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Abstract. In this paper, we aim to find efficient solutions of a multi-objective optimiza-

tion problem over a linear matrix inequality (LMI in short), in which the objective

functions are SOS-convex polynomials. We do this by using two scalarization ap-

proaches, that is, the ε-constraint method and the hybrid method. More precisely, we

first transform the considered multi-objective optimization problem into their scalar

forms by the ε-constraint method and the hybrid method, respectively. Then, strong

duality results, between each formulated scalar problem and its associated semidefi-

nite programming dual problem, are given, respectively. Moreover, for each proposed

scalar problem, we show that its optimal solution can be found by solving an associ-

ated single semidefinite programming problem, under a suitable regularity condition.

As a consequence, we prove that finding efficient solutions to the considered prob-

lem can be done by employing any of the two scalarization approaches. Besides, we

illustrate our methods through some nontrivial numerical examples.

1. Introduction

Consider a multi-objective optimization problem of the following form:

(1.1) MinRp
+

(f1(x), . . . , fp(x)) s.t. F (x) � 0,

where each fj : Rn → R, j = 1, . . . , p, is an SOS-convex polynomial (see Definition 2.4)

with degree at most 2d, F : Rn → Sm is a linear mapping defined by F (x) := A0 +∑n
i=1 xiAi with x := (x1, . . . , xn) ∈ Rn, and Ai, i = 0, 1, . . . , n, are m × m symmetric

matrices. Note that Rp+ and Sm stand for the non-negative orthant of Rp and the set
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of m × m symmetric matrices, respectively. Note also that MinRp
+

in the above prob-

lem is understood with respect to the ordering cone Rp+. We denote the feasible set of

the problem (1.1) as K :=
{
x ∈ Rn : A0 +

∑n
i=1 xiAi � 0

}
, which is assumed to be

nonempty throughout this paper. Now, we recall the notion of an efficient solution to the

problem (1.1):

Definition 1.1. A point x ∈ K is said to be an efficient solution to the problem (1.1) if

(1.2) f(x)− f(x) /∈ −Rp+ \ {0}, ∀x ∈ K,

where f(x) := (f1(x), . . . , fp(x)); in other words, (1.2) is equivalent to say that there exists

no x ∈ K such that fj(x) ≤ fj(x), for every j = 1, . . . , p with at least one strict inequality.

In addition, if x is an efficient solution to the problem (1.1), then f(x) ∈ Rp is called a

non-dominated point.

Note that, since the main purpose of the present paper is not the existence of effi-

cient solutions, in what follows the assumptions on their existence will be understood.

The reasons why we assume all of the objective functions being SOS-convex polynomials

are (i) the SOS-convexity of a polynomial has been recently proposed as a tractable suf-

ficient condition for convexity based on semidefinite programming; (ii) it has also been

recently shown that an SOS-convex optimization problem enjoys an exact SDP relaxation

in the sense that, its optimal value and optimal solution can be found by solving a single

semidefinite programming problem [17] (see also [12]), under some assumptions.

In this paper, we are interested in the study of finding efficient solutions to the prob-

lem (1.1). To this end, we investigate two scalarization approaches (i.e., the ε-constraint

method and the hybrid method), which allow us to transform problem (1.1) into scalar

problems. It is worth noting that, comparing with the two aforementioned scalarization

methods, the weighted sum method may be used more widely; however, for a given non-

dominated point, it is usually not easy to find a corresponding desired weighting parameter

by this method. In other words, it may be not easy to set a good weighting parameter to

obtain a non-dominated point from a desired region of the image space (then find efficient

solutions in the feasible set). Fortunately, both ε-constraint method and hybrid method

do not need to consider this issue, since the desired region of the image space is well

controlled by additional constraints in the view of the two scalarization methods. Below,

we state the ε-constraint method and the hybrid method in a mathematical way.

First, we relax the problem (1.1) to the following scalar ones based on the ε-constraint

method; see, for example [2, 3]:

(1.3) min
x∈Rn

fj(x) s.t. A0 +

n∑
i=1

xiAi � 0, fk(x) ≤ εk, k 6= j,
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where ε := (ε1, . . . , εp) ∈ Rp is given. Note that the component εj is unrelated for the

problem (1.3), the convention involving it here will be convenient for our later analysis.

Then, for each j = 1, . . . , p, a strong duality result, between the problem (1.3) and its

associated semidefinite programming dual problem, is given. In addition, for each j =

1, . . . , p, we show that the optimal solution to the problem (1.3) can be found by solving

its associated single semidefinite programming problem, under a closed cone constraint

qualification (CCCQ1) (see Assumption 3.2). Consequently, we prove that finding efficient

solutions to the problem (1.1) can be done successfully by employing the ε-constraint

method.

We would mention here that, under the fulfilment of stability condition rather than

the (CCCQ1) in the present paper, Lee and Jiao [20] (see also Jiao and Lee [15]) recently

showed that finding efficient solutions to a (robust) multi-objective optimization problem,

in which the involving functions are assumed to be SOS-convex polynomials, is trackable

by using the ε-constraint method; besides, in the paper [19], they also solved a class of

fractional multi-objective optimization problems with SOS-convex polynomial data by

using scalarization approaches.

Second, we transform the problem (1.1) into the following scalar one based on the

hybrid method; see, for example [2, 4]:

(1.4)

min
x∈Rn

λT f(x) :=

p∑
j=1

λjfj(x) s.t. A0 +
n∑
i=1

xiAi � 0, fj(x) ≤ fj(z), j = 1, . . . , p,

where λ := (λ1, . . . , λp) ∈ intRp+ is fixed and the parameter z ∈ Rn. Note that intRp+
stands for the interior of Rp+. Then, we establish a strong duality result between (1.4) and

its associated semidefinite programming dual problem. Moreover, we show that efficient

solutions to the problem (1.1) can be found by solving its associated single semidefi-

nite programming problem, under a closed cone constraint qualification (CCCQ2) (see

Assumption 3.15). Apart from this, very recently, along with a hybrid method, Jiao

et. al. [16] studied a multi-objective optimization problem with convex polynomials rather

than SOS-convex polynomials; however, the exact SDP relaxation enjoyed by SOS-convex

polynomial optimization problems was no longer true, thus they [16] found efficient solu-

tions by solving hierarchies of semidefinite programming relaxations and checking a flat

truncation condition.

The organization of this paper is as follows. Section 2 states some preliminaries. In

Section 3, we show our main results; more precisely, by using two scalarization approaches,

we investigate how to find efficient solutions to the problem (1.1), i.e., SOS-convex poly-

nomial multi-objective optimization problems over a linear matrix inequality constraint.

Finally, conclusions are given in Section 4.
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2. Preliminaries

This section provides some notations and preliminary results that will be used in the

paper. We suppose 1 ≤ n ∈ N (N is the set of non-negative integers) and abbreviate

(x1, x2, . . . , xn) by x. Rn denotes the Euclidean space with dimension n. The non-negative

orthant of Rn is denoted by Rn+.

For an extended real-valued function f on Rn, f is said to be proper if for all x ∈ Rn,

f(x) > −∞ and there exists x0 ∈ Rn such that f(x0) ∈ R. We denote the domain and the

epigraph of f by dom f := {x ∈ Rn : f(x) < +∞} and epi f := {(x, r) ∈ Rn × R : f(x) ≤
r}, respectively. We say a function f is lower semicontinuous if lim infy→x f(y) ≥ f(x) for

all x ∈ Rn. A function f : Rn → R ∪ {+∞} is said to be convex if for all t ∈ [0, 1],

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

for all x, y ∈ Rn. As usual, for any proper convex function f on Rn, its conjugate function

f∗ : Rn → R ∪ {+∞} is defined by f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ Rn} for all x∗ ∈ Rn.

For a given set A ⊂ Rn, we denote the closure and the convex hull generated by A by

clA and coA, respectively. The indicator function δA is defined by

δA(x) :=

0 if x ∈ A,

+∞ otherwise.

Lemma 2.1. [10] Let f : Rn → R ∪ {+∞}, g : Rn → R ∪ {+∞} be proper lower semi-

continuous convex functions. If dom f ∩ dom g 6= ∅, then

epi(f + g)∗ = cl(epi f∗ + epi g∗).

Moreover, if one of the functions f and g is continuous, then

epi(f + g)∗ = epi f∗ + epi g∗.

Lemma 2.2. [9, 21] Let gi : Rn → R ∪ {+∞}, i ∈ I, be a proper lower semicontinuous

convex function, where I is an arbitrary index set. Suppose that there exists x0 ∈ Rn such

that supi∈I gi(x0) < +∞. Then

epi

(
sup
i∈I

gi

)∗
= cl

(
co
⋃
i∈I

epi g∗i

)
.

The space of all real polynomials in the variable x is denoted by R[x]. Moreover, the

space of all real polynomials on Rn with degree at most d is denoted by R[x]d. The degree

of a real polynomial f is denoted by deg f . We say that a real polynomial f is sum of

squares if there exist real polynomials ql, l = 1, . . . , r, such that f =
∑r

l=1 q
2
l . The set
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consisting of all sum of squares real polynomials with degree at most d is denoted by Σ2
d.

For a multi-index α ∈ Nn, let |α| :=
∑n

i=1 αi, and let Nnd := {α ∈ Nn : |α| ≤ d}. The

notation xα stands for the monomial xα1
1 · · ·xαn

n . The canonical basis of R[x]d is denoted

by

vd(x) = (xα)α∈Nn
d

= (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n)T ,

which has dimension s(d) :=
(
n+d
d

)
.

Let Sm be the set of m×m symmetric matrices. For X ∈ Sm, X � 0 (resp., X � 0)

stands for that X is positive semidefinite (resp., positive definite). Let Sm+ be the set

of n × n symmetric positive semidefinite matrices. For M,N ∈ Sm, 〈M,N〉 := tr[MN ],

where “tr” denotes the trace of a matrix.

The following proposition tells us that a polynomial can be written as a sum of squares

via positive semidefinite programming.

Proposition 2.3. [18] A polynomial f ∈ R[x]2d has a sum of squares decomposition if

and only if there exists a matrix X ∈ S
s(d)
+ such that f(x) = 〈vd(x)vd(x)T , X〉 for all

x ∈ Rn.

Let vd(x)vd(x)T :=
∑

α∈Nn
2d
xαBα, where Bα are s(d)× s(d) real symmetric matrices.

Then, checking whether the polynomial f(x) =
∑

α∈Nn
2d
fαx

α is a sum of squares reduces

to solving the following semidefinite feasibility problem [18]:

Find X ∈ Ss(d)+ such that 〈Bα, X〉 = fα, ∀α ∈ Nn2d.

Below, we recall the notion of SOS-convex polynomials.

Definition 2.4. [1, 6] A real polynomial f on Rn is called SOS-convex if there exists a

matrix polynomial H(x) such that ∇2f(x) = H(x)H(x)T , equivalently,

f(x)− f(y)−∇f(y)T (x− y)

is a sum of squares polynomial in R[x; y].

A well-known fact is that an SOS-convex polynomial is convex, but the converse is not

true, which means that there exists a convex polynomial that is not SOS-convex; see, for

example, [1].

Next, for completeness, we state a result that will be used in the proof of Theorem 3.5,

one can refer to [12, Remark 2.3].

Lemma 2.5. [12] Let f ∈ R[x] be SOS-convex. If f(x) ≥ 0 for all x ∈ Rn, then f is a

sum of squares polynomial.
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Finally, let us recall the following lemma, which is an extension of Jensen’s inequality

to a class of linear functionals that are not necessarily probability measures when one

restricts its application to the class of SOS-convex polynomials; see Lasserre [17].

Lemma 2.6. [17] Let f ∈ R[x]2d be SOS-convex, and let y = (yα)α∈Nn
2d

satisfy y0 = 1

and
∑

α∈Nn
2d
yαBα � 0. Let Ly : R[x] → R be a linear functional defined by Ly(f) :=∑

α∈Nn
2d
fαyα, where f(x) =

∑
α∈Nn

2d
fαx

α. Then

Ly(f) ≥ f(Ly(x)),

where Ly(x) := (Ly(x1), . . . , Ly(xn)).

3. Main results: solving problem (1.1)

In this section, we give methods to find efficient solutions to the problem (1.1) by using

two scalarization approaches, i.e., the ε-constraint method and the hybrid method. Some

nontrivial examples are also provided.

3.1. ε-constraint method

Recall the following scalar optimization problems [3, 4] introduced in Section 1, which is

transformed from (1.1) by the ε-constraint method:

(3.1) min
x∈Rn

fj(x) s.t. A0 +
n∑
i=1

xiAi � 0, fk(x) ≤ εk, k 6= j.

For a fixed j ∈ {1, . . . , p}, the feasible set of the problem (3.1) is given by

(3.2) Kj(ε) :=

{
x ∈ Rn : A0 +

n∑
i=1

xiAi � 0, fk(x) ≤ εk, k 6= j

}
.

In addition, we assume that Kj(ε) is nonempty for the given ε. We denote that the set

(3.3) Cj :=
⋃
µk≥0

epi

∑
k 6=j

µk(fk − εk)

∗ +
⋃

Z∈Sm
+ ,r≥0

 −A∗(Z)

tr(ZA0) + r


is a convex cone (see, e.g., [8, Lemma 6.1] and [13]), whereA∗(Z) :=

(
tr[ZA1], . . . , tr[ZAn]

)
.

Now, we give the following Farkas-type lemma which plays an important role in deriv-

ing our results.

Lemma 3.1. Let fk : Rn → R, k = 1, . . . , p, be convex function, and let Ai ∈ Sm,

i = 0, 1, . . . , n. Let γ ∈ R, and let ε ∈ Rp be given. For a fixed j ∈ {1, . . . , p}, if the set

Kj(ε) (defined in (3.2)) is nonempty, then the following statements are equivalent:
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(i) Kj(ε) ⊆ {x ∈ Rn : fj(x) ≥ γ};

(ii) (0,−γ) ∈ epi f∗j + cl Cj.

Proof. Let j ∈ {1, . . . , p} be fixed. The statement (i) is equivalent to infx∈Kj(ε) fj(x) ≥ γ,

i.e., infx∈Rn{fj(x) + δKj(ε)(x)} ≥ γ. Since, for all x ∈ Rn, 〈0, x〉 − (fj + δKj(ε))(x) ≤ −γ,

we get (fj + δKj(ε))
∗(0) ≤ −γ. This means that (0,−γ) ∈ epi(fj + δKj(ε))

∗. Since fj is

continuous, by Lemma 2.1, we obtain

(0,−γ) ∈ epi(fj + δKj(ε))
∗ = epi f∗j + epi δ∗Kj(ε)

.

To finish the proof, we now show that

(3.4) epi δ∗Kj(ε)
= cl

 ⋃
µk≥0

epi

∑
k 6=j

µk(fk − εk)

∗ +
⋃

Z∈Sm
+ ,r≥0

 −A∗(Z)

tr(ZA0) + r

 .

Note that δKj(ε)(x) = supµk≥0
∑

k 6=j µk(fk(x) − εk) + supZ∈Sm
+

{
− Z

(
A0 +

∑n
i=1 xiAi

)}
.

Define F : Rn → Sm by F (x) := A0 +
∑n

i=1 xiAi for all x ∈ Rn. Then, from (3.4) and

Lemma 2.2, we have

epi δ∗Kj(ε)
= epi

 sup
µk≥0

∑
k 6=j

µk(fk − εk) + sup
Z∈Sm

+

{
− tr[ZF (·)]

}∗

= cl

epi

 sup
µk≥0

∑
k 6=j

µk(fk − εk)

∗ + epi

(
sup
Z∈Sm

+

{
− tr[ZF (·)]

})∗
= cl

co
⋃
µk≥0

epi

∑
k 6=j

µk(fk − εk)

∗ + co
⋃

Z∈Sm
+

epi
(
− tr[ZF (·)]

)∗ .

(3.5)

Note that, for each Z ∈ Sm+ ,(
− tr[ZF (·)]

)∗
=
(
− tr[ZA0]− 〈 · , (tr[ZA1], . . . , tr[ZAn])〉

)∗
(ξ)

= sup
x∈Rn

{
m∑
i=1

xi(ξi + tr[ZAi])

}
+ tr[ZA0]

=

tr[ZA0] ξi = − tr[ZAi], i = 1, . . . ,m,

+∞ otherwise.

Moreover, since
⋃
µk≥0 epi

(∑
k 6=j µk(fk − εk)

)∗
and

⋃
Z∈Sm

+
epi
(
− tr[ZF (·)]

)∗
are convex

set (see, e.g., [8, Lemma 6.1], from (3.5), we get (3.4), and thus, the desired result follows.
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Now, let j ∈ {1, . . . , p} be fixed. Then, the corresponding sum of squares relaxation

dual problem of (3.1) with degree 2d is the following one:

(3.6) sup
γj∈R,µk≥0,Z∈Sm

+

γj : fj +
∑
k 6=j

µk(fk − εk)− 〈Z,F (·)〉 − γj ∈ Σ2
2d

 ,

where F : Rn → Sm is defined by F (x) := A0 +
∑n

i=1 xiAi for all x ∈ Rn. It follows

from Proposition 2.3 that for each j = 1, . . . , p, (3.6) can be rewritten as the following

semidefinite programming problem:

sup
γj ,X,
µk,Z

γj s.t. (fj)0 +
∑
k 6=j

µk((fk)0 − εk)− 〈Z,A0〉 − γj = 〈B0, X〉,

(fj)ei +
∑
k 6=j

µk(fk)ei − 〈Z,Ai〉 = 〈Bei , X〉, i = 1, . . . , n,

(fj)α +
∑
k 6=j

µk(fk)α = 〈Bα, X〉, α 6= 0, α 6= ei, i = 1, . . . , n,

γj ∈ R, X ∈ Ss(d)+ , µk ≥ 0, k 6= j, Z ∈ Sm+ ,

(3.7)

where ei ∈ Nn2d, i = 1, . . . , n, are defined by

e1 := (1, 0, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, 0, 0, . . . , 1).

The dual problem of (3.7) is the following semidefinite programming problem:

inf
y∈Rs(2d)

∑
α∈Nn

2d

yα(fj)α s.t.
∑
α∈Nn

2d

yα(fk)α − εk ≤ 0, k 6= j,

A0 +
n∑
i=1

yeiAi � 0,
∑
α∈Nn

2d

yαBα � 0, y0 = 1.

(3.8)

It is worth noting that a weak duality holds between the problems (3.8) and (3.7) in the

sense that inf (3.7) ≥ sup (3.7) when each problem has a nonempty feasible set.

Assumption 3.2. For a fixed j ∈ {1, . . . , p}, the convex cone Cj as in (3.3) is closed.

Assumption 3.3. The Slater-type condition holds, that is, there exists x̂ ∈ Rn such that

A0 +
∑n

i=1 x̂iAi � 0 and fk(x̂)− εk < 0, k 6= j.

Remark 3.4. It is worth mentioning that Assumption 3.3 guarantees that Assumption 3.2

holds (see, for example, [8, Proposition 6.1]).

The following theorem gives a strong duality result for problems (3.1), (3.7), and (3.8).

Theorem 3.5. Let fk, k = 1, . . . , p, be SOS-convex polynomials and let j ∈ {1, . . . , p} be

fixed. Suppose that Assumption 3.2 holds. Then,

inf (3.1) = max (3.7) = inf (3.8).
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Proof. Let j ∈ {1, . . . , p} be fixed. Since the set Kj(ε) is nonempty, without loss of

generality, we may assume that γj := inf (3.1) is finite; otherwise, the conclusion trivially

holds. Then fj(x) ≥ γj for all x ∈ Kj(ε), and so, by Lemma 3.1, we see that

(0,−γj) ∈ epi f∗j +

 ⋃
µk≥0

epi

∑
k 6=j

µk(fk − εk)

∗ +
⋃

Z∈Sm
+ ,r≥0

 −A∗(Z)

tr(ZA0) + r

 .

Then there exist µk, k 6= j, Z ∈ Sm+ , and r ≥ 0 such that

(0,−γj) ∈ epi f∗j + epi

∑
k 6=j

µk(fk − εk)

∗ +

 −A∗(Z)

tr(ZA0) + r

 .

So, there exist (x∗, s∗) ∈ epi f∗j and (z∗, t∗) ∈ epi
(∑

k 6=j µk(fk − εk)
)∗

such that

(0,−γj) = (x∗, s∗) + (z∗, t∗) + (−A∗(Z), tr(ZA0) + r),

and hence, for each x ∈ Rn, we have

− fj(x)−
∑
k 6=j

µk(fk(x)− εk) + tr[ZF (x)]

= 〈x∗, x〉 − fj(x) + 〈z∗, x〉 −
∑
k 6=j

µk(fk(x)− εk)− 〈A∗(Z), x〉+ tr[ZF (x)]

≤ f∗j (x∗) +

∑
k 6=j

µk(fk(·)− εk)

∗ (z∗) + tr(ZA0)

≤ s∗ + t∗ + tr(ZA0) + r = −γj ,

i.e., fj(x)−
∑

k 6=j µk(fk(x)− εk) + tr[ZF (x)] ≥ γj . Hence, we have inf (3.1) ≤ max (3.9),

where

(3.9) sup
γj∈R

µk≥0,Z∈Sm
+

γj : fj(x) +
∑
k 6=j

µk(fk(x)− εk)− 〈Z,F (x)〉 ≥ γj , ∀x ∈ Rn
 ,

and thus, by weak duality for convex optimization problems, inf (3.1) = max (3.9). Let

(γj , µ, Z) ∈ R× Rp−1+ × Sm+ be any feasible point for the problem (3.9). Then, we have

fj(x) +
∑
k 6=j

µk(fk(x)− εk)− 〈Z,F (x)〉 − γj ≥ 0

for all x ∈ Rn. Since fk, k = 1, . . . , p, are SOS-convex polynomials and tr[ZF (·)] is an

affine function, fj +
∑

k 6=j µk(fk− εk)− tr[ZF (·)]−γj is an SOS-convex polynomial, which

takes non-negative values on Rn. It follows from Lemma 2.5 that

fj +
∑
k 6=j

µk(fk − εk)− 〈Z,F (·)〉 − γj ∈ Σ2
2d,
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and hence, inf (3.1) = max (3.6) = max (3.7), where the last equality follows from the

construction between (3.6) and (3.7).

Note that (3.7) is a dual problem of (3.8). So, by usual weak duality for semidefinite

programming problems [23], inf (3.8) ≥ sup (3.7).

Now, we claim that inf (3.1) ≥ inf (3.8). Let x̃ be any feasible solution of the prob-

lem (3.1). Then, fk(x̃) ≤ εk, k 6= j, and A0 +
∑n

i=1 x̃iAi � 0. Letting ỹ := v2d(x̃),

we have fk(x̃) =
∑

α∈Nn
2d

(fk)αx̃
α =

∑
α∈Nn

2d
(fk)αỹα ≤ εk, k 6= j, and A0 +

∑n
i=1 x̃iAi =

A0 +
∑n

i=1 ỹeiAi � 0. Moreover, ỹỹT =
∑

α∈Nn
2d
ỹαBα � 0, and so, ỹ is a feasible point for

the problem (3.8). This implies that

fj(x̃) =
∑
α∈Nn

2d

(fj)αx̃
α =

∑
α∈Nn

2d

(fj)αỹα ≥ inf (3.8).

Since x̃ is any feasible solution of (3.1), we have inf (3.1) ≥ inf (3.8), and hence, we have

inf (3.8) ≤ inf (3.1) = max (3.6) ≤ inf (3.8).

Thus, the desired result follows.

Remark 3.6. When the problem (1.1) has one objective function, i.e., (1.1) is a scalar

optimization problem (which is minimizing SOS-convex polynomial over a set defined by

a linear matrix inequality), a result related with Theorem 3.5 was established in [11,

Theorem 3.1].

The forthcoming theorem shows a relation between the optimal solution to the prob-

lem (3.1) and the optimal solution to the problem (3.8).

Theorem 3.7. Let j ∈ {1, . . . , p} be fixed. Suppose that Assumption 3.2 holds. If y is

an optimal solution to the problem (3.8), then x := (y)|α|=1 is an optimal solution to the

problem (3.1).

Proof. Let j ∈ {1, . . . , p} be fixed. Suppose that y is an optimal solution to the prob-

lem (3.8). Then, we have ∑
α∈Nn

2d

yα(fk)α − εk ≤ 0, k 6= j,(3.10)

A0 +

n∑
i=1

yeiAi � 0,(3.11) ∑
α∈Nn

2d

yαBα � 0, y0 = 1.(3.12)

Now, let x := (Ly(x1), . . . , Ly(xn)) = (y)|α|=1. Note that for each k 6= j, fk is an SOS-

convex polynomial and y satisfies (3.12). Then, by Lemma 2.6, we see that for each
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k 6= j, ∑
α∈Nn

2d

yα(fk)α = Ly(fk) ≥ fk(Ly(x1), . . . , Ly(xn)) = fk(x).

This, together with (3.10), yields that

(3.13) fk(x)− εk ≤ 0, k 6= j.

Moreover, since for each i = 1, . . . , n, yei = Ly(xi) = xi, from (3.11), we have

(3.14) A0 +

n∑
i=1

yeiAi = A0 +

n∑
i=1

xiAi � 0.

So, along with (3.13) and (3.14), x is a feasible solution to the problem (3.1).

Furthermore, by a similar argument as (3.13), we see that
∑

α∈Nn
2d

(fj)αyα ≥ fj(x). It

follows from Theorem 3.5 that∑
α∈Nn

2d

(fj)αyα ≥ fj(x) ≥ inf (3.1) = inf (3.8) =
∑
α∈Nn

2d

(fj)αyα.

This shows that x is an optimal solution to the problem (3.1).

Now, we are in the position to state the following proposition, which provides a route

on finding efficient solutions to the problem (1.1) by the ε-constraint method and can be

obtained by [20, Theorem 3.4].

Proposition 3.8. For the problem (1.1), suppose that fj : Rn → R, j = 1, . . . , p, are

continuous functions. Let x(0) ∈ K be any given. Assume that for j = 1, . . . , p,

x(j) ∈ argmin
x∈Kj(ε(j))

fj(x) 6= ∅,

where ε(j) := (f1(x(j−1)), . . . , fp(x(j−1))) ∈ Rp. Then, x(p) is an efficient solution to the

problem (1.1).

By Theorem 3.7 and Proposition 3.8, we obtain the following theorem, which shows

that finding efficient solutions to the problem (1.1) is tractable.

Theorem 3.9. Let fj : Rn → R, j = 1, . . . , p, be SOS-convex polynomials, and let x(0) ∈ K
be any given. Assume that for j = 1, . . . , p,

y(j) ∈ argmin
{

(3.8)ε=ε(j)

}
6= ∅,

where for each j = 1, . . . , p, ε(j) := (f1(x(j−1)), . . . , fp(x(j−1))) ∈ Rp and x(j) := (y(j))|α|=1,

moreover, (3.8)ε=ε(j) means the problem (3.8) with ε = ε(j). If Assumption 3.2 holds, then

x(p) is an efficient solution to the problem (1.1).
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Proof. Assume that for j = 1, . . . , p, y(j) is an optimal solution to the problem (3.8) with

ε = ε(j). Then, by Theorem 3.7, for each j = 1, . . . , p,

x(j) = (y(j))|α|=1 ∈ argmin
x∈Kj(ε(j))

fj(x),

and thus, along with Proposition 3.8, x(p) = (y(p))|α|=1 is an efficient solution to the

problem (1.1).

Remark 3.10. As we see in Theorem 3.9, in order to find an efficient solution, it needs to

solve a scalar optimization problem as many as the number of the objective functions of

the problem (1.1). So, this fact is a fatal drawback of Theorem 3.9 since it requires a lot

of computational cost.

On the other hand, if the problem (3.1) has a unique optimal solution x for some j,

then x is an efficient solution to the problem (1.1) (see, e.g., [3, Proposition 4.4]). As

we know, the problem (3.1) admits a unique optimal when the objective function of the

problem (3.1) is strictly convex. Moreover, it has been proved that convex polynomial

with positive definite Hessian at a single point is strictly convex and coercive (see, [14,

Lemma 3.1]). Hence, if there exists x̃ ∈ Rn such that the Hessian ∇2fj(x̃) is positive

definite for some j, we can reduce computational cost rather large to find efficient solutions

to the problem (1.1). These facts can be summarized in the next theorem.

Theorem 3.11. Let fj : Rn → R, j = 1, . . . , p, be SOS-convex polynomials. Suppose

that Assumption 3.2 holds and there exists x̃ ∈ Rn such that ∇2fj0(x̃) � 0 for some

j0 ∈ {1, . . . , p}. If y is an optimal solution to the problem (3.8) with j = j0, then (y)|α|=1

is an efficient solution to the problem (1.1).

Remark 3.12. As we mentioned in Remark 3.4, since Assumption 3.2 holds if Assump-

tion 3.3 is satisfied, it is easy to see that Theorems 3.9 and 3.11 are valid even if we replace

Assumption 3.2 with Assumption 3.3 in Theorems 3.9 and 3.11.

We finish this subsection with the following example, which shows the main idea of

Theorem 3.11.

Example 3.13. Consider the following multi-objective problem:

(3.15) min
(x1,x2)∈R2

(f1(x1, x2), f2(x1, x2)) s.t. A0 + x1A1 + x2A2 � 0,

where f1(x1, x2) = x41 +x21−2x1x2 +x22, f2(x1, x2) = x21−x2, and Ai, i = 0, 1, 2, are given

by

A0 =


1 0 0

0 2 −1

0 −1 2

 , A1 =


1 0 0

0 0 −1

0 −1 0

 , A2 =


0 0 1

0 0 0

1 0 0

 .
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Then, we have

A0 + x1A1 + x2A2 =


x1 + 1 0 x2

0 2 −x1 − 1

x2 −x1 − 1 2

 .

Indeed, we can verify that the feasible set K1 of (3.15) is as follows:

K1 := {(x1, x2) : −1 ≤ x1 ≤ 1, x31 + 3x21 + 2x22 − x1 − 3 ≤ 0}.

Note that the Hessian∇2f1(x1, x2) of f1 is positive definite for all (x1, x2) ∈ R\{0}×R.

It follows from [14, Lemma 3.1] that f1 is strictly convex, and so, (3.16) has a unique

optimal solution, where

(3.16) min
(x1,x2)∈R2

f1(x1, x2) s.t. A0 + x1A1 + x2A2 � 0, f2(x1, x2) ≤ ε(1).

Here, ε(1) := f2(x(0)), where x(0) is given in K1. Then we see that

(fk(·)− ε(1))∗(a1, a2) =

a21/4 + ε(1) if a2 = −1,

+∞ otherwise,

and so, ⋃
µ2≥0

epi
(
µ2(fk(·)− ε(1))

)∗
=
⋃
µ2>0

epi
(
µ2(fk(·)− ε(1))

)∗ ∪ {0} × {0} × R+

=
⋃
µ2>0

µ2

{
(a1, a2, r) : a2 = −1,

a21
4

+ ε(1) ≤ r
}
∪ {0} × {0} × R+.

Moreover, a simple calculation shows that⋃
Z�0,r≥0

(
− tr[ZA1],− tr[ZA2], tr[ZA0] + r

)

=
⋃
r≥0

(−Z1 + 2Z5,−2Z3, Z1 + 2Z4 + 2Z6 − 2Z5 + r) :


Z1 Z2 Z3

Z2 Z4 Z5

Z3 Z5 Z6

 � 0


= R× R× R+.

Hence, we can verify that, for all ε(1), the set⋃
µ2≥0

epi
(
µ2(fk(·)− ε(1))

)∗
+

⋃
Z�0,r≥0

(
− tr[ZA1],− tr[ZA2], tr[ZA0] + r

)
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is closed, and so, Assumption 3.2 holds.

We now consider the sum of squares relaxation dual problem associated with (3.16)

sup
γ1∈R

µ2≥0,Z∈S3
+

{γ1 : f1 + µ2(f2 − ε(1))− tr[ZF (·)]− γ1 ∈ Σ2
4}.

Invoking Proposition 2.3, there exists X ∈ Ss(2)+ (= S6
+) such that

(3.17) f1(x) + µ2(f2(x)− ε(1))− tr[ZF (x)]− γ1 = 〈v2(x)v2(x)T , X〉, ∀x ∈ R2.

It follows from [22, Theorem 1] that the dimension of v2(x) can be reduced to 4, and so

X ∈ S4
+. In more detail, v2(x) = (1, x1, x2, x

2
1)
T in (3.17). With this fact, we formulate

the semidefinite programming dual problems (3.18) for (3.16) as follows:

sup
γ1,X,
µ2,Z

γ1

s.t. X11 = −µ2ε(1) − Z11 − 2Z22 + 2Z23 − Z33 − γ1,

2X12 = −Z11 + 2Z23, 2X13 = −µ2 − 2Z13, 2X14 +X22 = µ2 + 1,

X23 = −1, X33 = 1, X44 = 1, X24 = X34 = 0,

γ1 ∈ R, X = (Xij) ∈ S4
+, µ2 ≥ 0, Z = (Zij) ∈ S3

+.

(3.18)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a)

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

(b)

Figure 3.1: (a) The shaded region is the feasible set of (3.15) and the obtained efficient

solutions to the problem (3.15) are depicted in red color. (b) The shaded region is the

image space of (3.15) and the obtained non-dominated points to (3.15) are depicted in

red color.

Solving these semidefinite programming problems with CVX [5], we can find the op-

timal solutions for the dual problem of (3.18). For example, let x(0) = (−1, 0) ∈ K1 and
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ε(1) = f2(x(0)) = 1. Then, solving (3.18), we obtain an optimal solution y of its dual

problem as follows:

y = (1, 0, 0, 0, 0, 0, 0, 0, 0).

This means that x := x(1) = (0, 0) is an efficient solution of (3.15) (by Theorem 3.11).

In order to find more efficient solutions to the problem (3.15), we need to parametrically

move x(0) ∈ K1. So, we give 200 points x(0) in K1, and then we get the efficient solutions

to the problem (3.15) in Figure 3.1.

3.2. Hybrid method

Recall the following scalar optimization problem [3, 4] introduced in Section 1, which is

transformed from (1.1) by the hybrid method:

(3.19)

min
x∈Rn

λT f(x) :=

p∑
j=1

λjfj(x) s.t. A0 +

n∑
i=1

xiAi � 0, fj(x) ≤ fj(z), j = 1, . . . , p,

where λ ∈ intRp+ is fixed and the parameter z ∈ Rn. The feasible set of the problem (1.4)

is given by

(3.20) K(z) :=

{
x ∈ Rn : A0 +

n∑
i=1

xiAi � 0, fj(x) ≤ fj(z), j = 1, . . . , p

}
.

It is worth noting that λ here does not play the role of a parameter but be fixed in (1.4).

It is worth also mentioning that the feasible set Kz is nonempty whenever the parameter

z is selected in the feasible set K of (1.1). Similar to the convex cone Cj , we define the

following set

(3.21) C :=
⋃
µj≥0

epi

 p∑
j=1

µj(fj(·)− fj(z))

∗ +
⋃

Z∈Sm
+ ,r≥0

 −A∗(Z)

tr(ZA0) + r


which is also a convex cone.

Similar to Lemma 3.1, we now provide the following Farkas-type lemma which plays a

key role in deriving our results.

Lemma 3.14. Let fj : Rn → R, j = 1, . . . , p, be convex function, and let Ai ∈ Sm,

i = 0, 1, . . . , n. Let γ ∈ R, and let z ∈ Rn be given. If the set K(z) (defined in (3.20)) is

nonempty, then the following statements are equivalent:

(i) K(z) ⊆ {x ∈ Rn : λT f(x) ≥ γ};

(ii) (0,−γ) ∈ epi(λT f)∗ + cl C.
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Proof. By a similar way to the proof of Lemma 3.1, we can easily obtain this result.

Now, we consider the corresponding sum of squares relaxation dual problem of (1.4)

with degree 2d as follows:

(3.22) sup
γ∈R,µj≥0,Z∈Sm

+

γ : λT f +

p∑
j=1

µj(fj − fj(z))− 〈Z,F (·)〉 − γ ∈ Σ2
2d

 .

It follows from Proposition 2.3 that (3.22) can be rewritten as the following semidefinite

programming problem:

sup
γ,X,µj ,Z

γ s.t. (λT f)0 +

p∑
j=1

µj((fj)0 − fj(z))− 〈Z,A0〉 − γ = 〈B0, X〉,

(λT f)ei +

p∑
j=1

µj(fj)ei − 〈Z,Ai〉 = 〈Bei , X〉, i = 1, . . . , n,

(λT f)α +

p∑
j=1

µj(fj)α = 〈Bα, X〉, α 6= 0, α 6= ei, i = 1, . . . , n,

γ ∈ R, X ∈ Ss(d)+ , µj ≥ 0, j = 1, . . . , p, Z ∈ Sm+ .

(3.23)

The dual problem of (3.23) is the following semidefinite programming problem:

inf
y∈Rs(2d)

∑
α∈Nn

2d

yα(λT f)α s.t.
∑
α∈Nn

2d

yα(fj)α − fj(z) ≤ 0, j = 1, . . . , p,

A0 +
n∑
i=1

yeiAi � 0,
∑
α∈Nn

2d

yαBα � 0, y0 = 1.

(3.24)

Assumption 3.15. The convex cone C as in (3.21) is closed.

Assumption 3.16. There exists x̂ ∈ Rn such that A0+
∑n

i=1 x̂iAi � 0 and fj(x̂)−fj(z) <
0, j = 1, . . . , p.

It is worth mentioning that Assumption 3.16 guarantees that Assumption 3.15 holds

(see, for example, [8, Proposition 6.1]).

The following theorem gives a strong duality result for problems (1.4), (3.23), and

(3.24), and can be proved by the similar way as in the proof of Theorem 3.5.

Theorem 3.17. Let fj, j = 1, . . . , p, be SOS-convex polynomials and let z ∈ K be given.

Suppose that Assumption 3.15 holds. Then,

inf (1.4) = max (3.23) = inf (3.24).
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Proof. With the help of Lemma 3.14, we can easily show that inf (1.4) ≤ max (3.25), where

(3.25) sup
γ∈R

µj≥0,Z∈Sm
+

γ : λT f(x) +

p∑
j=1

µj(fj(x)− fj(z))− 〈Z,F (x)〉 ≥ γ,∀x ∈ Rn
 .

The rest of the proof of this theorem can be constructed by using similar arguments as in

the proof of Theorem 3.5.

The following proposition suggests a way to obtain an efficient solution to problem (1.1)

by solving problem (1.4).

Proposition 3.18. [4, Proposition 12] Let z0 ∈ K. If x is an optimal solution to the

problem (1.4) with z = z0, then x is also an optimal solution to the problem (1.4) with

z = x, and so is an efficient solution to the problem (1.1).

We now give the following theorem, which shows that an efficient solution to the

problem (1.1) can be found by solving its associated single semidefinite programming

problem.

Theorem 3.19. Let z ∈ K be given. Suppose that Assumption 3.15 holds. If y is an

optimal solution to the problem (3.24), then x := (y)|α|=1 is an efficient solution to the

problem (1.1).

Proof. By a similar way as in the proof of Theorem 3.7, we see that x := (y)|α|=1 is an

optimal solution of (1.4). Now, invoking Proposition 3.18, the desired result follows.

As a corollary, we give the following corollary, which shows that an efficient solution

of (1.1) can be found by solving a single semidefinite programming problem (3.24) under

the Slater-type condition.

Corollary 3.20. Let j ∈ {1, . . . , p} be fixed. Suppose that Assumption 3.16 holds. If y

is an optimal solution to the problem (3.24), then (y)|α|=1 is an efficient solution to the

problem (1.1).

We give the following simple example, which shows the main idea of Theorem 3.19.

Example 3.21. [7, Example 11.4] Consider the following multi-objective problem:

(3.26) min
(x1,x2)∈R2

(f1(x1, x2), f2(x1, x2)) s.t. A0 + x1A1 + x2A2 � 0,

where f1(x1, x2) = −x1, f2(x1, x2) = x1 + x22, and Ai, i = 0, 1, 2, are given by

A0 =


3 0 0

0 0 0

0 0 1

 , A1 =


−1 0 0

0 0 1

0 1 0

 , A2 =


−2 0 0

0 1 0

0 0 0

 .
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Then, we have

A0 + x1A1 + x2A2 =


−x1 − 2x2 + 3 0 0

0 x2 x1

0 x1 1

 ,

and so, the feasible set K2 of (3.26) can be verified as

K2 := {(x1, x2) ∈ R2 : x1 + 2x2 − 3 ≤ 0, x21 − x2 ≤ 0}.

It is worth noting that the set of efficient solutions to the problem (3.26) is as follows:{
(x1, x2) ∈ R2 : − 3

√
2/2 ≤ x1 ≤ 1, x2 = x21

}
(see, e.g., [7, Example 11.4]). Now, consider the following (scalar) optimization problem

with λ := (λ1, λ2) = (1, 2):

(3.27) min
(x1,x2)∈R2

x1+2x22 s.t. A0+x1A1+x2A2 � 0, −x1 ≤ −z1, x1+x22 ≤ z1+z22 .

Let (z1, z2) ∈ K2 be given. Then a simple calculation shows that⋃
Z�0,r≥0

(
− tr[ZA1],− tr[ZA2], tr[ZA0] + r

)

=
⋃
r≥0

(Z11 − 2Z23, 2Z11 − Z22, 3Z11 + Z33 + r) :


Z11 Z12 Z13

Z12 Z22 Z23

Z13 Z23 Z33

 � 0


= R× R× R+

and ⋃
µ1≥0

epi
(
µ1(f1(·)− f1(z1, z2)) + µ2(f2(·)− f2(z1, z2))

)∗
=
⋃
µ1≥0
µ2>0

{
(a1, a2, r) : a1 = µ2 − µ1,

a22
4µ2

+ (µ2 − µ1)z1 + µ2z
2
2 ≤ r

}
∪ {0} × {0} × R+.

Hence, we see that for all (z1, z2) ∈ K2 \ {(0, 0)}, the set

⋃
µj≥0

epi

 2∑
j=1

µj(fj(·)− fj(z))

∗ +
⋃

Z�0,r≥0

(
− tr[ZA1],− tr[ZA2], tr[ZA0] + r

)
is closed, i.e., Assumption 3.15 holds for all (z1, z2) ∈ K2 \ {(0, 0)}.
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Now, let (z1, z2) ∈ K2 \ {(0, 0)} be fixed. Then consider the sum of squares relaxation

dual problem associated with the problem (3.27):

(3.28) sup
γ∈R,µj≥0,Z∈S3

+

γ : f1 + 2f2 +
2∑
j=1

µj(fj − fj(z))− 〈Z,F (·)〉 − γ ∈ Σ2
2

 .

By Proposition 2.3, there exists X ∈ S3
+ such that

f1(x) + 2f2(x) +

2∑
j=1

µj(fj(x)− fj(z))− tr[ZF (x)]− γ = 〈v1(x)v1(x)T , X〉

for all x ∈ R2. With this fact, we formulate the semidefinite programming dual problem

(3.29) for (3.27) as follows:

sup
γ,X,

µ1,µ2,Z

γ

s.t. X11 = µ1z1 − µ2(z1 + z22)− 3Z11 − Z33 − γ,

2X12 = 1− µ1 + µ2 + Z11 − 2Z23,

2X13 = 2Z11 − Z22, X22 = X23 = 0, X33 = 2 + µ2,

γ ∈ R, X = (Xij) ∈ S3
+, µ1 ≥ 0, µ2 ≥ 0, Z = (Zij) ∈ S3

+.

(3.29)
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Figure 3.2: (a) The shaded region is the feasible set of the problem (3.26) and the obtained

efficient solutions to the problem (3.26) are depicted in red color. (b) The shaded region

is the image space of (3.26) and the obtained non-dominated points to (3.26) are depicted

in red color.

Solving (3.29) with CVX [5], we can find the optimal solutions for the dual problem of

(3.29). For example, let (z1, z2) = (1, 1) ∈ K2 \ {(0, 0)}. Then, solving (3.29), we obtain
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an optimal solution y of its dual problem as follows:

y = (1, 0, 0, 0, 0, 0).

This means that x = (0, 0) is an efficient solution to the problem (3.26).

In order to find more efficient solutions to the problem (3.26), we need to parametrically

move (z1, z2) ∈ K2 \ {(0, 0)}. So, we give 200 points (z1, z2) ∈ K2 \ {(0, 0)}, and then we

get the efficient solutions to the problem (3.26) in Figure 3.2(a). Moreover, non-dominated

points for the obtained efficient solutions are described in Figure 3.2(b).

4. Conclusions

In this paper, we show that, finding efficient solutions in multi-objective optimization

problems with SOS-convex polynomials over an LMI constraint can be done successfully

by using the ε-constraint method (or the hybrid method), and the techniques on SOS-

convex polynomials. In other words, we observe that the ε-constraint method (as well as

the hybrid method) enjoys the capability for finding efficient solutions to the problem (1.1).

It is worth mentioning that the ε-constraint method and the hybrid method admit

a very similar flavor in dealing with the task for finding efficient solutions to the prob-

lem (1.1).

Besides, the scalarization approaches (mentioned in the paper) are quite mature tech-

niques in multi-objective optimization, one can refer to any references in its research

field. However, employing the scalarization approaches to find efficient solutions to a

multi-objective optimization problem like (1.1) seems new. In addition, the exact SDP

relaxation approach in the paper is constructive and we give an explicit SDP problem,

the solutions of which encode an efficient solution to (1.1). However, although our con-

struction is explicit, we do not aim to find all the efficient solutions (or the entire efficient

solution set) but to find at least one to a nonlinear multi-objective optimization prob-

lem like (1.1). The importance of our results is mainly theoretical because they show,

as expected, the close relationship between scalar problems and (1.1) with regards to the

solutions techniques.
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