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Singularity Formation of the Non-barotropic Compressible

Magnetohydrodynamic Equations Without Heat Conductivity

Xin Zhong

Abstract. We study the singularity formation of strong solutions to the three-dimensional

full compressible magnetohydrodynamic equations with zero heat conduction in a

bounded domain. We show that for the initial density allowing vacuum, the strong

solution exists globally if the density ρ, the magnetic field b, and the pressure P

satisfy ‖ρ‖L∞(0,T ;L∞) + ‖b‖L∞(0,T ;L6) + ‖P‖L∞(0,T ;L∞) < ∞ and the coefficients of

viscosity verity 3µ > λ. This extends the corresponding results in Duan (2017), Fan et

al. (2018) [1,2] where a blow-up criterion in terms of the upper bounds of the density,

the magnetic field and the temperature was obtained under the condition 2µ > λ.

Our proof relies on some delicate energy estimates.

1. Introduction

Let Ω ⊂ R3 be a domain, the motion of a viscous, compressible, and heat conducting

magnetohydrodynamic (MHD) flow in Ω can be described by the full compressible MHD

equations

(1.1)



ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)− µ∆u− (λ+ µ)∇ div u +∇P = b · ∇b− 1
2∇|b|

2,

cν [(ρθ)t + div(ρuθ)] + P div u− κ∆θ = 2µ|D(u)|2 + λ(div u)2 + ν| curl b|2,

bt − b · ∇u + u · ∇b + b div u = ν∆b,

div b = 0.

Here, t ≥ 0 is the time, x ∈ Ω is the spatial coordinate, and ρ, u, P = Rρθ (R > 0), θ,

b are the fluid density, velocity, pressure, absolute temperature, and the magnetic field

respectively; D(u) denotes the deformation tensor given by

D(u) =
1

2
(∇u + (∇u)tr).
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The constant viscosity coefficients µ and λ satisfy the physical restrictions

(1.2) µ > 0, 2µ+ 3λ ≥ 0.

Positive constants cν , κ, and ν are respectively the heat capacity, the ratio of the heat

conductivity coefficient over the heat capacity, and the magnetic diffusive coefficient.

There is huge literature on the studies about the theory of well-posedness of solutions

to the Cauchy problem and the initial boundary value problem (IBVP) for the com-

pressible MHD system due to the physical importance, complexity, rich phenomena, and

mathematical challenges, refer to [3, 6–8, 15, 18, 19, 24] and references therein. However,

many physical important and mathematical fundamental problems are still open due to

the lack of smoothing mechanism and the strong nonlinearity. Kawashima [14] first ob-

tained the global existence and uniqueness of classical solutions to the multi-dimensional

compressible MHD equations when the initial data are close to a non-vacuum equilibrium

in H3-norm. When the initial density allows vacuum, the local well-posedness of strong

solutions to the initial boundary value problem of 3D non-isentropic MHD equations has

been obtained by Fan-Yu [3]. For general large initial data, Hu-Wang [7, 8] proved the

global existence of weak solutions with finite energy in Lions’ framework for compressible

Navier-Stokes equations [4,17] provided the adiabatic exponent is suitably large. Recently,

Li-Xu-Zhang [15] established the global existence and uniqueness of classical solutions to

the Cauchy problem for the isentropic compressible MHD system in 3D with smooth ini-

tial data which are of small energy but possibly large oscillations and vacuum, which

generalized the result for compressible Navier-Stokes equations obtained by Huang-Li-

Xin [11]. Very recently, Hong-Hou-Peng-Zhu [6] improved the result in [15] to allow the

initial energy large as long as the adiabatic exponent is close to 1 and ν is suitably large.

Furthermore, Lv-Shi-Xu [19] established the global existence and uniqueness of strong

solutions to the 2D MHD equations provided that the smooth initial data are of small

total energy. Nevertheless, it is an outstanding challenging open problem to investigate

the global well-posedness for general large strong solutions with vacuum.

Therefore, it is important to study the mechanism of blow-up and structure of possible

singularities of strong (or classical) solutions to the compressible MHD equations. The

pioneering work can be traced to [5], where He and Xin proved Serrin’s criterion for strong

solutions to the incompressible MHD system, that is,

(1.3) lim
T→T ∗

‖u‖Ls(0,T ;Lr) =∞ for
2

s
+

3

r
= 1, 3 < r ≤ ∞,

here T ∗ is the finite blow up time. For the three-dimensional compressible isentropic MHD

system, Xu-Zhang [21] obtained the following Serrin type criterion

(1.4) lim
T→T ∗

(
‖ρ‖L∞(0,T ;L∞) + ‖u‖Ls(0,T ;Lr)

)
=∞,
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where r and s are as in (1.3). Surprisingly, Huang-Li [9] showed (1.4) also holds true for

the Cauchy problem and the IBVP of 3D full compressible MHD system. Recently, under

the assumption

(1.5) 2µ > λ,

Huang-Wang [12] showed that

(1.6) lim
T→T ∗

(
‖ρ‖L∞(0,T ;L∞) + ‖θ‖L∞(0,T ;L∞) + ‖b‖L∞(0,T ;L∞)

)
=∞

for the system (1.1) with κ = ν = 0. Then the authors [1, 2] established (1.6) to the

system (1.1) with κ = 0 provided that (1.5) holds true. Very recently, for the Cauchy

problem of the system (1.1) with κ = 0, Zhong [23] proved that

lim
T→T ∗

(
‖D(u)‖L1(0,T ;L∞) + ‖P‖L∞(0,T ;L∞)

)
=∞

provided that 3µ > λ. For more information on the blow-up criteria of compressible MHD

equations, we refer to [1, 2, 22,25] and the references therein.

When κ = 0, and without loss of generality, take cν = R = 1, the system (1.1) can be

written as

(1.7)



ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)− µ∆u− (λ+ µ)∇ div u +∇P = b · ∇b− 1
2∇|b|

2,

Pt + div(Pu) + P div u = 2µ|D(u)|2 + λ(div u)2 + ν| curl b|2,

bt − b · ∇u + u · ∇b + b div u = ν∆b,

div b = 0.

The present paper aims at giving a blow-up criterion of strong solutions to the system (1.7)

in a bounded simply connected smooth domain Ω ⊂ R3 with the initial condition

(1.8) (ρ, ρu, P,b)(x, 0) = (ρ0, ρ0u0, P0,b0)(x), x ∈ Ω,

and the boundary condition

(1.9) u = 0, b = 0 on ∂Ω.

Before stating our main result, we first explain the notations and conventions used

throughout this paper. We denote by∫
· dx =

∫
Ω
·dx.
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For 1 ≤ p ≤ ∞ and integer k ≥ 0, the standard Sobolev spaces are denoted by

Lp = Lp(Ω), W k,p = W k,p(Ω), Hk = Hk,2(Ω),

H1
0 = {u ∈ H1 | u = 0 on ∂Ω}, Dk,p = {u ∈ L1

loc | ∇ku ∈ Lp}.

Now we define precisely what we mean by strong solutions to the problem (1.7)–(1.9).

Definition 1.1 (Strong solutions). (ρ,u, P,b) is called a strong solution to (1.7)–(1.9) in

Ω× (0, T ), if for some q0 > 3,

ρ ≥ 0, ρ ∈ C([0, T ];W 1,q0), ρt ∈ C([0, T ];Lq0),

(u,b) ∈ C([0, T ];H1
0 ∩H2) ∩ L2(0, T ;D2,q0), b ∈ C([0, T ];H2),

(ut,bt) ∈ L2(0, T ;D1,2), (
√
ρut,bt) ∈ L∞(0, T ;L2),

P ≥ 0, P ∈ C([0, T ];W 1,q0), Pt ∈ C([0, T ];Lq0),

and (ρ,u, P,b) satisfies both (1.7) almost everywhere in Ω × (0, T ) and (1.8) almost ev-

erywhere in Ω.

Our main result reads as follows:

Theorem 1.2. For constant q ∈ (3, 6], assume that the initial data (ρ0 ≥ 0,u0, P0 ≥ 0,b0)

satisfies

(1.10) (ρ0, P0) ∈W 1,q(Ω), (u0,b0) ∈ H1
0 (Ω) ∩H2(Ω), div b0 = 0,

and the compatibility conditions

(1.11) − µ∆u0 − (λ+ µ)∇ div u0 +∇P0 − (curl b0)× b0 =
√
ρ0g

for some g ∈ L2(Ω). Let (ρ,u, P,b) be the strong solution to the problem (1.7)–(1.9). If

T ∗ <∞ is the maximal time of existence for that solution, then we have

(1.12) lim
T→T ∗

(
‖ρ‖L∞(0,T ;L∞) + ‖b‖L∞(0,T ;L6) + ‖P‖L∞(0,T ;L∞)

)
=∞

provided that

(1.13) 3µ > λ.

Several remarks are in order.

Remark 1.3. The local existence of a unique strong solution with initial data as in Theo-

rem 1.2 has been established in [3]. Hence, the maximal time T ∗ is well-defined.

Remark 1.4. Compared with [1,2], according to (1.12), the L∞ bound of the temperature

θ is not the key point to make sure that the solution (ρ,u, P,b) is a global one, and it

may go to infinity in the vacuum region within the life span of our strong solution.
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Remark 1.5. In [1, 2], to obtain higher order derivatives of the solutions, the restriction

2µ > λ plays a crucial role in the analysis. In fact, the condition 2µ > λ is only used to get

the upper bound of
∫
ρ|u|4 dx. Here, we derive the upper bound of

∫
ρ|u|4 dx under the

assumption 3µ > λ (see Lemma 3.2), which is weaker than 2µ > λ due to µ > 0. Moreover,

since Ω is bounded, we see that the bound of ‖b‖L∞(0,T ;L∞) implies that ‖b‖L∞(0,T ;L6) is

bounded. Thus, the blow-up criterion (1.12) is an extension towards (1.6) in [1, 2].

If b ≡ b0 ≡ 0, Theorem 1.2 directly yields the following blow-up criterion of the

non-isentropic Navier-Stokes equations without heat-conductivity.

Theorem 1.6. For constant q ∈ (3, 6], assume that the initial data (ρ0 ≥ 0,u0, P0 ≥ 0)

satisfies (1.10) and the compatibility conditions (1.11). Let (ρ,u, P ) be the strong solution

to the problem (1.7)–(1.9) with b = 0. If T ∗ < ∞ is the maximal time of existence for

that solution, then we have

lim
T→T ∗

(
‖ρ‖L∞(0,T ;L∞) + ‖P‖L∞(0,T ;L∞)

)
=∞

provided that 3µ > λ.

Remark 1.7. It should be noted that Theorem 1.6 generalizes the result obtained by Huang

and Xin [13]. Compared with their result, the coefficients of viscosity is relaxed to 3µ > λ

in our work, while µ > 4λ is needed in [13].

We now make some comments on the analysis of this paper. We mainly make use of

continuation argument to prove Theorem 1.2. That is, suppose that (1.12) were false, i.e.,

lim
T→T ∗

(
‖ρ‖L∞(0,T ;L∞) + ‖b‖L∞(0,T ;L6) + ‖P‖L∞(0,T ;L∞)

)
≤M0 <∞.

We want to show that

sup
0≤t≤T ∗

(‖(ρ, P )‖W 1,q + ‖∇u‖H1 + ‖b‖H2) ≤ C < +∞.

It should be pointed out that the crucial techniques of proofs in [1,2] cannot be adapted

directly to the situation treated here, since their arguments depend crucially on the bound-

edness of the magnetic field and 2µ > λ. Moreover, technically, since the magnetic field is

strongly coupled with the velocity field of the fluid in the compressible MHD system, some

new difficulties arise in comparison with the problem for the compressible Navier-Stokes

equations studied in [13].

To overcome these difficulties mentioned above, some new ideas are needed. First,

motivated by [20], we derive the upper bound of
∫
ρ|u|4 dx under the condition (1.13), As

a byproduct, we also get the upper bound of
∫ T

0

∫
|u|2|∇u|2 dxdt, which plays a crucial

role in the proof of L∞(0, T ;L2)-norm of ∇u and ∇b (see Lemma 3.3). Secondly, the
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key a priori estimates on the L∞t L
q
x-norm of (∇ρ,∇P ) and the L1

tL
∞
x -norm of the velocity

gradient can be obtained (see Lemma 3.5) simultaneously by solving a logarithm Gronwall

inequality based on a logarithm estimate for the Lamé system (see Lemma 2.2) and the a

priori estimates we have derived.

The rest of this paper is organized as follows. In Section 2, we collect some elemen-

tary facts and inequalities that will be used later. Section 3 is devoted to the proof of

Theorem 1.2.

2. Preliminaries

In this section, we will recall some known facts and elementary inequalities that will be

used frequently later.

First, the following logarithm estimate will be used to estimate ‖∇u‖L∞ .

Lemma 2.1. For q ∈ (3,∞), there is a constant C(q) > 0 such that for all ∇v ∈ L2∩D1,q,

it holds that

‖∇v‖L∞ ≤ C (‖div v‖L∞ + ‖ curl v‖L∞) log(e+ ‖∇2v‖Lq) + C‖∇v‖L2 + C.

Proof. See [10, Lemma 2.3].

Finally, we consider the following Lamé system

(2.1)

−µ∆U− (λ+ µ)∇ div U = F if x ∈ Ω,

U = 0 on ∂Ω,

where U = (U1, U2, U3), F = (F 1, F 2, F 3), and µ, λ satisfy (1.2).

Next, the following logarithm estimate for the Lamé system (2.1) will be used to

estimate ‖∇u‖L∞ and ‖∇ρ‖L2∩Lq .

Lemma 2.2. Let µ, λ satisfy (1.2). Assume that F = div g where g = (gkj)3×3 with

gkj ∈ L2 ∩ Lr ∩ D1,q for k, j = 1, . . . , 3, r ∈ (1,∞), and q ∈ (3,∞). Then the Lamé

system (2.1) has a unique solution U ∈ H1
0 ∩ D1,r ∩ D2,q, and there exists a generic

positive constant C depending only on µ, λ, q, and r such that

‖∇U‖Lr ≤ C‖g‖Lr

and

‖∇U‖L∞ ≤ C (1 + log(e+ ‖∇g‖Lq)‖g‖L∞ + ‖g‖Lr) .

Proof. See [9, Lemma 2.3].
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3. Proof of Theorem 1.2

Let (ρ,u, P,b) be a strong solution described in Theorem 1.2. Suppose that (1.12) were

false, that is, there exists a constant M0 > 0 such that

(3.1) lim
T→T ∗

(
‖ρ‖L∞(0,T ;L∞) + ‖b‖L∞(0,T ;L6) + ‖P‖L∞(0,T ;L∞)

)
≤M0 <∞.

First of all, we have the following standard estimate.

Lemma 3.1. Under the condition (3.1), it holds that for any T ∈ [0, T ∗),

(3.2) sup
0≤t≤T

(
‖√ρu‖2L2 + ‖b‖2L2

)
+

∫ T

0

(
‖∇u‖2L2 + ‖∇b‖2L2

)
dt ≤ C,

where and in what follows, C, C1, C2 stand for generic positive constants depending only

on M0, λ, µ, ν, T ∗, and the initial data.

Proof. Multiplying (1.7)2 by u and integrating (by parts) over Ω, we derive that

1

2

d

dt

∫
ρ|u|2 dx+

∫ [
µ|∇u|2 + (λ+ µ)(div u)2

]
dx

=

∫ (
P +

1

2
|b|2

)
div u dx+

∫
b · ∇b · u dx.

(3.3)

Multiplying (1.7)4 by b and integrating (by parts) over Ω, we get that

(3.4)
1

2

d

dt

∫
|b|2 dx+ ν

∫
|∇b|2 dx+

∫
|b|2 div u dx =

∫
b ·∇u ·b dx−

∫
u ·∇b ·b dx.

Due to div b = 0 and u|∂Ω = 0, we have

(3.5)

∫
b · ∇b · u dx =

∫
bi∂ib

juj dx = −
∫

b · ∇u · b dx.

Similarly, one obtains

−
∫

u · ∇b · b dx = −
∫
ui∂ib

jbj dx =

∫
|b|2 div u dx+

∫
u · ∇b · b dx,

and thus

(3.6) −
∫

u · ∇b · b dx =
1

2

∫
|b|2 div u dx.

Combining (3.3)–(3.6), we deduce that

(3.7)
1

2

d

dt

∫ (
ρ|u|2 + |b|2

)
dx+

∫ [
µ|∇u|2 + (λ+ µ)(div u)2 + ν|∇b|2

]
dx =

∫
P div u dx.



610 Xin Zhong

By Cauchy-Schwarz inequality, the right-hand side of (3.7) can be bounded by

µ

2

∫
(div u)2 dx+

1

2µ

∫
P 2 dx.

This together with (3.7) and (3.1) yields

(3.8)
d

dt

(
‖√ρu‖2L2 + ‖b‖2L2

)
+ µ‖∇u‖2L2 + ν‖∇b‖2L2 ≤ C.

So the desired (3.2) follows from (3.8) integrated with respect to t. This completes the

proof of Lemma 3.1.

We next improve the regularity of the density ρ and the velocity u. We start with a

high energy estimate for the velocity under the conditions (1.13) and (3.1).

Lemma 3.2. Under the condition (3.1), it holds that for any T ∈ [0, T ∗),

(3.9)

∫
ρ|u|4 dx+

∫ T

0

∫
|u||∇u|2 dxdt ≤ C

provided that 3µ > λ.

Proof. We first show that the pressure P is always nonnegative before the blow-up time

T ∗. Indeed, it follows from (1.7)3 that

(3.10) Pt + u · ∇P + 2P div u = F , 2µ|D(u)|2 + λ(div u)2 + ν| curl b|2 ≥ 0.

Define particle path before blowup time

d

dt
X(x, t) = u(X(x, t), t), X(x, 0) = x.

Thus, along particle path, we obtain from (3.10) that

d

dt
P (X(x, t), t) = −2P div u + F,

which implies

P (X(x, t), t) = exp

(
−2

∫ t

0
div u ds

)[
P0 +

∫ t

0
exp

(
2

∫ s

0
div u dτ

)
F ds

]
≥ 0.

Next, inspired by [20], multiplying (1.7)2 by 4|u|2u and integrating the resulting equa-

tion over Ω yield that

d

dt

∫
ρ|u|4 dx+ 4

∫ [
µ|u|2|∇u|2 + (λ+ µ)|u|2(div u)2 +

µ|∇|u|2|2

2

]
dx

= 4

∫
div(|u|2u)P dx− 8(λ+ µ)

∫
div u|u|u · ∇|u|dx

+ 4

∫
|u|2u ·

(
div(b⊗ b)−∇

(
|b|2

2

))
dx

≤ 4

∫
div(|u|2u)P dx− 8(λ+ µ)

∫
div u|u|u · ∇|u|dx+ 12

∫
|u|2|∇u||b|2 dx.

(3.11)
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For the last term of the right-hand side of (3.11), one obtains from Hölder’s inequality,

Sobolev’s inequality, and (3.1) that, for any ε1 ∈ (0, 1),

12

∫
|u|2|∇u||b|2 dx ≤ 4µε1

∫
|u|2|∇u|2 dx+ C(µ, ε1)

∫
|u|2|b|4 dx

≤ 4µε1

∫
|u|2|∇u|2 dx+ C(ε1)‖u‖2L6‖b‖4L6

≤ 4µε1

∫
|u|2|∇u|2 dx+ C(ε1)‖∇u‖2L2 ,

which together with (3.11) leads to

d

dt

∫
ρ|u|4 dx+ 4

∫ [
µ(1− ε1)|u|2|∇u|2 + (λ+ µ)|u|2(div u)2 +

µ|∇|u|2|2

2

]
dx

≤ 4

∫
div(|u|2u)P dx− 8(λ+ µ)

∫
div u|u|u · ∇|u|dx+ C(ε1)‖∇u‖2L2 .

Consequently, we have

d

dt

∫
ρ|u|4 dx+ 4

∫
Ω∩{|u|>0}

[
µ(1− ε1)|u|2|∇u|2 + (λ+ µ)|u|2(div u)2 +

µ|∇|u|2|2

2

]
dx

≤ 4

∫
Ω∩{|u|>0}

div(|u|2u)P dx− 8(λ+ µ)

∫
Ω∩{|u|>0}

div u|u|u · ∇|u|dx+ C(ε1)‖∇u‖2L2 .

(3.12)

Direct calculations give that for x ∈ Ω ∩ {|u| > 0},

|u|2|∇u|2 = |u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 + |u|2|∇|u||2,(3.13)

|u|div u = |u|2 div

(
u

|u|

)
+ u · ∇|u|.(3.14)

For ε1, ε2 ∈ (0, 1), we now define a nonnegative function as follows

(3.15) k(ε1, ε2) =


µε2(3−ε1)
λ+ε1µ

if λ+ ε1µ > 0,

0 if λ+ ε1µ ≤ 0.

We prove (3.9) in two cases.

Case 1: we assume that

(3.16)

∫
Ω∩{|u|>0}

|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 dx ≤ k(ε1, ε2)

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx.

It follows from (3.12) that

(3.17)
d

dt

∫
ρ|u|4 dx+ 4

∫
Ω∩{|u|>0}

Ψ dx ≤ 4

∫
Ω∩{|u|>0}

div(|u|2u)P dx+ C(ε1)‖∇u‖2L2 ,
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where

Ψ , µ(1− ε1)|u|2|∇u|2 + (λ+ µ)|u|2(div u)2

+ 2µ|u|2|∇|u||2 + 2(λ+ µ) div u|u|u · ∇|u|.

Employing (3.13) and (3.14), we find that

Ψ = µ(1− ε1)|u|2|∇u|2 + (λ+ µ)|u|2(div u)2 + 2µ|u|2|∇|u||2

+ 2(λ+ µ)|u|2 div

(
u

|u|

)
u · ∇|u|+ 2(λ+ µ)|u · ∇|u||2

= µ(1− ε1)

(
|u|4

∣∣∣∣∇( u

|u|

)∣∣∣∣2 + |u|2|∇|u||2
)

+ (λ+ µ)

(
|u|2 div

(
u

|u|

)
+ u · ∇|u|

)2

+ 2µ|u|2|∇|u||2 + 2(λ+ µ)|u|2 div

(
u

|u|

)
u · ∇|u|+ 2(λ+ µ)|u · ∇|u||2

= µ(1− ε1)|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 + µ(3− ε1)|u|2|∇|u||2 − λ+ µ

3
|u|4

∣∣∣∣div

(
u

|u|

)∣∣∣∣2
+ 3(λ+ µ)

(
2

3
|u|2 div

(
u

|u|

)
+ u · ∇|u|

)2

≥ −(λ+ ε1µ)|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 + µ(3− ε1)|u|2|∇|u||2.

Here we have used the facts that λ+ µ > 01 and∣∣∣∣div

(
u

|u|

)∣∣∣∣2 ≤ 3

∣∣∣∣∇( u

|u|

)∣∣∣∣2 .
Then we derive from (3.16) and (3.15) that

4

∫
Ω∩{|u|>0}

Ψ dx ≥ [−4(λ+ ε1µ)k(ε1, ε2) + 4µ(3− ε1)]

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx

≥ 4µ(3− ε1)(1− ε2)

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx.

(3.18)

Thus, substituting (3.18) into (3.17) and using (3.1), (3.13), and (3.16) yield

d

dt

∫
ρ|u|4 dx+ 4µ(3− ε1)(1− ε2)

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx

≤ 4

∫
Ω∩{|u|>0}

div(|u|2u)P dx+ C(ε1)‖∇u‖2L2

≤ C
∫

Ω∩{|u|>0}
|u|2|∇u|P dx+ C(ε1)‖∇u‖2L2

1From (1.2) and 3µ − λ > 0, we have 5µ + 2λ > 0. Then by (1.2) again one gets 7µ + 5λ > 0, which

combined with (1.2) again implies 9µ+ 8λ > 0. This together with (1.2) once more gives 11µ+ 11λ > 0.

Thus the result follows.
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≤ ε
∫

Ω∩{|u|>0}
|u|2|∇u|2 dx+ C(ε)‖u‖2L2‖P‖2L∞ + C(ε1)‖∇u‖2L2

≤ ε(1 + k(ε1, ε2))

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx+ C(ε, ε1)‖∇u‖2L2 .

Taking ε = 2µ(3−ε1)(1−ε2)
1+k(ε1,ε2) , we then arrive at

d

dt

∫
ρ|u|4 dx+ 2µ(3− ε1)(1− ε2)

∫
|u|2|∇|u||2 dx ≤ C(ε1, ε2)‖∇u‖2L2 ,

which combined with (3.13) and (3.16) implies

(3.19)
d

dt

∫
ρ|u|4 dx+ ε

∫
|u|2|∇u|2 dx ≤ C(ε1, ε2)‖∇u‖2L2 .

Case 2: we assume that

(3.20)

∫
Ω∩{|u|>0}

|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 dx > k(ε1, ε2)

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx.

It follows from (3.12) that

d

dt

∫
ρ|u|4 dx+ 4

∫
Ω∩{|u|>0}

[
µ(1− ε1)|u|2|∇u|2 + (λ+ µ)|u|2(div u)2 +

µ|∇|u|2|2

2

]
dx

≤ 4

∫
Ω∩{|u|>0}

div(|u|2u)P dx− 8(λ+ µ)

∫
Ω∩{|u|>0}

div u|u|u · ∇|u|dx+ C(ε1)‖∇u‖2L2

≤ C
∫

Ω∩{|u|>0}
P |u|2|∇u| dx+ 4(λ+ µ)

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx

+ 4(λ+ µ)

∫
Ω∩{|u|>0}

|u|2|div u|2 dx+ C(ε1)‖∇u‖2L2 ,

which implies that

d

dt

∫
ρ|u|4 dx+ 4µ(1− ε1)

∫
Ω∩{|u|>0}

|u|2|∇u|2 dx+ 4(µ− λ)

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx

≤ C
∫

Ω∩{|u|>0}
P |u|2|∇u| dx+ C(ε1)‖∇u‖2L2 .

(3.21)

Inserting (3.13) into (3.21) yields

d

dt

∫
ρ|u|4 dx+ [8µ− 4(ε1µ+ λ)]

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx

+ 4µ(1− ε1)

∫
Ω∩{|u|>0}

|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 dx

≤ C
∫

Ω∩{|u|>0}
P |u|2|∇|u||dx+ C

∫
Ω∩{|u|>0}

P |u|3
∣∣∣∣∇( u

|u|

)∣∣∣∣ dx+ C(ε1)‖∇u‖2L2
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≤ C
∫

Ω∩{|u|>0}
P |u|2|∇|u||dx+ 4µ(1− ε1)ε3

∫
Ω∩{|u|>0}

|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 dx

+ C(ε1, ε3)‖u‖2L2‖P‖2L∞ + C(ε1)‖∇u‖2L2

≤ C
∫

Ω∩{|u|>0}
P |u|2|∇|u||dx+ 4µ(1− ε1)ε3

∫
Ω∩{|u|>0}

|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 dx

+ C(ε1, ε3)‖∇u‖2L2

with ε3 ∈ (0, 1). Hence we have

d

dt

∫
ρ|u|4 dx+ [8µ− 4(λ+ ε1µ)]

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx

+ 4µ(1− ε1)(1− ε3)

∫
Ω∩{|u|>0}

|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 dx

≤ C
∫

Ω∩{|u|>0}
P |u|2|∇|u||dx+ C(ε1, ε3)‖∇u‖2L2 .

This together with (3.20) leads to

d

dt

∫
ρ|u|4 dx+ k1(ε1, ε2, ε3, ε4)

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx

+ k2(ε1, ε3, ε4)

∫
Ω∩{|u|>0}

|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 dx

≤ C
∫

Ω∩{|u|>0}
P |u|2|∇|u||dx+ C(ε1, ε3)‖∇u‖2L2 ,

(3.22)

where

k1(ε1, ε2, ε3, ε4) , 4µ(1− ε1)(1− ε3)(1− ε4)k(ε1, ε2) + 8µ− 4(λ+ ε1µ),

k2(ε1, ε3, ε4) , 4µ(1− ε1)(1− ε3)ε4

with εi ∈ (0, 1), i = 1, 2, 3, 4. For all (ε1, ε3, ε4) ∈ (0, 1) × (0, 1) × (0, 1), due to µ > 0,

one has k2(ε1, ε3, ε4) > 0. We next show that there exists (ε1, ε2, ε3, ε4) ∈ (0, 1)× (0, 1)×
(0, 1)× (0, 1) such that

k1(ε1, ε2, ε3, ε4) > 0.

In fact, if λ < 0, take ε1 = − λ
mµ ∈ (0, 1) with the positive integer m large enough, then

we have

λ+ ε1µ =
m− 1

m
λ < 0,

which combined with (3.15) implies that k(ε1, ε2) = 0, and hence

k1(ε1, ε2, ε3, ε4) = 8µ− 4(λ+ ε1µ) > 8µ > 0.
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If λ = 0, then λ+ ε1µ > 0, thus we infer from (3.15) that

k1(ε1, ε2, ε3, ε4) =
4µ(1− ε1)(1− ε3)(1− ε4)(3− ε1)ε2

ε1
+ 8µ− 4ε1µ > 4µ > 0.

If 0 < λ < 3µ, then we have λ+ ε1µ > 0, so we deduce from (3.15) that

k1(ε1, ε2, ε3, ε4) =
4µ2(1− ε1)(1− ε3)(1− ε4)(3− ε1)ε2

λ+ ε1µ
+ 8µ− 4(λ+ ε1µ).

Notice that k1(ε1, ε2, ε3, ε4) is continuous over [0, 1]× [0, 1]× [0, 1]× [0, 1], and

k1(0, 1, 0, 0) =
12µ2

λ
+ 8µ− 4λ = 4λ−1(λ+ µ)(3µ− λ) > 0,

so there exists (ε1, ε2, ε3, ε4) ∈ (0, 1)× (0, 1)× (0, 1)× (0, 1) such that

k1(ε1, ε2, ε3, ε4) > 0.

Consequently, one obtains from (3.22) and (3.1) that

d

dt

∫
ρ|u|4 dx+ k1(ε1, ε2, ε3, ε4)

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx

+ k2(ε1, ε3, ε4)

∫
Ω∩{|u|>0}

|u|4
∣∣∣∣∇( u

|u|

)∣∣∣∣2 dx

≤ k1(ε1, ε2, ε3, ε4)

2

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx

+ C(ε1, ε2, ε3, ε4)‖u‖2L2‖P‖2L∞ + C(ε1, ε3)‖∇u‖2L2

≤ k1(ε1, ε2, ε3, ε4)

2

∫
Ω∩{|u|>0}

|u|2|∇|u||2 dx+ C(ε1, ε2, ε3, ε4)‖∇u‖2L2 .

Therefore, one gets

d

dt

∫
ρ|u|4 dx+

k1(ε1, ε2, ε3, ε4)

2

∫
|u|2|∇|u||2 dx

+ k2(ε1, ε3, ε4)

∫
|u|4

∣∣∣∣∇( u

|u|

)∣∣∣∣2 dx

≤ C(ε1, ε2, ε3, ε4)‖∇u‖2L2 .

(3.23)

From (3.19), (3.23), and (3.13), we conclude that if 3µ > λ, there exists a constant

C > 0 such that
d

dt

∫
ρ|u|4 dx+ C

∫
|u|2|∇u|2 dx ≤ C‖∇u‖2L2 ,

which together with (3.2) and Gronwall’s inequality gives the desired (3.9).
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Let E be the specific energy defined by

(3.24) E = θ +
|u|2

2
.

Let G be the effective viscous flux, ω be vorticity given by

(3.25) G = (λ+ 2µ) div u−
(
P +

|b|2

2

)
, ω = curl u.

Then the momentum equations (1.7)2 can be rewritten as

(3.26) ρu̇− b · ∇b = ∇G− curlω,

where u̇ , ut + u · ∇u.

Then, we derive the following crucial estimate on the L∞(0, T ;L2)-norm of both ∇u

and ∇b.

Lemma 3.3. Under the condition (3.1), it holds that for any T ∈ [0, T ∗),

(3.27) sup
0≤t≤T

(
‖∇u‖2L2 + ‖∇b‖2L2

)
+

∫ T

0

(
‖√ρu̇‖2L2 + ‖bt‖2L2 + ‖∇2b‖2L2

)
dt ≤ C.

Proof. Multiplying (1.7)2 by ut and integrating the resulting equation over Ω give rise to

1

2

d

dt

∫ (
µ|∇u|2 + (λ+ µ)(div u)2

)
dx+

∫
ρ|u̇|2 dx

=

∫
ρu̇ · (u · ∇)u dx+

∫ (
P +

|b|2

2

)
div ut dx−

∫
(b⊗ b) : ∇ut dx

≤ η1

∫
ρ|u̇|2 dx+ C(η1)

∫
|u|2|∇u|2 dx+

d

dt

∫ [(
P +

|b|2

2

)
div u− (b⊗ b) : ∇u

]
dx

−
∫ (

P +
|b|2

2

)
t

div u dx+

∫
(b⊗ b)t : ∇u dx

≤ d

dt

∫ [(
P +

|b|2

2

)
div u− (b⊗ b) : ∇u−

(
P + |b|2/2

)2
2(λ+ 2µ)

]
dx+ η1

∫
ρ|u̇|2 dx

+ C(η1)

∫
|u|2|∇u|2 dx− 1

λ+ 2µ

∫ (
P +

|b|2

2

)
t

Gdx+

∫
(b⊗ b)t : ∇u dx.

(3.28)

Here we have used λ+ 2µ > 0. Indeed, we obtain this result from λ+ µ > 0 (see footnote

on page 612) and µ > 0.

It follows from (1.7) that E satisfies

(3.29)

(
ρE +

|b|2

2

)
t

+ div(ρuE) = div H
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with

H , (u× b)× b + ν(curl b)× b + (2µD(u) + λ div uI3)u− Pu.

Then we infer from (3.24), (3.29), and (1.7)1 that

−
∫ (

P +
|b|2

2

)
t

Gdx

= −
∫ (

ρE +
|b|2

2

)
t

Gdx+
1

2

∫
(ρ|u|2)tGdx

=

∫
div(ρuE −H)Gdx+

1

2

∫
ρt|u|2Gdx+

∫
ρu · utGdx

= −
∫

(ρuE −H) · ∇Gdx− 1

2

∫
div(ρu)|u|2Gdx+

∫
ρu · utGdx

= −
∫

(Pu−H) · ∇Gdx+
1

2

∫
ρu · ∇(|u|2)Gdx+

∫
ρu · utGdx ,

3∑
i=1

Ii.

(3.30)

From Hölder’s inequality, Sobolev’s inequality, and (3.1), we have

I1 ≤
∫

(P |u|+ |H|)|∇G|dx

≤ C
∫

(P |u|+ |u||b|2 + |b||∇b|+ |u||∇u|)|∇G|dx

≤ η1‖∇G‖2L2

+ C(η1)
(
‖P‖2L∞‖u‖2L2 + ‖u‖2L6‖b‖4L6 + ‖b‖2L3‖∇b‖2L6 + ‖|u||∇u|‖2L2

)
≤ η1‖∇G‖2L2 + C(η1)

(
‖∇u‖2L2 + ‖∇b‖2H1 + ‖|u||∇u|‖2L2

)
.

(3.31)

By (3.25), (3.1), Hölder’s inequality, and Sobolev’s inequality, one gets

I2 ≤
∫
ρ|u|2|∇u||G| dx ≤ C

∫
ρ|u|2|∇u|(|∇u|+ |b|2 + P ) dx

≤ C
∫

(|u|2|∇u|2 + |u|2|∇u||b|2 + ρ|u|2|∇u|) dx

≤ C(‖|u||∇u|‖2L2 + ‖u‖L6‖|u||∇u|‖L2‖b‖2L6 + ‖ρ‖L∞‖u‖L2‖|u||∇u|‖L2)

≤ C‖|u||∇u|‖2L2 + C‖∇u‖2L2 .

(3.32)

Similar to I2, we find that

I3 =

∫
[ρu · u̇− ρu · (u · ∇)u]Gdx

≤ C
∫
ρ(|u||u̇|+ |u|2|∇u|)(|∇u|+ |b|2 + P ) dx

≤ C
(
‖√ρ‖L∞‖

√
ρu̇‖L2‖|u||∇u|‖L2 + ‖√ρ‖L∞‖

√
ρu̇‖L2‖u‖L6‖b‖2L6

)
+ C

(
‖ρ‖L∞‖|u||∇u|‖2L2 + ‖√ρ‖L∞‖P‖L∞‖

√
ρu̇‖L2‖u‖L2

)
+ C

(
‖ρ‖L∞‖|u||∇u|‖L2‖u‖L6‖b‖2L6 + ‖ρ‖L∞‖P‖L∞‖|u||∇u|‖L2‖u‖L2

)
≤ η1‖

√
ρu̇‖2L2 + C(η1)(‖|u||∇u|‖2L2 + ‖∇u‖2L2).

(3.33)
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Inserting (3.31)–(3.33) into (3.30), we arrive at

−
∫ (

P +
|b|2

2

)
t

Gdx ≤ η1‖∇G‖2L2 + η1‖
√
ρu̇‖2L2

+ C(η1)
(
‖∇u‖2L2 + ‖∇b‖2H1 + ‖|u||∇u|‖2L2

)
.

(3.34)

In view of (3.25), (3.26), (1.7), and (1.9), we see that G satisfies∆G = div(ρu̇− b · ∇b) in Ω,

∇G · n = 0 on ∂Ω,

where n is the unit outward normal to ∂Ω. Applying the standard Lp-estimate for Neu-

mann problem to the above elliptic equation (see e.g., [16]), we have for any p ≥ 2,

(3.35) ‖∇G‖Lp ≤ C (‖ρu̇‖Lp + ‖b · ∇b‖Lp) .

In particular, taking p = 2 in (3.35), we deduce from (3.1) that

‖∇G‖2L2 ≤ C
(
‖ρu̇‖2L2 + ‖b · ∇b‖2L2

)
≤ C

(
‖√ρu̇‖2L2 + ‖b‖2L3‖∇b‖2L6

)
≤ C

(
‖√ρu̇‖2L2 + ‖∇b‖2H1

)
,

which combined with (3.34) implies that

−
∫ (

P +
|b|2

2

)
t

Gdx ≤ Cη1‖
√
ρu̇‖2L2

+ C(η1)
(
‖∇u‖2L2 + ‖∇b‖2H1 + ‖|u||∇u|‖2L2

)
.

(3.36)

For the last term on the right-hand side of (3.28), we obtain from Hölder’s inequality

and (3.1) that∫
(b⊗ b)t : ∇u dx ≤ C

∫
|bt||b||∇u| dx

≤ η̃‖bt‖2L2 + C(η̃)‖b‖2L4‖∇u‖2L4

≤ η̃‖bt‖2L2 + C(η̃)‖∇u‖1/2
L2 ‖∇u‖3/2

L6

≤ η̃‖bt‖2L2 + η1‖∇u‖2L6 + C(η̃, η1)‖∇u‖2L2 .

(3.37)

We need to estimate ‖∇u‖L6 . To this end, inspired by [9], let u = v + w such thatµ∆v + (λ+ µ)∇ div v = ∇
(
P + |b|2

2

)
,

v(x, t) = 0 on ∂Ω;

and µ∆w + (λ+ µ)∇ div w = ρu̇− b · ∇b,

w(x, t) = 0 on ∂Ω,
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which implies that

‖∇v‖L6 ≤ C
∥∥∥∥P +

|b|2

2

∥∥∥∥
L6

≤ C,

and

‖∇w‖L6 + ‖∇2w‖L2 ≤ C(‖ρu̇‖L2 + ‖b · ∇b‖L2) ≤ C(‖√ρu̇‖L2 + ‖∇b‖H1).

Then we have

(3.38) ‖∇u‖2L6 ≤ ‖∇v‖2L6 + ‖∇w‖2L6 ≤ C(‖√ρu̇‖2L2 + ‖∇b‖2H1 + 1).

Substituting (3.38) into (3.37) leads to

(3.39)

∫
(b⊗ b)t : ∇u dx ≤ η̃‖bt‖2L2 + Cη1(‖√ρu̇‖2L2 + ‖∇b‖2H1 + 1) + C‖∇u‖2L2 .

Inserting (3.36) and (3.39) into (3.28) and choosing η1 suitably small, we have

d

dt

∫
Φ dx+ ‖√ρu̇‖2L2 ≤ η̃‖bt‖2L2 + C2‖∇2b‖2L2

+ C
(
‖∇u‖2L2 + ‖∇b‖2L2 + ‖|u||∇u|‖2L2 + 1

)
,

(3.40)

where

Φ , µ|∇u|2 + (µ+ λ)(div u)2 − (2P + |b|2) div u + 2(b⊗ b) : ∇u +

(
P + |b|2/2

)2
λ+ 2µ

satisfies

(3.41)
µ

2
‖∇u‖2L2 − C ≤

∫
Φ dx ≤ µ‖∇u‖2L2 + C

due to (3.1).

It follows from (1.7)4, Hölder’s inequality, (3.1), and (3.38) that

ν
d

dt

∫
|∇b|2 dx+

∫
|bt|2 dx+ ν2

∫
|∆b|2 dx

=

∫
|bt − ν∆b|2 dx =

∫
|b · ∇u− u · ∇b− b div u|2 dx

≤ C
∫
|b|2|∇u|2 dx+ C

∫
|u|2|∇b|2 dx ≤ C‖b‖2L4‖∇u‖2L4 + C‖u‖2L6‖∇b‖2L3

≤ C‖∇u‖1/2
L2 ‖∇u‖3/2

L6 + C‖∇u‖2L2‖∇b‖L2‖∇b‖H1

≤ C‖∇u‖2L2 +
1

8

(
‖√ρu̇‖2L2 + ‖∇b‖2H1 + 1

)
+ C‖∇u‖2L2‖∇b‖L2(‖∇b‖L2 + ‖∇2b‖L2)

≤ η2‖∇2b‖2L2 + C(η2)
(
‖∇u‖2L2 + ‖∇b‖2L2

) (
‖∇u‖2L2 + ‖∇b‖2L2 + 1

)
+

1

8
‖√ρu̇‖2L2 + C.
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Noting that the standard L2 estimate of elliptic system gives

‖∇2b‖L2 ≤ C3‖∆b‖L2 + C3‖∇b‖L2 ,

hence we deduce after choosing η2 suitably small that

2ν
d

dt

∫
|∇b|2 dx+ 2‖bt‖2L2 + C−1

3 ν2‖∇2b‖2L2

≤ C(‖∇u‖2L2 + ‖∇b‖2L2)(‖∇u‖2L2 + ‖∇b‖2L2 + 1) +
1

8
‖√ρu̇‖2L2 + C.

(3.42)

Then adding (3.42) to (3.40) and choosing η̃ small enough, we have

d

dt

∫
(Φ + 2C4ν|∇b|2) dx+

1

2
(‖√ρu̇‖2L2 + ‖bt‖2L2 + ‖∇2b‖2L2)

≤ C(‖∇u‖2L2 + ‖∇b‖2L2)(‖∇u‖2L2 + ‖∇b‖2L2 + 1)

+ C(‖∇u‖2L2 + ‖∇b‖2L2 + ‖|u||∇u|‖2L2 + 1).

Thus we obtain the desired (3.27) after using Gronwall’s inequality, (3.2), (3.9), and (3.41).

This completes the proof of Lemma 3.3.

Next, we have the following estimates on the material derivatives of the velocity which

are important for the higher order estimates of strong solutions.

Lemma 3.4. Under the condition (3.1), it holds that for any T ∈ [0, T ∗),

(3.43) sup
0≤t≤T

(
‖√ρu̇‖2L2 + ‖bt‖2L2 + ‖∇2b‖2L2

)
+

∫ T

0

(
‖∇u̇‖2L2 + ‖∇bt‖2L2

)
dt ≤ C.

Proof. By the definition of u̇, we can rewrite (1.7)2 as follows:

(3.44) ρu̇ +∇P = µ∆u + (λ+ µ)∇ div u + curl b× b.

Differentiating (3.44) with respect to t and using (1.7)1, we have

ρu̇t + ρu · ∇u̇ +∇Pt = µ∆u̇ + (λ+ µ) div u̇− µ∆(u · ∇u)− (λ+ µ) div(u · ∇u)

+ (curl b× b)t + div(ρu̇⊗ u).
(3.45)
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Multiplying (3.45) by u̇ and integrating by parts over Ω, we get

1

2

d

dt

∫
ρ|u̇|2 dx+ µ

∫
|∇u̇|2 dx+ (λ+ µ)

∫
|div u̇|2 dx

=

∫
[Pt div u̇ + (∇P ⊗ u) : ∇u̇] dx

−
∫

[div(curl b× b)⊗ u− (curl b× b)t] · u̇ dx

+ µ

∫
[div(∆u⊗ u)−∆(u · ∇u)] · u̇ dx

+ (λ+ µ)

∫
[(∇ div u)⊗ u−∇ div(u · ∇u)] · u̇ dx

,
4∑
i=1

Ji,

(3.46)

where Ji can be bounded as follows.

It follows from (1.7)3 that

J1 =

∫ (
− div(Pu) div u̇− P div u div u̇ + T (u) : ∇u div u̇

+ ν| curl b|2 div u̇ + (∇P ⊗ u) : ∇u̇
)

dx

=

∫ (
Pu · ∇ div u̇− P div u div u̇ + T (u) : ∇u div u̇ + ν| curl b|2 div u̇

)
dx

−
∫ (

P∇u> : ∇u̇ + Pu · ∇ div u̇
)

dx

=

∫ (
−P div u div u̇ + T (u) : ∇u div u̇ + ν| curl b|2 div u̇− P∇u> : ∇u̇

)
dx

≤ C
∫ (
|∇u||∇u̇|+ |∇u|2|∇u̇|+ |∇b|2|∇u̇|

)
dx

≤ C
(
‖∇u‖L2 + ‖∇u‖2L4 + ‖∇b‖2L4

)
‖∇u̇‖L2 ,

(3.47)

where T (u) = 2µD(u) + λ div uI3. Integrating by parts leads to

J2 =

∫ [
div(b⊗ b)t −∇

(
|b|2

2

)
t

− div(curl b× b)⊗ u

]
· u̇ dx

≤ C
∫

(|b||bt|+ |b||∇b||u|)|∇u̇|dx

≤ C(‖b‖L6‖bt‖L3 + ‖b‖L6‖∇b‖L6‖u‖L6)‖∇u̇‖L2

≤ C
(
‖bt‖1/2L2 ‖∇bt‖1/2L2 + ‖∇b‖H1

)
‖∇u̇‖L2 .

(3.48)

For J3 and J4, notice that for all 1 ≤ i, j, k ≤ 3, one has

∂j(∂kkuiuj)− ∂kk(uj∂jui) = ∂k(∂juj∂kui)− ∂k(∂kuj∂jui)− ∂j(∂kuj∂kui),

∂j(∂ikukuj)− ∂ij(uk∂kuj) = ∂i(∂juj∂kuk)− ∂i(∂juk∂kuj)− ∂k(∂iuk∂juj).
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So integrating by parts gives

J3 = µ

∫
[∂k(∂juj∂kui)− ∂k(∂kuj∂jui)− ∂j(∂kuj∂kui)]u̇i dx

≤ C‖∇u‖2L4‖∇u̇‖L2 ,

(3.49)

J4 = (λ+ µ)

∫
[∂i(∂juj∂kuk)− ∂i(∂juk∂kuj)− ∂k(∂iuk∂juj)]u̇i dx

≤ C‖∇u‖2L4‖∇u̇‖L2 .

(3.50)

Inserting (3.47)–(3.50) into (3.46) and applying (3.27) lead to

1

2

d

dt
‖√ρu̇‖2L2 + µ‖∇u̇‖2L2 + (λ+ µ)‖ div u̇‖2L2

≤ C
(
‖∇u‖L2 + ‖∇u‖2L4 + ‖∇b‖2L4 + ‖bt‖1/2L2 ‖∇bt‖1/2L2 + ‖∇b‖H1

)
‖∇u̇‖L2

≤ δ1‖∇u̇‖2L2 + δ2‖∇bt‖2L2

+ C(δ1, δ2)
(
‖∇u‖4L4 + ‖∇b‖4L4 + ‖bt‖2L2 + ‖∇2b‖2L2 + 1

)
.

(3.51)

Using the standard H2 estimate of elliptic equations to (1.7)4, then we get from (3.1),

(3.27), and (3.38) that

‖∇2b‖2L2 ≤ C(‖bt‖2L2 + ‖|u||∇b|‖2L2 + ‖|b||∇u|‖2L2)

≤ C(‖bt‖2L2 + ‖u‖2L6‖∇b‖2L3 + ‖b‖2L6‖∇u‖L2‖∇u‖L6)

≤ C(‖bt‖2L2 + ‖∇u‖2L2‖∇b‖L2‖∇b‖H1 + ‖∇u‖L6)

≤ 1

2
‖∇2b‖2L2 + C‖bt‖2L2 + C‖√ρu̇‖2L2 + C,

which implies that

(3.52) ‖∇2b‖2L2 ≤ C‖bt‖2L2 + C‖√ρu̇‖2L2 + C.

Differentiating (1.7)4 with respect to t, we have

(3.53) btt − ν∆bt = bt · ∇u− u · ∇bt − bt div u + b · ∇ut − ut · ∇b− b div ut.

Multiplying (3.53) by bt and integrating by parts lead to

1

2

d

dt

∫
|bt|2 dx+ ν

∫
|∇bt|2 dx =

∫
(bt · ∇u− u · ∇bt − bt div u) · bt dx

+

∫
(b · ∇ut − ut · ∇b− b div ut) · bt dx

, L1 + L2.

(3.54)

Integrating by parts implies that

L1 =

∫ (
bt · ∇u · bt −

1

2
|bt|2 div u

)
dx ≤ C‖bt‖2L4‖∇u‖L2

≤ C‖bt‖1/2L2 ‖∇bt‖3/2L2 ≤ δ1‖∇bt‖2L2 + C(δ1)‖bt‖2L2

(3.55)
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and

L2 =

∫
(b · ∇u̇− u̇ · ∇b− b div u̇) · bt dx

−
∫

[b · ∇(u · ∇u)− (u · ∇u) · ∇b− b div(u · ∇u)] · bt dx

=

∫
(b · ∇u̇− u̇ · ∇b− b div u̇) · bt dx

+

∫
[(u · ∇u) · (b · ∇bt) + (u · ∇u) · ∇bt · b] dx

≤ C
∫

(|b||bt||∇u̇|+ |u̇||∇b||bt|+ |u||∇u||b||∇bt|) dx

≤ C(‖b‖L6‖bt‖L3‖∇u̇‖L2 + ‖u̇‖L6‖∇b‖L2‖bt‖L3 + ‖u‖L6‖∇u‖L6‖b‖L6‖∇bt‖L2)

≤ C(‖bt‖L3‖∇u̇‖L2 + ‖∇u‖L6‖∇bt‖L2)

≤ C(‖bt‖1/2L2 ‖∇bt‖1/2L2 ‖∇u̇‖L2 + ‖∇u‖L6‖∇bt‖L2)

≤ δ1‖∇bt‖2L2 + δ2‖∇u̇‖2L2 + C(δ1, δ2)‖bt‖L2 + C(δ1)‖∇u‖2L6 .

(3.56)

Inserting (3.55) and (3.56) into (3.54), we have

1

2

d

dt
‖bt‖2L2 + ν‖∇bt‖2L2 ≤ 2δ1‖∇bt‖2L2 + δ2‖∇u̇‖2L2

+ C(δ1, δ2)‖bt‖L2 + C(δ1)‖∇u‖2L6 .

(3.57)

Adding (3.57) to (3.51) and applying (3.52), we obtain after choosing δ1, δ2 suitably

small that

d

dt

(
‖√ρu̇‖2L2 + ‖bt‖2L2

)
+ C̃

(
‖∇u̇‖2L2 + ‖∇bt‖2L2

)
≤ C(‖bt‖2L2 + ‖∇u‖4L4 + ‖∇b‖4L4 + ‖∇u‖2L6 + 1).

(3.58)

By (3.38), (3.27), and (3.52), one has

(3.59) ‖∇u‖2L6 ≤ C(‖√ρu̇‖2L2 + ‖∇b‖2H1 + 1) ≤ C(‖√ρu̇‖2L2 + ‖bt‖2L2 + 1).

It follows from Hölder’s inequality, (3.27), and (3.59) that

‖∇u‖4L4 ≤ C‖∇u‖L2‖∇u‖3L6 ≤ C(‖√ρu̇‖3L2 + ‖bt‖3L2 + 1)

≤ C
(
1 + ‖√ρu̇‖2L2 + ‖bt‖2L2

) (
‖√ρu̇‖2L2 + ‖bt‖2L2

)
+ C.

(3.60)

Similarly, we get

‖∇b‖4L4 ≤ C‖∇b‖L2‖∇b‖3H1 ≤ C(‖∇2b‖3L2 + 1) ≤ C(‖bt‖3L2 + ‖√ρu̇‖3L2 + 1)

≤ C(1 + ‖√ρu̇‖2L2 + ‖bt‖2L2)(‖√ρu̇‖2L2 + ‖bt‖2L2) + C.
(3.61)

Substituting (3.59)–(3.61) into (3.58) and then applying Gronwall’s inequality and (3.27)

give the desired (3.43). Hence we complete the proof of Lemma 3.4.
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Finally, the following lemma will treat the higher order derivatives of the solutions

which are needed to guarantee the extension of local strong solution to be a global one

under the conditions (1.10), (1.11) and (3.1).

Lemma 3.5. Under the condition (3.1), and let q ∈ (3, 6] be as in Theorem 1.2, then it

holds that for any T ∈ [0, T ∗),

(3.62) sup
0≤t≤T

(‖(ρ, P )‖W 1,q + ‖∇u‖H1 + ‖b‖H2) ≤ C.

Proof. First, in view of (3.2), (3.27), and (3.43), one has

(3.63) ‖b‖H2 ≤ C.

It follows from (3.38), (3.43), and (3.63) that

(3.64) ‖∇u‖L6 ≤ C.

By virtue of Gagliardo-Nirenberg inequality, Sobolev’s inequality, (3.27), and (3.64), we

arrive at

‖u‖L∞ ≤ C‖u‖1/2L6 ‖∇u‖1/2
L6 ≤ C‖∇u‖1/2

L2 ‖∇u‖1/2
L6 ≤ C.

Direct calculations show that

(3.65)
d

dt
‖∇ρ‖Lq ≤ C(1 + ‖∇u‖L∞)‖∇ρ‖Lq + C‖∇2u‖Lq .

Similarly,

(3.66)
d

dt
‖∇P‖Lq ≤ C(1 + ‖∇u‖L∞)(‖∇P‖Lq + ‖∇2u‖Lq) + C‖∇b‖L∞‖∇2b‖Lq .

Applying the standard Lp-estimate of elliptic system to (3.26), (3.1), and (3.63) yield

‖∇G‖L6 + ‖∇ω‖L6 ≤ C(‖ρu̇‖L6 + ‖b · ∇b‖L6) ≤ C + C‖∇u̇‖L2 ,

which combined with Gagliardo-Nirenberg inequality implies

‖G‖L∞ ≤ ‖G‖βL2‖∇G‖1−βL6 ≤ C + C‖∇u̇‖1−β
L2 ,

‖ω‖L∞ ≤ ‖ω‖βL2‖∇ω‖1−βL6 ≤ C + C‖∇u̇‖1−β
L2

for some β ∈ (0, 1).

For 2 ≤ p ≤ q, employing the standard Lp-estimate of elliptic system to (1.7)2 leads to

‖∇2u‖Lp ≤ C (‖ρu̇‖Lp + ‖∇P‖Lp + ‖b · ∇b‖Lp)

≤ C
(
1 + ‖ρu̇‖α2 ‖ρu̇‖1−αL6 + ‖∇P‖Lp

)
≤ C

(
1 + ‖ρu̇‖α2 ‖∇u̇‖1−α

L2 + ‖∇P‖Lp

)
≤ C

(
1 + ‖∇u̇‖1−α

L2 + ‖∇P‖Lp

)
(3.67)
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for some α ∈ (0, 1). This, together with Lemma 2.1, gives

‖∇u‖L∞ ≤ C
(

1 + ‖∇u̇‖1−β
L2

)
log (e+ ‖∇u̇‖L2 + ‖∇P‖Lq) + C‖∇u̇‖L2 .

Applying the standard Lp-estimate to (1.7)4 yields

‖∇2b‖Lq ≤ C (‖bt‖Lq + ‖|u||∇b|‖Lq + ‖|b||∇u|‖Lq)

≤ C
(
‖bt‖(6−q)/(2q)L2 ‖∇bt‖(3q−6)/(2q)

L2 + ‖u‖L∞‖∇b‖Lq + ‖b‖L∞‖∇u‖Lq

)
≤ C

(
‖bt‖(6−q)/(2q)L2 ‖∇bt‖(3q−6)/(2q)

L2 + ‖∇b‖(6−q)/(2q)
L2 ‖∇2b‖(3q−6)/(2q)

L2

+ ‖∇u‖(6−q)/(2q)
L2 ‖∇u‖(3q−6)/(2q)

L6

)
≤ C

(
1 + ‖∇bt‖(3q−6)/(2q)

L2

)
.

(3.68)

It follows from Gagliardo-Nirenberg inequality that

(3.69) ‖∇b‖L∞ ≤ C(‖∇2b‖Lq + 1).

Substituting (3.68) and (3.69) into (3.65)–(3.66) yields that

f ′(t) ≤ Cg(t)f(t) log f(t) + Cg(t)f(t) + Cg(t),

where

f(t) , e+ ‖∇ρ‖Lq + ‖∇P‖Lq ,

g(t) , (1 + ‖∇u̇‖L2) log(e+ ‖∇u̇‖L2) + ‖∇bt‖2L2 .

This yields

(3.70) (log f(t))′ ≤ Cg(t) + Cg(t) log f(t)

due to f(t) > 1. Thus it follows from (3.70), (3.43), and Gronwall’s inequality that

(3.71) sup
0≤t≤T

‖(∇ρ,∇P )‖Lq ≤ C,

which together with (3.67) yields that

sup
0≤t≤T

‖∇2u‖L2 ≤ C.

This combined with (3.71), (3.27), and (3.63) finishes the proof of Lemma 3.5.

With Lemmas 3.1–3.5 at hand, we are now in a position to prove Theorem 1.2.
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Proof of Theorem 1.2. We argue by contradiction. Suppose that (1.12) were false, that is,

(3.1) holds. Note that the general constant C in Lemmas 3.1–3.5 is independent of t < T ∗,

that is, all the a priori estimates obtained in Lemmas 3.1–3.5 are uniformly bounded for

any t < T ∗. Hence, the function

(ρ,u, P,b)(x, T ∗) , lim
t→T ∗

(ρ,u, P,b)(x, t)

satisfy the initial condition (1.10) at t = T ∗.

Furthermore, standard arguments yield that ρu̇ ∈ C([0, T ];L2), which implies

ρu̇(x, T ∗) = lim
t→T ∗

ρu̇ ∈ L2.

Hence,

−µ∆u− (λ+ µ)∇ div u +∇P − curl b× b
∣∣
t=T ∗

=
√
ρ(x, T ∗)g(x)

with

g(x) ,

ρ−1/2(x, T ∗)(ρu̇)(x, T ∗) for x ∈ {x | ρ(x, T ∗) > 0},

0 for x ∈ {x | ρ(x, T ∗) = 0}

satisfying g ∈ L2 due to (3.62). Therefore, one can take (ρ,u, P,b)(x, T ∗) as the initial

data and extend the local strong solution beyond T ∗. This contradicts the assumption on

T ∗. Thus we finish the proof of Theorem 1.2.
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