Enyi

Let the functional L be defined as

L (t) = NE(t) +N1I1(t) +N2I2(t) +N3I3(t) + I4(t),

where N , N1, N2 and N3 are suitable positive constants to be determined later.

Lemma 4.9. There exist positive constants %1, %2, %3 and %4, such that the functional

L (t) along the solution of system (2.7)–(2.9), satisfies

(4.10) %1‖(u, ut, v, vt, θ, η)(t)‖2H − %2 ≤ L (t) ≤ %3‖(u, ut, v, vt, θ, η)(t)‖2H + %4, ∀ t ≥ 0,

where %3 = %3(‖g′(αv)‖L∞(0,1)).

Proof. On the one hand, using Hölder, Poincaré, Young and Cauchy-Schwarz inequalities,

we have

L (t) ≤ NE(t) +N1|I1(t)|+N2|I2(t)|+N3|I3(t)|+ |I4(t)|

≤ Nρ1
2
‖ut‖2 +

(
N1ρ

2
3 +

Nρ3
2

)
‖θ‖2 + c(N1 +N2)

∫ 1

0

(∫ x

0
ut(y) dy

)2

dx

+

(
N2ρ

2
1 +

Nk

2

)
‖ux + v‖2 +

(
c+N3ρ

2
2 +

Nρ2
2

)
‖vt‖2

+N

∫ 1

0
G(v) dx+

(
ρ22λ1 +

Nb0
2

)
‖vx‖2 +

N

2
‖ηx‖2M

+ cN3

∫ 1

0

(∫ +∞

0
h(s)η(x, s) ds

)2

dx+

∫ 1

0
|vf | dx.

(4.11)

Using assumption (2.4), we have∫ 1

0
G(v) dx ≤ 1

C1

∫ 1

0
(vg(v) + ρv2) dx+

C ′ρ
C1

≤ c
∫ 1

0
|v|2 dx+

∫ 1

0
|v|(|g(v)− g(0)|) dx+

∫ 1

0
|v||g(0)| dx

≤ cλ1
(
‖g′(αv)‖2L∞(0,1) + 1

)
‖vx‖2 + C, α ∈ (0, 1).

(4.12)

Also,

(4.13)

∫ 1

0
|vf | dx ≤ λ1‖vx‖2 + c‖f‖2.

Hence, from (4.12) and (4.13), the estimate (4.11) yields

(4.14) L (t) ≤ c
(
ρ1‖ut‖2 + ρ2‖vt‖2 + b0‖vx‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

)
+ C,
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where c = c(‖g′(αv)‖L∞(0,1)). On the other hand, we have

L (t) ≥ N

2

(
ρ1‖ut‖2 + ρ2‖vt‖2 + b0‖vx‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

)
+
N

2

(
− 2ρλ1‖vx‖2 − 2Cρ − δ1λ1 − Cδ1‖f‖2

)
−N1ρ3

(
1

2
‖θ‖2 +

1

2
‖ut‖2

)
−N2ρ1

(
1

2
‖ux + v‖2 +

1

2
‖ut‖2

)
−N3ρ2

(
1

2
‖vt‖2 +

(b− b0)λ1
2

‖ηx‖2M
)

− ρ2
(

1

2
‖vt‖2 +

λ1
2
‖vx‖2

)
.

Hence, we deduce

L (t) ≥
[
N

2
− N1ρ3

2ρ1
− N2

2

]
ρ1‖ut‖2 +

[
N

2
− N3

2
− 1

2

]
ρ2‖vt‖2 +

[
N

2
− N1

2

]
ρ3‖θ‖2

+

[
N

(
1

2
− 2ρλ1

b0
− δ1λ1

b0

)
− ρ1λ1

2b0

]
b0‖vx‖2 +

[
N

2
−N3

ρ2(b− b0)λ1
2

]
‖ηx‖2M

+

[
N

2
− N1ρ1

2k

]
k‖ux + v‖2 −

(
N

2
Cδ1‖f‖2 +NCρ

)
.

Now, we choose ρ and δ1 small such that

1

2
− 2ρλ1

b0
− δ1λ1

b0
> 0,

then we choose N large enough so that

N

2
− N1ρ3

2ρ1
− N2

2
> 0,

N

2
− N3

2
− 1

2
> 0,

N

2
− N1

2
> 0,

N

(
1

2
− 2ρλ1

b0
− δ1λ1

b0

)
− ρ1λ1

2b0
> 0,

N

2
−N3

ρ2(b− b0)λ1
2

> 0 and
N

2
− N1ρ1

2k
> 0.

It follows that

(4.15) L (t) ≥ c̃
(
ρ1‖ut‖2 + ρ2‖vt‖2 + b0‖vx‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

)
− C̃.

Therefore, the inequality (4.10) immediately follows from (4.14) and (4.15).

Lemma 4.10. There exist two positive constants α1 and α2, such that the functional L (t)

along the solution of system (2.7)–(2.9), satisfies

(4.16)
d

dt
L (t) + α1L (t) ≤ α2, ∀ t ≥ 0,

where α1 = α1(‖g′(αv)‖L∞(0,1)).
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Proof. Keeping in mind (3.5), (4.3), (4.5), (4.6) and (4.8), we have

d

dt
L (t) ≤ −

[
N1γ

2
−N2c

]
‖ut‖2 −

[
ρ2(b− b0)

2
N3 − cN1 − cN2 − ρ2

]
‖vt‖2

−
[
Nβ − c

(
1 +

1

ε2

)
N1 − cN2 − ε2N3 + c

]
‖θx‖2 −

[
b0
4
− ε1N3

]
‖vx‖2

−
[
N2

k

2
− ε2N1 − ε1N3 − c

]
‖ux + v‖2

+

[
cN3

(
1 +

1

ε2
+

1

ε1

(
1 + ‖g′(αv)‖2L∞(0,1)

))
+ (b− b0)

]
‖ηx‖2M

+

[
N

2
− cN3

] ∫ 1

0

∫ +∞

0
h′(s)|ηx(x, s)|2 dsdx+ C.

We take ε1 = b0/(8N3) and ε2 = kN2/(4N1), then using (2.1), we obtain

d

dt
L (t) ≤ −

[
N1γ

2
−N2c

]
‖ut‖2 −

[
ρ2(b− b0)

2
N3 − cN1 − cN2 − ρ2

]
‖vt‖2

−
[
Nβ − c

(
1 +

4N1

kN2

)
N1 −

(
c+

kN3

4N1

)
N2 − c

]
‖θx‖2

− b0
8
‖vx‖2 −

[
N2

k

4
− b0

8
− c
]
‖ux + v‖2

−
[
N
ξ

2
− cN3

(
1 + ξ +

4N1

kN2
+

8N3

b0

(
1 + ‖g′(αv)‖2L∞(0,1)

))
− (b− b0)

]
‖ηx‖2M

+ C.

Now, we choose N2 large enough such that

N2
k

4
− b0

8
− c > 0,

then choose N1 large enough such that

N1γ

2
−N2c > 0.

We can then choose N3 large enough such that

ρ2(b− b0)
2

N3 − cN1 − cN2 − ρ2 > 0,

finally we choose N large enough such that

Nβ − c
(

1 +
4N1

kN2

)
N1 −

(
c+

kN3

4N1

)
N2 − c > 0

and

N
ξ

2
− cN3

(
1 + ξ +

4N1

kN2
+

8N3

b0
(1 + ‖g′(αv)‖2L∞(0,1))

)
− (b− b0) > 0.
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We deduce that

(4.17)
d

dt
L (t) ≤ −β1‖(u, ut, v, vt, θ, η)‖2H + β2,

for some positive constants β1 and β2, where β1 = β1(‖g′(αv)‖L∞(0,1)). Due to (4.10) and

(4.17), we obtain (4.16).

Theorem 4.11. Let the assumptions of Theorem 3.1 hold, then the semigroup S(t) of

system (2.7)–(2.9), possesses a bounded absorbing set B in (H, S(t)).

Proof. We integrate (4.16) over (0, t) and we obtain

L (t) ≤ L (0)e−α1t + α2

(
1− e−α1t

)
≤ L (0)e−α1t + α2.

Using (4.10), we get

‖(u, ut, v, vt, θ, ξ)‖2H ≤
1

%1
L (0)e−α1t +

1

%1
(α2 + %2)

≤ C(R)‖(u0, u1, v0, v1, θ0, ξ0)‖2H +
1

%1
(α2 + %2 + %4).

Therefore, for R >
√

1
µ1

(α2 + %2 + %4), the ball B(0, R) is a bounded absorbing set in

(H, S(t)). This completes the proof.

4.2. Asymptotic smoothness of the semigroup S(t)

We will now establish the asymptotic smoothness of the semigroup S(t) generated by

system (2.7)–(2.9) in H. The following lemma will be used in the sequel.

Lemma 4.12. [5] Let H be a Banach space. Assume that for any B ⊂ H bounded and

positively invariant and for any ε > 0, there exists T = T (ε,B) such that

‖S(T )y1 − S(T )y2‖H ≤ ε+ ΨT (y1, y2), ∀ y1, y2 ∈ B,

where ΨT : H ×H → R satisfies, for any sequence {yn} ⊂ B,

lim
j→∞

lim
k→∞

ΨT (ynj , ynk
) = 0.

Then S(t) is asymptotically smooth.

Let U j = (uj , ujt , v
j , vjt , θ

j , ηj)T , j = 1, 2 be two solutions of system (2.7)–(2.9), with

corresponding initial data U j0 = (uj0, u
j
1, v

j
0, v

j
1, θ

j
0, η

0j)T ∈ B, j = 1, 2, where B ⊂ H is
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a bounded and positive invariant set for the semigroup S(t). Let U = U1 − U2 and

U0 = U1
0 − U2

0 . Thus, U satisfies

ρ1utt − k(ux + v)x + γθx = 0, x ∈ (0, 1), t > 0,

ρ2vtt − b0vxx + k(ux + v)− γθ

−
∫ +∞
0 h(s)ηxx(x, s) ds+ g(v1)− g(v2) = 0, x ∈ (0, 1), t > 0,

ρ3θt − βθxx + γ(ux + v)t = 0, x ∈ (0, 1), t > 0,

ηt + ηs − vt = 0, x ∈ (0, 1), t, s > 0

with same boundary conditions as in (2.9). Next, we multiply (4.1)1 by ut, (4.1)2 by

vt, and (4.1)3 by θ, making use of (4.1)4, then perform integration by parts over (0, 1).

Addition of the results from these leads to

(4.18)
d

dt
E1(t) = −β‖θx‖2 − (g(v1)− g(v2), vt) +

1

2

∫ 1

0

∫ ∞
0

h′(s)|ηx(x, s)|2 dsdx,

where

(4.19) E1(t) =
1

2

(
ρ1‖ut‖2 + ρ2‖vt‖2 + b0‖vx‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

)
.

We have

−(g(v1)− g(v2), vt) ≤ ρ2(b− b0)‖vt‖2 + c

∫ 1

0
|g(v1)− g(v2)|2 dx

≤ ρ2(b− b0)‖vt‖2 + c‖g′(y)‖2L∞(0,1)

∫ 1

0
|v|2 dx

≤ ρ2(b− b0)‖vt‖2 + CB‖v‖2.

(4.20)

Hence from (4.18) and (4.20), we conclude that

(4.21)
d

dt
E1(t) ≤ −β‖θx‖2 +

ρ2(b− b0)
2

‖vt‖2 +
1

2

∫ 1

0

∫ ∞
0

h′(s)|ηx(x, s)|2 dsdx+ CB‖v‖2.

Let the functional F (t) be defined as

F (t) = nE1(t) + n1L1(t) + n2L2(t) + n3L3(t) + L4(t),

where n, n1, n2 and n3 are positive constants to be chosen later, while

L1(t) = −ρ3
∫ 1

0
θ

∫ x

0
ut(y) dydx, L2(t) = −ρ1

∫ 1

0
(ux − v)

∫ x

0
ut(y) dydx,

L3(t) = −ρ2
∫ 1

0
vt

∫ +∞

0
h(s)η(x, s) dsdx, L4(t) = ρ2

∫ 1

0
vvt dx.
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We have that

(4.22) $1E1(t) ≤ F (t) ≤ $2E1(t), ∀ t ≥ 0

for some positive constants $1 and $2. Indeed, making use of Young, Poincaré and

Cauchy-Schwarz inequalities, we have

|F (t)− nE1(t)|

≤ n1|L1(t)|+ n2|L2(t)|+ n3|L3(t)|+ |L4(t)|

≤ n1ρ23‖θ‖2 + c(n1 + n2)‖ut‖+ n2ρ
2
1‖ux + v‖2

+ n3ρ
2
2‖vt‖2 + cn3(b− b0)λ1‖ηx‖2M + ρ22λ1‖vx‖2 + c‖vt‖2

≤ c
(
ρ1‖ut‖2 + ρ2‖vt‖2 + b0‖vx‖2 + ρ3‖θ‖2 + ‖ηx‖2M + k‖ux + v‖2

)
≤ cE1(t).

Thus for n large, we deduce (4.22).

Lemma 4.13. There exists $ > 0 such that

(4.23)
d

dt
F (t) +$F (t) ≤ CB‖v(t)‖2, ∀ t ≥ 0.

Proof. Performing similar computations as those of Lemmas 4.5–4.8, we obtain

L′1(t) ≤ −
γ

2
‖ut‖2 + ε1‖ux + v‖2 + c

(
1 +

1

ε1

)
‖θx‖2 + c‖vt‖2,

L′2(t) ≤ −
k

2
‖ux + v‖2 + c‖θx‖2 + c‖ut‖2 + c‖vt‖2,

L′3(t) ≤ −
ρ2(b− b0)

2
‖vt‖2 + ε1‖vx‖2 + ε2‖ux + v‖2 + ε2‖θx‖2 + CB‖v‖2

+ c

(
1 +

1

ε2
+

1

ε1

)
‖ηx‖2M − c

∫ 1

0

∫ +∞

0
h′(s)|ηx(x, s)|2 dsdx,

L′4(t) ≤ −
b0
2
‖vx‖2 + ρ2‖vt‖2 + c‖ux + v‖2 + c‖θx‖2 + CB‖v‖2 + (b− b0)‖ηx‖2M.

(4.24)

It follows from (4.21) and (4.24) that

d

dt
F (t) ≤ −

[n1γ
2
− n2c

]
‖ut‖2 −

[
ρ2(b− b0)

4
n3 − cn1 − cn2 − ρ2

]
‖vt‖2

−
[
nβ − c

(
1 +

1

ε2

)
n1 − cn2 − ε2n3 + c

]
‖θx‖2 −

[
b0
2
− ε1n3

]
‖vx‖2

−
[
n2
k

2
− ε2n1 − ε1n3 − c

]
‖ux + v‖2

+

[
cn3

(
1 +

1

ε2
+

1

ε1

)
+ (b− b0)

]
‖ηx‖2M

+
[n

2
− cn3

] ∫ 1

0

∫ +∞

0
h′(s)|ηx(x, s)|2 dsdx.
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Now, with appropriate choices of ε1, ε2, n, n1, n2, n3 done in a manner similar to that of

Lemma 4.16, we obtain

(4.25)
d

dt
F (t) ≤ CE1(t) + CB‖v(t)‖2.

Therefore, (4.23) follows from (4.22) and (4.25).

Theorem 4.14. Under the assumptions of Theorem 3.1, the semigroup S(t) of sys-

tem (2.7)–(2.9) is asymptotically smooth in H.

Proof. We integrate (4.23) over (0, t), then on account of (4.22), we deduce

E1(t) ≤
$2

$1
E1(0)e−$t + CB

∫ t

0
‖v(s)‖2 ds.

Using (4.19), we obtain

(4.26) ‖(u, ut, v, vt, θ, η)‖2H ≤ C‖(u0, u1, v0, v1, θ0, η0)‖2H + CB

∫ t

0
‖v(s)‖2 ds.

Thus

‖U‖2H ≤ C‖U0‖2H + CB

∫ t

0
‖v(s)‖2 ds.

Let ε > 0 and select T large enough in (4.26), we deduce that

‖S(T )U1
0 − S(T )U2

0 ‖2H ≤ ε+ ΨT (U1
0 , U

2
0 )

for every U1
0 , U

2
0 ∈ B, where the function ΨT : H×H → R is defined by

ΨT (U1
0 , U

2
0 ) = CB sup

0≤t≤T

∫ t

0
‖v1(s)− v2(s)‖2 ds.

Let {(u0n, u1n, v0n, v1n, θ0n, η0n)}n≥1 ⊂ B, since B ⊂ H is bounded and positively invariant,

then the corresponding solutions

{(un(t), (ut)n(t), vn(t), (vt)n(t), θn(t), ηn(s))}n≥1

is uniformly bounded in H. Hence

{(un(t), (ut)n(t), vn(t), (vt)n(t), θn(t), ηn(s))}n≥1

is a bounded sequence in

C([0, T ],H).

It follows that {vn(t)} is bounded in

C([0, T ], H1
0 (0, 1)).
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Using the compact embedding of C([0, T ], H1
0 (0, 1)) ∩ C1([0, T ], L2(0, 1)) into C([0, T ],

L2(0, 1)), we can extract a subsequence {vnj (t)} which converges strongly in

C([0, T ], L2(0, 1)), ∀T > 0.

Therefore

lim
j→∞

lim
l→∞

sup
0≤t≤T

∫ t

0
‖vnj (s)− vnl

(s)‖2 ds = 0

and so

lim
j→∞

lim
l→∞

ΨT (U0nj , U0nl
) = 0.

By applying Lemma 4.12, we obtain the asymptotic smoothness of the semigroup S(t) in

H.

Theorem 4.15. Under the assumptions of Theorem 3.1, the semigroup S(t) of sys-

tem (2.7)–(2.9) possesses the compact global attractor A in H.

Proof. In Theorem 4.11, we showed that the semigroup S(t) of system (2.7)–(2.9) possesses

a bounded absorbing set B in H, and furthermore showed in Theorem 4.14 that the

semigroup S(t) of system (2.7)–(2.9) is asymptotically smooth in H. The result follows

by the application of Theorem 4.4.

5. Finite-fractal dimension

We devote this section, to showing that the global attractor A obtained in Section 4

possesses a finite-fractal dimension. We first present some needed basic concepts and

results. The reader is referred to [5] and references therein for more details.

Let X be a metric space and K ⊂ X be a compact set, then the fractal dimension of

K is given by

dimX
f K = lim sup

ε→0

In(n(K, ε))

In(1/ε)
,

where n(K, ε) is the minimal number of closed balls with radius ε that cover K.

Suppose nX(·) is a seminorm on a Banach space X, it is known that nX is compact

whenever for any sequence xj → 0 weakly in X we have that nX(xj)→ 0.

Let X, V , Z be three reflexive Banach spaces with X compactly embedded in V , we

set H = X × V × Z. We consider the dynamical system (H,S(t)) where

(5.1) S(t)(y0, y1, z0) = (y(t), yt(t), z(t)), (y0, y1, z0) ∈ H,

is the solution of an evolution problem, and y, z satisfies the regularity

(5.2) y ∈ C([0,+∞), X) ∩ C1([0,+∞), V ), z ∈ C([0,+∞), Z).

We state the following important definition and theorem.
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Definition 5.1. The dynamical system (H,S(t)) is said to be quasi-stable on a set U ⊂ H
if there exists a compact seminorm nX on X and nonnegative scalar functions α(t) and

φ(t) which are locally bounded in [0,+∞), and β(t) ∈ L1((0,+∞)) with limt→+∞ β(t) = 0,

such that

(5.3) ‖S(t)(y10, y
1
1, z

1
0)− S(t)(y20, y

2
1, z

2
0)‖2H ≤ α(t)‖(y10, y11, z10)− (y20, y

2
1, z

2
0)‖2H ,

and

‖S(t)(y10, y
1
1, z

1
0)− S(t)(y20, y

2
1, z

2
0)‖2H ≤ β(t)‖(y10, y11, z10)− (y20, y

2
1, z

2
0)‖2H

+ φ(t) sup
0<s<t

[nX(y1(s)− y2(s))]2(5.4)

for any (y10, y
1
1, z

1
0), (y20, y

2
1, z

2
0) ∈ U . The inequality (5.4) is known as a stabilizability

inequality.

Theorem 5.2. [5] Let the dynamical system (H,S(t)) be given by (5.1) and satisfy (5.2).

If (H,S(t)) possesses a compact global attractor A and is quasi-stable on A, then the global

attractor A has finite fractal dimension.

Here is the main result of this section.

Theorem 5.3. The global attractor obtained in Theorem 4.15 possesses a finite-fractal

dimension.

Proof. Let X = H1
∗ (0, 1)×H1

0 (0, 1), V = L2(0, 1)×L2(0, 1) and Y = L2(0, 1)×M. Also,

set y(t) = (u, v), yt(t) = (ut, vt), z(t) = (θ, η). Therefore, the dynamical system (H, S(t))

emanating from the solution of system (2.7)–(2.9) satisfies (5.1) and (5.2). Let B ⊂ H,

be a bounded positively invariant set with respect to S(t). Let

U j0 = (ui0, u
i
1, v

i
0, v

i
1, θ

i
0, η

0i), i = 1, 2.

We can see that U = U1 − U2 satisfies (4.1). Hence, with similar computations as in

Lemma 4.1, we simply obtain

‖S(t)U1
0 − S(t)U2

0 ‖2H ≤ eϑt‖U1
0 − U2

0 ‖2H, ∀ t ≥ 0

for any U1
0 , U

2
0 ∈ B, where ϑ = ϑ(B) > 0. Hence, we set α(t) = eϑt in (5.3) and clearly,

α(t) is locally bounded in [0,+∞). We now show that (5.4) is satisfied. Let’s define the

seminorm nX(·) by

nX(u, v) = ‖u‖+ ‖v‖.
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We know that H1
0 (0, 1) is compactly embedded in L2(0, 1). Hence, the seminorm nX(·) is

compact on H1
0 (0, 1). We integrate (4.23) over (0, t), then on account of (4.22), we obtain

‖S(t)U1
0 − S(t)U2

0 ‖2H ≤ Ce−$t‖U1
0 − U2

0 ‖2H + CB

∫ t

0
e−$(t−s)‖v1 − v2‖2 ds

≤ Ce−$t‖U1
0 − U2

0 ‖2H + CB

∫ t

0
e−$(t−s) ds sup

0<s<t
[nX(y)]2

= β(t)‖U1
0 − U2

0 ‖2H + φ(t) sup
0<s<t

[nX(y)]2,

where

y = (u1 − u2, v1 − v2), β(t) = Ce−$t, φ(t) = CB

∫ t

0
e−$(t−s) ds, t ≥ 0.

We easily see that

β(t) ∈ L1(R+) and lim
t→0

β(t) = 0.

The boundedness of B implies that φ(t) is locally bounded in [0,∞). Hence, the con-

dition (5.4) is satisfied. Therefore, the dynamical system (H, S(t)) is quasi-stable on A.

Application of Theorem 5.2, gives that the global attractor A has a finite-fractal dimen-

sion.

6. Exponential attractor

This section is devoted to show that the system (2.7)–(2.9) possesses an exponential at-

tractor.

Definition 6.1 (Exponential attractor). Let X be a compact subset of H. A compact set

E ⊂ X is called an exponential attractor for the semigroup S(t) for the topology of H if

(i) E is positively invariant under S(t), that is, S(t)E ⊂ E , ∀ t ≥ 0;

(ii) the fractal dimension of E is finite;

(iii) there exists a constant c0 > 0 such that, for every bounded subset B ⊂ X, there

exists a constant c1(B) > 0 such that

distH(S(t)B, E) ≤ c1e−c0t, ∀ t ≥ 0.

Furthermore, we introduce the concept of generalized exponential attractors, in which

case the exponential attractor is said to have fractal dimension in a weaker phase space

H̃ ⊇ H, see [5, 6] for more details.

We denote by H−1(0, 1) the dual of H1
0 (0, 1), and set

H̃ = L2(0, 1)×H−1(0, 1)× L2(0, 1)×H−1(0, 1)×H−1(0, 1)×M′,

whereM′ = L2(R+, L2(0, 1)). We state the following result of Chueshov and Lasiecka [6].
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Theorem 6.2. Let (H, S(t)) be a dynamical system satisfying (5.1) and (5.2). Assume

(H, S(t)) is quasi-stable on a bounded absorbing set B, and there exists an extended space

H̃ ⊇ H, such that for any T ∗ > 0,

(6.1) ‖S(t)U0 − S(t′)U0‖H̃ ≤ C
∗|t− t′|σ, t, t′ ∈ [0, T ∗], U0 ∈ B,

where the constants C∗ = C∗(B, T ∗) > 0 and 0 < σ ≤ 1. Then (H, S(t)) possesses a

generalized exponential attractor E ⊂ H with finite fractal dimension in H̃.

The next theorem is the main result of this section.

Theorem 6.3. Under the assumptions of Theorem 3.1, the semigroup S(t) of system (2.7)–

(2.9) possesses a generalized exponential attractor E in H, with finite fractal dimension in

the extended space H̃.

Proof. Let B ⊂ H, be a bounded positively invariant set with respect to S(t). Similar to

the proof in Theorem 5.3, the dynamical system (H, S(t)) is quasi-stable on B.

Let U0 ∈ B, then differentiating the system (2.7)–(2.9), we deduce that the solution

(u, ut, v, vt, θ, η) satisfies

(6.2) ρ1‖utt‖2−1 + ρ2‖vtt‖2−1 + ρ3‖θt‖2−1 + b0‖vxt‖2−1 + k‖uxt + vt‖2−1 + ‖ηt‖2M′ ≤ CB.

We have that

‖S(t)U0 − S(t′)U0‖H̃
≤ ρ1‖ut(t)− ut(t′)‖−1 + ρ2‖vt(t)− vt(t′)‖−1 + ρ3‖θ(t)− θ(t′)‖−1

+ b0‖vx(t)− vx(t′)‖−1 + k‖ux(t)− ux(t′) + v(t)− v(t′)‖−1 + ‖η(t)− η(t′)‖M′

≤
∫ t′

t

(
‖utt(s)‖−1 + ‖vtt(s)‖−1 + ‖θt(s)‖−1 + ‖vxt(s)‖−1

)
ds

+

∫ t′

t

(
‖uxt(s) + vt(s)‖−1 + ‖ηt(s)‖M′

)
ds.

(6.3)

It follows from (6.2) and (6.3) that

‖S(t)U0 − S(t′)U0‖H̃ ≤ C
∗(B, T ∗)|t− t′|1/2, t, t′ ∈ [0, T ∗].

Therefore (6.1) holds, and we conclude that (H, S(t)) has a generalized exponential at-

tractor with finite fractal dimension in H̃.
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