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Isometries on Positive Definite Operators with Unit Fuglede-Kadison

Determinant
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Abstract. In this paper we explore the structure of certain surjective generalized

isometries (which are transformations that leave any given member of a large class

of generalized distance measures invariant) of the set of positive invertible elements

in a finite von Neumann factor with unit Fuglede-Kadison determinant. We conclude

that any such map originates from either an algebra ∗-isomorphism or an algebra
∗-antiisomorphism of the underlying operator algebra.

1. Introduction and preliminaries

Throughout the paper A denotes a finite von Neumann algebra acting on a complex

separable Hilbert space. We shall assume that A is a factor, that is, its center is one

dimensional. The symbol Asa stands for the self-adjoint part of A. The set of positive

and positive invertible elements in A will be denoted by A+ and A++, respectively. The

symbol I will stand for the unit of A. Furthermore, we recall that if S is a set and

d : S × S → [0,+∞[ is a function satisfying d(x, y) = 0 if and only if x = y (x, y ∈ S),

then d is termed a generalized distance measure. Clearly, a generalized distance measure

may not be a metric in the usual sense because we require neither the symmetry nor the

triangle inequality.

In [8] Moakher studied in details the manifold of n by n positive definite (PD) matrices

with unit determinant. Moreover, in the paper [3] the authors investigated the same

structure because of its interesting connections to the space of so-called diffusion tensors.

In fact, they also studied the set of all PD matrices with determinant c > 0, which is

a so-called totally geodesic submanifold of the manifold of PD matrices. Motivated by

these facts in [10], among others, the problem of establishing the complete description of

‘generalized isometries’ with respect to generalized distance measures of the form

(1.1) dN,g(A,B) = N(g(A−1/2BA−1/2))
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was solved on the set of PD matrices with determinant 1, where the norm N and the

function g satisfy some mild assumptions (see the details below).

As a matter of fact, there is an infinite dimensional theory of the determinant. There

are several notions of the determinant of operators on infinite dimensional Hilbert spaces,

the most natural one being the Fredholm determinant. This is an extension of the usual

determinant to trace class operators perturbed by the identity. There are several equivalent

definitions for the Fredholm determinant detT of such an operator T . For example,

on [13, p. 33] it is mentioned that one of them can be given as follows. Let (λn)n∈Γ be a

(possibly finite) sequence of the nonzero eigenvalues of the compact operator T−I counted

according to their algebraic multiplicities. Then the product
∏

n∈Γ(1 + λn) exists, and

detT is given by the formula

detT =
∏
n∈Γ

(1 + λn).

The Fredholm determinant has the disadvantage that it is defined only for quite small

subsets of operator algebras. Another definition of the determinant in the forthcoming

paragraph does not have this disadvantage.

The theory of the determinant in finite von Neumann factors, which has been developed

by Fuglede and Kadison [4], is a bit more involved. Every finite factor admits a unique

faithful tracial state τ , by which we mean a positive linear functional τ : A → C with the

following properties: (i) τ(AB) = τ(BA) for all A,B ∈ A; (ii) τ(A∗A) = 0 if and only if

A = 0; (iii) τ(I) = 1. Then the associated Fuglede-Kadison determinant ∆FK : A → C is

defined as

∆FK(A) = exp(τ(log |A|)),

whenever A ∈ A is an invertible element. (Here, the operator |A| is obtained from A∗A by

taking square root.) Notable properties of ∆FK are that ∆FK(I) = 1 and ∆FK is positive

homogeneous on A++. It is also positive and continuous on the general linear group of

A, moreover, by [4, p. 529], it is multiplicative, as well. It follows that for any invertible

element A ∈ A, we have ∆FK(A−1) = ∆FK(A)−1.

The quantity ∆FK extends naturally the n-th root of the absolute value of the usual

determinant, where n is the dimension of the underlying space. Indeed, it is very easy

to check that for a complex Hilbert space H with dimH = n < ∞, one has ∆FK(A) =
n
√
|det(A)| for all invertible elements A of the finite von Neumann factor of n-by-n complex

matrices, because the unique faithful tracial state on this structure is just the canonical

(unnormalized) trace divided by n. Consequently, a completely analogous von Neumann

algebraic counterpart of the problem in [10] (mentioned at the end of the second paragraph)

can be formulated in finite von Neumann factors, and one may ask how the corresponding

results in [10] survive when the setting becomes much more general? In this paper, we
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answer the latter question and, at the same time, we also handle the case n = 2, which is

completely missing from [10].

In what follows, denote by A++
1 the set of positive invertible elements with unit

Fuglede-Kadison determinant. We consider those generalized distance measures on the

set A++
1 which admit the form (1.1) and describe the structure of all transformations

(called generalized isometries) of A++
1 which preserve one of the above type generalized

distance measures. In this paper, the functions N , g satisfy the following properties. The

norm N : A → R is symmetric meaning that

N(AXB) ≤ ‖A‖N(X)‖B‖, A,B,X ∈ A.

We remark that each symmetric norm is easily seen to be unitarily invariant, i.e., invariant

under multiplications by unitary elements. Furthermore these properties are known to be

equivalent in the case where A is a full matrix algebra (see, e.g. [2, Proposition IV.2.4.]).

As for the map g : ]0,+∞[→ R, it is continuous and satisfies

(g1) g(y) = 0 if and only if y = 1 (y ∈ ]0,+∞[ );

(g2) there exists a real number K > 1 such that |g(y2)| ≥ K|g(y)| holds for every y ∈
]0,+∞[ .

It is obvious that if a continuous function g : ]0,+∞[→ R has the property (g1), then dN,g

is a generalized distance measure on A++
1 .

We note that in the case whereA is a full matrix algebra, the set of the above conditions

for N , g is equivalent to the collection of those that are required in [10, Theorem 5].

Therefore, it can be seen very easily that our structural result, Theorem 2.1 provides a

substantial generalization of the one just cited. Just as in the paper [10], beside the set of

positive invertible elements with unit Fuglede-Kadison determinant, we will also consider,

for a given number c > 0, the collection A++
c of all operators A ∈ A++ with ∆FK(A) = c.

And we will present the corresponding structural theorem of “generalized isometries”.

We remark that the conditions (g1)–(g2) concerning the numerical function g basically

come from the requirement that we want to cover some particularly important and widely

used distance measures (on the cone of n-by-n positive definite matrices), as demonstrated

by the forthcoming examples.

Example 1.1. If g(y) = log y (y > 0) and N(·) = ‖ · ‖ is the operator norm (or, in other

words, spectral norm), then

dN,g(A,B) =
∥∥ log(A−1/2BA−1/2)

∥∥,
which is called the Thompson part metric.
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Example 1.2. By the choice g(y) = log((y + 1)/(2
√
y)) (y > 0) and letting N(·) = ‖ · ‖1

to be the trace-norm, we arrive at

dN,g(A,B) =
∥∥ log

(
(1/2)((A−1/2BA−1/2)1/2 + (A−1/2BA−1/2)−1/2)

)∥∥
1
,

which is the symmetric Stein-divergence.

For further examples the reader can consult with the paper [10].

2. Main results

Our first result concerning generalized distance measures discussed in the previous section

reads as follows.

Theorem 2.1. Let A, B be finite von Neumann factors, N : A → R, M : B → R be

complete, symmetric norms and f, g : ]0,+∞[→ R be continuous functions satisfying (g1)–

(g2). Suppose further that φ : A++
1 → B++

1 is a surjective transformation with the property

(2.1) dM,f (φ(A), φ(B)) = dN,g(A,B), A,B ∈ A++
1 .

Then there exists an algebra ∗-isomorphism or ∗-antiisomorphism θ : A → B and an ele-

ment T ∈ B++
1 such that φ is of one of the following forms:

(a1) φ(A) = Tθ(A)T for all A ∈ A++
1 ;

(b1) φ(A) = Tθ(A−1)T for all A ∈ A++
1 .

Using the previous theorem, we easily obtain the structure of “generalized isometries”

between the spaces A++
c and B++

c .

Corollary 2.2. Let A, B be finite von Neumann factors, c > 0 be a scalar and N : A → R,

M : B → R be complete, symmetric norms. Assume that f, g : ]0,+∞[→ R are continuous

functions satisfying (g1)–(g2). Suppose further that φ : A++
c → B++

c is a surjective map

with the property

dM,f (φ(A), φ(B)) = dN,g(A,B), A,B ∈ A++
c .

Then there exists an algebra ∗-isomorphism or ∗-antiisomorphism θ : A → B and an ele-

ment T ∈ B++
1 such that φ is of one of the following forms:

(a2) φ(A) = Tθ(A)T for all A ∈ A++
c ;

(b2) φ(A) = c2Tθ(A−1)T for all A ∈ A++
c .
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3. Proofs

The argument we apply in this section is a technique which has already employed several

times, see the papers [9] (especially, on pages 313, 323, 324) and [10, p. 157]. We rely

heavily on a general Mazur-Ulam type result which appeared in [9]. To present this result,

we need the definition of the so-called point-reflection geometries, which were defined by

Manara and Marchi [7].

Definition 3.1. Let X be a set equipped with a binary operation � which satisfies the

following conditions:

(p1) a � a = a for every a ∈ X ;

(p2) a � (a � b) = b for every a, b ∈ X ;

(p3) the equation x � a = b has a unique solution x ∈ X for any given a, b ∈ X .

In this case, the pair (X , �) (or X itself) is called a point-reflection geometry.

Now we are in a position to present the mentioned general Mazur-Ulam type result.

Proposition 3.2. [9, Theorem 3] Assume that X and Y are sets equipped with binary

operations � and ?, respectively, with which they form point-reflection geometries. Let d

and ρ be generalized distance measures on X and Y, respectively. Select a, b ∈ X , set

La,b := {x ∈ X : d(a, x) = d(x, b � a) = d(a, b)},

and assume the following:

(b1) d(b � x, b � x′) = d(x′, x) holds for every x, x′ ∈ X ;

(b2) sup{d(x, b) : x ∈ La,b} <∞;

(b3) there is a constant K > 1 such that

d(x, b � x) ≥ Kd(x, b), x ∈ La,b.

Suppose that φ : X → Y is a surjective map with the properties that

ρ(φ(x), φ(x′)) = d(x, x′), x, x′ ∈ X

and also that

(b4) the element c ∈ Y with c ? φ(a) = φ(b � a) satisfies ρ(c ? y, c ? y′) = ρ(y′, y) for every

y, y′ ∈ Y.
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Then necessarily

φ(b � a) = φ(b) ? φ(a).

Observe that since N is a complete symmetric norm, one has N(A) ≤ N(I)‖A‖ (A ∈
A) and then it follows that N is equivalent to the complete norm ‖ · ‖. Moreover, N is

uniform, meaning that N(AX) ≤ ‖A‖N(X) (A,X ∈ A). On [5, p. 300], it was shown

that any uniform norm on the operator algebra on a complex Hilbert space preserves the

modulus, so – since the elements of A can be identified with those of such an algebra –

we infer that N(|A|) = N(A) (A ∈ A). The previous conclusions can be summarized as

follows:

(3.1) N is equivalent to ‖ · ‖ and N(|A|) = N(A), A ∈ A.

Now we are in a position to verify our first main result.

Proof of Theorem 2.1. First observe that by the property (2.1) concerning the generalized

distance measures dN,g, dM,f , the map φ is injective. We next prove that φ is continuous

with respect to the metric induced by the operator norm. Let (Xn) be a sequence in A++
1

such that Xn → X ∈ A++
1 (n→∞) in this metric. Then X−1/2XnX

−1/2 → I, and hence

dN,g(X,Xn) = N(g(X−1/2XnX
−1/2))→ N(g(I)) = 0

yielding that

dM,f (φ(X), φ(Xn)) = M(f(φ(X)−1/2φ(Xn)φ(X)−1/2))→ 0.

It follows that f(φ(X)−1/2φ(Xn)φ(X)−1/2)→ 0 in the operator norm. By the continuity

of f and properties (g1)–(g2), it is easy to verify that we necessarily have

φ(X)−1/2φ(Xn)φ(X)−1/2 → I,

i.e., φ(Xn) → φ(X) in the operator norm and then we obtain the continuity of φ with

respect to the metric in question.

Next, we are going to apply Proposition 3.2. In order to do so, we must define point-

reflection geometries on A++
1 , B++

1 in the following way: A �B := AB−1A for all A,B ∈
A++

1 ; and C ? D := CD−1C for every C,D ∈ B++
1 . Indeed, it is easy to check that

the properties (p1)–(p2) are satisfied. Concerning (p3), we mention that the well-known

Ricatti equation, XA−1X = B has a unique positive invertible solution X for all such

elements A, B of a C∗-algebra, which is just the geometric mean of A and B, i.e.,

X = A1/2(A−1/2BA−1/2)1/2A1/2.
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This is called Anderson-Trapp theorem, the original source containing it is [1]. Moreover,

X has unit Fuglede-Kadison determinant, if A, B are positive invertible operators in a

finite von Neumann factor with ∆FK(A) = ∆FK(B) = 1. Indeed, X is positive; moreover,

taking the Fuglede-Kadison determinant of both sides of the Ricatti equation and using

the multiplicativity of that determinant, we get that (∆FK(X))2 = 1. Consequently,

∆FK(X) = 1.

Now we are in a position to check that conditions (b1)–(b4) are all satisfied with the

choice X = A++
1 , Y = B++

1 and d = dN,g, ρ = dM,f . Concerning (b1), we assert that the

equalities

(3.2) dN,g(A−1, B−1) = dN,g(B,A), dN,g(TAT ∗, TBT ∗) = dN,g(A,B)

hold for all operators A,B ∈ A++
1 and invertible element T ∈ A. Indeed, let A,B ∈

A++
1 and consider the polar decomposition B−1/2A1/2 = U |B−1/2A1/2|. We see that

|A1/2B−1/2|2 = U |B−1/2A1/2|2U∗ and then compute

dN,g(A−1, B−1) = N(g(A1/2B−1A1/2)) = N(g(|B−1/2A1/2|2))

= N(g(U∗|A1/2B−1/2|2U)) = N(U∗g(|A1/2B−1/2|2)U)

= N(g(B−1/2AB−1/2)) = dN,g(B,A).

Now, for an arbitrary invertible element T ∈ A, we deduce

((TAT ∗)−1/2TBT ∗(TAT ∗)−1/2)2 = (TAT ∗)−1/2TBT ∗(TAT ∗)−1TBT ∗(TAT ∗)−1/2.

For X = A−1/2BT ∗(TAT ∗)−1/2, one has

XX∗ = A−1/2BA−1BA−1/2 = (A−1/2BA−1/2)2.

Hence, using the polar decomposition X = V |X|, we compute

(TAT ∗)−1/2TBT ∗(TAT ∗)−1/2 = ((TAT ∗)−1/2TBT ∗(TAT ∗)−1TBT ∗(TAT ∗)−1/2)1/2

= ((TAT ∗)−1/2TBA−1BT ∗(TAT ∗)−1/2)1/2

= (X∗X)1/2 = |X| = V ∗|X∗|V = V ∗(A−1/2BA−1/2)V.

It readily follows that dN,g(TAT ∗, TBT ∗) = dN,g(A,B) holds for any A,B ∈ A++
1 , com-

pleting the proof of (3.2). Let us now select two arbitrary elements A, B of A++
1 . By

(3.2), the condition (b1) is satisfied for the pair A, B.

As for the condition (b2), let us consider the set H of those elements X ∈ A++
1 for

which we have

dN,g(A,X) = N(g(A−1/2XA−1/2)) = N(g(A−1/2BA−1/2)) = dN,g(A,B).
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(Clearly, LA,B ⊂ H.) We show that the corresponding set of numbers

N(g(X−1/2BX−1/2)) = dN,g(X,B) = dN,g(B−1, X−1) = N(g(B1/2X−1B1/2))

is bounded. Indeed, since N(g(A−1/2XA−1/2)) is constant on H and by (3.1), N is

equivalent to the operator norm ‖ · ‖, the set{
‖g(A−1/2XA−1/2)‖ : X ∈ H

}
is bounded. It is easy to see that (g1), (g2) imply

lim
y→0

g(y), lim
y→∞

g(y) ∈ {−∞,∞}.

Then it follows easily that there are positive numbers m, M such that mI ≤ A−1/2XA−1/2

≤MI holds for all X ∈ H. Clearly, we then have another pair m′,M ′ > 0 of scalars such

that m′I ≤ X ≤ M ′I and finally a third one m′′, M ′′ such that m′′I ≤ B1/2X−1B1/2 ≤
M ′′I is satisfied by each X ∈ H. Since g is continuous, it is bounded on the interval

[m′′,M ′′] and this implies that the set{
N(g(B1/2X−1B1/2)) : X ∈ H

}
is so. We conclude that the condition (b2) is fulfilled.

To verify that the requirement (b3) holds, we recall that g satisfies (g2), the symmetric

norm N is monotone increasing on A+ by [9, Lemma 12] and N(|A|) = N(A) for every

A ∈ A by (3.1). Consequently,

N(g(C2)) = N(|g(C2)|) ≥ KN(|g(C)|) = KN(g(C))

is satisfied by any C ∈ A++
1 . Now, pick an element X ∈ A++

1 and let Y = X−1/2BX−1/2.

Then we easily have that

dN,g(X,B �X) = N(g(X−1/2BX−1BX−1/2)) = N(g(Y 2))

≥ KN(g(Y )) = KN(g(X−1/2BX−1/2)) = KdN,g(X,B).

Moreover, using the argument which we have employed to verify that (b1) holds, we

obtain that the condition (b4) is also satisfied.

Applying Proposition 3.2, one has that φ satisfies

φ(AB−1A) = φ(A)φ(B)−1φ(A), A,B ∈ A++
1 .

Now consider the transformation ψ : A++
1 → B++

1 defined by

ψ(A) = φ(I)−1/2φ(A)φ(I)−1/2, A ∈ A++
1 .
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It is easy to see that ψ is a continuous bijection of A++
1 which satisfies

ψ(AB−1A) = ψ(A)ψ(B)−1ψ(A), A,B ∈ A++
1

and has the additional property that ψ(I) = I. By substituting A = I in the last

displayed equality, we obtain that ψ(B−1) = ψ(B)−1, which implies that ψ is a Jordan

triple isomorphism of A++
1 , i.e., a bijective map with the property that

ψ(ABA) = ψ(A)ψ(B)ψ(A), A,B ∈ A++
1 .

Consider the transformation ψ̃ : A++ → B++ defined by

ψ̃(A) = ∆FK(A) · ψ
(

A

∆FK(A)

)
, A ∈ A++.

One can check easily that ψ̃ is also a Jordan triple isomorphism which extends ψ. More-

over, applying the continuity property of the Fuglede-Kadison determinant mentioned in

the introduction, we deduce that ψ̃ is continuous, as well.

Assume now that the factor A is not of type I2. Then we apply [9, Theorem 5] which

tells us that there is an algebra ∗-isomorphism or ∗-antiisomorphism θ : A → B and a

continuous tracial linear functional l : A → C such that l is real valued on the set of

self-adjoint elements of A and we have either

ψ̃(A) = el(logA)θ(A), A ∈ A++

or

ψ̃(A) = el(logA)θ(A−1), A ∈ A++.

Now consider the Jordan decomposition l = l1 − l2 with some positive linear functionals

l1, l2. We claim that l1 and l2 are both tracial, too. To see this, for any unitary element

U ∈ A define lU1 (X) = l1(UXU∗) (X ∈ A) and define lU2 in a similar way. It is obvious

that lU1 , lU2 are positive linear functionals, ‖lU1 ‖ = ‖l1‖, ‖lU2 ‖ = ‖l2‖, ‖lU1 − lU2 ‖ = ‖l1 − l2‖
and we have

l1(X)− l2(X) = l(X) = l(UXU∗) = lU1 (X)− lU1 (X), X ∈ A.

By 3.2.5. Theorem in [12], the positive linear functionals in the Jordan decomposition

of a Hermitian bounded linear functional h : A → C are uniquely determined by the

condition that the sum of their norms equals ‖h‖. Then it follows that lU1 = l1 and

lU2 = l2 implying that l1, l2 are invariant under all unitary similarity transformations,

which, referring to 8.1.1. Proposition in [6] yields that l1, l2 are tracial. By the previous

discussion, using [6, 8.2.8. Theorem], we infer that l is necessarily a scalar multiple of the

unique tracial state τ on A. The conclusion of Theorem 2.1 now follows easily in this case.
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Finally, assume that A is of type I2. Then A is isomorphic to the algebra of all 2

by 2 complex matrices. It follows from the statement of [9, Lemma 16] that ψ̃(A) =

exp(F (logA)) (A ∈ A++) with some linear commutativity preserving map F : Asa → Bsa.

This yields that B is also a factor of type I2 and the result [11, Theorem 2] applies. Now

the proof can be completed very easily.

Using Theorem 2.1, it is now simple to verify the second main result in the paper.

Sketch of the proof of Corollary 2.2. Consider the transformation Φ: A++
1 → B++

1 de-

fined by

Φ(A) =
1

c
φ(cA), A ∈ A++

1 .

It is easy to check that Φ satisfies (2.1) and it is surjective. It follows that Theorem 2.1 can

be applied, which implies that there exists an algebra ∗-isomorphism or ∗-antiisomorphism

θ : A → B and an element T ∈ B++
1 such that Φ is of one of the forms (a1) or (b1). Hence,

using the definition of Φ, we get the desired forms of φ.
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