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Extension Operators Preserving Janowski Classes of Univalent Functions

Andra Manu

Abstract. In this paper, our main interest is devoted to study the extension op-

erator Φn,α,β : LS → LSn given by Φn,α,β(f)(z) =
(
f(z1), z̃(f(z1)/z1)α(f ′(z1))β

)
,

z = (z1, z̃) ∈ Bn, where α, β ≥ 0. We shall prove that if f ∈ S can be embedded as the

first element of a g-Loewner chain with g : U → C given by g(ζ) = (1 +Aζ)/(1 +Bζ),

|ζ| < 1, and −1 ≤ B < A ≤ 1, then F = Φn,α,β(f) can be embedded as the first

element of a g-Loewner chain on the unit ball Bn for α ∈ [0, 1], β ∈ [0, 1/2] and

α + β ≤ 1. As a consequence, the operator Φn,α,β preserves the notions of Janowski

starlikeness on Bn and Janowski almost starlikeness on Bn. Particular cases will be

also mentioned.

On the other hand, we are also concerned about some radius problems related to

the operator Φn,α,β and the Janowski class S∗(a, b). We compute the radius S∗(a, b)

of the class S (respectively S∗).

1. Introduction and preliminaries

Let Cn denote the space of n complex variables z = (z1, z2, . . . , zn) where zj ∈ C, 1 ≤
j ≤ n with the Euclidean inner product 〈z, w〉 =

∑n
j=1 zjwj and the Euclidean norm

‖z‖ =
√
〈z, z〉. The open unit ball {z ∈ Cn : ‖z‖ = 1} is denoted by Bn and, in

the case of one complex variable, B1 is denoted by U . We denote by H(Bn) the set

of holomorphic mappings from Bn into Cn. We say that f ∈ H(Bn) is normalized if

f(0) = 0 and Df(0) = In, where In is the n × n-unitary matrix. We denote by LSn
the set of normalized locally biholomorphic mappings on Bn and, in the case of one

complex variable, LS1 is denoted by LS. We consider the following notations: S(Bn) the

family of normalized biholomorphic mappings on Bn, S∗(Bn) the family of normalized

biholomorphic mappings that are starlike with respect to zero, respectively K(Bn) the

family of normalized biholomorphic mappings on Bn that are convex. In the case of one

complex variable, the above families will be denoted by S, S∗, respectively K.

Further we will introduce some subclasses of H(Bn) that will be useful in the next

sections.
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The Carathéodory class of holomorphic functions with positive real part on U is defined

by (see e.g., [24])

P = {p ∈ H(U) : p(0) = 1,Re p(z) > 0, |z| < 1}.

The above class was generalized to the unit ball Bn (n ≥ 2) as follows (see [23]):

M = {h ∈ H(Bn) : h(0) = 0, Dh(0) = In,Re〈h(z), z〉 > 0, z ∈ Bn \ {0}}.

This class is related to some subclasses of biholomorphic mappings on Bn, for example

the class of biholomorphic mappings which have parametric representation, the class of

starlike mappings and the class of spirallike mappings of type δ, where δ ∈ (−π/2, π/2)

(see e.g., [10, 28] and the references therein).

Definition 1.1. Let g : U → C be an univalent function on the unit disk U such that

g(0) = 1, Re g(ζ) > 0, ζ ∈ U and the coefficients in its power series expansion are real

(i.e., g(ζ) = g(ζ) on U). Also, assume g satisfies the following conditions for all r ∈ (0, 1):

min
|ζ|=r

Re g(ζ) = min{g(r), g(−r)},

max
|ζ|=r

Re g(ζ) = max{g(r), g(−r)}.

In this paper, our main concern is the case when the function g has the following

particular form:

(1.1) g(ζ) =
1 +Aζ

1 +Bζ
, |ζ| < 1, where −1 ≤ B < A ≤ 1.

Let Mg be the subclass of M given by (see [7])

Mg =
{
h ∈ H(Bn) : h(0) = 0, Dh(0) = In, 〈h(z), z/‖z‖2〉 ∈ g(U), z ∈ Bn \ {0}

}
,

where g is given as in Definition 1.1. Note that if h ∈ Mg, then
〈
h(z), z/‖z‖2

〉∣∣
z=0

= 1,

since h(0) = 0 and Dh(0) = In.

Let g : U → C be a function given by (1.1) then we obtain the following particular

forms of Mg by choosing suitable values of parameters A and B.

Case I: B = −1. In this situation, we have that

Mg =

{
h ∈ H(Bn) : h(0) = 0, Dh(0) = In,Re〈h(z), z〉 > 1−A

2
‖z‖2, z ∈ Bn \ {0}

}
.

Moreover, if A = 1, then Mg =M.

Case II: B 6= −1. In this case, we have that

Mg =

{
h ∈ H(Bn) : h(0) = 0, Dh(0) = In,

∣∣∣∣ 1

‖z‖2
〈h(z), z〉 − 1−AB

1−B2

∣∣∣∣ < A−B
1−B2

, z ∈ Bn \ {0}
}
.
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Now, we assume that A = (a − 1)/b and B = (a2 − b2 − a)/b, where |1 − a| < b ≤ a. In

the case that b < a, we obtain that

Mg =

{
h ∈ H(Bn) : h(0) = 0, Dh(0) = In,

∣∣∣∣ 1

‖z‖2
〈h(z), z〉 − a

a2 − b2

∣∣∣∣ < b

a2 − b2
, z ∈ Bn \ {0}

}
.

This special case is related to Janowski starlikeness on Bn (see [4]).

If A = (a− a2 + b2)/b and B = (1− a)/b with |1− a| < b ≤ a, then

Mg =

{
h ∈ H(Bn) : h(0) = 0, Dh(0) = In,

∣∣∣∣ 1

‖z‖2
〈h(z), z〉 − a

∣∣∣∣ < b, z ∈ Bn \ {0}
}
.

This case is related to Janowski almost starlikeness on Bn (see [4]).

The following subclasses of biholomorphic mappings on Bn were introduced by Curt

(see [4]).

Definition 1.2. (see [4]) Assume a, b ∈ R such that |1− a| < b ≤ a. Let

S∗(a, b,Bn) =

{
f ∈ LSn :

∣∣∣∣ ‖z‖2

〈[Df(z)]−1f(z), z〉
− a
∣∣∣∣ < b, z ∈ Bn \ {0}

}
be the class of Janowski starlike mappings on Bn and let

AS∗(a, b,Bn) =

{
f ∈ LSn :

∣∣∣∣〈[Df(z)]−1f(z), z〉
‖z‖2

− a
∣∣∣∣ < b, z ∈ Bn \ {0}

}
be the class of Janowski almost starlike mappings on Bn.

We remark that both classes S∗(a, b,Bn) and AS∗(a, b,Bn) are subsets of S∗(Bn),

since |a− 1| < b ≤ a.

The class S∗(a, b,B1) reduces to the following subclass of S∗:

S∗(a, b) =

{
f ∈ H(U) : f(0) = 0, f ′(0) = 1,

∣∣∣∣zf ′(z)f(z)
− a
∣∣∣∣ < b, z ∈ U

}
.

Note that the class S∗(a, b) was introduced by Silverman in [26] (see also [27]). This

class is closely related to the following class of holomorphic functions on U , which was

introduced by Janowski [16]

S∗[A,B] =

{
f ∈ H(U) : f(0) = 0, f ′(0) = 1,

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz
, z ∈ U

}
,

where −1 ≤ B < A ≤ 1 and “≺” is the usual symbol of subordination.

Also, the class AS∗(a, b,B1) reduces to the following subclass of S∗:

AS∗(a, b) =

{
f ∈ H(U) : f(0) = 0, f ′(0) = 1,

∣∣∣∣ f(z)

zf ′(z)
− a
∣∣∣∣ < b, z ∈ U

}
.

Next, we recall the definition of starlikeness of order γ on Bn, where γ ∈ [0, 1). This

notion was introduced by Curt [3] and Kohr [17].
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Definition 1.3. Let f ∈ LSn and γ ∈ [0, 1). The mapping f is said to be starlike of order

γ if

Re

{
‖z‖2

〈[Df(z)]−1f(z), z〉

}
> γ, z ∈ Bn \ {0}.

Let S∗γ(Bn) be the set of starlike mappings of order γ on Bn.

Now, we recall the notion of almost starlikeness of order γ on Bn, where γ ∈ [0, 1).

This notion was introduced by Kohr [18] for γ = 1/2, Feng [6], and by Xu and Liu [31].

Definition 1.4. Let f ∈ LSn and γ ∈ [0, 1). The mapping f is said to be almost starlike

of order γ on Bn if

Re

{
〈[Df(z)]−1f(z), z〉

‖z‖2

}
> γ, z ∈ Bn \ {0}.

Let AS∗γ(Bn) be the set of almost starlike mappings of order γ on Bn.

Remark 1.5. It is easy to see that if a = b = 1/(2γ), where γ ∈ (0, 1), then

AS∗
(

1

2γ
,

1

2γ
,Bn

)
= S∗γ(Bn) and S∗

(
1

2γ
,

1

2γ
,Bn

)
= AS∗γ(Bn).

Remark 1.6. Let f ∈ LSn and h(z) = [Df(z)]−1f(z), z ∈ Bn. Also, let a, b ∈ R be such

that |a − 1| < b ≤ a and γ ∈ [0, 1). In view of [4, Remark 3.3], we deduce the following

relations:

(i) f ∈ S∗(a, b,Bn) ⇐⇒ h ∈Mg, where g(ζ) = 1+(a−1)/bζ
1+(a2−b2−a)/bζ , |ζ| < 1.

(ii) f ∈ AS∗(a, b,Bn) ⇐⇒ h ∈Mg, where g(ζ) = 1+(a−a2+b2)/bζ
1+(1−a)/bζ , |ζ| < 1.

(iii) f ∈ S∗γ(Bn) ⇐⇒ h ∈Mg, where g(ζ) = 1+ζ
1+(2γ−1)ζ , |ζ| < 1.

(iv) f ∈ AS∗γ(Bn) ⇐⇒ h ∈Mg, where g(ζ) = 1+(1−2γ)ζ
1−ζ , |ζ| < 1.

Further, we present the notion of g-starlikeness on Bn, introduced by Graham, Hamada

and Kohr in [7] (see also [13]).

Definition 1.7. Let g : U → C be a function given by Definition 1.1. A mapping f ∈ LSn
is said to be g-starlike on Bn if h ∈ Mg where h(z) = [Df(z)]−1f(z) for all z ∈ Bn. We

denote by S∗g (Bn) the class of g-starlike mappings on Bn and S∗g (B1) by S∗g .

Taking into account the analytical characterization of starlikeness on Bn due to Suf-

fridge [28], it is easy to see that S∗g (Bn) is a subset of S∗(Bn).

Next, we will present some observations regarding the case of g-starlikeness on the

complex plane. The purpose of this remark is to point out how the class S∗g can be related

to the Janowski class S∗[A,B], respectively to the class S∗(a, b) introduced by Silverman,

in the case that the function g is given by the relation (1.1).



Extension Operators 101

Remark 1.8. Let A,B ∈ R be such that −1 ≤ B < A ≤ 1. Also, let g(ζ) = (1 +Aζ)/(1 +

Bζ), ζ ∈ U . The class S∗g can be rewritten as follows:

(i) S∗g =
{
f ∈ H(U) : f(0) = 0, f ′(0) = 1, f(z)/(zf ′(z)) ≺ (1 +Az)/(1 +Bz), z ∈ U

}
.

(ii) S∗g = S∗[−B,−A].

(iii) If A 6= 1 then S∗g = S∗(a, b), where a = (1 − AB)/(1 − A2), b = (A − B)/(1 − A2).

If A = 1 then S∗g = S∗(1+B)/2.

Proof. Indeed, we know from the definition of S∗g that

S∗g =

{
f ∈ H(U) : f(0) = 0, f ′(0) = 1,

f(z)

zf ′(z)
∈ g(U), |z| < 1

}
.

The condition f(z)/(zf ′(z)) ∈ g(U) is equivalent to f(z)/(zf ′(z)) ≺ (1 + Az)/(1 + Bz),

so this justifies (i).

On the other hand, if f ∈ H(U), f(0) = 0 and f ′(0) = 1 then f ∈ S∗g if and only if

zf ′(z)/f(z) ≺ (1− Bz)/(1− Az). Also, it is easy to see that −1 ≤ −A < −B ≤ 1. This

proves (ii). If A 6= 1 then q maps the unit disk U onto the open disk U
(
(1 − AB)/(1 −

A2), (A − B)/(1 − A2)
)
. If A = 1, the unit disk U is mapped onto {ζ ∈ C : Re ζ >

(1 +B)/2}. Thus, the statement of Remark 1.8(iii) is now justified.

Next, we take into consideration the case n ≥ 2. In [4, Remark 3.3], Curt obtained

the appropriate values of parameters A and B such that the classes S∗(a, b,Bn) and

AS∗(a, b,Bn) can be rewritten as S∗g (Bn).

Remark 1.9. (see [4]) Let a, b ∈ R be such that |1− a| < b ≤ a and let the function g be

given by g(ζ) = (1 +Aζ)/(1 +Bζ), ζ ∈ U , where −1 ≤ B < A ≤ 1.

(i) If A = (a− 1)/b, B = (a2 − b2 − a)/b then S∗(a, b,Bn) = S∗g (Bn).

(ii) If A = (a− a2 + b2)/b, B = (1− a)/b then AS∗(a, b,Bn) = S∗g (Bn).

Chirilă [2] introduced the notion of g-spirallikeness of type δ, where δ ∈ (−π/2, π/2).

The particular case when g(ζ) = (1 + ζ)/(1− ζ), ζ ∈ U was studied in [14].

Definition 1.10. Let f ∈ LSn and let g : U → C be a function given by Definition 1.1.

We say that f is g-spirallike of type δ, where δ ∈ (−π/2, π/2), if h( · , t) ∈ Mg, t ≥ 0,

where

h(z, t) = iaz + (1− ia)e−iat[Df(eiatz)]−1f(eiatz), z ∈ Bn, t ≥ 0,

where a = tan δ.
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Remark 1.11. Let g : U → C be the function given by g(ζ) = (1+Aζ)/(1+Bζ), ζ ∈ U . The

class of g-spirallike mappings of type δ reduces to some well known classes of biholomorphic

mappings on Bn by choosing suitable values for the parameters A and B. In particular,

if A = 1 and B = −1 then the class of g-spirallike mappings of type δ reduces to the

class of spirallike mappings of type δ on Bn, which is denoted by Ŝδ(B
n). This class

was introduced in [14]. For A = 1 and B = 2γ − 1 with γ ∈ (0, 1), we obtain the class

of spirallike mappings of type δ and order γ on Bn (see [20]). The case of δ = 0 in

Definition 1.10 leads us to the class of g-starlike mappings on Bn.

We need to recall the definition of a Loewner chain prior introducing the notion of

g-parametric representation. Many results related to Loewner chains in Cn may be found

in [5, 7, 10,12,23,29].

Definition 1.12. (see [23]) Let f, g ∈ H(Bn). We say that f is subordinate to g (write

f ≺ g) if there is a Schwarz mapping v (i.e., v ∈ H(Bn), ‖v(z)‖ ≤ ‖z‖, z ∈ Bn) such that

f(z) = g(v(z)), z ∈ Bn.

Definition 1.13. (see [23]) Let f : Bn× [0,∞)→ Cn. We say that f is a Loewner chain if

f( · , t) is biholomorphic on Bn, f(0, t) = 0, Df(0, t) = etIn for t ≥ 0 and f( · , s) ≺ f( · , t)
whenever 0 ≤ s ≤ t <∞.

Further, we will present a characterization of Loewner chain obtained by Pfaltzgraff

[23].

Lemma 1.14. Let f = f(z, t) : Bn×[0,∞)→ Cn be a mapping such that f( · , t) ∈ H(Bn),

f(0, t) = 0, Df(0, t) = etIn for t ≥ 0 and f(z, · ) is locally absolutely continuous on

[0,∞) locally uniformly with respect to z ∈ Bn. Assume that there exists a mapping

h = h(z, t) : Bn × [0,∞)→ Cn which satisfies the following conditions:

(i) h( · , t) ∈M for t ≥ 0,

(ii) h(z, · ) is measurable on [0,∞) for z ∈ Bn,

and such that the following differential equation is fulfilled

∂f

∂t
(z, t) = Df(z, t)h(z, t) a.e. t ≥ 0, ∀ z ∈ Bn.

Further, assume that {e−tf( · , t)}t≥0 is a locally uniformly bounded family on Bn. Then

f(z, t) is a Loewner chain.

Definition 1.15. (see [5]) A mapping h(z, t) : Bn × [0,∞) → Cn which satisfies the

conditions (i) and (ii) in Lemma 1.14 is called a Herglotz vector field.
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The notions of g-Loewner chain and g-parametric representation were introduced by

Graham, Hamada and Kohr in [7], where the function g satisfies the conditions of Defini-

tion 1.1.

Definition 1.16. Given a mapping f = f(z, t) : Bn × [0,∞) → Cn, one says that f is a

g-Loewner chain if f(z, t) is a Loewner chain such that {e−tf( · , t)}t≥0 is a normal family

on unit ball Bn and the mapping h = h(z, t), which occurs in the following Loewner

differential equation

∂f

∂t
(z, t) = Df(z, t)h(z, t) a.e. t ≥ 0, ∀ z ∈ Bn,

satisfies the condition h( · , t) ∈Mg for a.e. t ≥ 0.

Definition 1.17. Given a normalized holomorphic mapping f : Bn → Cn, we say that f

has g-parametric representation if there exists a g-Loewner chain f(z, t) such that f can

be embedded as the first element of the g-Loewner chain f(z, t) (i.e., f = f( · , 0)). We

will denote by S0
g (Bn) the set of mappings which have g-parametric representation on Bn.

We remark that if g(ζ) = (1+ζ)/(1−ζ), ζ ∈ U , then S0
g (Bn) reduces to the set S0(Bn)

of mappings which have parametric representation, hence any Loewner chain f(z, t) on

Bn, such that {e−tf( · , t)}t≥0 is a normal family on Bn, is a g-Loewner chain on Bn

(see [7]). Also, the family S0
g (Bn) where the function g is given by g(ζ) = 1+ζ

1+(2γ−1)ζ ,

ζ ∈ U and γ ∈ (0, 1) was studied by Chirilă in [1].

Remark 1.18. (i) Let f ∈ LSn. We have that f ∈ S∗g (Bn) if and only if f(z, t) = etf(z) is

a g-Loewner chain for all z ∈ Bn and t ≥ 0 (see [7]).

(ii) Chirilă in [2, Teorem 3.1] proved that if f ∈ LSn and δ ∈ (−π/2, π/2), then f is

g-spirallike of type δ if and only if f(z, t) = e(1−ia)tf(eiatz) is a g-Loewner chain, where

a = tan δ.

Let Φn,α,β be the extension operator defined by the following relation (see [8]):

Φn,α,β(f)(z) =

(
f(z1), z̃

(
f(z1)

z1

)α
(f ′(z1))

β

)
, z = (z1, z̃) ∈ Bn,

where α ≥ 0, β ≥ 0 and f ∈ LS such that f(z1) 6= 0, z ∈ U \ {0}.
The branches of the power functions are chosen such that(

f(z1)

z1

)α ∣∣∣∣
z1=0

= 1, (f ′(z1))
β
∣∣∣
z1=0

= 1.

We observe that for α = 0, β = 1/2, the operator Φn,α,β reduces to the Roper-Suffridge

operator Φn : LS → LSn, given by (see [25])

Φn(f)(z) =
(
f(z1), z̃

√
f ′(z1)

)
, z = (z1, z̃) ∈ Bn.
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It is known that the operator Φn,α,β preserves the notions of starlikeness and parametric

representation from unit disk U into the unit ball Bn, for n ≥ 2 and α ∈ [0, 1], β ∈ [0, 1/2],

α+β ≤ 1 (see [8]). But Φn,α,β preserves the notion of convexity from unit disk U into the

unit ball Bn if and only if (α, β) = (0, 1/2) (see [8,25]). Various properties of the operator

Φn,α,β were investigated in [11, 21], in the case α = 0 and β ∈ [0, 1/2] (see also [9], in the

case β = 0). Also, the operator Φn,α,β was studied in [1, 8, 10].

In this paper, we continue the work in [1, 2, 7, 8] concerning extension operators and

g-Loewner chains in Cn. We consider the operator Φn,α,β and the set S0
g (U) of normalized

holomorphic functions on unit disk U that have g-parametric representation, where g(ζ) =

(1 +Aζ)/(1 +Bζ), |ζ| < 1 and −1 ≤ B < A ≤ 1.

We shall prove that if f ∈ S can be embedded as first element of a g-Loewner chain,

where g : U → C is given by the relation (1.1), then F = Φn,α,β(f) can be embedded as

first element of a g-Loewner chain on the unit ball Bn for α ∈ [0, 1], β ∈ [0, 1/2] and

α + β ≤ 1. As a consequence, the operator Φn,α,β preserves the notions of Janowski

starlikeness and Janowski almost starlikeness from the unit disk into the unit ball Bn.

Particular cases from [1,2] will be also mentioned.

In the last part of the paper, we obtain some radius of Janowski starlikeness associated

to some classes of biholomorphic mappings on Bn generated by the extension operator

Φn,α,β.

2. Main results

In this section we prove the following theorem, which is the main result of this paper. The

following result was obtained in [8, Theorem 2.1] (see also [11] for α = 0), in the case that

g(ζ) = (1+ζ)/(1−ζ), ζ ∈ U . Also, Theorem 2.1 was recently obtained by Chirilă (see [1])

when the function g is given by g(ζ) = 1+ζ
1+(2γ−1)ζ , ζ ∈ U , where γ ∈ (0, 1).

Theorem 2.1. Let g : U → C be the function given by g(ζ) = (1 +Aζ)/(1 +Bζ), ζ ∈ U ,

where −1 ≤ B < A ≤ 1. If f ∈ S has g-parametric representation, then F = Φn,α,β(f) also

has g-parametric representation on unit ball Bn for α ∈ [0, 1], β ∈ [0, 1/2] and α+ β ≤ 1.

Proof. In order to prove the result, we shall use arguments similar to those used in [8,

Theorem 2.1] and [1, Theorem 2.1]. It is obvious that it is enough to consider only the

case n = 2.

We know that f can be embedded as first element of a g-Loewner chain, therefore

there exists a g-Loewner chain f(z1, t) such that f(z1, 0) = f(z1), z1 ∈ U .

Let us consider the following mapping Fα,β : B2 × [0,∞)→ C2, defined by

(2.1) Fα,β(z, t) =

(
f(z1, t), e

(1−α−β)tz2

(
f(z1, t)

z1

)α
(f ′(z1, t))

β

)
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for z = (z1, z2) ∈ B2, t ≥ 0. As it follows from [8], Fα,β(z, t) is a Loewner chain, since

α ∈ [0, 1], β ∈ [0, 1/2] and α+ β ≤ 1.

We know that given a Loewner chain f(z1, t) on U , there exists a function p( · , t) that

belongs to H(U) for t ≥ 0, is measurable in t ≥ 0, with p(0, t) = 1, Re p(z1, t) > 0, z1 ∈ U ,

0 ≤ t <∞, and such that

∂f

∂t
(z1, t) = z1f

′(z1, t)p(z1, t) a.e. t ≥ 0, ∀ z1 ∈ U.

Also, the fact that f(z1, t) is a g-Loewner chain implies that p(z1, t) ∈ g(U) for a.e. t ≥ 0,

∀ z1 ∈ U . The vector field h(z, t) associated with the Loewner chain Fα,β(z, t) has the

following form (see [8]):

h(z, t) =
(
z1p(z1, t), z2(1− α− β + (α+ β)p(z1, t) + βz1p

′(z1, t))
)

for z = (z1, z2) ∈ B2 and t ≥ 0. This expression was obtained from the Loewner differential

equation
∂Fα,β
∂t

(z, t) = DFα,β(z, t)h(z, t) a.e. t ≥ 0, ∀ z ∈ B2.

We shall prove that h( · , t) ∈ Mg for a.e. t ≥ 0. Therefore, it suffices to show that the

following condition holds:

(2.2)
1

‖z‖2
〈h(z, t), z〉 ∈ g(U) a.e. t ≥ 0, z ∈ B2 \ {0}.

Next, we will consider the following cases:

Case 1. If B = −1 then the function g becomes g(ζ) = (1+Aζ)/(1−ζ), ζ ∈ U . In this

case, the function g maps the unit disk onto the half-plane
{
ζ ∈ C : Re ζ > (1−A)/2

}
.

The relation (2.2) is equivalent to

1

‖z‖2
Re〈h(z, t), z〉 > 1−A

2
a.e. t ≥ 0, z ∈ B2 \ {0}.

Also, in this case, the relation p(z1, t) ∈ g(U) is equivalent to Re p(z1, t) > (1 − A)/2 for

a.e. t ≥ 0, z1 ∈ U .

Without loss of generality, we may assume that h( · , t) is holomorphic on B
2
. Other-

wise, let ρ ∈ (0, 1). Also, let hρ(z, t) = 1
ρh(ρz, t) for all z ∈ B

2
, t ≥ 0. Then the mapping

hρ( · , t) is well defined and holomorphic on B
2
, t ≥ 0. Next, if w ∈ ∂B2 is fixed and t ≥ 0,

then the function qρ( · , t) : U → C given by qρ(ζ, t) = 1
ζ 〈hρ(ζw, t), w〉 for ζ ∈ U \ {0}, and

qρ(0) = 1, is holomorphic on U and continuous on U . Thus Re qρ( · , t) is harmonic on U

and continuous on U .

In view of the minimum principle for harmonic functions, it suffices to prove that

Re qρ(ζ, t) ≥ (1 − A)/2 for |ζ| = 1. Then Re qρ(ζ, t) > (1 − A)/2 for |ζ| < 1, by the fact

that Re qρ(0, t) = 1 > (1−A)/2 and since Re qρ( · , t) is harmonic on U .
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Next, if z ∈ B2 \ {0} and w = z/‖z‖, then w ∈ ∂B2, and if ζ = ‖z‖, then ζ ∈ U ,

and (1 − A)/2 < Re qρ(‖z‖, t) = 1
‖z‖2 Re〈hρ(z, t), z〉. Then letting ρ ↗ 1, we deduce that

Re〈h(z, t), z/‖z‖2〉 > (1 − A)/2, by the same argument as above, based on the minimum

principle for harmonic functions.

Consequently, in view of the above arguments, we have to prove that:

(2.3) Re〈h(z, t), z〉 ≥ 1−A
2

a.e. t ≥ 0, ∀ z = (z1, z2) ∈ ∂B2.

Indeed, if we fix z = (z1, z2) ∈ ∂B2 and using elementary computation, we obtain the

following relation:

Re〈h(z, t), z〉 − 1−A
2

=
[
|z1|2 + (1− |z1|2)(α+ β)

]
Re p(z1, t)

+ (1− |z1|2)βRe(z1p
′(z1, t)) + (1− |z1|2)(1− α− β)− 1−A

2
.

It can be seen that for |z1| = 1 (which implies z2 = 0), the above expression is non-negative.

Therefore, further we consider only the case z2 6= 0, thus |z1| < 1.

Since Re(z1p
′(z1, t)) ≥ −|z1||p′(z1, t)|, this implies that

Re〈h(z, t), z〉 − 1−A
2
≥
[
|z1|2 + (1− |z1|2)(α+ β)

]
Re p(z1, t)

− (1− |z1|2)β|z1||p′(z1, t)|

+ (1− |z1|2)(1− α− β)− 1−A
2

.

(2.4)

Next, we wish to give an estimate of the right-hand side member of the above inequality.

First, we give an upper bound for |p′(z1, t)|.
It can be easily seen that

(2.5)
p( · , t)− (1−A)/2

1− (1−A)/2
∈ P for t ≥ 0.

It is known that for a function q ∈ P, we have (see [24])

|q′(z)| ≤ 2 Re q(z)

1− |z|2
, |z| < 1.

Therefore, from (2.5) and from the above inequality, we obtain

(2.6) |p′(z1, t)| ≤
2
(

Re p(z1, t)− (1−A)/2
)

1− |z1|2
, |z1| < 1, t ≥ 0.

Using the relation (2.6) and elementary computations on the right-hand side of (2.4), we
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obtain that

Re〈h(z, t), z〉 − 1−A
2
≥
[
|z1|2 + (1− |z1|2)(α+ β)

](
Re p(z1, t)−

1−A
2

)
− 2β|z1|

(
Re p(z1, t)−

1−A
2

)
+ (1− |z1|2)(1− α− β)

+
[
|z1|2 + (1− |z1|2)(α+ β)

]1−A
2
− 1−A

2

=
[
|z1|2 + (1− |z1|2)(α+ β)− 2β|z1|

](
Re p(z1, t)−

1−A
2

)
+ (1− |z1|2)(1− α− β)

(
1− 1−A

2

)
.

Next, we shall prove that the following inequality holds:[
|z1|2 + (1− |z1|2)(α+ β)− 2β|z1|

](
Re p(z1, t)−

1−A
2

)
+ (1− |z1|2)(1− α− β)

(
1− 1−A

2

)
≥ 0.

(2.7)

Indeed, in view of the following relations:

(1− |z1|2)(1− α− β)

(
1− 1−A

2

)
= (1− |z1|2)(1− α− β)

1 +A

2
≥ 0

and

|z1|2 + (1− |z1|2)(α+ β)− 2β|z1| = (1− |z1|2)α+ β(1− |z1|)2 + |z1|2(1− 2β) ≥ 0,

we obtain (2.7), as desired. Taking into account the above arguments, the inequality (2.3)

holds.

Case 2. If B 6= −1 then the function g : U → C given by g(ζ) = (1 + Aζ)/(1 + Bζ),

ζ ∈ U , maps the unit disk onto the disk U
(
(1−AB)/(1−B2), (A−B)/(1−B2)

)
.

To simplify the calculations we make the following notations: a
not
= (1−AB)/(1−B2)

and b
not
= (A−B)/(1−B2).

We remark that, for a.e. t ≥ 0 and ∀ z1 ∈ U , the condition p(z1, t) ∈ g(U) is equivalent

to |p(z1, t)− a| < b.

In this case, the relation (2.2) is equivalent to

(2.8)

∣∣∣∣ 1

‖z‖2
〈h(z, t), z〉 − a

∣∣∣∣ < b a.e. t ≥ 0, ∀ z ∈ B2 \ {0}.

Using an argument similar to that from the beginning of the first step, we may assume

that h( · , t) is holomorphic on B
2
, and show that

|〈h(z, t), z〉 − a| ≤ b a.e. t ≥ 0, ∀ z ∈ ∂B2.
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Otherwise, we replace the mapping h( · , t) by the mapping hρ(z, t) = 1
ρh(ρz, t), for z ∈ B

2
,

a.e. t ≥ 0, where ρ ∈ (0, 1). Using a similar argument as in the Case I, we have to prove

that |〈hρ(z, t), z〉 − a| ≤ b for a.e. t ≥ 0 and ∀ z ∈ ∂B2. Then letting ρ→ 1, we obtain the

conclusion.

Therefore, it suffices to prove that

(2.9) |〈h(z, t), z〉 − a| ≤ b a.e. t ≥ 0, ∀ z = (z1, z2) ∈ ∂B2.

In the case z2 = 0, it is easily seen that the relation (2.9) holds, since |p(z1, t) − a| ≤ b,

|z1| = 1 and a.e. t ≥ 0.

Next, we consider z2 6= 0 which leads to |z1| < 1. Taking into account the following

relations:

|〈h(z, t), z〉 − a| =
∣∣∣[|z1|2 + (1− |z1|2)(α+ β)

]
p(z1, t) + (1− |z1|2)βz1p′(z1, t)

+ (1− |z1|2)(1− α− β)− a
∣∣∣

=
∣∣∣[|z1|2 + (1− |z1|2)(α+ β)

]
(p(z1, t)− a) + (1− |z1|2)βz1p′(z1, t)

+ (1− |z1|2)(1− α− β) +
[
|z1|2 + (1− |z1|2)(α+ β)

]
· a− a

∣∣∣
=
∣∣∣[|z1|2 + (1− |z1|2)(α+ β)

]
(p(z1, t)− a) + (1− |z1|2)βz1p′(z1, t)

+ (1− |z1|2)(1− α− β)(1− a)
∣∣∣,

we have the following estimate:

|〈h(z, t), z〉 − a| ≤
[
|z1|2 + (1− |z1|2)(α+ β)

]
|p(z1, t)− a|

+ (1− |z1|2)β|z1||p′(z1, t)|+ (1− |z1|2)(1− α− β)|1− a|.

Fix t ≥ 0 and let the function w( · , t) : U → C be given by w(z1, t) = (p(z1, t) − a)/b,

z1 ∈ U . Then w( · , t) ∈ H(U), w(0, t) = 0 and |w(z1, t)| < 1, |z1| < 1. Hence the function

w( · , t) satisfies the condition of Schwarz-Pick lemma and therefore

|p′(z1, t)| ≤ b ·
1− |p(z1, t)− a|2/b2

1− |z1|2
, t ≥ 0.

Using the above estimate, we obtain

|〈h(z, t), z〉 − a| ≤
[
|z1|2 + (1− |z1|2)(α+ β)

]
|p(z1, t)− a|

+ bβ|z1|
(

1− |p(z1, t)− a|
2

b2

)
+ (1− |z1|2)(1− α− β)|1− a|.

Next we will show that[
|z1|2 + (1− |z1|2)(α+ β)

]
|p(z1, t)− a|+ bβ|z1|

(
1− |p(z1, t)− a|

2

b2

)
+ (1− |z1|2)(1− α− β)|1− a| − b ≤ 0.
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It is clear that the above inequality is equivalent to the following:[
|z1|2 + (1− |z1|2)(α+ β)

] |p(z1, t)− a|
b

+ β|z1|
(

1− |p(z1, t)− a|
2

b2

)
+ (1− |z1|2)(1− α− β)

|1− a|
b
− 1 ≤ 0.

We make the following notation x := |p(z1, t) − a|/b. Then x ∈ [0, 1]. Also, let E(x) be

the following quantity

E(x) = −β|z1|x2 +
[
|z1|2 + (1− |z1|2)(α+ β)

]
x

+ (1− |z1|2)(1− α− β)
|1− a|
b

+ β|z1| − 1.

We aim to show that E(x) ≤ 0 for x ∈ [0, 1].

Indeed, it can be easily seen that E(x) is an increasing function on the variable x.

Therefore E(x) ≤ E(1), x ∈ [0, 1]. Further, we need to evaluate the sign of E(1).

E(1) = −β|z1|+ |z1|2 + (1− |z1|2)(α+ β) + (1− |z1|2)(1− α− β)
|1− a|
b

+ β|z1| − 1

= (1− |z1|2)(1− α− β)

(
|1− a|
b
− 1

)
.

Replacing the constant a by (1−AB)/(1−B2), and the constant b by (A−B)/(1−B2),

we deduce that

E(1) = (1− |z1|2)(1− α− β)(|B| − 1) ≤ 0,

where we have used the fact that |z1| < 1, α + β ≤ 1 and B ∈ (−1, 1). Therefore,

combining the above relations, we obtain that E(x) ≤ 0 for x ∈ [0, 1]. Thus, we conclude

that the condition (2.8) is fulfilled.

Finally, since {e−tf( · , t)}t≥0 is a normal family on U , it suffices to use arguments

similar to those used in the proof of [8, Theorem 2.1], to deduce that {e−tFα,β( · , t)}t≥0 is

a normal family on unit ball Bn.

In view of the above arguments, we have proved that Fα,β(z, t) is a g-Loewner chain.

Hence Φn,α,β(f) = Fα,β( · , 0) has g-parametric representation on Bn. This completes the

proof.

As a consequence of Theorem 2.1, we shall prove that the operator Φn,α,β preserves

the notion of g-starlikeness on Bn, where g(ζ) = (1 + Aζ)/(1 + Bζ), ζ ∈ U , and −1 ≤
B < A ≤ 1. Particular cases of this result were obtained in [8] (for A = 1 and B = −1)

and [1] (for A = 1 and B = 2γ − 1, where γ ∈ (0, 1)).

Corollary 2.2. Let g : U → C be given by g(ζ) = (1 + Aζ)/(1 + Bζ), ζ ∈ U , where

−1 ≤ B < A ≤ 1. Also, let f ∈ S∗g . Then F = Φn,α,β(f) ∈ S∗g (Bn) for α ∈ [0, 1],

β ∈ [0, 1/2] and α+ β ≤ 1.
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Proof. Since f ∈ S∗g , it follows that f(z1, t) = etf(z1) is a g-Loewner chain (see [7]). The

mapping Fα,β(z, t) given by (2.1) is a g-Loewner chain, accordingly to Theorem 2.1. But

it is easy to deduce that Fα,β(z, t) = etF (z) for z ∈ Bn and t ≥ 0. Hence F ∈ S∗g (Bn).

This completes the proof.

By choosing suitable values for A, B, we obtain the following particular cases of Corol-

lary 2.2. These particular cases have been approached in [30].

Corollary 2.3. (cf. [30]) Let a, b ∈ R be such that |1 − a| < b ≤ a and let f ∈ S∗(a, b).
Then F = Φn,α,β(f) ∈ S∗(a, b,Bn) for α ∈ [0, 1], β ∈ [0, 1/2] and α+ β ≤ 1.

Proof. Indeed, if A = (a− 1)/b, B = (a2 − b2 − a)/b then S∗g (Bn) = S∗(a, b,Bn), where g

is given by (1.1). From Corollary 2.2, we deduce that Φn,α,β(f) ∈ S∗(a, b,Bn) whenever

f ∈ S∗(a, b).

Corollary 2.4. (cf. [30]) Let a, b ∈ R be such that |1− a| < b ≤ a and let f ∈ AS∗(a, b).
Then F = Φn,α,β(f) ∈ AS∗(a, b,Bn) for α ∈ [0, 1], β ∈ [0, 1/2] and α+ β ≤ 1.

Proof. Indeed, if the function g is given by (1.1) and A, B are (a−a2 + b2)/b, respectively

(1−a)/b, then S∗g (Bn) = AS∗(a, b,Bn). In view of Corollary 2.2, we have that Φn,α,β(f) ∈
AS∗(a, b,Bn) whenever f ∈ AS∗(a, b).

On the other hand, we mention the following well known results, which can be obtained

from Corollary 2.2 for suitable values of A and B.

Remark 2.5. (i) In the case that A = 1 and B = 2γ − 1, where γ ∈ (0, 1), it can be seen

that S∗g (Bn) reduces to the set S∗γ(Bn) of starlike mappings of order γ on Bn. Hence

we deduce that Φn,α,β(S∗γ) ⊂ S∗γ(Bn). This result was obtained by Hamada, Kohr and

Kohr [15], in the case of α = 0, β = γ = 1/2, and by Liu [19], in the case γ ∈ (0, 1) and

α ∈ [0, 1], β ∈ [0, 1/2], α+ β ≤ 1. T. Chirilă proved this result by using g-Loewner chains

(see [1]).

(ii) Also, if A = 1 and B = −1 then S∗g (Bn) reduces to the set S∗(Bn) of normalized

starlike mappings on Bn. In view of Corollary 2.2, it can be seen that the operator Φn,α,β

has the property that Φn,α,β(S∗) ⊂ S∗(Bn). This result was obtained in [8].

The following result can be proved by arguments similar to those used in the proof of

Corollary 2.2. We omit the proof of Corollary 2.6.

Corollary 2.6. Let g : U → C be given by g(ζ) = (1 + Aζ)/(1 + Bζ), ζ ∈ U , where

−1 ≤ B < A ≤ 1. Also, let f be a g-spirallike function of type δ on the unit disk U , where

δ ∈ (−π/2, π/2). Then F = Φn,α,β(f) is a g-spirallike mapping of type δ on Bn, with

α ∈ [0, 1], β ∈ [0, 1/2] and α+ β ≤ 1.
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Remark 2.7. If A = 1 and B = 2γ−1, where γ ∈ (0, 1), then from Corollary 2.6 we deduce

that the operator Φn,α,β preserves the notion of spirallikenes of type δ and order γ with

δ ∈ (−π/2, π/2). This result was obtained in [20] (see also [1, 19,32]).

3. Radius problems

In this section we are concerned with certain radius problems which involve the operator

Φn,α,β and the notion of Janowski starlikeness. Other radius problems related to the sub-

classes of S(Bn) generated by the Roper-Suffridge extension operator and other extension

operators were obtained in [1, 11].

The proof for the following result is immediate and we omit it. For r ∈ (0, 1], let us

consider the following set of biholomorphic mappings on Bn
r = {z ∈ Cn : ‖z‖ < r}:

S∗(a, b,Bn
r ) =

{
f a normalized locally biholomorphic mapping on Bn

r :∣∣∣∣ ‖z‖2

〈[Df(z)]−1f(z), z〉
− a
∣∣∣∣ < b, z ∈ Bn

r \ {0}
}
,

where |1− a| < b ≤ a. In the case n = 1, the set S∗(a, b,Bn
r ) is denoted S∗(a, b, Ur).

In the following remark (see also [8, Remark 5.1]), we assume that α, β ∈ [0, 1] with

β ≤ 1/2 and α+ β ≤ 1. Also, let a, b ∈ R be such that |1− a| < b ≤ a.

Remark 3.1. (i) If Φn,α,β(f) ∈ S∗(a, b, Bn
r ) then f ∈ S∗(a, b, Ur) for all r ∈ (0, 1).

(ii) If f ∈ S∗(a, b, Ur) then Φn,α,β(f) ∈ S∗(a, b,Bn
r ) for all r ∈ (0, 1). This result is due

to the following equality (see [8])

Φn,α,β(fr)(z) =
1

r
Φn,α,β(f)(rz), z ∈ Bn,

where fr(ζ) = 1
rf(rζ), ζ ∈ U .

We will consider a, b ∈ R such that |1 − a| < b ≤ a. Further, we obtain the S∗(a, b)

radius of the class S (respectively S∗). For suitable values of the parameters a and b

depending on A and B (see [27]), where −1 ≤ B < A ≤ 1, we can obtain the S∗[A,B]

radius of the class S (respectively S∗). The S∗[A,B] radius was obtained in [22] on a

wider class, namely the class of normalized analytical functions on the unit disk U with

fixed second coefficient.

First, we recall the definition of the S∗(a, b) radius of the class S (respectively S∗).

Definition 3.2. (cf. [27]) The S∗(a, b) radius of S (respectively S∗), denoted by ρ∗(a, b)

(respectively ρ∗(a, b)), is the radius of the largest disk |z| < ρ∗(a, b) (respectively ρ∗(a, b))

in which the condition

(3.1)

∣∣∣∣zf ′(z)f(z)
− a
∣∣∣∣ < b
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holds for all f ∈ S (respectively S∗).

In order to prove the following result, we use the radius of starlikeness of the class S,

i.e., the radius of the largest disk centered at the origin in which every function from S

is starlike. We denote the radius of starlikeness of the class S by r∗(S). It is well known

that r∗(S) = tanh(π/4) ≈ 0.65579 . . . (see e.g., [24, Corollary 6.3]).

Theorem 3.3. Let a, b ∈ R be such that |1− a| < b ≤ a. Then the S∗(a, b) radius of S is

given by

(3.2) ρ∗(a, b) = min

{
1− a+ b

1 + a− b
,
−1 + a+ b

1 + a+ b
, tanh

(π
4

)}
.

Proof. We will use arguments similar to those in [27, Theorem 4]. We know that S∗(a, b) ⊂
S∗, thus ρ∗(a, b) ≤ r∗(S). Further, let f ∈ S. From the definition of r∗(S), we have that

f ∈ S∗(Utanh(π/4)), where Utanh(π/4) = {z ∈ C : |z| < tanh(π/4)}. This is equivalent to

Re
zf ′(z)

f(z)
> 0, |z| < tanh(π/4).

Let ρ ∈ (0, 1). We say that the function p : U → C belongs to P(Uρ) if and only if

pρ ∈ P, where pρ(z) = 1
ρp(ρz), z ∈ U .

It is easy to see that zf ′(z)/f(z) ∈ P(Utanh(π/4)). It is known that a function p from

P satisfies the property p(Uρ) ⊆ U
(
(1 + ρ2)/(1 − ρ2), 2ρ/(1 − ρ2)

)
for all ρ ∈ (0, 1) (see

e.g., [10, 24]).

Hence, zf ′(z)/f(z) fulfills the next condition∣∣∣∣zf ′(z)f(z)
− 1 + ρ2

1− ρ2

∣∣∣∣ ≤ 2ρ

1− ρ2
, |z| ≤ ρ, ρ ∈ (0, tanh(π/4)).

Let |z| < ρ with ρ ∈ (0, tanh(π/4)]. The relation (3.1) holds if U
(
(1+ρ2)/(1−ρ2), 2ρ/(1−

ρ2)
)
⊆ U(a, b). This implies that the following two conditions are simultaneously fulfilled

a− b ≤ 1 + ρ2

1− ρ2
− 2ρ

1− ρ2
,

a+ b ≥ 1 + ρ2

1− ρ2
+

2ρ

1− ρ2
.

The above inequalities are true if ρ ≤ min
{

(1−a+b)/(1+a−b), (−1+a+b)/(1+a+b)
}

.

Since ρ ≤ tanh(π/4), we obtain in view of the above arguments that ρ ≤ r where

r = min

{
1− a+ b

1 + a− b
,
−1 + a+ b

1 + a+ b
, tanh(π/4)

}
.

This leads us to the fact that every f ∈ S is also in S∗(a, b, Ur). Moreover, there exists

at least one function f ∈ S such that f ∈ S∗(a, b, Ur) \ S∗(a, b, UR) for all R > r. This
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can be easily seen when the minimum in the expression of r is attained at tanh(π/4).

There exists f0 ∈ S such that f0 /∈ S∗(UR) for all R > tanh(π/4). Hence, in this case, if

f0 ∈ S∗(a, b, UR) then this implies f0 ∈ S∗(UR). Therefore we obtain a contradiction.

If r 6= tanh(π/4) then it suffices to prove the above statement by choosing the Koebe

function:

k(ζ) =
ζ

(1− ζ)2
, |ζ| < 1.

Suppose that k ∈ S∗(a, b, UR) for some R ∈ (r, 1) and derive a contradiction. In this case,

the relation (3.1) is equivalent to the following:

(3.3)

∣∣∣∣1 + z

1− z
− a
∣∣∣∣ < b

for |z| < R. We will show that for some z0 with |z0| = r < R the condition (3.3) is no

longer true.

If the minimum in the expression of r is attained at ρ = (1− a+ b)/(1 + a− b) then,

for z0 = −ρ, we have that∣∣∣∣1 + z0
1− z0

− a
∣∣∣∣ =

∣∣∣∣1− (1− a+ b)/(1 + a− b)
1 + (1− a+ b)/(1 + a− b)

− a
∣∣∣∣

= |a− b− a| = | − b| = b.

Otherwise, if the minimum is attained at ρ = (−1 + a+ b)/(1 + a+ b) then for z0 = ρ, it

results that ∣∣∣∣1 + z0
1− z0

− a
∣∣∣∣ =

∣∣∣∣1 + (−1 + a+ b)/(1 + a+ b)

1− (−1 + a+ b)/(1 + a+ b)
− a
∣∣∣∣

= |a+ b− a| = |b| = b.

Hence, in both cases, we get a contradiction to (3.3). Therefore, there exists at least one

function f ∈ S∗(a, b, Ur) such that f /∈ S∗(a, b, UR) for every R > r. Hence, we have

proved that r is the radius of the largest disk in which the condition (3.1) holds. This

completes the proof.

In the case that a = b in Theorem 3.3, we obtain the following particular case:

Corollary 3.4. Let r = 1
2 ·e

π/2 ≈ 2.4052 . . .. Then we have that ρ∗(a, a) = (2a−1)/(2a+1)

for 1/2 < a < r and ρ∗(a, a) = tanh(π/4) for a ≥ r.

Proof. If we make the substitution a = b in Theorem 3.3 then

ρ∗(a, a) = min

{
1,

2a− 1

2a+ 1
, tanh

(π
4

)}
.

It can easily be seen that (2a − 1)/(2a + 1) < 1. Also, the function (2a − 1)/(2a + 1) is

increasing and is equal to tanh(π/4) when a = r, where r = 1
2 · e

π/2.
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This corollary shows that if f ∈ S then f is not only starlike on Utanh(π/4), but it is

also in S∗(a, a, Utanh(π/4)), when a ≥ 1
2 · e

π/2.

In view of the proof of Theorem 3.3, we obtain the S∗(a, b) radius of the class S∗.

Theorem 3.5. Let a, b ∈ R be such that |1 − a| < b ≤ a. Then the S∗(a, b) radius of S∗

is given by

(3.4) ρ∗(a, b) = min

{
1− a+ b

1 + a− b
,
−1 + a+ b

1 + a+ b

}
.

Moreover, if a = b then ρ∗(a, a) = (2a− 1)/(2a+ 1).

In view of Remark 1.5 and Corollary 3.4, we obtain the following particular case.

Remark 3.6. Let γ ∈ (0, 1).

(i) The radius of almost starlikeness of order γ of the class S is tanh(π/4), when 0 <

γ ≤ e−π/2 and (1− γ)/(1 + γ), when e−π/2 < γ < 1.

(ii) The radius of almost starlikeness of order γ of the class S∗ is (1− γ)/(1 + γ).

Assuming |1−a| < b ≤ a, we refer to the S∗(a, b) radius of class Φn,α,β(S) (respectively

Φn,α,β(S∗)) as the radius r ∈ (0, 1] of the largest ball Bn
r such that every mapping F ∈

Φn,α,β(S) (respectively F ∈ Φn,α,β(S∗)) is a member of the family S∗(a, b,Bn
r ).

Theorem 3.7. If α ∈ [0, 1], β ∈ [0, 1/2] and α+β ≤ 1 then the S∗(a, b) radius of Φn,α,β(S)

is ρ∗(a, b), where ρ∗(a, b) is given by (3.2).

Proof. Let f ∈ S. Then f ∈ S∗(a, b, Uρ∗(a,b)). We denote Fα,β = Φn,α,β(f). In view of

Corollary 2.3 and Remark 3.1(ii), we have that Fα,β ∈ S∗(a, b,Bn
ρ∗(a,b)). This shows that

the S∗(a, b) radius of Φn,α,β(S) is greater than or equal to ρ∗(a, b). From the proof of

Theorem 3.3, we know that the relation (3.1) may not hold when |z| ≥ ρ∗(a, b). From

Remark 3.1(i), the mapping Fα,β may fail to be a Janowski starlike mapping on Bn
R with

R > ρ∗(a, b). Hence, we conclude that ρ∗(a, b) is the biggest radius r for which every

Fα,β = Φn,α,β(f) is Janowski starlike on Bn
r .

With arguments similar to those used in the proof of Theorem 3.7, the following results

hold.

Theorem 3.8. Let α, β ∈ [0, 1] with β ≤ 1/2 and α+ β ≤ 1.

(i) The S∗(a, b) radius of Φn,α,β(S∗) is ρ∗(a, b), where ρ∗(a, b) is given by (3.4).

(ii) Let γ ∈ (0, 1). The radius of almost starlikeness of order γ of Φn,α,β(S) is tanh(π/4)

for 0 < γ ≤ e−π/2 and (1− γ)/(1 + γ) for e−π/2 < γ < 1.

Also, the radius of almost starlikeness of order γ of Φn,α,β(S∗) is (1− γ)/(1 + γ).
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