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Abstract. The main purpose of this paper is to study multi-parameter singular integral
operators which commute with Zygmund dilations. We develop the theory of the
weighted multi-parameter Hardy space HY,, and prove the boundedness for these
operators on Hj,, for certain p < 1, which provide endpoint estimates for those
singular integral operators studied by Ricci-Stein [31] and Fefferman-Pipher [15]. We
also establish the Calderén-Zygmund decomposition and interpolation theorem in this
setting.

1. Introduction

Ricci-Stein [31] introduced multi-parameter singular integral operators and Fefferman-
Pipher [15] considered specific singular integral operators associated with Zygmund dila-
tions. The boundedness for these operators on LP and weighted L%, 1 < p < oo, was
obtained by Ricci-Stein [31] and Fefferman-Pipher [15], respectively. In [21], the first four
authors of this paper introduced a class of singular integral operators associated with Zyg-
mund dilations and prove the boundedness for such a class on LP and L%, 1 < p < oo.
The operators in this class and the boundedness results for these operators generalize some
those studied by Ricci-Stein [31], Fefferman-Pipher [15] and Nagel-Wainger [29]. In the
endpoint case, it is natural to expect that Hardy space bounds are available.

The main purpose of this paper is to prove the boundedness of this class of operators on
the weighed Hardy spaces H},, associated with Zygmund dilations for certain p < 1, which,
in particular, provides the endpoint estimates for operators studied by Ricci-Stein [31]
and Fefferman-Pipher [15]. We also establish the Calderén-Zygmund decomposition and
deduce interpolation theorems in this setting.

To achieve our results, we use a “standard strategy”, but one that has to be adapted

to our special situation, of the structure with Zygmund dilations. More specifically, we
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have to construct a Calderén reproducing formula associated with Zygmund dilations,
to discretize the operators according to it, to apply almost orthogonal estimates, and to
implement various stopping time arguments.

We now set our work in context. In their well-known theory, Calderén and Zygmund [1]
introduced certain convolution singular integral operators on R™ which generalize the
Hilbert transform on R!. They proved that if T'(f) = K * f, where K is defined on R” and

satisfies the analogous estimates as 1/x does on R!, namely

and / K(z)dr =0 foral 0<a<b,
a<|z|<b

then T is bounded on LP(R™) for 1 < p < oo. The core of this theory is that the
regularity and cancelation conditions are invariant with respect to the one-parameter
family of dilations on R™ defined by d6(x1,x2,...,2,) = (0x1,...,02,), 6 > 0, in the
sense that the kernel 6" /C(dx) satisfies the same conditions with the same bound as K(z).
Indeed, the classical singular integrals, maximal functions and multipliers are invariant
with respect to such one-parameter dilations. The one-parameter theory is currently well
understood.

The multiparameter theory of R"® began with Zygmund’s study of the strong maximal

function, which is defined by

M) = 30 e [ 1701,

R>x

where R are the rectangles in R™ with sides parallel to the axes, and then continued
with Marcinkiewicz’s proof of his multiplier theorem. The strong maximal function and
Marcinkiewicz’s multiplier are invariant with respect to the product dilations defined by
O(x1, e, ... xn) = (0121,...,0n2y), 0; > 0, ¢ = 1,...,n. The multiparameter dilations
are also associated with problems in the theory of differentiation of integrals. Jensen-
Marcinkiewicz-Zygmund [22] proved that the strong maximal function in R™ is bounded
from the Orlicz space L(1 + (log™ L)"~!) to weak L'. Zygmund further conjectured that
if the rectangles in R™ had n side lengths which involve only k independent variables, then
the resulting maximal operator should behave like My, the k-parameter strong maximal
operator. More precisely, for 1 < k < n, and for positive functions ¢1, ..., ¢, as the side-
lengths of the given collection of rectangles where the maximal function is defined, each
one depending on parameters t1 > 0,5 > 0,...,t; > 0, assuming arbitrarily small values
and increasing in each variable separately, then the resulting maximal function would
be bounded from L(1 + (log™ L)*~1) to weak L' according to Zygmund’s conjecture.
A. Cérdoba [7] showed that for the unit cube @ in R3,

C
Hz e Q: Mf(x) > A} < XHfHLlogL(Q)y
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where M f denotes the maximal function on R? defined by

Mf(z) —supR|/|f u)| du.

R>ox

The supremum above is taken over all rectangles with sides parallel to the axes and side
lengths of the form s, ¢, and ¢(s,t). Cérdoba’s result was generalized to the case of ¢1 (s, t),
¢2(s,t), ¢3(s,t) by Soria [32] with some assumptions on ¢1, ¢2, ¢3. Moreover, Soria
showed that Zygmund’s conjecture is not true even when ¢1(s,t) = s, ¢a(s,t) = so(t),
@3(s,t) = sy(t), with ¢, ¢ being positive and increasing functions.

In |16] R. Fefferman and Stein generalized the singular integral operator theory to the
product space. They took the space R™ x R™ along with the two-parameter family of
dilations (z,y) — (d1z,02y), (z,y) € R™ x R™, §;,02 > 0. Those operators considered
in [16] generalize the double Hilbert transform on R? given by H(f) = f * ngy and are of
the form T'(f) = K % f, where the kernel K is characterized by the cancelation properties

(1.1) / K(z,y)de =0 forall0<a<bandyeR™
a<|z|<b

(1.2) / K(xz,y)dy=0 forall0<a<bandzeR",
a<|y|<b

and the regularity conditions
(1.3) 1020, K (x,y)| < Cagla] ™1y~ 1AL,

Under the conditions f, Fefferman and Stein proved the LP, 1 < p < oo,
boundedness of the product convolution operators T'(f) = K f. See |16] for more details.
Note that the kernel C satisfying the conditions f is invariant with respect to the
product dilation in the sense that the kernel 705K (312, d2y) satisfies conditions ([1.1)—
(1.3) with the same bound. For more discussions about the multiparameter product
theory, see [2-6,8,(10H14,[20,23-25,30] among others and in particular the survey article
of R. Fefferman [14] for development in this area. For the multiparameter flag theory,
see [26-28] among others.

It has been widely considered that the next simplest multiparameter group of dilations
after the product multiparameter dilations is the so-called Zygmund dilation defined on
R3 by psi(z1,72,73) = (sx1,txe, stxs) for s,t > 0. There are two operators associated

with the Zgymund dilations. The first is the maximal operator M; defined via

M,f(z) = sup / F)]dy,
Rrer, Bl
R>x

where R; is the collection of all rectangles in R3 with side length ¢, s and ts, respectively,

for t,s > 0. The other is the singular integral operator f x K introduced by Ricci and
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Stein [31], where

_ —2(k+j) ghg (F1 T2 T3
K(xl,xg,xg)—kZZQ (k+) J<27k,§7%)
’JG

and the functions ¢*7 are supported in a unit cube in R? satisfying a certain amount of
uniform smoothness and cancelation conditions. It was shown in [31] that 7} is bounded
on LP(R3) for all 1 < p < oo. R. Fefferman and Pipher [15] further showed that this
class of singular integral operators is bounded in L%, spaces for 1 < p < oo when the
weights w’s satisfy an analogous condition of Muckenhoupt associated with Zygmund
dilations. The link between the properties of maximal operators M; and the boundary
value problems for Poisson integrals on symmetric spaces, such as Siegel’s upper half space,
was discovered by E. Stein. See the survey article of R. Fefferman [12] for this link and
for more research directions of multiparameter analysis on Zygmund dilations. Related to
the theory of operators like M; and Tj, several authors have considered singular integrals
along surfaces. See, for example, Nagel-Wainger [29].

Recently, the first four authors [21] introduced a more general class of singular inte-
gral operators associated with Zygmund dilations, which we now recall. Suppose that
K(x1,22,73) is a function defined on R? away from the union {0, 2,23} U {x1,0, 23} U
{x1, 12,0} and all o, 5 and ~ are integers taking only values 0 and 1. Define

o1 K(T1, 22, 73) = all(21 + h1, 22, 23) — K(21,72,73), a=0or 1;

Agth’C(xl,fEQ,l‘i’,) = BIC(:Bla:L? + hQ,fES) - ’C(.’El,.’lﬁ‘g,l‘?,), B =0or 15
and
;’37h31C(951,x2, x3) = YK(x1, 2, x3 + hg) — K(z1,22,23), v =0or 1.

1 1
We denote Ay, 5, = Axlyhla Agyhy = A

z32,h2

and Ay, py = Ai&hP) for simplicity. The

“regularity” conditions are characterized by

C|h1 |29 | R | P01 | Ry 101
(R) A% 1 AL, 1, AL K@, o, 23)| < %
00141 | | B g [101 1 (| 222 | 4 | 23 )

foral0<a<1,0<f+yvy<lor0<a+v<10<p3<1, and |z1| > 2|hi| > 0,
|I2’ 22‘h2| > 0, ’$3| 22|h3| >0, hy,ho,hg € R and some 0 < #; <1, 0 < 0y < 1. The

cancelation conditions are given by

(C.a) / / / K(x1,x9,x3) dr1dradrs| < C
03<|x3|<r3 J 2 <|x2|<re J01< 21 |<11
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uniformly for all d1, d2, 93,71, 79,73 > 0;

/ Ag h AZ h ,C(:L’l,:lig,xg) da;l
51<|@1|<r1 2,12 3,h3
(C.b)

Clha|** | ( 1 . | )
= BOI+1 0141 L O s N
ealPP g POEE (i )™ (1221 1 )"

122 1T2

for all 61,71 >0,0< 8+~ <1, |£L'2| > 2|h2‘ > 0, |Z| > 2|h3‘ > 0;

/ / AL, p, K21, 22, 23) dzadrs
03<|z3|<r3 J o2 <|wa| <12

uniformly for all dg,d3, 72,73 > 0, |z1| > 2|h1| >0and 0 < o < 1. Or

/ / / K:(.T}l, 9, x3) dxld.%'le'g
03<|23|<r3 J o< 22 |<r2 J 01 < 21 |<11

uniformly for all 1, 62, 3,71, 72,73 > 0;

abq
< Clhl

(C.c) = Joy et

(C.a') <C

/ Agl,hlAlg,hglc(whw%xii) dzs
(Cb/) 52§|$2‘S7’2

C|hy |01 | b1 1 N 1
B N N C R

271 221

for all d9,79 > 0,0 < o+ <1, |x1| > 2|h1| > 0 and |z3| > 2|hs| > 0;

/ / AgthC(l’l,l‘Q,l‘g) dl’ldl‘g
03<]z3|<r3 J 61 <@ |<ry

uniformly for all d1,d3,r1,73 > 0, |x2| > 2|ha| >0 and 0 < 5 < 1.

The LP, 1 < p < 0o, boundedness of the singular integral operators was proved in [21].

C"h2’591

/
(C.c') 22|01+

<

The purpose of this paper is to establish the endpoint estimates of the singular integral
operators T; on HY,,(R3) when the kernel of 7T} satisfies the above cancelation conditions.
These results in particular provide the endpoint estimates for operators studied by Ricci-
Stein [31] and Fefferman-Pipher [15].

Let .(R3) denote the set of Schwartz functions in R? and z = (21, z2,73) € R3. A
Schwartz function f defined on R? is said to be a test function in .%(R3) if f € .7(R3)

and
/f(xl,acg,xg)aj‘f‘ dri = /2 f($1,$2,l‘3)$g$g drodxs =0
R R

for all indices «, (3, v of nonnegative integers. The seminorms of f in ,%(RS’) are the
Schwartz seminorms. We denote by . (R?) the dual of .%(R?).
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Let () € 7 (R) satisfy

—

(1.4) supp (M (&1) C {&1:1/2 < |&] < 2}

and

(1.5) ST oM@i6) =1 forall & € R\ {0},
jez

and let 1(2) € .7 (R?) satisfy

—

(16) SUPP¢(2)(§2a§3) C {(621&3) : 1/2 < ’(62753” < 2}

and

(1.7) S U®(246,256)2 = 1 for all (¢, &) € R\ {0}
keZ

Set wj’k(xl, X9, 373) = 2_2(j+k)1/1(1) (xl/Qj)fL/}@) (x2/2k, x3/2j+k).
By taking the Fourier transform, it is easy to see the continuous Calderén’s reproducing
formula on L?(R3)

(1.8) F@)= Y diwxdyn * f(2).

J,kEZ
This continuous Calderén’s reproducing formula was used to prove the LP(R3), 1 < p < oo,
boundedness of singular integral operators. However, to develop the Hardy space, we feel

that it is more convenient to use the following discrete Calderén’s reproducing formula.

Theorem 1.1. Suppose that 1;, are the same as in (1.8)). Then

(1.9) f(z) = Z Z [R|Yjk(z — 2r) (VK * f)(zR),

IHREL ReRI*

where ng is the collection of rectangles in R3 and R € ng means that R=1x J x S
with the side length |I| = 27, |J| = 2F and |S| = 27%F, xR denotes the “left lower corner”
of R (i.e., the corner of R with the least value of each coordinate component), and the
series converges in both . (R3) and %’(R?’).

Remark 1.2. As mentioned in [21], we would like to point out that both cancelation condi-

tions (C.a)—(C.d) and (C.2')—(C.c/) and regularity condition (R) are invariant with respect
to Zygmund dilations. Indeed (see [21, Theorem 4.1]), if K(z1,22,23) = >, pez ¥jk *

¥ k(1, T2, x3), then K(z1, x2, x3) satisfies all cancelation conditions (C.a)—(C.c) and (C.a')
—(C.c/)) and the regularity condition @ This means that the Calderén reproducing for-

mula above, as a special Calderén-Zygmund operator, is invariant with respect to Zygmund

dilations.
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Based on the above discrete Calderén’s reproducing formula, the Littlewood-Paley
square function of f € 5”5' (R3) is defined by

9= (X T e nenlre)

IkEL ReRI*

where x g is the indicator function for the rectangle R.

Note that the functions ), ; constructed above belong to %(RP’), so the Littlewood-
Paley square function g;z’ is well defined for all distributions in .7} (R3).

The natural class of A, weights with respect to Zygmund dilations was introduced
by R. Fefferman and Pipher [15], which we now recall. For 1 < p < oo, a nonnegative

measurable function w on R3 is called a Muckenhoupt weight in A} (IR?) if

1 / 1 ey g\
sup | — wxdw)(/wx P=) dx < 00.
2 (17 o) (17 [y

A nonnegative measurable function w on R? is called a Muckenhoupt weight in A3 (R?)
if M;(w)(z) < Cw(z) for almost every z € R®. And A% (R?) = [J,s; AH(R?). Tfw €
A3 (R3), the critical index g, of w is defined by

G :=inf{q: w € A‘;’I(R?’)}.

Now we formally define the weighted multi-parameter Hardy space associated with

Zygmund dilations as follows.

Definition 1.3. Let 0 < p < oo and w € A3 (R?). The weighted Hardy space HY,,(R3)
associated with Zygmund dilations is defined by

HE,(R?) = {f € 7{(R®) : g/ (f) € L, (R?)}

with quasi-norm || f[| g (ms) := ||gad)(f)||Lﬂ(R3)'

To see that the definition of HY,,(R?) is independent of the choice of {1;}, we will

prove the following

Theorem 1.4. Let 0 < p < 0o and w € AL (R?). Suppose {1, 1}, {¢;x} satisfy conditions

*. Then

ng( )HLP (R3) ~ HQ;,( )HLPU,(R?’)'

Our first main result is the boundedness of singular integral operators associated with

Zygmund dilations, which is given by the following.
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3 3 2+ m1n(91,92)
Theorem 1.5. Let w € A% (R?®) with critical index qy satzsfymg G < —2——"=
Suppose that K is a function defined on R and satisfies conditions (R)) and (C.al - . (or

[R), (C.a)—(C.c))). Then the operator Ty f := K « f defined z'm'tially on L*(R%) N HY,,(R?)

extends to a bounded operator on Hﬁw(RS) for p satisfying q - W <p<1and,

in(01,02)
moreover,

|1 * fHH;'jw(W < AHfHHng R3)
with the positive constant A being independent of f.

It is worthwhile to point out that the operators considered in this paper are invariant
with respect to Zygmund dilations and cover the ones studied in [31] and [15] associ-
ated with Zygmund dilations. Thus, Theorem (also Theorem below) in particular
provides the endpoint estimates for the operators studied in [31] and [15].

In many applications, singular integral operators are of the form K % f where K is a
distribution that equals a function K on R? away from the union {0, z2, 23} U {z1,0, 23} U
{x1, 2,0} and the cancelation conditions are described in terms of bump functions. Asso-
ciated with Zygmund dilations, the cancelation conditions defined using bump functions
were introduced in [21]. It was shown that such kind of cancelation conditions are weaker
than the ones considered in Theorem and hence the same boundedness result also
holds for singular integrals with these cancelation conditions.

We point out that in the classical case, the main tool to get the H? — LP (or HY, — L%))
boundedness of the classical singular integrals is the atomic decomposition. However, in
the present situation one even does not know whether such an atomic decomposition exists.
We will show the following more general result without using atomic decomposition and,
as a consequence, obtain the HY,(R3) — LI,(R?) boundedness for the singular integrals
given in Theorem

Theorem 1.6. Suppose 0 < p < 1 and w € AL (R3) with critical index q,, satisfying g, <
w. Let T be a linear operator mapping L*(R3) into L*(R3). If T is bounded on
H?,(R3), then T can be extended to a bounded operator from HY.,(R3) to L1, (R3). As a
consequence, the operator considered in Theorem is bounded from HY,,(R3) to L}, (R3)

2
fO?”qwm<p§1

We would like to remark that the range of p given in Theorems [I.5 and [I.6] can be
extended to be 0 < p < oo if more regularity and cancelation conditions are added to the
kernel for operators considered in these theorems.

Our last main results are the Calderén-Zygmund decomposition and interpolation.

Theorem 1.7. Let w € AL (R3), py € (0,1] and p1 < p < p2 < 00. Given f € HY,,(R?)
and o > 0, we have the decomposition f = g+ b, where g € Hi%(R3) and b € HY Y, (R3)

with ||g|I%; < CaP P flip sy and IDlgry oy < CP PN fllgp, gs)-

Hy3 (R3)
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We would like to point out that the above result was first proved by Chang and
R. Fefferman [5] for the product Hardy space H'. As an application of Theorem (1.7, we

immediately have the following interpolation of operators.

Theorem 1.8. Let w € A% (R?) and 0 < p; < p2 < co. If T is a sublinear operator
bounded from HYi,(R3) to LL}(R3) and bounded from HYi(R®) to LEZ(R3), then T is
bounded from HY.,(R3) to L, (R3) for all p € (p1,p2). Similarly, if T is bounded both on
HY,,(R?) and H%,(R3), then T is bounded on HY.,(R?) for all p € (p1,p2).

The organization of this paper is as follows. In Section [2| we prove the discrete
Calderén reproducing formula associated with Zygmund dilations. Section [3] is devoted
to proving that the weighted Hardy spaces are well defined. The boundedness of singular
integral operators on the weighted Hardy spaces is proved in Section dl We establish a
new discrete Calderén-type identity and show the H},, — L¥,, 1 < p < co, boundedness in
Section [f] The last section contains the proofs of Theorems [I.7] and

2. The Calderén reproducing formula

The following almost orthogonal estimates can be found in |21, Lemma 3.3].

Lemma 2.1. Suppose that 1 and ¢j o satisfy (L4)—(1.7). Then
oM (5V3") oM (kVE')

(20V3" 4 Jay ) IFM 255 (2BVE 4 || 4 277" |ag] )2+ M

[V * @i g ()| < 2~ li=i'lLy—|k=F'|L

for any fivzed L, M > 0, where x = (x1,x2,23) € R3, 7* =5 if k > k' and j* = j' if k < k.
We now use Lemma [2.1] to prove Theorem

Proof of Theorem [I.1] As in the classical case, by the Fourier transform, we have the

following continuous version of Calderén reproducing formula

f=> kst

Jkez?
where the series converges in L?(R?) norm. To get a discrete version of Calderén repro-
ducing formula, we need to decompose 1;  * ;1 * f. We use some ideas in [17,|18]. Set
g =1k fand h =1;. For { € R3, the Fourier transforms of g and h are respectively
given by

~

(€1, 60, €5) = DD (20610 (25, 2970Ey) &1, &9, &),
(&1, €2, €5) = pD(276))p2) (2Fgy, 2Hrey).
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Note that the Fourier transforms of g and h are both compactly supported. More precisely,

both supp g and suppﬁ are contained in
R = {€ € R : 61| < 277m, |6a| < 27" 5| < 270+Mr |

Now we first expand g in a Fourier series on the rectangle R;

g9(&) = Z 22(j+k)(27r)—3 (/ g(g/)ei[(zjélgi+2k€25§+2j+kz3gg)} dﬁ')
0e73 Rjk

« e—il(2701€]+2k a8, 127 1R E3eL )]

and then replace R;; by R3 since g is supported in R; . We have

g(é) = Z 22(j+k)g(2j£17 2k s, 2j+k53)e*i[(Wlfi+2kf2€§+2j+kf3§é)}.
LeZ3
Multiplying both sides by ﬁ(& ) and noting

~

h(€)e OG22 E)] — [p( . — 270y, — 280y, - — 2TTRE5)YE),
we obtain

(g * h)(l‘) = Z 22(j+k)g(2j£1’ 2’%2, 2j+k€3)h(l'1 — 2j€1, xro — Qkfg, r3 — 2j+k€3).
ez3

Substituting g by ;1 * f and h by v;; into the above identity gives the discrete Calderén
reproducing formula in Theorem and the convergence in L%(R3).

To finish the proof of Theorem it remains to show that the series in converges
in .%(R?). Note that 1,5 € .%;, it suffices to prove

Z Z 2R s (1 — 2901, g — 2809, w3 — 27K L) (4 g, % £)(2701, 2809, 271K 03)
li1lls2], |73 > L £ez?

tends to zero in .%(R3) as L — oo. It is easy to see that this will follow from the following

inequality

(2.1)

> 20BN (9% (w1 — 24y, g — 250p, g — 277K 0g) (4 # F)(27 40, 270o, 27 0s)
Lez3
< ¢~ WnlHzzl+lisD (1 4 )~

for all z = (x1,22,23) € R® and M > 0. Thus, it remains to verify (2.1]).
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We have
[(0%j) ()]
; ; d* Ty T
_ 9—2(j+k) |[9—ja (1) —ka (j+k)a a2 gas, . (2) L2 3
o o (0 (22t 000 o) (.55 )|
< 9—Ji(2+a1+az)9—k(2+az+az) 1 1 1
22) (L GOM (1 GO (14 7)™
74K Hal) 27 WM oliHkDM
- (L4 [z )M (1 + |22[)M (1 + |2s))M
o i+ 2+ al+2ar) 1
(1 + [=))M
Also, from Lemma
) oM (5V0) oM (kV0)
. < 02~ lilLo—IkIL___ ' '
(2.3) W s fl =€ (29V0 + [y [J1HM 257 (28VO0 - [z] 4 2777 |23] )2+ M
. | .
< 9= lil(L=2M-D)o—|k|(L-M) ___ ~
B (1 + [=))M

Using (2.2)) and ., we have

D OO s (wr = Pl wa = B,y = 2 (W )P0, 20,27 ly)
Lez?

< 02~ (THIRDL §™ 92i4k)
LeZ3

1
(1 + |2j£1| + ‘2k€2| + |2j+k€3|)M

1
X - -
(1 + ‘1'1 — 2]£1| + |.1I2 — 2k£2’ + ’xg — 23+k€3|)M

Let Rj s denote the Zygmund rectangle centered at (27¢y, 2k 05,271k 03) of sidelength 27,
* and 297*. Observe that, for any 2’ € R; .,

14 290, 4 2805 + |27T703) = 1 4 |2
1+ |z — 2001| + |zg — 280g| + |23 — 27HF05| =~ 1 + |2 — 2|
We then have

> 220R (9% (w1 — 24y, g — 280p, g — 277K ) (4 # F)(27 40, 270o, 27 Ms)
Lez?

, da'
< C2” (|5]+1k) L /
PO e

—_ o (jl+kD / da’
e (14 [/ DM (1 + [o — /)M
< 02~ WIHEDL (1 4 z)~M

This proves (2.1) and hence Theorem follows. O
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3. The definition of weighted Hardy spaces
The following lemmas will be needed to prove Theorem

Lemma 3.1 ([15]). Suppose 1 < p < co. Then M, is bounded on L%, (R3) if and only if
w € A} (R3).

Using Lemma [3.I] and the idea of Rubio de Francia’s extrapolation, Cruz-Uribe,
Martell, and Pérez [9] obtained the following weighted version of vector-valued maximal

inequality associated with Zygmund dilations.

Lemma 3.2. Suppose 1 < p,q < co. If w € A}(R3), then

L(Smmer) swase [ (Sinwr) wew e

jez jez
The following lemma will be used in the proof of Theorems [1.4] and

Lemma 3.3. Given any nonnegative integer N and integers j, k, j', k', let R € RgiN’ka
and R = I' x J' x K' € Rg/_N’kl_N. Let {ar'} be any given sequence and let x7, =
(x5, 2%, x%,) be any point in R'. Then for any u* = (uj,ul, uj),v* = (vi,v},v5) € R3,

we have

9(3Vi" ) M19(kVE') M2 IR|
e e iy N
e o @7 lud = R [T IV o — 427

1/r
g02[4N+2<j—j'>++2<k—k'>+}(1/r—1>2|j—j'|{ Mz( T IaR/!’"fo>(v*)} ,

RIeRY —NHM =N

a
i

where (j—j')+ = max(j—j',0), j* = j ifk < k' and j* = j' if k > K and max{2/M;,2/My}
<r<l.

Proof. For RF =1 x J x K' € RglfN’kLN, we set

Ag = {I' : 2V |ut — 2% < 1},

Bo = {J' x K" : 2°Y¥ (|lub — 2% | + 277" |uf — 25 |) < 1}
and for £/ > 1,1 > 1,

Ap={I": 271 < VIt — 2%, < 2%,

By ={J x K': 271 < 2"VF (|ul — 2%, | + 277" |ufy — 2% |) < 2°).
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For any fixed ¢,7 > 0, denote

Ey; = {(wl,wg,wg) eR?: |lwy — x| < 2£+12(jle), |we — 2’| < 2i+12(k\/k,),

‘w3 _ .%'?(/’ < 2€+z’+22jv]"2kvk’}'

Note that every Ey; is a Zygmund rectangle. For R’ € A, x B;, we have R’ C E;; and

obviously

|Ees| = 92(0+i+2)92(j V') 92(kVK')

Then, for any v* € R, v* € Ey;,

D

ReRI ~NH-N
3

1/
< 93" =iV =2KVK )2 +K') AN Z 2—((1+M1)2—i(2+M2)< Z ‘aR/‘r> "

9(5Vi") M1+ (kVE') M2 IR ||ag|

(29V3" + |uj — x?,|)1+M1 20" (28K 4 |ug — 2%, | + 277" |uf — 2%,

|)2+M2

£,i>0 I'eA,,J' xK'EB;
_ 27j*fjvj’f2(kvk’) Z 27£(1+M1)27i(2+M2)
2,i>0
1 1/r
< R11Eel LD SR T
’ |Eeil JE,,

I’EA@,J/ XK’EBi
< CYINO/r=1)9GVI)—* 9201 /r=D)[(=3" 4=} 1]

1/r
% 3 gt ) g it -2/r) (M5< 3 ’aR’|TXR’> (U*)>

£,i>0 I'eAy,J'xK'eB;

1/r
§02[4N+2<j—j'>++2<k—k'>+}(1/r—1>2|j—j'<M3< 3 |aR’|TXR’>(U*)> ,

RIeR] TNHK =N

We note that the last inequality in the above string follows from 1 > r > max{2/M;,2/M>},
which can be done by the assumption and choosing M; and M, large enough. Hence the
proof of Lemma is concluded. O

Proof of Theorem [L.4. We begin with estimating (¢ j * f)(zg). To do this, applying
Theorem implies the following pointwise identity:

Wy ) = D DRIy * i) (x — 2r) 05k % f)(2R).

JkEL ReR*

For any sufficiently large constant M, applying Lemma for (v 1 * 0jk) (TR — TR)
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with L > M and then Lemma [3.3| with M; = My = M and N = 0, we have

- , 2UVI M
. ) —(l5=7"+|k—K'L
(s Dem| <€ 3 2 2 WG gy
7 RER;’
o(kVE )M

x 277 (2VE) o) — 4] + 2797w — zf])2HM |(@jn * F)(zr)|
<C Z 9= (15=3'|+k=K) Lo[2(j—5")+ +2(k—k')+](1/r—1) 9|j—J'|

JkEL
r/2 1/r
A Tl Nenie) @)
ReR*
for any € R, where 2/(2 4+ M) < r < min{p,2}, and the fact that (ZReRj,k (01 *
3

f)(ﬂfR)|2XR)T/2 = > peri® [(0jk * f)(xr)|"Xr is used. Applying Cauchy-Schwarz’s in-
3
equality and summing over j', k' and R’ yield

{ Z Z (Y7 k% f)(xR,)‘QXR’(fL')}l/Q
< C{ Z {Ma( Z ’(@j,k*f)(xR)‘QXR>r/2<$)}2/r}1/2

ReR}*
since
Z 9= (13=4'I+ k=K Lg2(i=i")++2(k=kK)+](1/r=1)oli=i'l < ¢
JEZ
and
Z 9= (13=3"I+Ik=F N Lgl2(i=i)++2(k—=K)+](1/r=D)oli=i'l < ¢,
keZ
Hence, if w € A, taking M big enough, we may choose r with r < p so that w € A;/T.
Applying the weighted vector-valued maximal inequality on jr7a (63/7), we get

|2

1/2
e f)(xR»PxR/}

JWEL pre RJ L,
1/2
<{ T T s neabre} |
LP
3,kEZ RE'Rg k w
and this completes the proof of Theorem O

As an immediate consequence of Theorem the definition of HY,,(R?) is independent
of the choice of t; ;. Henceforth, we usually write g;(f) and [ - ||z»  to stand for g;b (f)
and || - ||1f{p without specifying ).
3w
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The following density result of H},, is useful for the proof of the boundedness of
operators on H},,, which follows from the proof of Theorem

Corollary 3.4. Let w € A% (R3) and 0 < p < oo. Then L?* N HY\,(R3) is dense in
HY ., (R?).

Proof. Since .%(R?) C L?(R3), we only need to show that .%(R?) is dense in HJ,,(R?)
for 0 < p < co. Let f € HF,(R3). By the discrete Calderén reproducing formula in
Theorem [1.1]

f@) =" > |Rljr(x—2r) Wik = f)(xr).

JkREL ReR*

For any fixed L > 0, denote
Ep={0Gk R):[j],[k| < L, R C B(0, L)}

and

fo@)= > |RIk(z — 2r) Wik * f)(zR).

(J7k7R)€EL
Since ;5 € .%(R3), it is obvious that fr, € .%;(R?). Repeating the proof of Theorem [1.4
we conclude that
Ifellmr, @) < Cllflar, @s)-

To see that fr, tends to f in HY,, (R3), we again apply the discrete Calderén reproducing

formula in Theorem [I.1] to write

(f=fo)@) = D |RWx(z —zr) Wk * )(zr),

(J,k,R)EE]

where the series converges in ./ (R?). Thus, [g;(f — f1)(z)]* equals

2

> o> > IRy ik (@R — 2r) (kP (@R)| xR (2).

iK' €L R’GRg/’k/ (j,k‘,R)EEi

Now repeating the same argument as in the proof of Theorem again, we get

I

L7, (R3)

1/2
r\%(f—fmuLg(Ra)ch{ T |<¢j,k*f><m>|2m}

where the last term tends to 0 as L goes to infinity. This implies that f; tends to f in
H?,,(R3) norm and hence the proof of Corollary is concluded. O
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4. The boundedness of singular integral operators on Hﬁw(R‘?’)

The following lemma is a variant of Lemma |3.3] which will be needed in the proof of
Theorem [L5l

Lemma 4.1. Given any integers j, k, j', k', let R € ng and R' =1'x J x K' € Rg/’kl.
Let {ar'} be any given sequence and let x5, = (x3,, 2%, %) be any point in R'. Then for

any u* = (u},us,ul), v* = (v, v5,v5) € R3, we have

Z 9(Vi"A 9(kVE)A/2
(U + fuj — g [T VK Jug — a7 [) T2

i’k
R'eR]

2l(GVi")+(kVE)IA/2
X (2(jvj/)+(k\/k/) + \u}‘) _ $}(/|)1+/\/2

1/r
<02[2(3‘—3")++2(k_k')+](1/7"—1){MZ( Z |aR’TXR/>(U*)} ’
ReryY

|R||am|

where 2/(2+X) <r <1 and A = 5 min(6;,62).

Proof. We provide a detailed proof for the reader’s convenience. For R = I' x J' x K’ €

Rgl’k,, we set
Ag = {1 Juf — 2} <PVY, Boi={J: fuj — o] < 28F)

and
Co = {J": Juf — 2| < 20VIN+HRVEDY
Moreover, and for integers £1, /5,03 > 1, we set
Ag, = {1 : 20719V < ut — 2t < 2029V},
By, = {I' : 227120V < |y} — a3, | < 20229V97)

o -

and
Cyy 1= {K' + 267 10UVINHRVE) g x| < 9lag(Vi)H(kVE)Y

For each fixed ¢4, 5, ¢3 > 0, denote

Git190vs’ N
Bty = { (w1, wa,w3) € R : g — ] < 2071209, oy — | < 22H12 0K,
|lws — 23| < 2€3+12(j\/j')+(/€\/k’)}.
Obviously, we have

o ,
| Ep, py.0,] = 201 H12t2t10la 1920 Vi) 92(kVK)
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Here we point out that Ejy, ¢, », may not be a Zygmund rectangle any more. Also note
that for R' € Ay, x By, x Cyy, we have R’ C Ey, 4, 45, which yields that for any v* € R/,
we have v* € Ey, ¢, ¢,.

Now we have

2(ViA 9(kVE)A/2

R/e%,’k, (20V3") + |ut — a%, [)1HA (20VE) 4 |y — 2%, [)1HA/2
2l(3Vi")+(kVE )] N/2 /
x (26VIN+RVE) 4 |k — x%,,[)1HA/2 |R||ar|
2(ViA o(kVE)A/2
< Z Z 26V 4 Jup — a3, )1 (QOVE) o Jus — 2%, [) 12

0y ,42,03>0 R/ZI/XJ/XK/ERj’,k’
3
I'e Ay, ,J €Byy ,K'€Cy,

ol(GVi")+(kVE)IN/2

x (260VINHRVE) 4 |yk — 2%, [)1HA/2

S c Z Z 27(jv]'/)Q*ZI(1+A)27(k\/k')2762(1+)\/2)

01,02,3>0 pr_ s ’ ’ il k!
DRt R'=I'xJ'xK'eR;
I'e Ay, ,J €Byy ,K'€Cyy

x 2 [GVI )+ (RVED g—ls(14+2/2) 92)' 92k’

|R'lar]

lar|
S0272(jvj')272(k\/k’)22j’22k’ Z 27121(1+>\)2752(1+>\/2)27£3(1+>\/2)

£1,£2,£32>0

1/r
R =I'x J'xK'eRi ¥
3

I'€ Ay, ,J €By ,K'€Cyy
_ 02—2(jvj’)2—2(kvk’)22j’22k’ Z 2—Z1(1+>\)2—22(1+A/2)2—63(1+A/2)(22j’22k’)—1/r|E€1 o €3|1/r

£y,4,£320

1/r
1
1 S lenatn)

E
| Z17€27£3‘ E51722=23 R’:I’XJ’XK’GRZ”IQI
I'eAy, ,J' €By ,K'€Cyy
< 0272(jvj')(lfl/r)272(k:\/k')(171/r)(223"22/0')171/7“

1/r
« Z 2751(1+)\71/r)27€2(1+)\/271/r)27€3(1+)\/271/r) <M3 ( Z |aR’ TXR/> (’U*))

01,0,65>0 RIeRI
1/r
S22(1—1/r>[—(jvj')+j’}22(1—1/70[—(kvk/>+k/](M3< 3 |aR’|TXR’>('U*>>
ReriM
, , 1/r
2[2<jj>++2<k:k>+1<1/r1><M5( 3 |aR’|TXR/>(U*)> .
ReR]

Here v* is any fixed point in R. We note that the last inequality above follows from the
assumption that 1 > r > 2/(2 + X). The proof of Lemma is concluded. O
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We now prove Theorem [I.5] one of the main results in this paper.

Proof of Theorem [I.5 By the discrete Calderén reproducing formula in Theorem

W“<f”“ﬁﬂﬂw>::H{ 2 2 lcwﬁk*K:*fﬂxRﬂsz}lm

JkEL ReR*

g |pap>

J,kEZ RGRg’k

L7 (R3)

Dige* Kx < Z Z \R [0 1 * [(2zR)
iK' eZ R/ERg’k
2 1/2
X thyr (- — CER')> (R) XR}

Y IR Wyrw = (=)

' k! €7 ke
K€L R1eR]

L, (R3)

g PP

] N
7,kEZ RE'R;

2 1/2
x<wﬁ*n*%w»uR—xm>xR}

where ng is the collection of rectangles in R? and R € ng means that R=1x J x S
with the side length |I| = 27, |J| = 2% and |S| = 2/*F, zp is the left lower corner of R,

similar for the set of rectangles R'.

)
Lk, (R3)

[21}, Proposition 3.1] showed that v, * K % 1js v satisfies the following orthogonality

estimate

(ke % K x Wy ) (w1, T2, 03) |
9—(3Vvi") 9—(kVK')
(14 2-GVI |z [)1HA (1 + 2= VA | g ) 1H+A/2
9—(4Vi")—(kVE')
% (1 + 2= GVI)=(kVE) | p5])1+A/2
for A = %min(@l,ﬁg).
Thus, using Lemma[£.1] and repeating the same argument as the proof of Theorem

we obtain

I7 g0 < €] {

< 027 li=7'lg= k=K'

)

> [M:,( > ’(%’/,k/*f)(xR,)‘QXR/)r/TZ/r}l/z

. "
RLES R'eR]

where 1 > 7> 2/(2+ \).

L (R3)

Now since ¢y, - < p <1, we choose r < p such that p/r > q,. Applying

2
2—1—% min(el,eg)
the L]ZJ/ "(£2/") boundedness of M; in Lemma we obtain

S (S 10 nemrt) )

j' k€L R’eRg’k
This concludes the proof of Theorem O

< Cllfllar, ms)-

L7, (R3)
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5. A new discrete Calderén-type identity and H?,(R?) — L? (R*) boundedness

To prove the boundedness for singular integral operator from the Hardy space H} w(R3)
to L5, (R3) for 0 < p < 1, we need the following discrete Calderén-type identity in terms

of bump functions.

Theorem 5.1. Let 0 < p < 0o and w € A3 (R3). Suppose My > 10(Nlqy/p — 1] + 1)
(here we use [-] to denote the greatest integer function). Given f € L? N HY,,(R3), there
exists h € L> N HY,,(R3) such that, for a sufficiently large N € N,

(5.1) F@E S S IR — 9R) (654 * ) (WR),

) kEZ, j—N,k—N
JREL RER)

where U denotes any fixed point in R. Moreover,

(5:2) [z, = 10llae,,  [Fl2 ~ lI5]l2.

If1 <p<oo and w € A}, then (5.1)) holds for f € L? N L%, with

Hf||pr(R3) ~ HhHL”w(R3)'

Proof. For f € L?(R3), the Fourier transform gives

F= djn*din*f

k€T

where the series converges in L?(R3) norm. Applying Coifman’s idea of the decomposition

for the identity operator, we have

f@y =Y > |RI(bk* Ir)Sk(x —Ir)

1 kEeZ j—N,k—N
JNEL RER]

D /R¢j,k(flf — ') () * [)(@) — Sju(x — IR)(D)k * [)(VR) do’

7,kEZ RE'Rg_N’k_N
= Tn(f)(z) + By (f)(2),

where N is a fixed large integer to be determined later.

We can decompose Ry (f) further as

Rv(Hx) =Y /R[éﬁj,k(w — ') = $jn(z — IR)|(S) * £)(a') da’

ikeZ j—N,k—N
JkEL ReR]

'Y Y /R bir(x — 2 (G 1)) — (D30 % F)(VR)] da’

; i—N,k—N
I K€L ReR]

= RN (f)(2) + Ry (f)(2).
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We claim that for ¢ =1, 2,

BN (Nlaz, < C27N fllae,,
where C' is a constant independent of f and N.

Assume the claim for the moment. Then by choosing sufficiently large N, both Ty
and Ty! = 3°0° ((Ry)™ are bounded on L?(R3) and on HY,,(R3). Set h = Tx'(f). The
estimate implies . Moreover,

f=INTR D)= > [RIr(- = 0r)(djnh)(VR),

ij;EZ ReRng,ka
where the series converges in L?(R%). Thus, it suffices to verify the claim to finish the
proof of Theorem

Since the proofs for R}V and R?V are similar, we give the proof for lev only. Let
f € L*(R?* n HY,,(R?). By Theorem we write

[y # RA(D](@)
=Y X [ sl =) = bial = I @) g )

i ke j—N,k—N
JREL ReR]

63 -y % /R Wy * (b — 2') — dx(- — 9R)])(2)

ikeZ j—N,k—N
JREL RER]

% ( Yo D IR Wy x @) (S0 x by (@~ fERff)) da’,

11
,k”

'//,k.IIEZ j
J R'eR]

where x gy = (xpn,xgn,xgr) is the left lower corner of R”. Set qAb/Jk(u) = ¢jn(u—2a') —
¢jk(u —9g). Applying Lemma with M sufficiently large (which will be determined
later) and L = 10M, we obtain that for some constant C' (depending only on M, 1) and
¢, but independent of N),

(o o % D) ()| < €27 N~ 100M {5 =5"I+Ik=k"])
oM (jvi") oM (kVEK')
X — - -
(20V3" + |zq — O |) 1M 20% (2WVK 4 |2g — Oy | + 279" |13 — Dgc|) 2P
< 02 No—10M(jj—3'|+[k=F"])

2Mj/ 2Mk’
X s/ 5! ! s/
(20" + |zy — 2 )IHM 20" (2K + |mg — fy| + 277" |zg — af])2HM

for any x' = (2, 2%, 2%) € R3. Similarly,

=11

oMj
(27" + |2y — @ )M
2Mk,//

21" (2K + |zl — @ g | + 273" |zl — @ pen])2HM

|(¢],k % wj”7k”)(m/ - I‘R//)’ < 02710M(|j*j//|+|kfk//|)

X
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Substituting both estimates into the last term of (5.3)) yields

(5.4)
(e * R f) ()|

<C \R"|| (W g [) ()| 9—No—|j—j'[3Mo—|k—k'|3M
! R

j",k”EZ R”E'Rg”’ku j,kGZ RERg_N’k_N
My’ ME’
" 2™ 2 o—1i—3"13M o~ k—K"|3M
i’ ' N\14+M 935" (9k' / -3’ ! \2+M
(27" + fwy — 2y NI 2728 + [y — wh| + 277 g — w3))*F
-1/ "
2M_7 2Mk
X , da’

@7+ 12— 2N 2@+ [ahy — o] + 27 e — e [N

-N —|3'=3"138M o—|k'—K" [3M | p11 2M("™Vi")
D I s -
" ( + |z —2p0))

'//7k//€Z ;
J R'eR]
oM (K'VE")

| (g g f)(@rr)l,

X — —
2]*(2k/\/k;” + ‘1,2 _ $J"‘ + 2_J*’$3 _ .TK”|)2+M

where j* = j/ if ¥’ > k" and j* = j” if ¥’ < k”. Now we choose M = Nqy,/p — 1] + 1,

L =10M and 3/(N 4+ M) < § < 1. Then p/d > g so that w € Ai/é(R‘g). We apply R”

to a similar estimate to Lemma [3.3] and get

RN () e, ()
< Cllg,[RN (D]l 2z, 2y

gcaNH{ > (X r<wj~,k~*f)(xRuanu)é}z/&}l/Q

j//,k/leZ R//ERg”’k//

L (R3)

Using Lemma we obtain the LZ/° (¢2/%) boundedness of M, and hence

1/2
||R}V(f)||H£w(R3)§02_NH{ > |(¢j”,kz”*f)($R”)|2XR"}

11 k//eZ j//,k//
I R'eR]

L7, (R3)

~ 27NHfHH§w(R3)-

Therefore, the claim (5.5 is concluded.
For 1 < p < oo and w € A}, we assume f € L? N L%,. Arguing as above, we see that

the desired conclusions follows if we can show

(5.5) IRy (F)llzz, < C27Y 1 £z,

where C' is a constant independent of f and N. We only give the proof for R}V as R?V can
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be handled in the same manner. By continuous Calderén’s reproducing formula,

[y * Ry (F))(@)
D /R i # (B (- — ) = byl - — IR))(@) (G50 * F)(a') o’

1 keZ j—N,k—N
JINEL RER]

>y > /R(T/Jj’,k' 5 0 10) (2) (D * Vo gor + Vg gor % f) (@) d’

j,kEL j=N.k=N j k'€,
VLS ReRg J7RTE

Arguing as in ([5.4]), we obtain
oM (j'Vj")

- 1 —-N —(I5"=3"1+IK —=K")) M
[y % RN (D@ <027V 37 2 I TR pe— o T

j//,k,lleZ

oM (K'VE")
X — —
277 (2FVE" g — alf| + 2777 |xg — aff|)2TM

< 027N ST 2 WM DM A (g 5 ) (2),
j//,k//EZ

| (o e+ ) ()] da”

where in the last inequality we have used Lemma [3.3] Squaring both sides and applying

Cauchy-Schwarz’s inequality, we obtain

g Ry (H)](@)]? < 027N 7 27 W HWERIDM M, (g o 5 ) ()2,

jll’k//eZ

It follows from [14, Theorem 2.9] with w € A}(R?), Rubio de Francia’s extrapolation

theorem, and weighted Fefferman-Stein’s vector-valued inequality that

1/2
VRN (F)leg ~ 13 (RN ()1, = H( S iy s R}V(f>|2)

il k€L L
1/2
S 02_NH < Z [Mg(T/)j”,k” *k f)]2>
§"K"ET Lh
1/2
S 02_NH < Z Wj”,k” >k f|2)
g k" EL Lﬁ,

=277, (Fllze, = 27V fllz,

where g,(f)(z) := (Zj,keZ | (), * f)(;r)|2)1/2. This verifies (5.5) and hence Theorem
follows. O

We would like to point out that the difference between the discrete Calderén repro-
ducing formula in Theorem [I.1] and the discrete Calderén-type identity in Theorem [5.1]is
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that the functions v in Theorem @ have non-compact supports and all moments van-
ish, while the functions ¢;; in Theorem have compact supports but only have finite
number of vanishing moments. The crucial fact is that the points xr in Theorem are
fixed, namely the left lower corner points, and, however, the points ¥ in Theorem [5.1] are
any fixed points. Note that in Theorem [I.T], the sum runs over all Zygmund rectangles
Rg’k, while in Theorem the sum runs over Zygmund rectangles at the smaller scale
T\’,g “NE=N These two facts, compact supports for functions ¢;; and the arbitrary fixed

points ¥ g, are very important to prove Proposition below.

Lemma 5.2. (i) If1 <p < oo, then w € A}, if and only if w1/ (=1 ¢ Ai,.
(i) If1 <p<q< oo, then A} C Al.

(iii) If1 <p < oo and w € A}, then w € A%_e for some € > 0.

The conclusions (i) and (ii) in Lemma are similar to the classical case (see [19]),
while (iii) was proved in [15, page 347].

We are now ready to prove the following result, which, combined with Theorem [1.4
will imply Theorem

Proposition 5.3. Suppose 0 < p <1 and w € AL (R®). If f € HY,,(R3) N L*(R3), then
f € L%(R3) and there is a constant C, > 0 independent of the L*(R®) norm of f such
that

1 llzz sy < Copll fll e, r3)-
Proof. By Lemma (ii), we may assume w € A3 (R3) for some ¢ € [2,00). Let

1/2
WN0={ Y T GurhenPu@]

i keZ j—N,k—N
JREL ReR]

where {¢;;}, h and N are the same as in Theorem and zr denotes the left lower
corner of R. Applying Theorem [5.1] and repeating the same argument as in the proof of
Theorem we get

”%(f)”Lﬁ)(R?’) ~ ||h”H§'jw(R3) ~ ||f||H§w(R3)

for f € L*(R®) N HY,,(R3).
Given f € L*(R3%) N HY,,(R3), applying the discrete Calderén-type identity in Theo-
rem [5.1] with Yp = xR, we can write

F=Y" > IRIgjk(- —zr)($jk *h)(xr) for f € L*(R®) N HE,(R?).

§kETL RER‘{*N’I“N
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We now apply the method for atomic decomposition. For this purpose, set
Q= {z e R : g(f)(z) > 2'}
and

. 1 1
B; = {(j,k-,R) 1ik € 2, R€ RPN RN Q[ > S|R| RN Qi | < 2|R|}-

We rewrite

F@)=>" > |RIgjn(z — xr) ¢k * h)(zr),

i€Z (j,k,R)EB;
where the series converges for almost every z € R3. We claim that

(5.6) ’ < C2Pw(QY).

L7, (R3)

> |RIGik(- — zr) (S * ) (zR)

Since 0 < p < 1, the above claim and the definition of €2; yield

~ p
11 S| S 1RIG( — 2r) (@ * )(en)
i€z ! (j,k,R)EB; L7, (R3)
< O 2w() < OGPy oy ~ 112 oo
i€z

and Proposition [5.3] follows.

To show claim (5.6), we note that if (j, k, R) € B;, then R C Qi = {2 : M,(xq,)(x) >
1/2} and hence, the function ¢; (- —xr) is supported on Q= {x: M;(xa,)(x) > 1/100}.
By Holder’s inequality, we obtain that

p

> IRIgik(- — zR) (S * ) (2R)

L (R3)

(5.7) P

< Cw(€)' = w/9)

> IRIgik(- — zr) (S + ) (2R)

L3 (®)

We now estimate the last L{-norm by the duality argument. For ¢ € qul_ ,(R3) with
wt—4q
’ < 1,
”<HL117 (RS) —

\< ) R|¢j,k<-—xR><¢j,k*h><xR>,<>]
(4,k,R)EB;

3 / (G5 * @) (B3 * h)(@R)Xr(x) da

(4,;k,R)EB;
1/2 - 1o
<[{ T toneora) { ¥ 1Geeoeie} |
(4,k,R)EB; L (R3) (j,k,R)EB; L,(Ll—ql (R3)

= Il X 127
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where %k(m) = ¢jr(—x).

We first estimate Io. Applying [15, Theorem 2.9] with w € A3(R3) and Rubio de
Francia’s extrapolation theorem, we get that if 1 < p < oo and w € A}(R3), then there
exist constant ¢, C' > 0 (depending only on |jw|| a3) so that

C”fHL{;(W) < ”93( )HLP R3) = CHfHL P (R3)

for all f € LE,(R3).
Since w € A3 (R?) implies w7 e AZ, (R?), applying the above estimates yields

sy h<d{ T % |<¢j,k*<><m>\2m}l/2 |

G hEL ReRI—N k=N Lt (%)

= HCHLq’ (R3) <L

As for I, note that ©; C Q; and w(€) < Cw(€) due to the LL(R3) boundedness
of M;. For any (j,k,R) € B; and z € R, then MZ(XRH§¢\§2¢+1)($) > 1/2. Applying

Lemma again, we have

If = H{ > !(@,k*h)(xR)\zXR}l/Q '

(j.k,R)EB; L3y (R?)

-[{ = r<¢j,k*h><x3>|2xR<x>}q/2w<x>dx

(4,k,R)EB;

(5.9) - C/ {

< C/ { ((pj 1 * B)(zR)[? X R, \QZH( )}q/2w(:c) dx

(j,k,R)EB;

q/2
(030 1)) My o, ) | (o) da
(j,k,R)EB;

q/2
sef A Y e} i

(]7k7R) EBi
< C29w(Q;) < C29w(L).

Combining both estimates (5.8]) and (5.9)), we obtain

< 021w ().
L%, (B3)

> |RIGik( — zR)(bsk * h)(zR)

(4,k,R)EB;

Plugging this estimate into ([5.7)) yields claim (5.6)), and hence Propositionis concluded.
O

We now show Theorem [L.6l
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Proof of Theorem [L.6. If f € L*(R3) N HY,,(R3), then T'f € L?(R3) N HY,,(R3). Thus, by

Proposition [5.3| and Theorem [1.5] we have

1T/l < CIT Az, < ClLf e,

2
fOqum<pS1

Since L*(R*) N HY,,(R?) is dense in HY,,(R?), T extends to a bounded operator from
H?,(R3) to L},,(R3) and hence the proof of Theorem is complete. O

As a consequence of Theorems [1.5 and we obtain the following endpoint estimates
for the operators studied by Ricci-Stein [31] and R. Fefferman-Pipher [15].

Corollary 5.4. Suppose that the function ¢ is supported in an unit cube in R and satisfies

a certain amount of uniform smoothness with the minimum cancelation conditions
/ ¢($17$27$3) dx = / ¢($1,$2,1‘3) dydz =0.
R2 R2

Then the singular integral operator T f = f K is bounded on ngw(R?’) and bounded from

ng(R3) to szi) fO’f’ Gu - m <p < 1, where

K(ay,@a,23) =y 2720 K27 T, 27ky, 27 0HH)),
7,kEZ

6. Calderéon-Zygmund decompositions and interpolations

We first provide the

Proof of Theorem [1.7 According to Corollary L2(R3)NHY,,(R3) is dense in HY,,(R3).
Thus it suffices to prove Theorem for f € L*(R%) N HY,,(R?). Given any fixed a > 0,
let

= {zecR3:gG(f)(z) > a2}, 1€,

where

1/2
BN ={Y ¥ \(¢j,k*h)($R)I2XR(x)} .

1. kEZ j—N,k—N
JREL ReR]

For j,k € Z, let
N , 1
R%Msz{ReRngNqumﬂ<ﬂR@

and

- . . 1 1
R{MkN:{ReRngN:mﬂQFI22WMRHQA<QM} for 1 > 1,
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where N is given in Theorem It also follows from Theorem (with Yp = zR) that
there exists h € L*(R®) N HY,,(R3) such that

- Z Z |R[(¢jk x h)(xR)Pj k(T — TR)

i keZ j—N,k—N
JkEL ReR]

- Z Z Z |R[(¢jk * h)(xR)Pj k(T — TR)

GHEL 121 ReRi—NA-N
= g(z) + b(z).

We first estimate | g|| H2, for po € (0,00). Repeating the same argument as in the
proof of Theorem we deduce that for 3/(3+ M) <0 < ({p2/quw} A1),

DY Wik x9)(@r)Pxr(x)

Jk€L ReRI*
5/2 2/§
co S {ul( T 1emraemte) @}
§' K€L R’GR%IﬁN’kliN

Take the square root on both sides and apply Lemma on L2/ 5(52/ %) (note that w €
A; 2/ s) to derive

1/2
lolugpe = |{ £ 5 100502 e)Pre )

IKEL ReRPF

ch{ D |<¢jf,k/*h)(xmr?m}l/?

L2 (R3)

K€L RIERgl_N’k/_N LiQ (R3)
We claim
Lo BD@P() ds
{g;(f)(@)<a}
(©.1) ) 1/2|p2
H{ |(¢j’,k’*h)(ajR’)’ XR’} ,
3 k’EZ leiN K — Lﬁ? (R3)

which implies

b2 _C/ 2)P2w(z) dx
Il ey <€ [ P

< aP27P q. z)|Pw(x) dx
< /@(f)(xm}[gz(f)( ()

< CaP | [y gy
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To verify (6.1)), we choose § < min{ps/qy,1} and get

/ ) 3,(F) @) w(z) de
{Qa(f)(l")ﬁa}

/Qo { Z Z [(d)k h)(:cR)IQXR(:U)}pQ/Qw(x) dx

3§ kEZ ReR] N,k—N

/ { Z Z (6.0 % B)(@R)*X rrtay (x)}p2/2w($) dz

JkEZReRJ N,k—N

p2/2

/{Z > (|<¢j,k*h)(wR)PM(‘;(XROCQO)($))2/5} w(z)dz

]kEZRER] N,k—N

p2

1/2
(B30 h)(a:R)PxR}

)
H{]kezR RI-NHKN L2 (R3)

where in the last inequality we have used the estimate

Xr(@) < 2Y° M, (xprga,) '’ (2)

for R € Rg _N’k_N, and the second inequality follows from Lemma with ¢ = 2/§ and
p=p2/6.
Now, we turn to the estimate for HYy,(R3) norm of b. Set

O = {zeR®: M,(xq,) >1/2}, leZ

Then the desired estimate follows from

> Y IRk B (@R)Gik(- — TR)

1. kEZ j—N,k—N
JREL ReR]

(6.2) " < C(2'a)P w(y_1)

H%,(R3)

for any 0 < p; <1 and [ > 1. Indeed, by the L,(R?), ¢ > gy, boundedness of M;,

w(y_y) < C/ s(xe, ) (@) w(x) de < Cw(Q—1).
This fact together with (6.2) yields

1Bl sy < C> o) <> (2 w(y)

>1 >1

<C | [9: (/) (@) w(z) da
(@ (N (@)>a)

<camr [ 3,(F) (@)Pu() d
{g;(f)(z)>a}

< Cam | fllp oo



Weighted Endpoint Estimates 403

Thus to finish the proof, it remains to establish (6.2). Following the same argument as in

the estimation of

s = \(z/}j,k*g)(wR)r?xR}m

JkEZ ReRg—N,k—N Ly} (R3)
we get
o D IRk xh)(wr)dik(- — TR)

j,kEZ ReR{*N,ka HYL(R3)

’ {j/,k’ez Rleng’—N,k’—N Jk€Z
(6.3) 2 1/2

<X RO e Wy o~ )| e |
LY (R3)

j—N,k—N
RER]

scH{Z 3 |<¢j,k*h><m3>r%m}m

j,kEZ j—=N,k=N
JREs ReR]

Ly (R?’).
Note that R € Q;_; for R € R{_N’k_N. Thus, [RN (Q_1\ )] > +|R| which implies

Xr(r) < 2!/9 M (XRﬂ (Qu_ I\Ql))l/a(x)~

As in the proof of claim ([6.1]), choosing 0 < § < min{2, p;/q,} and applying Lemma

we have

(@) w(@ ) > / 51 @)P w(x) de

Q1\

“ L

p1/2
g /RB { : z;v ’ IR h)(xR)|2M3(XRm(§,I\Ql))z/g(l’)} w(z) dx

p1/2
DI h)(xR>|2xm@_l\Qz)<x>} () dz

]kGZRGR/ =N,k

p1

e = |<¢j,k*h><xR>|2xR}1/2

GkE€L ReRI—N k=N L3 (R3)
Combining this with (6.3 yields (6.2)), and hence Theorem follows. O

Finally, let us give the

Proof of Theorem [I.§ Let w € A3 (R3). In view of Corollary we may assume f €
L*(R%) N HY,,(R?). Suppose that T is bounded from HY;,(R?) to L} (R*) and bounded
from HY%,(R3) to L7 (R3). The Calderén-Zygmund decomposition shows that f = g+ b



404 Yongsheng Han, Ji Li, Chin-Cheng Lin, Chaoqgiang Tan and Xinfeng Wu

with gl oy < CaPPIf 8y ) and (]

the proof of Theorem [1.7] we have obtained

HPL,(R3) < Ca? p||f”Hp »(R3)" Moreover, in

<C [9,(f) (@)]P?w(x) dx

gl
H 3 (R) @ () (@)<a)

and
W <C [ @ )

Therefore,
= p—1 .
ITfIp gs) < p/o o’ w({z : |T(9)(x)| > o/2}) da
-l—p/ooo o tw({z | T () (z)] > a/2}) da

0o T po \ P2 00 T (D) ;1 \*
cof ap1<H <g>uLw> ot | ap1<u <>||Lw> .
0 Q@ 0 Q@
<c[ ot 3N @] w() dzda
0 {9;(f)(z)<a}

+/ ozp_l/ [9;(f)(z)|P?w(z) dedo
0 {g;(f)(z)>a}
< Ol s

Thus, |Tf[|zz,®s) < Cllfllar, gs) for any p € (p2,p1). Hence T' is bounded from H?,(R?)
to Li(R3).

To prove the second assertion that T is bounded on H},, (R3) for p € (p2,p1), for any
given a > 0 and f € HY,,(R?), we apply the Calderén-Zygmund decomposition again to

obtain

w({z : [g;(Tf)(x)| > a})
<w({z:[g;(Tg)(x)] > a/2}) + w({z : [g,(T0)(x)] > «/2})
< Ca ™| T(9)l +a T

H}2,(R3) HYL(R3)
< COJ Pz HgHHP2 R3) + a—pl HbH?{l;}ﬂ(R?))
<am / 5N @ w() de + o P / 5 () @) w(z) dr,
{9;(f)(z)<a} {9;(f)(z)>a}

which, as above, shows that

HTfHHP (R3) < C”gz(Tf)HLP (R3) < C||f|| w(R3)

for any p € (p2,p1). The proof of Theorem is complete. O
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