
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 24, No. 1, pp. 159–178, February 2020

DOI: 10.11650/tjm/190302

Existence and Multiplicity of Solutions for a Class of (p, q)-Laplacian

Equations in RN with Sign-changing Potential

Nian Zhang and Gao Jia*

Abstract. In this paper, we use variational approaches to establish the existence of

weak solutions for a class of (p, q)-Laplacian equations on RN , for 1 < q < p < q∗ :=

Nq/(N − q), p < N , with a sign-changing potential function and a Carathéodory

reaction term which do not satisfy the Ambrosetti-Rabinowitz type growth condition.

By linking theorem with Cerami condition, the fountain theorem and dual fountain

theorem with Cerami condition, we obtain some existence of weak solutions for the

above equations under our considerations which are different from those used in related

papers.

1. Introduction

The (p, q)-Laplacian equations appear in various branches of mathematical physics, for

example, as the stationary version of a general reaction-diffusion equation:

ut = div[(|∇u|p−2 + |∇u|q−2)∇u] + b(x, u),

where u describes a concentration, D(u) := (|∇u|p−2 + |∇u|q−2) is the diffusion coefficient

and b(x, u) is the reaction term connected with source and loss mechanisms. Typically, in

chemical and biological applications, the reaction term b(x, u) is a polynomial of u with

variable coefficients (see [13,15,30]).

The purpose of this paper is to show the existence of weak solutions for the following

nonlinear elliptic equation

(1.1) −∆pu−∆qu+ g(x)|u|p−2u+ h(x)|u|q−2u = λf(x, u), x ∈ RN ,

where λ > 0, 1 < q < p < q∗ := Nq/(N − q), p < N , ∆mu := div(|∇u|m−2∇u) for

1 < m < ∞, g(x) and h(x) are potential functions on RN , and f : RN × R → R is a

Carathéodory function which don’t satisfy the Ambrosetti-Rabinowitz condition.
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When p = q = 2, the equation (1.1) turns out to be a semilinear Schrödinger one of

the form

(1.2) −∆u+ V (x)u = a(x, u), u ∈ H1(RN ).

The differential operator ∆p + ∆q is known as the (p, q)-Laplacian operator, if p 6= q.

The single p-Laplacian operator has been studied for at least four decades (see [1, 7, 8,

10,11,19,20]), whereas a deeper research involving the (p, q)-Laplacian operator has only

arisen in the last decade (see [9, 14,15,21,28,30,31]).

As known to all, the (p, q)-Laplacian operator is not homogeneous, some technical dif-

ficulties appear when using the common methods of the theory of elliptic equations. In

the case of g and h constants, minimax type theorems are the main tools to prove exis-

tence of solutions (see [13, 30]). In such a variational approach it is usual to assume the

Ambrosetti-Robinowitz (A-R) condition on the nonlinearity. In general, the (A-R) con-

dition not only guarantees that the functional has a mountain pass geometry, but also

ensures boundedness of Palais-Smale sequences associated with the functional. Although

the (A-R) condition is very useful to obtain existence of weak solutions of elliptic equations

via variational methods, it is not satisfied by some exceptional nonlinearities, such as

f1(t) := |t|p−2t log(|t|+ 1)

and

f2(t) :=

|t|p−2t−
(p−1

p

)
|t|l−2 if |t| ≤ 1,

|t|p−2t
(

log |t|+ 1
p

)
if |t| > 1,

p < l < p∗ :=
Np

N − p

(see [19], [21], respectively).

We realize a few contributions concerning problem (1.1) with sign-changing potential

functions and without assuming (A-R) condition. Superlinear (p, q)-Laplacian equations

without the Ambrosetti-Robinowitz condition have been studied both in bounded domains

(see [21]) and on RN but when the potential functions g(x) and h(x) are continuous,

coercive and positive (see [9]). In [28], the authors dealt with the case of g ∈ L1
loc(R) and

h ∈ L1
loc(R). For the unbounded case we refer also to [3,17], where the set of conditions on

f includes (A-R) and Concentration-Compactness Principle is used (see [15,18]). Finally.

we refer to [2, 22] and references therein for the special case of (p, 2)-Laplacian.

Even through problem (1.1) has a variational structure, the main difficulties in the

application of classical variational arguments are due to the lack both of homogeneity of

(p, q)-Laplacian operator and compactness of the Sobolev’s embeddings on the whole space

RN . Here, we overcome the first defect by using a sharp decomposition of the ambient

space and solve the lack of compactness by adding extra some properties on the potential

functions, particularly, one of which may change sign. Finally, we use the linking theorem
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with Cerami condition, as well as, the fountain and dual fountain theorem with Cerami

condition to get the existence of weak solutions for problem (1.1) under our considerations,

which motivated by R. Bartolo, E. Juárez Hurtado and L. Shao (see [3, 16,26]).

We introduce the hypotheses on the function f(x, t) and the potential functions g(x)

and h(x):

(f1) f(x, t) is a Carathéodory function such that f(x, 0) = 0 and F (x, t) > 0 for a.e. x ∈
RN , all t ∈ R \ {0}, where

F (x, s) :=

∫ s

0
f(x, t) dt, (x, t) ∈ RN × R;

(f2) There exist τ ∈ (q, p∗), K(x) ∈ L∞(RN )+ ∩ Lτ/(τ−1)(RN ) and c > 0, such that

|f(x, t)| ≤ K(x) + c|t|l−1

for a.e. x ∈ RN, all t ∈ R, where l ∈ (p, p∗) and p∗ := Np/(N − p);

(f3) limt→+∞ F (x, t)/|t|p = +∞, uniformly in x ∈ RN ;

(f4) There exists ζ(x) ∈ L1(RN )+ such that

~(x, t) ≤ ~(x, s) + ζ(x)

for a.e. x ∈ RN and all 0 ≤ t ≤ s or s ≤ t ≤ 0, where

~(x, t) := f(x, t)t− pF (x, t);

(f5) f(x,−t) = −f(x, t) for a.e. x ∈ RN ;

(gh) The potentials g, h : RN → R are Lebesgue measurable functions such that

ess inf
x∈RN

g(x) > 0, ess inf
x∈RN

h(x) > −∞

and

lim
|x|→+∞

∫
B1(x)

1

g(y)
dy = 0, lim

|x|→+∞

∫
B1(x)

1

h(y)
dy = 0,

where B1(x) = {y ∈ RN : |x− y| < 1}.

Here, we provide some examples of the functions f(x, t), g(x) and h(x). We set

f(x, t) := |t|p−2t log(|t| + 1). It is easy to verify that f(t) satisfies (f1)–(f5). But it

does not satisfy

F (x, t) ≥ c1|t|µ − c2, x ∈ RN , t ∈ R,
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where c1, c2 > 0 and µ > p, which is consequence of (A-R) condition. (gh) is also satisfied

when choose g(x) = 1 + |x|2 and h(x) = −1 + |x|2.

The assumptions in (gh) were provided in [6] in the study of linear Schrödinger equation

and used in [4] for the single p-Laplacian. Notice that in [24] the authors show the existence

of a nontrivial solution of (1.2) by the mountain pass theorem when V (x) ∈ C1(RN ,R)

is positive and coercive. In [5], by means of symmetric mountain pass theorem (see [1,

Theorem 2.8]), Bartsch and Wang find infinitely many solutions if f(x, t) is odd in t and

V (x) is a positive continuous function such that

meas({x ∈ RN : V (x) ≤M}) <∞ for all M > 0.

As shown in Proposition 3.1 of [25], the hypotheses on V (x) both in [5] and in [24] imply

that

ess inf
x∈RN

V (x) > 0 and lim
|x|→+∞

∫
B1(x)

1

V (y)
dy = 0.

Consequently, for problem (1.1) the assumptions on the potential functions g(x) and h(x)

in (gh) are weaker than those ones in [9], where the potential functions g(x) and h(x) are

continuous, coercive and positive.

Our main results are the following theorems:

Theorem 1.1. Assume that (f1)–(f4) and (gh) hold. Then for each λ ∈ (0, 1/(p2p)), the

problem (1.1) has at least one nontrivial weak solution u in W (W is defined in Section 2).

Theorem 1.2. Assume that (f1)–(f5) and (gh) hold. Then for each λ ∈ (0, 1/(p2p)), the

problem (1.1) has a sequence of weak solutions {un}n∈N ⊂W such that Iλ(un)→ +∞ as

n→ +∞ (Iλ is defined in Section 3).

Theorem 1.3. Assume that (f1)–(f5) and (gh) hold. Then for each λ ∈ (0, 1/(p2p)), the

problem (1.1) has a sequence of weak solutions {vn}n∈N ⊂ W such that Iλ(vn) < 0 and

Iλ(vn)→ 0 as n→∞.

This paper is organized as follows. In Section 2 we give some auxiliary lemmas and

results used in our work. In Section 3 we will prove the main theorems of this paper.

2. Preliminaries

First, let g : RN → R be a Lebesgue measurable function such that

ess inf
x∈RN

g(x) > 0 and lim
|x|→+∞

∫
B1(x)

1

g(y)
dy = 0.

For any m > 1 we consider the weighted Sobolev space

Em,g := W 1,m
g (RN ) =

{
u ∈W 1.m(RN ) :

∫
RN

g(x)|u|m dx < +∞
}
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endowed with the norm

‖u‖Em,g :=

(∫
RN
|∇u|m + g(x)|u|m dx

)1/m

.

The space (Em,g, ‖u‖Em,g) is a separable and reflexive Banach space (see [4, Proposi-

tion 2.1]).

We recall the following compact embedding lemma (see [6, Theorem 3.1]).

Lemma 2.1. If Em,g is defined in the above, the embedding Em,g ↪→ Ls(RN ) is continuous

if m ≤ s ≤ m∗ and compact if m ≤ s < m∗, where m∗ = Nm/(N −m).

Next, let us consider two potential functions g(x) and h(x) such that (gh) holds. Take

α > 0 such that

ess inf
x∈RN

(h(x) + α) > 0.

Therefore, we can define the spaces (Ep,g, ‖u‖Ep,g) and (Eq,h+α, ‖u‖Eq,h+α). From the above

statements, we know the spaces (Ep,g, ‖u‖Ep,g) and (Eq,h+α, ‖u‖Eq,h+α) are both reflexive

and separable Banach space. From now on, we take into account the Banach space

W := Ep,g ∩ Eq,h+α

as our working space, and endow the norm

‖u‖W := ‖u‖Ep,g + ‖u‖Eq,h+α .

The following corollary is an immediate consequence of both Lemma 2.1 and the defi-

nition of W .

Corollary 2.2. W is a separable and reflexive Banach space and the embedding W ↪→
Ls(RN) is continuous if q ≤ s ≤ p∗ and compact if q ≤ s < p∗.

Finally, since W is a real, reflexive and separable Banach space. It is well-known

(see [12, Chapter 4] or [32, Section 17]) that there exist {ej}j∈N ⊂ W and {e∗j}j∈N ⊂ W ∗

(W ∗ is the dual space of W ) such that

W = span{ej : j = 1, 2, . . .}, W ∗ = span{e∗j : j = 1, 2, . . .}w∗

and

〈e∗i , ej〉 =

1 if i = j,

0 if i 6= j.

We denote

Xj = span{ej}, Yk =

k⊕
j=1

Xj = span{e1, . . . , ek}, Zk =

∞⊕
j=k

Xj = span{ek, ek+1, . . .}.

In the end of this section, we will prove two essential lemmas. In order to simplify the

presentation we will denote the norm ‖ · ‖ and ‖ · ‖Lp instead of ‖ · ‖W and ‖ · ‖Lp(RN ).
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Lemma 2.3. If s ∈ [q, p∗), denote

βk,s := sup{‖u‖Ls : ‖u‖ = 1, u ∈ Zk},

then limk→∞ βk,s = 0.

Proof. Clearly, 0 ≤ βk+1,s ≤ βk,s and βk,s → βs ≥ 0, k → +∞. For every k ≥ 0, there

exists uk ∈ Zk such that ‖uk‖ = 1 and ‖uk‖Ls > βk,s/2. By definition of Zk, uk ⇀ 0 in

W . Corollary 2.2 implies that uk → 0 in Ls(RN ). Thus, we have proved that βs = 0.

Lemma 2.4. Assume that Θ: W → R is weakly continuous and Θ(0) = 0. Then for each

r > 0 and k ∈ N there exists

θk := sup{|Θ(u)| : ‖u‖ ≤ r, u ∈ Zk} < +∞.

Moreover, limk→∞ θk = 0.

Proof. It is obvious that 0 ≤ θk+1 ≤ θk and θk → θ ≥ 0, k → +∞. For each k ≥ 0, we can

take uk ∈ Zk, ‖uk‖ ≤ r such that 0 ≤ θk − |Θ(uk)| < 1/k. By definition of Zk, we have

uk ⇀ 0 in W . The weakly continuity of Θ guarantees Θ(uk) → Θ(0) = 0. This proves

that θ = 0.

3. Proofs of theorems

The Euler-Lagrange functional associated with problem (1.1) is

Iλ(u) :=
1

p

∫
RN

(|∇u|p + g(x)|u|p) dx+
1

q

∫
RN

(|∇u|q + h(x)|u|q) dx− λ
∫
RN

F (x, u) dx

≡ 1

p

∫
RN

(|∇u|p + g(x)|u|p) dx+
1

q

∫
RN

(|∇u|q + (h(x) + α)|u|q) dx

− α

q

∫
RN
|u|q dx− λ

∫
RN

F (x, u) dx.

As consequence of the hypotheses (f1)–(f4) and (gh), it is clear that the functional Iλ

is well-defined in W and of class C1.

In order to prove our theorems we need some technical lemmas presented below.

Lemma 3.1. Suppose that (f1)–(f3) and (gh) hold. Then, for any finite dimensional

subspace Ŵ ⊂W and for u ∈ Ŵ

(3.1) Iλ(u)→ −∞ as ‖u‖ → +∞.
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Proof. Arguing by contradiction, we can assume that a finite dimensional subspace Ŵ ⊂
W exists which does not satisfy (3.1). Hence, a sequence {un}n∈N ⊂ Ŵ can be found such

that

(3.2) ‖un‖ → +∞ as n→ +∞

and for some M > 0 it is Iλ(un) ≥ −M for all n ∈ N. Setting wn = un/‖un‖, it follows that

‖wn‖ = 1 and wn ⇀ w weakly in W , up to subsequences, or better, since dim Ŵ < +∞,

wn → w strongly in Ŵ and almost everywhere in RN . Thus, ‖w‖ = 1 and meas Ω∗ > 0

where Ω∗ := {x ∈ RN : w(x) 6= 0}. Hence, limn→+∞ |wn(x)| = |w(x)| > 0 for a.e. x ∈ Ω∗,

so by (3.2) it follows |un.(x)| → +∞. (f1) and (f3) imply

lim
n→+∞

F (x, un)

|un|p
|wn| = +∞ for a.e. x ∈ Ω∗.

We can deduce that

(3.3)

∫
RN

lim
n→+∞

F (x, un)

|un|p
|wn| = +∞.

On the other hand, for n sufficiently large, by standard calculations we get

‖un‖pEp,g
p‖un‖p

+
‖un‖qEq,h+α
q‖un‖p

≤
‖un‖pEp,g + ‖un‖qEq,h+α

q‖un‖p
≤ 2‖un‖p

q‖un‖p
=

2

q

(without loss of generality, by (3.2) we assume ‖un‖ ≥ 1 for all n ∈ N). Then, by Fatou’s

lemma and (f1), we get

0 = lim
n→+∞

−M
‖un‖p

≤ lim sup
n→+∞

Iλ(un)

‖un‖p

= lim sup
n→+∞

1

‖un‖p

(
1

p
‖u‖pEp,g +

1

q
‖u‖qEq,h+α −

α

q
‖u‖qLq − λ

∫
RN

F (x, un) dx

)
≤ lim sup

n→+∞

(
2

q
− λ

∫
RN

F (x, un)

‖un‖p
dx

)
≤ 2

q
− λ

∫
RN

lim inf
n→+∞

F (x, un)

|un|p
|wn|p dx

=
2

q
− λ

∫
RN

lim
n→+∞

F (x, un)

|un|p
|wn|p dx,

whence

λ

∫
RN

lim
n→+∞

F (x, un)

|un|p
|wn|p dx ≤

2

q

in contradiction with (3.3) as meas Ω∗ > 0.

Lemma 3.2. Suppose that (f1), (f2) and (gh) hold. Then, for any c > 0 there exist ρ > 0

and k ∈ N such that

Iλ(u) ≥ c for all u ∈ ∂Bρ ∩ Zk,

where Bρ := {u ∈W : ‖u‖ < ρ}.
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Proof. Above all, by (f2), there exists C > 0 such that

F (x, t) ≤ K(x)|t|+ C|t|l for a.e. x ∈ Ω, all t ∈ R.

Hence, for any u ∈ Zk with ‖u‖ > 1, we have

Iλ(u) ≥ 1

p
‖u‖pEp,g +

1

q
‖u‖qEq,h+α −

α

q
‖u‖qLq − λ

(∫
RN

K(x)|u| dx+ C

∫
RN
|u|l dx

)
≥ 1

p
‖u‖pEp,g +

1

q
‖u‖qEq,h+α −

α

q
‖u‖qLq − λ

(
‖K‖Lτ∗‖u‖Lτ + C‖u‖lLl

)
≥ 1

p
‖u‖pEp,g +

1

q
‖u‖qEq,h+α −

α

q
βqk,q‖u‖

q − λβk,τ‖K‖Lτ∗‖u‖ − λCβ
l
k,l‖u‖l,

where βk,θ := sup{‖w‖Lθ : ‖w‖ = 1, w ∈ Zk}, for θ ∈ [q, p∗).

We can assume, without loss of generality, that ‖u‖Ep,g ≥ ‖u‖/2 ≥ ‖u‖Eq,h+α . So, we

can get

(3.4) Iλ(u) ≥ Iλ,p(u) :=
1

p2p
‖u‖p − α

q
βqk,q‖u‖

q − λβk,τ‖K‖Lτ∗‖u‖ − λCβ
l
k,l‖u‖l.

Since 1 < q < p < l, by using Lemma 2.3, it is easy to see that rp,k := (Cβlk,l)
1/(p−l) → +∞

as k →∞. Then, for k large enough, u ∈ Zk with ‖u‖ = rp,k > 1, and by (3.4), we have

Iλ,p(u) =

(
1

p2p
− λ
)
rpp,k −

α

q
βqk,qr

q
p,k − λ‖K‖Lτ∗βk,τrp,k.

Thus,

Iλ,p(u)→ +∞ as k → +∞.

Analogously, considering ‖u‖Ep,g ≤ ‖u‖/2 ≤ ‖u‖Eq,h+α , we get

Iλ(u) ≥ Iλ,q(u) :=

(
1

q2q
− α

q
βqk,q

)
‖u‖q − λβk,τ‖K‖Lτ∗‖u‖ − λCβ

l
k,l‖u‖l

and also have rq,k := (Cβlk,l)
1/(q−l) → +∞. For k sufficiently large, u ∈ Zk with ‖u‖ =

rq,k > 1, we can also obtain

Iλ,q(u) =

(
1

q2q
− λ− α

q
βqk,q

)
rqq,k − λ‖K‖Lτ∗βk,τrq,k → +∞ as k → +∞.

Since 1 < q < p and λ < 1/(p2p), setting rk = min{rp,k, rq,k}, for u ∈ Zk and ‖u‖ = rk,

we have

Iλ(u)→ +∞ as k → +∞.

The proof is completed once we fix ‖u‖ = rk = ρ large enough.

Here, we recall the well-known Cerami’s variant of the Palais-Smale condition (see

[23,27]).
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Definition 3.3. Let X be a real Banach space and I ∈ C1(X,R). The functional I

satisfies the Cerami’s variant of the Palais-Smale condition, briefly (C), if any sequence

{un}n∈N ⊂ X such that

(3.5) {I(un)}n∈N is bounded and lim
n→+∞

‖I ′(un)‖X∗(1 + ‖un‖X) = 0

converges in X, up to a subsequence. We say that {un}n∈N is a (C) sequence if it verifies

(3.5).

Lemma 3.4. Suppose that (f1)–(f4) and (gh) hold. Then the functional Iλ satisfies (C) con-

dition.

Proof. Let {un} ⊂ W be a Cerami sequence associated with Iλ. Then, there exists some

constant C > 0, which does not depend on n, such that

(3.6) |Iλ(un)| ≤ C

and

(3.7) (1 + ‖un‖)I ′λ(un)→ 0 as n→ +∞.

As a consequence of (3.7) there exists εn → 0 such that

(3.8) |〈I ′λ(un), v〉| ≤ εn‖v‖
1 + ‖un‖

for all v in W and all n ∈ N. From (3.6) and (3.8), we obtain

‖un‖pEp,g + ‖un‖qEq,h+α − α‖u‖
q
Lq − λ

∫
RN

f(x, un)un dx

= 〈I ′λ(un), un〉 ≤
εn‖un‖

1 + ‖un‖
≤ εn

(3.9)

and

(3.10) − pC ≤ ‖un‖pEp,g +
p

q
‖un‖qEq,h+α −

αp

q
‖u‖qLq − pλ

∫
RN

F (x, un) dx ≤ pC.

Now we are going to prove, by contradiction, that {un} is bounded in W . Let us

assume that ‖un‖ → ∞. Let wn := un/‖un‖. By Corollary 2.2 we can also assume that,

up to a subsequence, wn → w in Ls(RN ), with s ∈ [q, p∗).

Let λ > 0 be fixed. If w is not the null function, the set Ω∗ := {x ∈ RN : w(x) 6= 0}
has positive Lebesgue measure and, of course, |un(x)| → ∞ for all x ∈ Ω∗ (recall that we

are assuming that |un(x)| = |wn(x)|‖un‖, ‖un‖ → ∞). By (f2), we can get

lim sup
n→∞

F (x, un)

‖un‖p
= lim sup

n→∞

F (x, un)|wn|p

|un|p
= +∞
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for any x ∈ Ω∗. We can deduce that

(3.11) lim sup
n→∞

∫
RN

F (x, un)

‖un‖p
dx = lim sup

n→∞

∫
RN

F (x, un)|wn|p

|un|p
dx = +∞.

It follows from (3.10) that

λ

∫
RN

F (x, un)

‖un‖p
dx ≤

‖un‖pEp,g
p‖un‖p

+
‖un‖qEq,h+α
q‖un‖p

−
α‖un‖qLq
q‖un‖p

+
C

‖un‖p

≤ 1

p
+

1

q‖un‖p−q
+

C

‖un‖p
.

Therefore,

lim
n→∞

∫
RN

F (x, un)

‖un‖p
dx ≤ 1

λp
< +∞

and this contradicts (3.11).

We then are able to assume that w = 0 and again arrive at a contradiction. The

continuity of the function t ∈ [0, 1] 7→ Iλ(tun) for each n ≥ 1, allows us to define the

sequence {tn} ⊂ [0, 1] by

Iλ(tnun) = max
0≤t≤1

Iλ(tun).

Let vn := (2σ)1/qwn = (2σ)1/q

‖un‖ un ∈ W , where σ > 1
2

(p
q

)q/(p−q)
. Then, vn → 0 a.e. in

RN , and vn → 0 in Ls(RN ), for all s ∈ [q, p∗). By Lebesgue theorem

(3.12) lim
n→∞

∫
RN

F (x, vn) dx = 0 and lim
n→∞

‖vn‖qLq = 0.

Since ‖un‖ → ∞, there exists n0 large enough such that (2σ)1/q

‖un‖ ∈ (0, 1) for all n ≥ n0.

This implies that

Iλ(tnun) ≥ Iλ(vn)

=
(2σ)p/q

p
‖wn‖pEp,g +

2σ

q
‖wn‖qEq,h+α −

α

q
‖vn‖qLq − λ

∫
RN

F (x, vn) dx

≥ 2σ

q

(
‖wn‖pEp,g + ‖wn‖qEq,h+α

)
− α

q
‖vn‖qLq − λ

∫
RN

F (x, vn) dx

≥ 2σ

q

(
‖wn‖pEp,g + ‖wn‖pEq,h+α

)
− α

q
‖vn‖qLq − λ

∫
RN

F (x, vn) dx

≥ 2σ

q2p−1

(
‖wn‖Ep,g + ‖wn‖Eq,h+α

)p − α

q
‖vn‖qLq − λ

∫
RN

F (x, vn) dx

=
2σ

q2p−1
− α

q
‖vn‖qLq − λ

∫
RN

F (x, vn) dx,

where we have used that q < p, ‖wn‖Eq,h+α ≤ ‖wn‖ = 1. By (3.12), we can choose n1 ≥ n0

such that
α

q
‖vn‖qLq + λ

∫
RN
F (x, vn) dx <

σ

q2p−1
for all n ≥ n1.



Solvability of a Class of (p, q)-Laplacian Equations 169

It follows that

Iλ(tnun) >
2σ

q2p−1
− σ

q2p−1
=

σ

q2p−1
for all n ≥ n1

and since σ > 1
2

(p
q

)q/(p−q)
is arbitrary, we get

(3.13) lim
n→∞

Iλ(tnun) = +∞.

Since 0 ≤ tn|un| ≤ |un|, (f4) yields

(3.14)

∫
RN

~(x, tnun) dx ≤
∫
RN

~(x, un) dx+

∫
RN

ζ(x) dx =

∫
RN

~(x, un) dx+ ‖ζ‖L1

for all n ≥ n1.

By taking new subsequence, if necessary, we can assume that 0 < tn < 1 for all

n ≥ n2 ≥ n1. Indeed, (3.13) combined with (3.6) implies that tn 6= 1, and the fact that

Iλ(0) = 0 implies tn 6= 0 for n ≥ n2. Thus, by the definition of tn, we can obtain that

0 = tn
d

dt
Iλ(tun)

∣∣∣∣
t=tn

= 〈I ′λ(tnun), tnun〉

= ‖tnun‖pEp,g + ‖tnun‖qEq,h+α − α‖tnun‖
q
Lq − λ

∫
RN

f(x, tnun)tnun dx

(3.15)

for all n ≥ n2.

By (f4), (3.14) and (3.15), we obtain

‖tnun‖pEp,g + ‖tnun‖qEq,h+α − α‖tnun‖
q
Lq

≤ λ
(∫

RN
pF (x, tnun) dx+

∫
RN

~(x, tnun) dx+ ‖ζ‖L1

)
for all n ≥ n2. Therefore,

pIλ(tnun) = ‖tnun‖pEp,g +
p

q
‖tnun‖qEq,h+α −

pα

q
‖un‖qLq − λ

∫
RN

pF (x, tnun) dx

+ ‖tnun‖qEq,h+α − ‖tnun‖
q
Eq,h+α + α‖tnun‖qLq − α‖tnun‖

q
Lq

≤
(
p

q
− 1

)
‖un‖qEq,h+α − α

(
p

q
− 1

)
‖un‖qLq + λ

∫
RN

~(x, un) dx+ λ‖ζ‖L1 .

Using (3.13) we obtain

(3.16)

(
p

q
− 1

)
‖un‖qEq,h+α − α

(
p

q
− 1

)
‖un‖qLq + λ

∫
RN

~(x, un) dx→∞

as n→ +∞. On the other hand, combining (3.9), (3.10) and (f4) we get(
p

q
− 1

)
‖un‖qEq,h+α − α

(
p

q
− 1

)
‖un‖qLq + λ

∫
RN

~(x, un) dx ≤ C,
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which contradicts (3.16).

To sum up the above argument, we conclude that {un} is bounded in W . Therefore,

we can assume that un ⇀ u in W and un → u in Lθ(RN ) for any θ ∈ [q, p∗). Furthermore,

by hypothesis (f2), Hölder inequality and Corollary 2.2, we can obtain that∣∣∣∣∫
RN
|un|q−2un(un − u) dx

∣∣∣∣ ≤ ‖un‖q−1
Lq ‖un − u‖Lq

and ∣∣∣∣∫
RN

f(x, un)(un − u) dx

∣∣∣∣ ≤ ∫
RN

K(x)|un − u| dx+ c

∫
RN
|un|l−1|un − u| dx

≤ ‖K‖Lτ∗‖un − u‖Lτ + c‖un‖l−1
Ll
‖un − u‖Ll ,

where τ ∈ (q, p∗), l ∈ (p, p∗) and τ∗ = τ/(τ − 1). These imply that∫
RN
|un|q−2un(un − u) dx→ 0 and

∫
RN

f(x, un)(un − u) dx→ 0

as n→ +∞.

Hence, by taking into account that (1 + ‖un‖)I ′λ(un)(un − u)→ 0 one has

(3.17) lim sup
n→∞

〈−∆pun −∆qun + gΦp(un) + (h+ α)Φq(un), un − u〉 = 0,

where Φm(t) = |t|m−2t.

Since the linear functional W 3 ψ 7→ 〈−∆qu + g(x)Φp(u) + (h(x) + α)Φq(u), ψ〉 is

bounded in W (it is straightforward to verify by Hölder inequality), it follows that

(3.18) lim
n→∞

〈−∆qu+ gΦp(u) + (h+ α)Φq(u), un − u〉 = 0.

Using the monotonicity of the operator −∆q + g(x)Φp + (h(x) + α)Φq, we have

〈−∆pun, un − u〉 = 〈−∆pun −∆qun + gΦp(un) + (h+ α)Φq(un), un − u〉

− 〈−∆qun + gΦp(un) + (h+ α)Φq(un), un − u〉

≤ 〈−∆pun −∆qun + gΦp(un) + (h+ α)Φq(un), un − u〉

− 〈−∆qu+ gΦp(u) + (h+ α)Φq(u), un − u〉.

By combining this inequality with (3.17) and (3.18), we have

(3.19) lim sup
n→∞

〈−∆pun, un − u〉 ≤ 0.

Arguing in the same way, we can also deduce that

lim sup
n→∞

〈−∆qun, un − u〉 ≤ 0,

lim sup
n→∞

〈gΦp(un), un − u〉 ≤ 0,

lim sup
n→∞

〈(h+ α)Φq(un), un − u〉 ≤ 0.

(3.20)
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It is straightforward to verify that (3.19) and (3.20) yield

lim sup
n→∞

‖un‖ ≤ ‖u‖,

which implies the strong convergence un → u in W , since this Banach space is uniformly

convex.

Remark 3.5. Ψ′(u) = −∆pu−∆qu+ gΦp(u) + (h+ α)Φq(u) is of type (S+).

Proof. It is an obvious consequence of the proof of Lemma 3.4.

3.1. Proof of Theorem 1.1

In this subsection, we give a proof of Theorem 1.1, which mainly relies on the following

linking theorem.

Lemma 3.6. Consider a, b ∈ R such that a < b. Assume that X is a real Banach space,

let I : X → R be a functional of class C1(X,R) that satisfies the (C) condition, and the

following conditions hold:

(i) there exists a closed S ⊆ X and Q ⊆ Y , Y a subspace of X, with boundary ∂Q in

Y ;

(ii) I(u) ≤ a for all u ∈ ∂Q and I(u) ≥ b for all u ∈ S;

(iii) S and ∂Q link, i.e. S ∩ ∂Q = ∅ and φ(Q) ∩ S 6= ∅, for any φ ∈ C(X,X) such that

φ|∂Q = id;

(iv) supu∈Q I(u) < +∞.

Then, there exists a critical level c of I given by

c = inf
φ∈Γ

sup
u∈Q

I(φ(u)) with b ≤ c ≤ sup
u∈Q

I(u),

where Γ = {φ ∈ C(X,X) : φ|∂Q = id}.

Proof of Theorem 1.1. By Lemmas 3.1 and 3.2, it follows that there exist some constants

ρ, c, R1, R2 > 0 for k sufficiently large such that

R2 > ρ, inf
u∈S

Iλ(u) ≥ c > 0 and sup
u∈∂Q

Iλ(u) ≤ 0,

where S = ∂Bρ ∩ Zk+1 and

Q = {u+ te ∈W : u ∈ Yk, e ∈ Zk+1, ‖u‖ ≤ R1, t ∈ [0, R2]}.

As a consequence, S and ∂Q link. By Lemma 3.4, the functional Iλ satisfies the

(C) condition. Finally, Lemma 3.6 implies that problem (1.1) has a nontrivial weak

solution.
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3.2. Proof of Theorem 1.2

In order to prove Theorem 1.2, we will use the following fountain theorem.

Lemma 3.7. (Fountain theorem, [19, Theorem 2.9]) Assume X is a Banach space, I ∈
C1(X,R) is an even functional. If for every k ∈ N there exist ρk > rk > 0 such that

(i) bk := inf{I(u) : u ∈ Zk, ‖u‖ = rk} → ∞ as k →∞;

(ii) ak := max{I(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0;

(iii) I satisfies the (C) condition for every c > 0.

Then I has an unbounded sequence of critical points such that I(un)→∞.

Proof of Theorem 1.2. By Lemmas 3.1 and 3.2, it was proven that if k is large enough,

there exist ρk > rk > 0 such that (i) and (ii) of Lemma 3.7 hold. This way, we have satisfied

all the conditions of the fountain theorem. Hence, we obtain a sequence of critical points

{un}n∈N ⊂W such that Iλ(un)→ +∞ as n→∞.

3.3. Proof of Theorem 1.3

Before proving Theorem 1.3, we will recall the (C)∗c condition and dual fountain theorem.

Definition 3.8. Let X be a separable and reflexive Banach space, I ∈ C1(X,R), c ∈ R.

The functional I satisfies the (C)∗c condition (with respect to Yn which is defined in Sec-

tion 2) if any sequence {un}n∈N ⊂ X such that un ∈ Yn, I(un)→ c and ‖(I|Yn)′(un)‖X∗(1+

‖un‖X)→ 0 as n→∞ contains a subsequence converging to a critical point of I.

Lemma 3.9. (Dual fountain theorem [29]) Assume X is a Banach space and I ∈ C1(X,R)

is an even functional. If there exists k0 ≥ 1, such that for each k ≥ k0, there exist ρk and

rk with ρk > rk > 0 satisfying the following properties:

(i) ak = max{I(u) : u ∈ Yk, ‖u‖ = rk} < 0;

(ii) bk = inf{I(u) : u ∈ Zk, ‖u‖ = ρk} ≥ 0;

(iii) dk = inf{I(u) : u ∈ Zk, ‖u‖ ≤ ρk} → 0 as k → +∞;

(iv) I satisfies the (C)∗c condition for every c ∈ [dk0 , 0).

Then I has a sequence of negative critical values converging to 0.

Lemma 3.10. Suppose that (f1)–(f4) and (gh) hold, then Iλ satisfies the (C)∗c condition.
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Proof. Let c ∈ R and the sequence {un}n∈N ⊂ W be such that un ∈ Yn, for all n ∈ N,

Iλ(un)→ c and ‖(Iλ|Yn)′(un)‖W ∗(1 + ‖un‖W )→ 0 as n→ +∞. Therefore, we have

c = Iλ(un) + on(1) and 〈I ′λ(un), un〉 = on(1),

where on(1)→ 0 as n→ +∞.

Analogous to the proof of Lemma 3.4, we can prove that {un}n∈N is bounded in

W . Since W is a reflexive space, by the Eberlein-S̆mulian theorem, we can choose a

subsequence of {un}n∈N, denoted for {unk}k∈N, such that unk ⇀ u weakly in W .

On the other hand, as W =
⋃
n Yn = span{en : n ≥ 1}, we can choose vnk ∈ Ynk such

that vnk → u strongly in W . Hence, by (Iλ|Ynk )′(unk) → 0 and unk − vnk ⇀ 0 in Ynk as

k → +∞ (see [8, Proposition 3.5]), we get

lim
k→+∞

〈I ′λ(unk), unk − u〉 = lim
k→+∞

(
〈I ′λ(unk), unk − vnk〉+ 〈I ′λ(unk), vnk − u〉

)
= 0.

We notice that

〈Ψ′(unk), unk − u〉 = α

∫
RN
|unk |

q−2unk(unk − u) dx+ λ

∫
RN

f(x, unk)(unk − u) dx

+ 〈I ′λ(unk), unk − u〉.

Therefore, we have 〈Ψ′(unk), unk − u〉 → 0 as k → +∞, where Ψ′(u) = −∆pu − ∆qu +

gΦp(u) + (h+α)Φq(u). Since Ψ′ is of type (S+) (see Remark 3.5), it follows that unk → u

strongly in W . Then, we conclude that Iλ satisfies the (C)∗c condition. Furthermore, we

have I ′λ(unk)→ I ′λ(u) as k → +∞.

Now, we claim that I ′λ(u) = 0. Indeed, taking ψj ∈ Yj , if nk ≥ j, we have

〈I ′λ(u), ψj〉 = 〈I ′λ(u)− I ′λ(unk), ψj〉+ 〈I ′λ(unk), ψj〉

= 〈I ′λ(u)− I ′λ(unk), ψj〉+ 〈(Iλ|Ynk )′(unk), ψj〉.

Hence, passing the limit on the right side of the above equation as k → +∞, we obtain

〈I ′λ(u), ψj〉 = 0 for all ψj ∈ Yk. Thus I ′λ(u) = 0 in W ∗, and this shows that Iλ satisfies the

(C)∗c condition for every c ∈ R.

Next, we will prove that Iλ satisfies the conditions (i)–(iv) of the dual fountain theorem

under the hypotheses in Theorem 1.3 hold.

Claim 1: For each k ∈ N there exists rk such that

max{Iλ(u) : u ∈ Yk, ‖u‖ = rk} < 0.

Indeed, since Yk is finite dimensional subspace, all norms are equivalent. For ‖u0‖ = 1,

by Lemma 3.1, we deduce

lim
t→+∞

Iλ(tu0) = −∞.
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Therefore, there exists t∗ ∈ (1,+∞) such that

Iλ(tu0) < 0 for all t ∈ [t∗,+∞).

Hence, Iλ(u) < 0 for all u ∈ Yk with ‖u‖ = t∗. Taking rk = t∗ for all k ∈ N, we obtain

ak = max{Iλ(u) : u ∈ Yk, ‖u‖ = rk} < 0.

Claim 2: There exists k0 ∈ N such that for each k ≥ k0, there exists ρk > 0 with

ρk > rk > 0 for which

bk = inf{Iλ(u) : u ∈ Zk, ‖u‖ = ρk} ≥ 0.

As in the proof of Lemma 3.2, since 0 < λ < 1/(p2p) and βk,q, βk,l, βk,τ → 0 as k → +∞
(see Lemma 2.3), we have

lim
k→+∞

((
1

η2η
− λ
)

(Cβlk,l)
η/(η−l) − α

q
βqk,q(Cβ

l
k,l)

q/(η−l) − λ‖K‖Lτ∗βk,τ (Cβlk,l)
1/(η−l)

)
= +∞

for η = p or q. Thus, there exists k0 ∈ N such that(
1

η2η
− λ
)

(Cβlk,l)
η/(η−l) − α

q
βqk,q(Cβ

l
k,l)

q/(η−l) − λ‖K‖Lτ∗βk,τ (Cβlk,l)
1/(η−l) ≥ 0

for all k ≥ k0. So, for all k ≥ k0, u ∈ Zk with ‖u‖ = ρk = (Cβlk,l)
1/(q−l), we get Iλ(u) ≥ 0.

This implies

bk = inf{Iλ(u) : u ∈ Zk, ‖u‖ = ρk} ≥ 0.

Claim 3: dk = inf{Iλ(u) : u ∈ Zk, ‖u‖ ≤ ρk} → 0 as k → +∞. Indeed, noticing that

Yk ∩ Zk 6= ∅ and ρk > rk > 0, we have

dk = inf{Iλ(u) : u ∈ Zk, ‖u‖ ≤ ρk} ≤ ak = max{Iλ(u) : u ∈ Yk, ‖u‖ = rk} < 0.

By (f1), we can consider Υi : W → R (i = 1, 2, 3) defined by

Υ1(u) = α

∫
RN
|u|q dx, Υ2(u) = λC

∫
RN
|u|l dx and Υ3(u) = λ

∫
RN

K(x)|u| dx.

It is easy to see that Υi(0) = 0 for i = 1, 2, 3, and they are weakly continuous. Let us

denote

θk,i = sup{|Υi(u)| : u ∈ Zk, ‖u‖ = 1}.
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By the compact embedding W ↪→↪→ Ls(RN ) for s ∈ [q, p∗) and Lemma 2.4, we get

limk→+∞ θk,i = 0. Furthermore, taking u ∈ Zk with ‖u‖ = 1 and 0 < t < ρk, we have

Iλ(tu) ≥ −α
∫
RN
|tu|q dx− λ

∫
RN

F (x, tu) dx

≥ Υ1(tu)−Υ2(tu)−Υ3(tu)

= −tqΥ1(u)− tlΥ2(u)− tΥ3(u).

So, for all t ∈ (0, ρk) and u ∈ Zk with ‖u‖ = 1, we deduce

Iλ(tu) ≥ −ρqkΥ1(u)− ρlkΥ2(u)− ρkΥ3(u) ≥ −ρqkθk,1 − ρ
l
kθk,2 − ρkθk,3.

This implies,

dk ≥ −ρqkθk,1 − ρ
l
kθk,2 − ρkθk,3,

and as dk < 0 for all k ≥ k0, we have limk→+∞ dk = 0.

Claim 4: Iλ satisfies the (C)∗c condition for c ∈ [dk0 , 0). The proof of Lemma 3.10 has

shown that Iλ satisfies the (C)∗c condition for c ∈ R.

Proof of Theorem 1.3. It is clear that Iλ is even and satisfies the (C)∗c condition by

Lemma 3.10. Furthermore, we have proved that Iλ satisfies the all conditions of dual

fountain theorem. By Lemma 3.9, there exists a sequence of negative critical values

converging to 0, which concludes the proof of Theorem 1.3.
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