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Almost Periodicity of All L2-bounded Solutions of a Functional Heat

Equation

Qi-Ru Wang and Zhi-Qiang Zhu*

Abstract. In this paper, we continue the investigations done in the literature about the

so called Bohr-Neugebauer property for almost periodic differential equations. More

specifically, for a class of functional heat equations, we prove that each L2-bounded

solution is almost periodic. This extends a result in [5] to the delay case.

1. Introduction

Let Ω ⊂ Rn be a bounded, open set with smooth boundary, τ be a positive constant and

C = C([−τ, 0], L2(Ω,R)) denote the space of continuous functions ϕ : [−τ, 0] → L2(Ω,R)

with the norm defined by ‖ϕ‖ = sup−τ≤θ≤0 ‖ϕ(θ)‖L2 , here ‖ϕ(θ)‖L2 =
( ∫

Ω ϕ
2(θ, x) dx

)1/2
for θ ∈ [−τ, 0].

In this paper, we consider the boundary problem of partial functional differential equa-

tion

(1.1)

 ∂
∂tu(t, x) = ∆u+ f(t, x, ut) if (t, x) ∈ R× Ω,

u(t, x) = 0 if (t, x) ∈ R× ∂Ω,

where ∆ is the Laplace operator acting on the variable x ∈ Ω, f : R × Ω × C → R is

continuous, and the time delay function ut ∈ C defined by ut(θ)(·) = u(t+θ, · ) ∈ L2(Ω,R)

for θ ∈ [−τ, 0].

There have been much research activity for the qualitative behavior of partial differ-

ential equations with or without delays, see, e.g., the references [1–3, 6, 8, 9, 13, 14]. It is

worth mentioning that the authors in [4, 7, 11, 12, 15] studied the Bohr-Neugebauer prop-

erty for some special abstract differential equations. A differential equation is said to has

Bohr-Neugebauer property if its any bounded solution is almost periodic. This issue also
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occurred in Corduneanu’s monograph [5, Chapter 7], where the author considered the

following heat equation

(1.2)

 ∂
∂tu(t, x) = ∆u+ f̃(t, x, u) if (t, x) ∈ R× Ω,

u(t, x) = 0 if (t, x) ∈ R× ∂Ω

and, under the assumption that u(t, x) was a solution of (1.2) with the property

sup
t∈R

∫
Ω
u2(t, x) dx <∞,

obtained a conclusion that this L2-bounded solution u(t, x) was almost periodic.

The main objective of this paper is to extend the conclusion of (1.2) to (1.1). For this

purpose, we assume that

(H1) b ∈ C(R× Ω,R) with b(t, x) ≥ 0 for (t, x) ∈ R× Ω;

(H2) for any ϕ1, ϕ2 ∈ C and (t, x) ∈ R× Ω,

|f(t, x, ϕ1)− f(t, x, ϕ2)| ≤ b(t, x)‖ϕ1 − ϕ2‖;

(H3) λ > 0 is the smallest eigenvalue of the boundary-value problem [9,10]

(1.3)

∆w + λw = 0 if x ∈ Ω,

w = 0 if x ∈ ∂Ω;

(H4)
( ∫

Ω b
2(t, x) dx

)1/2 ≤ b0 < λ for all t ∈ R.

We remark that the existence of L2-solutions of functional heat equations had been

studied in monograph [13]. Next we consider only the almost periodicity of L2-solutions

of (1.1).

2. Main results

As usual, by C([−τ, 0],R) we denote the Banach space of real-valued functions on [−τ, 0]

with supremum norm. In what follows, we will require an important conclusion, which

extends the result in [5, Proposition 6.5].

Lemma 2.1. Let ψ : R→ R+ be bounded, differential and satisfy

ψ′(t) ≤ ω(ψt), t ∈ R,

where ψt ∈ C([−τ, 0],R) is defined by ψt(θ) = ψ(t+θ) for θ ∈ [−τ, 0], ω : C([−τ, 0],R)→ R
is continuous, and ω(ψ) < 0 for ‖ψ‖ > µ > 0. Then

ψ(t) ≤ µ, t ∈ R.
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Proof. We first consider the case that

ψ(t) ≤ ψ(tM ), t ∈ R,

where tM is some point in R. That is, ψ obtains its maximum value at the point tM .

Then, we have

0 = ψ′(tM ) ≤ ω(ψtM ),

which, together with the assumption ω(ψ) < 0 for ‖ψ‖ > µ > 0, results in

µ ≥ ‖ψtM ‖ = ψ(tM ) ≥ ψ(t), t ∈ R.

In the case that lim supt→∞ ψ(t) = sup{ψ(t) : t ∈ R}, we can choose a sequence {tn}
with tn →∞ as n→∞, such that limn→∞ ψ(tn) = sup{ψ(t) : t ∈ R}, and

ψ′(tn) ≥ 0 for sufficiently large n.

Similarly, by

0 ≤ ψ′(tn) ≤ ω(ψtn) for sufficiently large n,

we obtain that

µ ≥ ‖ψtn‖ ≥ ψ(tn) for sufficiently large n,

which means

µ ≥ sup{ψ(t) : t ∈ R}.

In case lim supt→−∞ ψ(t) = sup{ψ(t) : t ∈ R}, we assert that

(2.1) sup{ψ(t) : t ∈ R} ≤ µ for t ∈ R.

Otherwise, there exists a tN < 0 such that ψ(tN ) > µ, which yields

ψ′(tN ) ≤ ω(ψtN ) < 0

and leads to

ψ(tN ) ≤ ψ(t) ≤ sup{ψ(t) : t ∈ R} for t ≤ tN .

Now by the assumption on ω, we have ω(ψt) ≤ −m < 0 for t ≤ tN , and this, in combination

with the assumption ψ′(t) ≤ ω(ψt), induces sup{ψ(t) : t ∈ R} = ∞, which conflicts with

our assumption on ψ. In other words, the assertion (2.1) is true. The proof is complete.

Referring to [5, Chapter 7], by an L2(Ω)-almost periodic function f(t, x, ϕ) in t uni-

formly with respect to ϕ ∈ C we mean that, for each ε > 0, there exists a number

l = l(ε) > 0 such that any interval [µ, µ+ l] ⊂ R contains a point σ with the property

(2.2)

∫
Ω
|f(t+ σ, x, ϕ)− f(t, x, ϕ)|2 dx < ε2 for all (t, ϕ) ∈ R× C.
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Theorem 2.2. Suppose that f(t, x, ϕ) is L2(Ω)-almost periodic in t uniformly with respect

to ϕ ∈ C. Then, under the assumptions (H1)–(H4), each L2-bounded solution u(t, x) of

(1.1) is almost periodic in the sense of mapping t ∈ R→ u(t, · ) ∈ L2(Ω,R).

Proof. The proof is similar to that in [5, Theorem 7.5]. By the assumption on f(t, x, ϕ),

for each ε > 0, there exists an l = l(ε) > 0 such that any interval [µ, µ + l] ⊂ R contains

a point σ with the property (2.2). For the fixed σ ∈ R we define

v(t, x) = u(t+ σ, x)− u(t, x).

Then we have

(2.3)

 ∂
∂tv(t, x) = ∆v + f(t+ σ, x, ut+σ)− f(t, x, ut) if (t, x) ∈ R× Ω,

v(t, x) = 0 if (t, x) ∈ R× ∂Ω.

Let

V (t) =

∫
Ω
v2(t, x) dx, t ∈ R

and

‖Vt‖ = sup
−τ≤θ≤0

∫
Ω
|u(t+ σ + θ, x)− u(t+ θ, x)|2 dx, t ∈ R.

Then √
‖Vt‖ = ‖ut+σ − ut‖,

and V (t) is bounded on R.

Now invoking (2.3), we get

1

2

dV

dt
=

∫
Ω
v
∂v

∂t
dx

=

∫
Ω
v∆v dx+

∫
Ω
v(f(t+ σ, x, ut+σ)− f(t, x, ut)) dx.

(2.4)

Note that, from Green’s formula and Poincaré’s inequality, it follows that

λ

∫
Ω
v2(t, x) dx ≤

∫
Ω
| grad v(t, x)|2 dx = −

∫
Ω
v∆v dx,

where λ is the smallest eigenvalue of (1.3). Consequently, from (2.4) we derive

1

2

dV

dt
≤ −λ

∫
Ω
v2(t, x) dx

+

∫
Ω
v(f(t+ σ, x, ut+σ)− f(t+ σ, x, ut)) dx

+

∫
Ω
v(f(t+ σ, x, ut)− f(t, x, ut)) dx.

(2.5)
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In addition, the Hölder inequality leads us to∫
Ω
v(f(t+ σ, x, ut+σ)− f(t+ σ, x, ut)) dx

≤
(∫

Ω
v2 dx

)1/2(∫
Ω
b2(t+ σ, x) dx

)1/2

‖ut+σ − ut‖

≤ b0
(∫

Ω
v2 dx

)1/2

‖ut+σ − ut‖

and ∫
Ω
v(f(t+ σ, x, ut)− f(t, x, ut)) dx

≤
(∫

Ω
v2 dx

)1/2(∫
Ω
|f(t+ σ, x, ut)− f(t, x, ut)|2 dx

)1/2

,

where for the first two inequalities we have imposed the assumptions (H2) and (H4),

respectively. Hence, from (2.5) we obtain

1

2

dV

dt
≤ −λV + b0

√
V ‖ut+σ − ut‖+ ε

√
V

and then

(2.6)
1

2

dV

dt
≤ −λV + b0‖Vt‖+ ε

√
‖Vt‖,

where we have used (2.2) for the first inequality and
√
V (t) ≤

√
‖Vt‖ = ‖ut+σ − ut‖ for

the second one. Since

−λV + b0‖Vt‖+ ε
√
‖Vt‖ ≥ −λ‖Vt‖+ b0‖Vt‖+ ε

√
‖Vt‖,

we first consider

−λ‖Vt‖+ b0‖Vt‖+ ε
√
‖Vt‖ ≥ 0

and get

(2.7)
√
‖Vt‖ ≤

ε

λ− b0
.

On the other hand, by the boundedness of V (t) we have

V (tM ) = sup{V (t) : t ∈ R} for some tM ∈ R,

or

lim sup
t→∞

V (t) = sup{V (t) : t ∈ R}, or lim sup
t→−∞

V (t) = sup{V (t) : t ∈ R},
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which induce{
V : −λV + b0‖Vt‖+ ε

√
‖Vt‖ ≥ 0

}
=
{
V : −λ‖Vt‖+ b0‖Vt‖+ ε

√
‖Vt‖ ≥ 0

}
.

Hence, by Lemma 2.1, (2.6) and (2.7), we learn that

V (t) ≤
(

ε

λ− b0

)2

, t ∈ R,

namely, ∫
Ω
|u(t+ σ, x)− u(t, x)|2 dx ≤

(
ε

λ− b0

)2

, t ∈ R,

which shows that the L2-bounded solution u(t, x) of (1.1) is almost periodic. The proof

is complete.
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[3] A. Bátkai and S. Piazzera, Semigroups and linear partial differential equations with

delay, J. Math. Anal. Appl. 264 (2001), no. 1, 1–20.

[4] R. Cooke, Almost periodicity of bounded and compact solutions of differential equa-

tions, Duke Math. J. 36 (1969), 273–276.

[5] C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, New York, 2009.

[6] T. Diagana, Existence and uniqueness of pseudo-almost periodic solutions to some

classes of partial evolution equations, Nonlinear Anal. 66 (2007), no. 2, 384–395.

[7] N. Drisi and B. Es-sebbar, A Bohr-Neugebauer property for abstract almost periodic

evolution equations in Banach spaces: Application to a size-structured population

model, J. Math. Anal. Appl. 456 (2017), no. 1, 412–428.



Almost Periodicity of All L2-bounded Solutions of a Functional Heat Equation 419

[8] B. Es-sebbar and K. Ezzinbi, Stepanov ergodic perturbations for some neutral partial

functional differential equations, Math. Methods Appl. Sci. 39 (2016), no. 8, 1945–

1963.

[9] L. C. Evans, Partial Differential Equations, Second edition, Graduate Studies in

Mathematics 19, American Mathematical Society, Providence, RI, 2010.

[10] C. Guevara and H. Leiva, Controllability of the impulsive semilinear heat equation

with memory and delay, J. Dyn. Control Syst. 24 (2018), no. 1, 1–11.

[11] A. Haraux, Asymptotic behavior for two-dimensional, quasi-autonomous, almost-

periodic evolution equations, J. Differential Equations 66 (1987), no. 1, 62–70.

[12] A. S. Rao, On differential operators with Bohr-Neugebauer type property, J. Differen-

tial Equations 13 (1973), 490–494.

[13] J. Wu, Theory and Applications of Partial Functional-differential Equations, Applied

Mathematical Sciences 119, Springer-Verlag, New York, 1996.

[14] Y. Xie and P. Lei, Almost periodic solutions of sublinear heat equations, Proc. Amer.

Math. Soc. 146 (2018), no. 1, 233–245.

[15] S. Zaidman, Remarks on differential equations with Bohr-Neugebauer property, J.

Math. Anal. Appl. 38 (1972), 167–173.

Qi-Ru Wang

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China

E-mail address: mcswqr@mail.sysu.edu.cn

Zhi-Qiang Zhu

Department of Information and Computing Science, Guangdong Polytechnic Normal

University, Guangzhou 510665, P. R. China

E-mail address: zzq@gpnu.edu.cn


	Introduction
	Main results

