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Boundary Continuity of Nonparametric Prescribed Mean Curvature Surfaces

Mozhgan Nora Entekhabi and Kirk E. Lancaster*

Abstract. We investigate the boundary behavior of variational solutions of Dirichlet

problems for prescribed mean curvature equations at smooth boundary points where

certain boundary curvature conditions are satisfied (which preclude the existence of

local barrier functions). We prove that if the Dirichlet boundary data φ is continu-

ous at such a point (and possibly nowhere else), then the solution of the variational

problem is continuous at this point.

1. Introduction

Let Ω be a locally Lipschitz domain in R2 and define Nf = ∇ · Tf = div(Tf), where

f ∈ C2(Ω) and Tf = ∇f/
√

1 + |∇f |2. Let H ∈ C1(Ω) satisfy the condition

(1.1)

∣∣∣∣∫
Ω
Hη dx

∣∣∣∣ ≤ 1

2

∫
Ω
|Dη| dx for all η ∈ C1

0 (Ω)

(e.g., [10, (16.60)]). Here and throughout the paper, we adopt the sign convention that

the curvature of Ω is nonnegative when Ω is convex. Consider the Dirichlet problem

Nf = 2H in Ω,(1.2)

f = φ on ∂Ω.(1.3)

We wish to understand the boundary behavior of a solution of (1.2)–(1.3).

If ∂Ω is smooth and the curvature of ∂Ω is greater than or equal to 2|H| at each point

of ∂Ω, then this problem is well-posed. If φ ∈ C0(∂Ω), then there exists a unique solution

of (1.2)–(1.3) in C2(Ω) ∩ C0(Ω) and f = φ on ∂Ω (see [10, Theorem 16.10]). On the

other hand, one can choose a distinguished point O ∈ ∂Ω and use the “gliding hump”

construction as in [15] and [16, Theorem 3], in conjunction with [7, Theorem 2], to prove

that there exist φ ∈ L∞(∂Ω) such that the (unique) variational solution f of (1.2)–(1.3)

is in C2(Ω) but f is discontinuous at O and none of the radial limits of f at O exist.
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When the appropriate geometric conditions (e.g., convexity of the domain in the case

of the minimal surface equation on R2) are not satisfied, then the Dirichlet problem is ill-

posed and a classical solution of (1.2)–(1.3) may not exist (see, for example, [12] and [21,

§406]). Interest in determining sufficient conditions for the existence of classical solutions

of (1.2)–(1.3) is long standing and one method is to impose “smallness” conditions on the

Dirichlet boundary data φ. When H ≡ 0 in (1.2), an early result is A. Korn’s classic 1909

paper [14]; J. C. C. Nitsche discusses some of the history of this problem for the minimal

surface equation in [21, §285 & §412]. G. Williams [25, 26], C. P. Lau [17], K. Hayasida

and M. Nakatani [11], M. Bergner [1], J. Ripoll and F. Tomi [22] and many others have

investigated limiting φ in order to prove a classical solution exists.

Rather than imposing a “smallness” condition on the Dirichlet data φ and trying to

obtain a classical solution of (1.2)–(1.3), we wish to impose a (local) condition on the

curvature of the domain, place no restrictions on the Dirichlet data φ ∈ L∞(∂Ω) and

prove that the variational solution f extends to be continuous at a point O of ∂Ω (or on

an open subset Γ of ∂Ω) in the sense that f ∈ C0(Ω∪ {O}) (or f ∈ C0(Ω∪ Γ)) when φ is

continuous at O (or on Γ). In general, no classical solution may exist and the variational

solution is the best approximation to a classical solution.

We shall assume that ∂Ω is smooth, O ∈ ∂Ω is a distinguished point, the curvature Λ

of ∂Ω satisfies

(1.4) Λ(x) < −2|H(x)| for x ∈ ∂Ω, |x−O| < δ

for some δ > 0 and φ ∈ L∞(∂Ω). In Theorem 1.1, we prove that the radial limits Rf(·) of

f exist at O if φ is discontinuous at O (even if φ does not have one-sided limits at O). As

a consequence of the existence of radial limits, we prove in Corollary 1.2 that the (unique)

variational solution f ∈ C2(Ω) of (1.2)–(1.3) is continuous at O if φ is continuous at O.

In Corollary 1.3, we assume H ≡ 0, relax (1.4) slightly and obtain the same result as in

Corollary 1.2.

The idea of the proof is to describe the graph of f parametrically in isothermal coordi-

nates, prove that it is uniformly continuous on its (open) parameter domain and therefore

extends uniquely to a continuous function on the closure of the parameter domain. In the

case of Corollaries 1.2 and 1.3, this is equivalent to proving that f is uniformly continu-

ous on the intersection of Ω and an open neighborhood U of O and therefore f extends

uniquely to a continuous function on Ω ∩ U . Of course, just as in [2, Theorem 4.2], [20]

and [24], this extension of f needs not equal φ. Differences between our results and those,

for example, in the papers by Bourni, Lin and Simon are the additional requirements im-

posed on the domain or the boundary data; [2] requires the graph of φ to be a specific type

of limit of the graphs of C1,α functions, [20] requires φ to be Lipschitz and [24] requires

H ≡ 0, ∂Ω to be C4 and φ to be Lipschitz. In Example 1.4, we present an illustration
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of the value of symmetry and prove that f can be continuous at O even if φ is not; this

illustration uses the same domain as that mentioned in [24].

In the remaining case where −2|H(O)| ≤ Λ(O) < 2|H(O)|, the behavior of the vari-

ational solution at O is unknown. The Dirichlet problem (1.2)–(1.3) does not have a

classical solution in C2(Ω)∩C0(Ω) for all φ ∈ C∞(∂Ω) (see [10, Corollary 14.13]) and the

standard gliding hump argument does not work in this situation. On the other hand, not

all of the comparison functions needed here are available and so the conclusions of Corol-

laries 1.2 and 1.3 may not hold. Moonies ( [9,18], see also [19]) are not bounded below but

do illustrate some properties of this case, with H ≡ 1, Λ ≡ −2 on one component of the

boundary and Λ ≡ 1/R, 1/2 < R < 1, on the other component. As in [13], these cases il-

lustrate the strong differences between uniformly elliptic (genre zero) and prescribed mean

curvature (genre two) equations (see also Remark 2.7); for Laplace’s equation in R2, for

example, boundary curvature would play no role in the solvability of Dirichlet problems

and the gliding hump construction could always be used, exactly as in the first case above.

At a point y ∈ ∂Ω, we let α(y) and β(y) be the angles which the tangent rays to ∂Ω

at y make with the positive x-axis such that

{y + r(cos θ, sin θ) : 0 < r < ε(θ), α(y) < θ < β(y)} ⊂ Ω ∩Bδ(y)

for some δ > 0 and some function ε(·) : (α(y), β(y)) → (0, δ). If ∂Ω is smooth at y,

β(y) = α(y) + π. For θ ∈ (α(y), β(y)), Rf(θ,y) = limr↓0 f(y + r(cos θ, sin θ)) if this

limit exists. Also Rf(α(y),y) = limΓ1(y)3x→y f(x) if this limit exists and Rf(β(y),y) =

limΓ2(y)3x→y f(x) if this limit exists, where ∂Ω ∩ Bδ(y) \ {y} consists of disjoint, open

arcs Γ1(y) and Γ2(y) whose tangent rays approach the rays θ = α(y) and θ = β(y)

respectively, as the point y is approached. (Γ1(y) (lower curve) and Γ2(y) (upper curve)

are illustrated in Figure 1.1 in a case where β(y)− α(y) = π.)

Figure 1.1: Γ1(y) (green); Γ2(y) (blue); Ω ∩Bδ(y) (yellow).

Theorem 1.1. Suppose Ω is a locally Lipschitz domain in R2, Γ is a C2,λ open subset of

∂Ω for some λ ∈ (0, 1). Suppose either (a) H ≡ 0 in a neighborhood of Γ, the curvature

Λ of Γ is nonpositive and vanishes at only a finite number of points of Γ, at each of which

(1.5) holds, or (b) the curvature Λ(x) of Γ at x is less than −2|H(x)| for x ∈ Γ. Let
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f ∈ C2(Ω) ∩ L∞(Ω) satisfy Nf = 2H in Ω. Suppose that y ∈ Γ. Then the limits

lim
Γ1(y)3x→y

f(x) = z1 and lim
Γ2(y)3x→y

f(x) = z2

exist, Rf(θ,y) exists for each θ ∈ [α(y), β(y)], Rf( · ,y) ∈ C0([α(y), β(y)]), and Rf( · ,y)

behaves in one of the following ways:

(i) Rf( · ,y) = z1 is a constant function and f is continuous at y.

(ii) There exist α1 and α2 so that α(y) ≤ α1 < α2 ≤ β(y), Rf = z1 on [α(y), α1],

Rf = z2 on [α2, β(y)] and Rf is strictly increasing (if z1 < z2) or strictly decreasing

(if z1 > z2) on [α1, α2].

Corollary 1.2. Suppose Ω is a locally Lipschitz domain in R2, Γ is a C2,λ open subset

of ∂Ω for some λ ∈ (0, 1), the curvature Λ(x) of Γ at x is less than −2|H(x)| for x ∈ Γ.

Suppose φ ∈ L∞(∂Ω), y ∈ Γ, either φ is symmetric with respect to a line through y or φ

is continuous at y, and f ∈ BV (Ω) minimizes

J(u) =

∫
Ω

√
1 + |Du|2 dx +

∫
Ω

2Hudx +

∫
∂Ω
|u− φ| ds

for u ∈ BV (Ω). Then f ∈ C0(Ω ∪ {y}). If φ ∈ C0(Γ), then f ∈ C0(Ω ∪ Γ).

When H ≡ 0, the strict inequality (1.4) can be relaxed.

Corollary 1.3. Suppose Ω is a locally Lipschitz domain in R2, Γ is a C2,λ open subset of

∂Ω for some λ ∈ (0, 1), and the curvature Λ of Γ is nonpositive and vanishes, at most, at

a finite number of points of Γ. For each point x0 ∈ Γ at which Λ(x0) = 0, suppose there

exist C > 0 and δ > 0 such that

(1.5) |Λ(x)| ≥ C|x− x0|λ for x ∈ Γ, |x− x0| < δ.

Suppose φ ∈ L∞(∂Ω), y ∈ Γ, either φ is symmetric with respect to a line through y or φ

is continuous at y, and f ∈ BV (Ω) minimizes

(1.6) J(u) =

∫
Ω

√
1 + |Du|2 dx +

∫
∂Ω
|u− φ| ds

for u ∈ BV (Ω). Then f ∈ C0(Ω ∪ {y}). If φ ∈ C0(Γ), then f ∈ C0(Ω ∪ Γ).

Example 1.4. Let Ω = {(x, y) ∈ R2 : 1 < (x + 1)2 + y2 < cosh2(1)} and φ(x, y) =

sin
(

π
x2+y2

)
for (x, y) 6= (0, 0) (see Figure 1.2 for a rough illustration of the graph of φ).

Set O = (0, 0) and H ≡ 0. Let f ∈ C2(Ω) minimize (1.6) over BV (Ω). Then Corollary 1.2

(with y = O) implies f ∈ C0(Ω), even though φ has no limit at O.
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Figure 1.2: Ω and part of the graph of φ.

2. Proofs

Let Q be the operator on C2(Ω) given by

(2.1) Qf(x)
def
= Nf(x)− 2H(x), x ∈ Ω.

Let ν be the exterior unit normal to ∂Ω, defined almost everywhere on ∂Ω. At every

point y ∈ ∂Ω for which ∂Ω is a C1 curve in a neighborhood of y, ν̂ denotes a continuous

extension of ν to a neighborhood of y. We shall adopt the same convention as that adopted

in [3, p. 178] regarding the meaning of the notation “Tψ” and “Tψ · ν” at points of ∂Ω;

thus, for example, the equation Tψ(y) · ν(y) = ±1 at a point y ∈ ∂Ω means

lim
Ω3x→y

∇ψ(x) · ν̂(x)√
1 + |∇ψ(x)|2

= ±1

and Tψ(y) = ±ν(y) means limΩ3x→y Tψ(x) = ±ν(y).

Definition 2.1. Given a locally Lipschitz domain Ω, an upper Bernstein pair (U+, ψ+)

for a curve Γ ⊂ ∂Ω and a function H in (2.1) is a domain U+ and a function ψ+ ∈
C2(U+)∩C0(U+) such that Γ ⊂ ∂U+, ν is the exterior unit normal to ∂U+ at each point

of Γ (i.e., U+ and Ω lie on the same side of Γ), Qψ+ ≤ 0 in U+, and Tψ+ · ν = 1 almost

everywhere on Γ in the same sense as in [3]; that is, for almost every y ∈ Γ,

(2.2) lim
U+3x→y

∇ψ+(x) · ν̂(x)√
1 + |∇ψ+(x)|2

= 1.

Definition 2.2. Given a domain Ω as above, a lower Bernstein pair (U−, ψ−) for a

curve Γ ⊂ ∂Ω and a function H in (2.1) is a domain U− and a function ψ− ∈ C2(U−) ∩
C0(U−) such that Γ ⊂ ∂U−, ν is the exterior unit normal to ∂U− at each point of Γ

(i.e., U− and Ω lie on the same side of Γ), Qψ− ≥ 0 in U−, and Tψ− · ν = −1 almost

everywhere on Γ (in the same sense as above).

The existence of Bernstein pairs is established in Lemmas 2.4 and 2.5.
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Lemma 2.3. Let a < b, λ ∈ (0, 1), ψ ∈ C2,λ([a, b]) and Γ = {(x, ψ(x)) ∈ R2 : x ∈ [a, b]}
such that ψ′(x) < 0 for x ∈ [a, b], ψ′′(x) < 0 for x ∈ [a, b] \ J , there exist C1 > 0 and

ε1 > 0 such that if x ∈ J and |x − x| < ε1, then ψ′′(x) ≤ −C1|x − x|λ, where J is a

finite subset of (a, b). Then there exists an open set U ⊂ R2 with Γ ⊂ ∂U and a function

h ∈ C2(U) ∩ C0(U) such that ∂U is a closed, C2,λ curve, Γ lies below U in R2 (i.e., the

exterior unit normal ν = (ν1(x), ν2(x)) to ∂U satisfies ν2(x) < 0 for a ≤ x ≤ b), Nh = 0

in U and Th · ν = 1 almost everywhere on an open subset of ∂U+ containing Γ (i.e., (2.2)

holds).

Proof. We may assume that a, b > 0. There exists c > b and k ∈ C2,λ([−c, c]) with

k(−x) = k(x) for x ∈ [0, c] such that k(x) = −ψ(x) for x ∈ [a, b], k′′(x) > 0 for x ∈
[−c, c] \ J , where J is a finite set, k′′(0) > 0, and the set

K = {(x, k(x)) ∈ R2 : x ∈ [−c, c]}

is strictly concave (i.e., tk(x1) + (1 − t)k(x2) > k(tx1 + (1 − t)x2) for each t ∈ (0, 1)

and x1, x2 ∈ [−c, c] with x1 6= x2). From [6, pp. 1063–1065], we can construct a domain

Ω(K, l) such that K ⊂ ∂Ω(K, l) and Ω(K, l) lies below K (i.e., the outward unit normal to

Ω(K, l) at (x, k(x)) is ν(x) = (−k′(x), 1)/
√

1 + (k′(x))2; see [6, Figure 4]) and a function

F+ ∈ C2(Ω(K, l)) ∩ C0(Ω(K, l)) such that NF+ = 0 and the function

µ(x)
def
=

(∇F+(x),−1)√
1 + |∇F+(x)|2

, x ∈ Ω(K, l),

extends continuously to a function µ̂ on Ω(K, l)∪K and µ̂(x, k(x))·ν(x) = 1 for x ∈ [−c, c].
Now let V be an open subset of Ω with C2,λ boundary such that {(x,−ψ(x)) : x ∈
[a, b]} ⊂ ∂V and ∂V ∩ (∂Ω(K, l) \ K) = ∅ and then let U = {(x,−y) : (x, y) ∈ V } and

h(x, y) = F+(x,−y) for (x, y) ∈ U .

Lemma 2.4. Suppose Ω is a locally Lipschitz domain in R2, Γ is a C2,λ open subset of ∂Ω

for some λ ∈ (0, 1), and the curvature Λ of Γ is either negative or nonpositive, vanishes

only at finite number of points of Γ and (1.5) holds at each such point. Let y ∈ Γ. Then

there exist δ > 0 and upper and lower Bernstein pairs (U±, ψ±) for (Γ ∩Bδ(y), 0).

Proof. Let Ω ⊂ R2 be an open set, Γ ⊂ ∂Ω be a C2,λ curve and y ∈ Γ be a point at which

we wish to have upper and lower Bernstein pairs for H ≡ 0. Notice that (1.5) implies

that the “curvature” condition in Lemma 2.3 (i.e., after rotating Ω, the condition that

if Λ(x, ψ(x)) = 0, then ψ′′(x) ≤ −C1|x − x|λ when x is near x) is satisfied. Choose a

neighborhood V of y and a rigid motion ζ : R2 → R2 such that Σ
def
= V ∩ ∂Ω ⊂ Γ and

the curve ζ(Σ) satisfies the hypotheses of Lemma 2.3. Let U and h be as given in the

conclusion of Lemma 2.3. Then (ζ−1(U), h ◦ ζ) will be an upper Bernstein pair for Σ and

H ≡ 0 and (ζ−1(U),−h ◦ ζ) will be a lower Bernstein pair for Σ and H ≡ 0.
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Lemma 2.5. Suppose Ω is a C2,λ domain in R2 for some λ ∈ (0, 1), y ∈ ∂Ω and

Λ(y) < −2|H(y)|, where Λ(y) denotes the curvature of ∂Ω at y. Then there exist δ > 0

and upper and lower Bernstein pairs (U±, ψ±) for (Γ, H), where Γ = Bδ(y) ∩ ∂Ω.

Proof. We may assume H 6≡ 0 in any neighborhood of y since Lemma 2.4 covers this case.

There exists δ1 > 0 such that Λ(x) < −2|H(x)| for each x ∈ ∂Ω ∩Bδ1(y). There exists a

δ2 ∈ (0, δ1/2) such that

Λ0
def
= sup{Λ(x) : x ∈ ∂Ω ∩Bδ2(y)} < inf{−2|H(x)| : x ∈ Ω ∩Bδ2(y)} def

= −2H0.

Fix c0 ∈ (−1/(4H0), 0) and set

r1 =
1−
√

1 + 4c0H0

2H0
and r2 =

1 +
√

1 + 4c0H0

2H0
.

Let q ∈ ∂Ω ∩ Bδ2(y) and set p = p(q) = q + r1ν(q), define r̂(x) = r̂q(x) = |x − p|
and consider the annulus A = A(q)

def
= {x ∈ R2 : r1 ≤ r̂(x) ≤ r2}; let νq denote

the exterior unit normal to A(q). Let z = h(r̂) (= hq(r̂q)) be a unduloid surface (see

for example [9, 16]) defined on the annulus A(q) which has constant mean curvature

−H0 < 0 and becomes vertical at r̂ = r1, r2 (with Thq · νq = 1 on r̂q = r1 in the

limiting sense (i.e., (2.2) holds)). Notice that A(q) touches ∂Ω at q and so there exists

0 < δ3 < min{δ2/2, r2 − r1} such that h′(r) ≤ 0 if r1 < r < r1 + δ3 and for each

q ∈ ∂Ω ∩ Bδ3(y), {x ∈ Bδ3(y) : |x − p(q)| = r1} ⊂ Ω ∪ {q} (see Figure 2.1). We

shall assume that δ3 is picked small enough that the curvature of ∂Bδ3(y) is larger than

supΩ 2|H|.

y

q

Figure 2.1: ∂Ω (red); A(q) (blue); U = Ω ∩Bδ3(y) (green).

Set z1 = h(r1)−h(r2) (= 1/(2H0)) and fix z2 > z1. Let ψ+ be the variational solution

of the Dirichlet problem Nψ+ = −2H0 in U = Ω ∩ Bδ3(y), ψ+ = z2 on Γ = Bδ3(y) ∩ ∂Ω

and ψ+ = 0 on ∂U \ Γ. Notice that ψ+ assumes its Dirichlet boundary value (of zero) on

∂U \ Γ. For each q ∈ Γ, we have

ψ+(x) = 0 < hq(r̂q(x)) for all x ∈ ∂U ∩ A(q)

and Thq · νq = 1 on r̂q(x) = r1; it follows from [8, Theorem 5.1] that ψ+(x) ≤ z1 for

every x ∈ U ∩ A(q). As q varies over Γ, we see that ψ+ ≤ z1 in U . Therefore the trace
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of ψ+ is strictly smaller than its prescribed Dirichlet boundary value (of z2) on Γ and

so Tψ+ · ν = 1 on Γ; this follows, for example, from [2, 20]. Thus (U,ψ+) is an upper

Bernstein pair for (Γ, H). Now define ψ− = −ψ+ in U .

Remark 2.6. Suppose Ω is a C2,λ domain in R2 for some λ ∈ (0, 1), y ∈ ∂Ω and Λ(y) <

2|H(y)|, where Λ(y) denotes the curvature of ∂Ω at y. If H is non-negative in U ∩ Ω

for some neighborhood U of y, then the argument which establishes [10, Corollary 14.13]

and boundary regularity results (e.g., [2, 20]) imply that there exist δ > 0 and an upper

Bernstein pair (U+, ψ+) for (Γ, H), where Γ = Bδ(y) ∩ ∂Ω. If H is non-positive in U ∩Ω

for some neighborhood U of y, then there exist δ > 0 and a lower Bernstein pair (U−, ψ−)

for (Γ, H), where Γ = Bδ(y) ∩ ∂Ω.

Proof of Theorem 1.1. We note, as in [16], that the conclusion of Theorem 1.1 is a local one

and so, for small δ > 0, we can replace Ω by a C2,λ set Ω∗ such that Ω∩Bδ(y) = Ω∗∩Bδ(y)

and Ω∗ ⊂ B2δ(y). We may assume Ω is a bounded domain. Set S0 = {(x, f(x)) : x ∈ Ω}.
From the calculation on page 170 of [16], we see that the area of S0 is finite; let M0 denote

this area. For δ ∈ (0, 1), set

p(δ) =

√
8πM0

ln(1/δ)
.

Let E = {(u, v) : u2 + v2 < 1}. As in [5, 16], there is a parametric description of the

surface S0,

(2.3) Y (u, v) = (a(u, v), b(u, v), c(u, v)) ∈ C2(E : R3),

which has the following properties:

(a1) Y is a diffeomorphism of E onto S0.

(a2) Set G(u, v) = (a(u, v), b(u, v)), (u, v) ∈ E. Then G ∈ C0(E : R2).

(a3) Set σ(y) = G−1(∂Ω \ {y}); then σ(y) is a connected arc of ∂E and Y maps σ(y)

onto ∂Ω \ {y}. We may assume the endpoints of σ(y) are o1(y) and o2(y). (Note

that o1(y) and o2(y) are not assumed to be distinct.)

(a4) Y is conformal on E: Yu · Yv = 0, Yu · Yu = Yv · Yv on E.

(a5) 4Y := Yuu + Yvv = H(Y )Yu × Yv on E.

From Lemma 2.4 whenH ≡ 0 and Lemma 2.5 whenH satisfies (1.1), we see that upper and

lower Bernstein pairs (U±, ψ±) for (Γ, H) exist. Notice that for each C ∈ R, Q(ψ+ +C) =

Q(ψ+) ≤ 0 on Ω ∩ U+ and Q(ψ− + C) = Q(ψ−) ≥ 0 on Ω ∩ U−, and so

(2.4) N(ψ+ + C)(x) ≤ 2H(x, f(x)) = Nf(x) for x ∈ Ω ∩ U+
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and

(2.5) N(ψ− + C)(x) ≥ 2H(x, f(x)) = Nf(x) for x ∈ Ω ∩ U−.

Let q denote a modulus of continuity for ψ+ and ψ−.

Let ζ(y) = ∂E \ σ(y); then G(ζ(y)) = {y} and o1(y) and o2(y) are the endpoints of

ζ(y). There exists a δ1 > 0 such that if w ∈ E and dist(w, ζ(y)) ≤ 2δ1, then G(w) ∈
U+ ∩ U−. Now Tψ± · ν = ±1 (in the sense of [3]) almost everywhere on an open subset

Υ± of ∂U± which contains Γ; there exists a δ2 > 0 such that (∂U± \ Υ±) ∩ {x ∈ R2 :

|x− y| ≤ 2p(δ2)} = ∅. Set δ∗ = min{δ1, δ2} and

V ∗ = {w ∈ E : dist(w, ζ(y)) < δ∗}.

Notice if w ∈ V ∗, then G(w) ∈ U+ ∩ U−.

Claim. Y is uniformly continuous on V ∗ and so extends to a continuous function on V ∗.

Proof. Let ε > 0. Choose δ ∈ (0, (δ∗)2) such that p(δ) + 2q(p(δ)) < ε. Let w1,w2 ∈ V ∗

with |w1−w2| < δ; then G(w1), G(w2) ∈ U+∩U−. Set Cr(w) = {u ∈ E : |u−w| = r} and

Br(w) = {u ∈ E : |u − w| < r}. From the Courant-Lebesgue Lemma (e.g., Lemma 3.1

in [4]), we see that there exists ρ = ρ(δ) ∈
(
δ,
√
δ
)

such that the arc length lρ(w1) of

Y (Cρ(w1)) is less than p(δ). Notice that w2 ∈ Bρ(δ)(w1). Let

k(δ)(w1) = inf
u∈Cρ(δ)(w1)

c(u) = inf
x∈G(Cρ(δ)(w1))

f(x)

and

m(δ)(w1) = sup
u∈Cρ(δ)(w1)

c(u) = sup
x∈G(Cρ(δ)(w1))

f(x)

(recall that c(·) is the third component of Y in (2.3)); then

m(δ)(w1)− k(δ)(w1) ≤ lρ < p(δ).

Fix x0 ∈ C ′ρ(δ)(w1). Set

C+ = inf
x∈U+∩C′

ρ(δ)
(w1)

ψ+(x) and C− = sup
x∈U−∩C′

ρ(δ)
(w1)

ψ−(x).

Then ψ+ − C+ ≥ 0 on U+ ∩ C ′ρ(δ)(w1) and ψ− − C− ≤ 0 on U− ∩ C ′ρ(δ)(w1). Therefore,

for x ∈ U+ ∩ U− ∩ C ′ρ(δ)(w1), we have

k(δ)(w1) + (ψ−(x)− C−) ≤ f(x) ≤ m(δ)(w1) + (ψ+(x)− C+).

Set

b+(x) = m(δ)(w1) + (ψ+(x)− C+) for x ∈ U+ ∩G(Bρ(δ)(w1))
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and

b−(x) = k(δ)(w1) + (ψ−(x)− C−) for x ∈ U− ∩G(Bρ(δ)(w1)).

Now ρ(δ) <
√
δ < δ∗ ≤ δ2; notice that if w ∈ Bρ(δ)(w1), then |w − w1| < δ2 and

|G(w) − y| < 2p(δ2) and thus if x ∈ G(Bρ(δ)(w1)) ∩ ∂U±, then x ∈ Υ±. From (2.4) and

(2.5), the facts that b− ≤ f on U− ∩ C ′ρ(δ)(w1) and f ≤ b+ on U+ ∩ C ′ρ(δ)(w1) and the

general comparison principle (see [8, Theorem 5.1]), we have

b− ≤ f on U− ∩G(Bρ(δ)(w1))

and

f ≤ b+ on U+ ∩G(Bρ(δ)(w1)).

Since the diameter of G(Bρ(δ)(w1)) ≤ p(δ), we have |ψ±(x) − C±| ≤ q(p(δ)) for

x ∈ U± ∩G(Bρ(δ)(w1)); recall that q(·) is a modulus of continuity for ψ+ and ψ−. Thus,

whenever x1,x2 ∈ G(Bρ(δ)(w1)), we have x1,x2 ∈ U+ ∩ U−. Since c(w) = f(G(w)),

G(w1) ∈ U+ ∩ U− and G(w2) ∈ U+ ∩ U−, we have

b−(G(w1))− b+(G(w2)) ≤ c(w1)− c(w2) ≤ b+(G(w1))− b−(G(w2))

or

−
[
m(δ)(w1)− k(δ)(w1) + (ψ+(G(w2))− C+)− (ψ−(G(w1)) + C−)

]
≤ c(w1)− c(w2)

≤
[
m(δ)(w1)− k(δ)(w1) + (ψ+(G(w1))− C+)− (ψ−(G(w2)) + C−)

]
.

Since |ψ±(G(w))− C±| ≤ q(p(δ)) for w ∈ Bρ(δ)(w1) ∩ U±, we have

|c(w1)− c(w2)| ≤ p(δ) + 2q(p(δ)) < ε.

Thus c is uniformly continuous on V ∗ and, since G ∈ C0(E : R2), we see that Y is

uniformly continuous on V ∗. Therefore Y extends to a continuous function, still denote

Y , on V ∗.

Notice that

lim
Γ13x→y

f(x) = lim
∂E3w→o1(y)

c(w) = c(o1(y))

and

lim
Γ23x→y

f(x) = lim
∂E3w→o2(y)

c(w) = c(o2(y))

and so, with z1 = c(o1(y)) and z2 = c(o2(y)), we see that the limits

lim
Γ13x→y

f(x) = z1 and lim
Γ23x→y

f(x) = z2

exist.

Now we need to consider two cases:
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(A) o1(y) = o2(y).

(B) o1(y) 6= o2(y).

These correspond to Cases 5 and 3 respectively in Step 1 of the proof of [16, Theorem 1].

Case (A). Suppose o1(y) = o2(y); set o = o1(y) = o2(y). Then f extends to a function

in C0(Ω ∪ {y}) and Theorem 1.1(i) holds.

Proof. Notice that G is a bijection of E∪{o} and Ω∪{y}. Thus we may define f = c◦G−1,

so f(G(w)) = c(w) for w ∈ E ∪ {o}; this extends f to a function defined on Ω ∪ {y}.
Let {δi} be a decreasing sequence of positive numbers converging to zero and consider the

sequence of open sets {G(Bρ(i)(o))} in Ω, where ρ(i) = ρ(δi(o)). Now y /∈ G(Cρ(i)(o))

and so there exist σi > 0 such that

P (i) = {x ∈ Ω : |x− y| < σi} ⊂ G(Bρ(i)(o))

for each i ∈ N. Thus if x ∈ P (i), we have |f(x)−f(y)| < p(δi)+2q(p(δi)). The continuity

of f at y follows from this.

Case (B). Suppose o1(y) 6= o2(y). Then Theorem 1.1(ii) holds.

Proof. As at the end of Step 1 of the proof of [16, Theorem 1], we define X : B → R3 by

X = Y ◦ g and K : B → R2 by K = G ◦ g, where B = {(u, v) ∈ R2 : u2 + v2 < 1, v > 0}
and g : B → E is either a conformal or an indirectly conformal (or anticonformal) map

from B onto E such that g(1, 0) = o1(y), g(−1, 0) = o2(y) and g(u, 0) ∈ o1(y)o2(y) for

each u ∈ [−1, 1], where ab denotes the (appropriate) choice of arc in ∂E with a and b as

endpoints.

Notice that K(u, 0) = y for u ∈ [−1, 1]. Set x = a ◦ g, y = b ◦ g and z = c ◦ g, so

that X(u, v) = (x(u, v), y(u, v), z(u, v)) for (u, v) ∈ B. Now, from Step 2 of the proof

of [16, Theorem 1],

X ∈ C0(B : R3) ∩ C1,ι
(
B ∪ {(u, 0) : −1 < u < 1} : R3

)
for some ι ∈ (0, 1) and X(u, 0) = (y, z(u, 0)) cannot be constant on any nondegenerate

interval in [−1, 1]. Define Θ(u) = arg(xv(u, 0) + iyv(u, 0)). From equation [16, (12)], we

see that

α1 = lim
u↓−1

Θ(u) and α2 = lim
u↑1

Θ(u);

here α1 < α2. As in Steps 2–5 of the proof of [16, Theorem 1], we see that Rf(θ) exists

when θ ∈ (α1, α2),

G−1(L(α2)) ∩ ∂E = {o1(y)} (and K−1(L(α2)) ∩ ∂B = {(1, 0)}) when α2 < β(y),

G−1(L(α1)) ∩ ∂E = {o2(y)} (and K−1(L(α1)) ∩ ∂B = {(−1, 0)}) when α1 > α(y),
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where L(θ) = {y + (r cos(θ), r sin(θ)) ∈ Ω : 0 < r < δ∗}, and we see that Rf is strictly

increasing or strictly decreasing on (α1, α2). We may argue as in Case A to see that f is

uniformly continuous on

Ω+ = {y + (r cos(θ), r sin(θ)) ∈ Ω : 0 < r < δ, α2 ≤ θ < β(y) + ε}

and f is uniformly continuous on

Ω− = {y + (r cos(θ), r sin(θ)) ∈ Ω : 0 < r < δ, α(y)− ε < θ ≤ α1}

for some small ε > 0 and δ > 0, since G is a bijection of E ∪ {o1(y)} and Ω ∪ {y} and a

bijection of E ∪ {o2(y)} and Ω∪ {y}. Theorem 1.1 then follows, as in [7], from Steps 2–5

of the proof of [16, Theorem 1].

Proof of Corollary 1.3. From Theorem 1.1, we see that the radial limits Rf(θ,y) exist

for each θ ∈ [α(y), β(y)]. Set z1 = Rf(α(y),y), z2 = Rf(β(y),y) and z3 = φ(y). If

z1 = z2, then Theorem 1.1(i) holds. (If f is symmetric with respect to a line through y,

then z1 = z2 and we are done.)

Suppose otherwise that z1 6= z2; we may assume that z1 < z3 and z1 < z2. Then there

exist α1, α2 ∈ [α(y), β(y)] with α1 < α2 such that

Rf(θ,y) is


constant (= z1) for α(y) ≤ θ ≤ α1,

strictly increasing for α1 ≤ θ ≤ α2,

constant (= z2) for α2 ≤ θ ≤ β(y).

From Theorem 1.1, we see that Rf(θ,y) exists for each y ∈ Γ and θ ∈ [α(y), β(y)] and f

is continuous on Ω ∪ Γ \ Υ for some countable subset Υ of Γ. Let z0 ∈ (z1,min{z2, z3})
and θ0 ∈ (α1, α2) satisfy Rf(θ0,y) = z0. Let C0 ⊂ Ω be the z0-level curve of f which has

y and a point y0 ∈ ∂Ω \ {y} as endpoints. Let y1 ∈ Γ1(y) ∩ Γ \Υ and y2 ∈ C0 such that

the (open) line segment L joining y1 and y2 is entirely contained in Ω; recall that Γ1(y)

is the “lower” component of ∂Ω ∩Bδ(y) \ {y} (see Figure 1.1). Let M < min{z1, infL f}.
Let Π be the plane containing (y, z0) and L × {M} and let h be the affine function on

R2 whose graph is Π. Let Ω0 be the component of Ω \ (C0 ∪ L) whose closure contains

Bδ(y) ∩ Γ1(y) for small δ > 0. By first choosing y2 sufficiently near y and then choosing

y1 sufficiently near y, we may assume that y is the furthest point on C0 between y and

y2 away from L. Then h = M < f on L, h ≤ z0 = f on the portion of C0 between y and

y2, and h(y) = z0 > Rf(θ,y) for each θ ∈ [α(y), θ0). Thus h ≤ f on Ω ∩ ∂Ω0 and h > f

on Bδ(y) ∩ ∂Ω0 for some sufficiently small δ > 0.

Then there is a curve C ⊂ Ω0 on which f = h whose endpoints are y3 and y, for some

y3 ∈ Γ1(y) between y1 and y, such that h > f in Ω1, where Ω1 ⊂ Ω0 is the open set



Boundary Continuity 495

bounded by C and the portion of Γ1(y) between y and y3. (In Figure 2.2, on the left,

{(x, h(x)) : x ∈ C} is in red, L is in dark blue, C0 is in yellow, and the light blue region

is a portion of ∂1
yΩ× R, and, on the right, Ω1 is in light green and Γ2(y) is in magenta.)

Figure 2.2: Side View of Π ∩ (Ω× R) (left) and Ω1 (right).

Now let g ∈ C2(Ω) be defined by g = f on Ω \ Ω1 and g = h on Ω1 and observe that

J(g) < J(f). (The functional J(f) includes the area of the blue surface in Figure 2.3,

which is a subset of ∂Ω × R, and the area of the purple surface of this figure, which is

the subset of the graph of f over Ω1 while J(g) does not include the areas of the blue

and purple surfaces and instead includes the area of the green surface on the left side of

Figure 2.2, which is the portion of the plane Π over Ω1.)

Figure 2.3: Graph of f over Ω1 (purple) and part of ∂Ω× R (blue).

This contradicts the fact that f minimizes J . Thus it must be the case that z1 = z2,

Theorem 1.1(i) holds and f is continuous at y. (Notice that the set Ω1 = {x ∈ Ω0 : h(x) >

f(x)} could be more complex but the proof is unchanged; if V is an open set in Ω0 with

h < f in V , h = f on ∂V ∩ Ω and h ≤ f on ∂V ∩ ∂Ω is an “inclusion” in Ω1, it does not

matter; we still set g = h on Ω1 and g = f on Ω \ Ω1.)

Proof of Corollary 1.2. The proof of Corollary 1.2 is essentially the same as that of Corol-

lary 1.3; we replace f with a function g and obtain a contradiction by showing J(g) < J(f),

where

J(u) =

∫
Ω

√
1 + |Du|2 dx +

∫
Ω

(∫ u(x)

c
2H(x, t) dt

)
dx +

∫
∂Ω
|u− φ| ds

for u ∈ BV (Ω).

As in the proof of Corollary 1.3, we assume z1 < z3, z1 < z2, and Rf(θ,y) is strictly

increasing on (α1, α2) and constant on [α(y), α1] and [α2, β(y)]. Let z0 ∈ (z1,min{z2, z3})
and θ0 ∈ (α1, α2) satisfy Rf(θ0,y) = z0. Extend H so H ∈ C1(R2). Let R > 0 be



496 Mozhgan Nora Entekhabi and Kirk E. Lancaster

small enough that 2R|H(x)| ≤ 1 for all x ∈ B2R(y). Set θb = (θ0 + β(y))/2 and T =

{y + r(cos θb, sin θb) : r ∈ R}, and let C(R) be the circle of radius R which passes through

y, is tangent at y to the line T , and intersects Γ1(y). Let V (R) be the open disk inside

C(R). (In Figure 2.4, the blue arcs are part of ∂Ω, locally Ω lies below these blue arcs,

the red rays represent θ = θ0, and, on the right, V (R) is the yellow disk, C(R) is the black

circle, and T is the green line.) Notice that (1.2)–(1.3) in the domain V (R) is solvable for

all φ ∈ C0(C(R)).

T

Figure 2.4: U (green region; left); C(R) (black circle; right).

Let h ∈ C2(V (R)) satisfy Qh = 0 in V (R), h(y) = z0, h < f on C(R) ∩ Ω (recall

Rf(θb,y) > Rf(θ0,y) = z0), and h ≤ z0 on C(R) \ Ω. Set U = {x ∈ Ω ∩ V (R) : h(x) >

f(x)} (see Figure 2.4) and notice that Γ1(y) ∩ Bδ(y) ⊂ U ⊂ V (R) ∪ {y} for some δ > 0.

Now define g ∈ C0(Ω) by g = h on U and g = f on Ω \U . Then J(g) < J(f) as before in

the proof of Corollary 1.3.

Proof of Example 1.4. By Corollary 1.2, f is continuous on Ω ∪ {(0, 0)}. Clearly f is

continuous at (x, y) when (x + 1)2 + y2 = cosh2(1). By [24], f is continuous at (x, y)

when (x + 1)2 + y2 = 1 and (x, y) 6= (0, 0). The parametrization (2.3) of the graph of f

(restricted to Ω \ {(x, 0) : x < 0}) satisfies Y ∈ C0(E). Notice that ζ((0, 0)) = {o} (since

β((0, 0))−α((0, 0)) = π and z1 = z2) for some o ∈ ∂E. Suppose G in (a2) is not one-to-one.

Then there exists a nondegenerate arc ζ ⊂ ∂E such that G(ζ) = {y1} for some y1 ∈ ∂Ω

and therefore f is not continuous at y1, which is a contradiction. Thus f = g ◦G−1 and

so f ∈ C0(Ω). (The continuity of G−1 follows, for example, from Lemma 3.1 in [4].)

Remark 2.7. The term “order of non-uniformity”, used in [17], and the term genre, es-

tablished in 1912 by Bernstein, adopted by Serrin (see [23, p. 425]) and used in [13], are

numbers which measure the variation from uniform ellipticity of a quasilinear elliptic op-

erator; the genre and the “order of non-uniformity” for the minimal surface operator are

both equal to two (2) while the genre and the “order of non-uniformity” for uniformly

elliptic operators are both equal to zero (0). We are confused by the invention for a new

phrase for an existing and named phenomenon.
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