
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 23, No. 6, pp. 1327–1338, December 2019

DOI: 10.11650/tjm/181202

The Non-symplectic Index of Supersingular K3 Surfaces

Junmyeong Jang

Abstract. In this paper, we find the non-symplectic indexes of all supersingular K3

surfaces in terms of their period spaces when the base field is of odd characteristic.

And we show that the maximal non-symplectic index of a K3 surface defined over a

field of odd characteristic p is p10 + 1.

1. Introduction

Let k be an algebraically closed field. Given a K3 surface over k, the non-symplectic index

NX of X is defined to be the order of the image of the natural homomorphism

ρX : Aut(X)→ GL(H0(X,Ω2
X/k)).

In this paper, we deal with supersingular K3 surfaces (for definition, see Section 2 below)

and determine their non-symplectic indices:

Theorem 1.1. Let k be an algebraically closed field of odd characteristic p and X be a

supersingular K3 surface of Artin invariant σ over k. Then the non-symplectic index NX

of X is given by NX = pm + 1 where m = 0 or a positive integer such that σ/m is an odd

integer. Given σ and m as above, the supersingular K3 surfaces of Artin invariant σ and

non-symplectic index pm+1 form a family of dimension σ−1 (if m = 0) or (σ−m)/(2m)

(if m > 0). When m attains the maximum σ so that the non-symplectic index is pσ + 1,

X is unique up to isomorphisms.

Recalling that σ is a positive integer up to 10, we can summarize our result in the

following table.
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σ
non-symplectic

family
index of X

1 p+ 1 unique

2
2 generic

p2 + 1 unique

3

2 generic

p+ 1 1 dimensional

p3 + 1 unique

4
2 generic

p4 + 1 unique

5

2 generic

p+ 1 2 dimensional

p5 + 1 unique

6

2 generic

p2 + 1 1 dimensional

p6 + 1 unique

σ
non-symplectic

family
index of X

7

2 generic

p+ 1 3 dimensional

p7 + 1 unique

8
2 generic

p8 + 1 unique

9

2 generic

p+ 1 4 dimensional

p3 + 1 1 dimensional

p9 + 1 unique

10

2 generic

p2 + 1 2 dimensional

p10 + 1 unique

Table 1.1

The present paper is organized as follows. In Section 2, we quickly survey the back-

ground of the problem and basic notions. In Section 3, we review the classification of

supersingular K3 surfaces and the crystalline Torelli theorem, which are the main tools in

the proof of the main theorem. The proof of the main theorem is completed in Section 4.

In Section 5, we give explicit models over Fp of some special supersingular K3 surfaces,

that is, supersingular K3 surfaces with Artin invariant σ and non-symplectic index pσ +1.

2. Background of the problem

For an algebraic complex K3 surface X, the second integral singular cohomology of X,

H2(X,Z) is a free Z-module of rank 22 equipped with an even unimodular lattice struc-

ture of signature (3, 19). This lattice is unique up to isomorphism and is isomorphic to

U⊕3 ⊕E⊕2
8 . Here U is the unimodular hyperbolic lattice of rank 2 and E8 is the unimod-

ular root lattice of signature (0, 8). The cycle map gives a primitive lattice embedding

NS(X) ↪→ H2(X,Z). The Picard number of X is the rank of NS(X). We say the or-
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thogonal complement of this embedding is the transcendental lattice of X and we denote

the transcendental lattice by T (X). Then we have

rankT (X) = 22− rankNS(X) ≤ 21.

It is well known that Im ρX is a finite cyclic group and that the rank of T (X) is divisible

by φ(NX). Here φ is the Euler totient function. It follows that

φ(NX) ≤ rankT (X) ≤ 21 and NX ≤ 66.

Example 2.1. Consider a complex elliptic K3 surface X66 given as the minimal model of

y2 = x3 + t(t11 − 1)

and an automorphism of X66, (see [12])

α66 : (x, y, t) 7→ (ξ40
66x, ξ

27
66y, ξ

54
66t), ξ66 = e2πi/66.

The order of ρX66(α66) is 66 and NX66 = 66. Therefore the maximal non-symplectic index

of a complex algebraic K3 surface is 66.

Remark 2.2. When N is a positive integer satisfying φ(N) ≤ 21 and N 6= 60, there exists

a complex K3 surface X and an automorphism α ∈ Aut(X), such that the ord ρX(α) = N

(see [2, pp. 18–19], [11, Example 3.1]).

Assume that k is an algebraically closed field of odd characteristic p, W is the ring of

Witt vectors of k and K is the fraction field of W . Assume X is a K3 surface defined over

k. The height of the formal Brauer group of X, B̂rX is an integer between 1 and 10 or

infinite. The height of X is the height of the formal Brauer group B̂rX . If X is of finite

height h, the Picard number of X is at most 22− 2h (see [6, Proposition II.5.12]). If the

height of X is infinite, we call X is a supersingular K3 surface. The Picard number of a

supersingular K3 surface is 22.

The second crystalline cohomology of X, H2
cris(X/W ) is a free W -module of rank 22

equipped with a canonical Frobenius semi-linear endomorphism F : H2
cris(X/W )→

H2
cris(X/W ) and a unimodular W -lattice structure. The cycle map gives an embedding

of W -lattices NS(X) ⊗W ↪→ H2
cris(X/W ). If the height of X is finite, this embedding

is primitive and the orthogonal complement of NS(X) ⊗W in H2
cris(X/W ) is called the

crystalline transcendental lattice which is denoted by Tcris(X). In a previous work (see

[10]), we prove that, as the case of complex K3 surfaces, for a K3 surface X of finite

height over k, the φ-value of the non-symplectic index, φ(NX) divides the rank of Tcris(X).

Therefore φ(NX) ≤ 21 and the non-symplectic index of a K3 surface of finite height over

k is at most 66.
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Remark 2.3. Assume p does not divide 66. There is a K3 surface X of finite height

with NX = 66 if and only if pm 6≡ −1 (mod 66) for any positive integer m (see [9,

Corollary 4.3]).

Assume X is a supersingular K3 surface over k. Then NS(X) is an even lattice

of signature (1, 21). The discriminant group l(NS(X)) = Hom(NS(X),Z)/NS(X) is

isomorphic to (Z/p)2σ for an integer σ between 1 and 10. We say σ is the Artin invariant

of X. The Neron-Severi lattice of a supersingular K3 surface is uniquely determined by

the base characteristic p and the Artin invariant σ (see [13, Proposition 1.14.1]). We

denote this unique lattice by Np,σ. Note that the class number of Np,σ is 1 (loc. cit.).

All the supersingular K3 surfaces of Artin invariant σ form a σ − 1 dimensional family

and a supersingular K3 surface of Artin invariant 1 is unique up to isomorphism. For the

non-symplectic index of a supersingular K3 surface, the following is known.

Theorem 2.4. [14] When X is a supersingular K3 surface of Artin invariant σ over k,

the non-symplectic index NX divides pσ + 1.

In particular, NX is finite. In a previous work, we prove that the non-symplectic index

of a K3 surface of Artin invariant 1 over k is exactly p + 1 (see [7]). The proof of that

result is based on the crystalline Torelli theorem.

Remark 2.5. In [7], as a corollary of the main theorem, we show that, if φ(p + 1) > 20,

then there exists an automorphism of a supersingular K3 surface of Artin invariant 1 which

cannot be lifted over a ring of characteristic 0. After work of several people, now it is

known that every supersingular K3 surface contains an automorphism which cannot be

lifted over a ring of characteristic 0 (see [3–5,18–20]).

In the proof of Theorem 1.1, we will see the non-symplectic index of all supersingular

K3 surfaces is determined by the period space (see Section 3). This generalizes the previous

result for a K3 surface of Artin invariant 1.

3. Strictly characteristic subspaces and crystalline Torelli theorem

In this section, we review Ogus’ classification of supersingular K3 surfaces and the crys-

talline Torelli theorem in [15,16].

Assume k is an algebraically closed field of odd characteristic p. We fix an integer σ

between 1 and 10. The discriminant group l(Np,σ) is a 2σ-dimensional vector space over

the prime field Fp equipped with the induced quadratic form. The discriminant of this

quadratic form is (−1)σ∆ where ∆ is a quadratic non-residue modulo p. Hence l(Np,σ)

does not have a σ-dimensional isotropic subspace over Fp. We set

f = id⊗Fk : l(Np,σ)⊗ k → l(Np,σ)⊗ k.
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Here Fk is the Frobenius morphism of k. A σ-dimensional isotropic subspace of l(Np,σ)⊗k,

denoted by K is a characteristic subspace if K+f(K) is σ+1 dimensional. A characteristic

subspace K is a strictly characteristic subspace if K ∩ l(Np,σ) = 0 in l(Np,σ) ⊗ k. This

is equivalent to the condition that {x ∈ K | f(x) = x} = 0. Assume K is a strictly

characteristic subspace of l(Np,σ)⊗k. Then it is easy to see that lK =
⋂σ−1
i=0 f

−iK is a line

in l(Np,σ)⊗ k. Moreover we have

σ−1∑
i=0

f i(lK) = K and

2σ−1∑
i=0

f i(lK) = l(Np,σ)⊗ k.

Let v be a non zero vector in lK and we denote vi = f i−1(v). Then {v1, . . . , vσ} is a basis

of K and {v1, . . . , v2σ} is a basis of l(Np,σ)⊗ k. Since the pairing of l(Np,σ)⊗ k is defined

over Fp, f(K) is an isotropic subspace of l(Np,σ) ⊗ k. If v1 · vσ+1 = 0, then the subspace

generated by v1, . . . , vσ+1 is an isotropic subspace of dimension σ + 1. Because l(Np,σ) is

non-degenerate, it is impossible and v1 · vσ+1 6= 0. After a suitable scalar multiplication,

we may assume v1 · vσ+1 = 1. Note that v1 is uniquely determined up to multiplication

by (pσ + 1)-th roots of unity. Now we put ai = v1 · vσ+1+i ∈ k (i = 1, . . . , σ − 1). Because

the pairing on l(Np,σ) ⊗ k is defined over Fp, the intersection matrix of l(Np,σ) in terms

of the basis v1, . . . , v2σ is
(

0 A
At 0

)
, where

(3.1) A =



1 a1 a2 a3 · · · aσ−1

0 1 Fk(a1) Fk(a2) · · · Fk(aσ−2)

0 0 1 F 2
k (a1) · · · F 2

k (aσ−3)
...

...
...

...
...

0 0 0 0 · · · 1


.

If we replace v1 by ξv1, for a pσ + 1-th root of unity ξ, then ai is replaced by ξp
σ+i+1ai.

Let M be the set of O(l(Np,σ))-conjugacy classes of strictly characteristic subspaces of

l(Np,σ)⊗ k. By the above observation, we have a map

Ψ: M→ Aσ−1/µpσ+1(k), K 7→ (a1, . . . , aσ−1).

Theorem 3.1. [15, Theorem 3.21] The map Ψ is a bijection from M to Aσ−1/µpσ+1(k).

Assume X is a supersingular K3 surface of Artin invariant σ over k. We fix an isometry

NS(X) ' Np,σ. The cycle map NS(X)⊗W ↪→ H2
cris(X/W ) is an embedding of W -lattices

of the same rank, so we have the following chain

Np,σ ⊗W ⊂ H2
cris(X/W ) ⊂ N∗p,σ ⊗W ⊂ Np,σ ⊗K.
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The cokernel H2
cris(X/W )/(Np,σ ⊗W ) is a σ-dimensional isotropic k-subspace of

(N∗p,σ ⊗W )/(Np,σ ⊗W ) = l(Np,σ)⊗ k.

We denote H2
cris(X/W )/(Np,σ ⊗W ) by K(X). We say K(X) is the period space of X.

Theorem 3.2. [15, Theorem 3.20] For a supersingular K3 surface X, K(X) is a strictly

characteristic subspace of l(Np,σ)⊗ k.

Note that the position of K(X) in l(Np,σ)⊗k depends on the choice of NS(X) ' Np,σ.

But the class of K(X) in M does not depend on the choice of the isometry.

Remark 3.3. In [15], K(X) is defined as f−1(H2
cris(X/W )/NS(X) ⊗W ). For simplicity,

we use a slightly different definition. All the arguments in this paper are valid for both

definitions.

We put ∆ = {v ∈ Np,σ | v · v = −2}. For any v ∈ ∆, let

sv : w 7→ w + (v · w)v ∈ O(Np,σ)

be the reflection along the line of v. The Weyl group of Np,σ, which is denoted by WNp,σ ,

is the subgroup of O(Np,σ) generated by sv (v ∈ ∆) and − id. The real quadratic space

Np,σ ⊗ R is of signature (1, 21). Let P = {v ∈ Np,σ ⊗ R | v · v > 0} be the positive cone

of Np,σ ⊗ R. The positive cone P has two connected components. Let C be the set of

connected components of P −
⋃
v∈∆〈v〉⊥ (⊂ Np,σ ⊗ R). The ample cone of X, which is

denoted by AX , is an element of C. The action of the Weyl group WNp,σ on C is simple and

transitive (see [16, 1.10]). We denote the representations of Aut(X) on Np,σ and l(Np,σ)

by

λX : Aut(X)→ O(Np,σ) and νX : Aut(X)→ O(l(Np,σ)).

For an automophism α ∈ Aut(X), λX(α) preserves AX and νX(α) preserves K(X).

Theorem 3.4 (crystalline Torelli theorem). [16, Theorems II, III], [1, Theorem 5.1.9]

(1) Let g ∈ O(Np,σ). If g ⊗ R preserves AX and g|l(Np,σ) preserves K(X), then there

exists a unique α ∈ Aut(X) such that λX(α) = g.

(2) If K is a strictly characteristic space of l(Np,σ), there exists a unique supersingular

K3 surface X of Artin invariant σ over k up to isomorphism such that the class of

K(X) is equal to the class of K in M.

By Theorem 3.1 and Theorem 3.4(2), the isomorphism classes of supersingular K3

surfaces of Artin invariants σ over k are classified by Aσ−1/µpσ+1(k).

The two representations of Aut(X), ρX and νX , have the same kernel, so Im ρX '
Im νX (see [14, Theorem 2.1]). In particular, NX = | Im νX |. Indeed, for any α ∈ Aut(X),
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νX(α) is rational over Fp and preserves K(X), so νX(α)(lK(X)) = lK(X). When v1, . . . , v2σ

are a basis of l(Np,σ) ⊗ k defined above associated to the strictly characteristic subspace

K(X), then every vi is an eigenvector of νX(α). If νX(α)(v1) = ζv1, νX(α)(vi) = ζp
i−1
vi

for all i = 1, . . . , 2σ. Therefore, νX(α) = id if and only if νX(α)(v1) = v1 if and only if

νX(α)(vi) = vi for any i = 1, . . . , 2σ. The character of Aut(X) on H0(X,Ω2
X/k), which is

just the representation ρX , is isomorphic to the character of Aut(X) on the 1-dimensional

k-space generated by v2σ (see [15, 3.20.1]) and the claim follows. In particular, Im νX is a

finite cyclic group.

Lemma 3.5. Assume g ∈ O(l(Np,σ)) preserves K(X). Then there exists α ∈ Aut(X)

such that νX(α) = g.

Proof. Because the signature of Np,σ is (1, 21) and the dimension as an (Z/p)-space of

l(Np,σ) is 2σ ≤ 20 = 22 − 2, the class number of Np,σ is 1 and the reduction map

O(Np,σ) → O(l(Np,σ)) is surjective (see [13, Theorem 1.14.2]). There exists g ∈ O(Np,σ)

such that g|l(Np,σ) = g. Let g(AX) = B ∈ C.
If B is in the same connected component of PX with AX , the unique ϕ ∈ WNp,σ ,

satisfying ϕ(B) = AX , can be written as ϕ = sw1 ◦sw2 ◦· · ·◦swn for wi ∈ ∆. Let Mi be the

rank 1 sub lattice of Np,σ generated by wi. Then l(Mi) = Z/2 and l(M⊥i ) = Z/2⊕ l(Np,σ).

Since swi |M⊥i = id, it follows swi |l(Np,σ) = id. It follows that ϕ◦g preserves AX and K(X),

so, by the crystalline Torelli theorem, ϕ ◦ g ∈ Aut(X) and ν(ϕ ◦ g) = g.

Now assume B is in the other connected component of P with AX . Since the signature

of Np,σ is (1, 21), Np,σ ⊗ R contains a vector of self intersection 2. If q is a prime number

different from p, Np,σ ⊗ Zq is even unimodular of rank 22, so it contains a vector of self

intersection 2. The length of the unimodular part of Np,σ⊗Zp is 22−2σ ≥ 2, so Np,σ⊗Zp
has a vector of self intersection 2. By the Hasse principle, there exists a lattice in the

genus of Np,σ which contains a vector of self intersection 2. But the class number of Np,σ

is 1, so Np,σ itself contains a vector u such that u · u = 2. Let

tu : w 7→ w − (w · u)u ∈ O(Np,σ)

be the reflection along the line of u. Then tu exchanges the two connected components of

P and tu|l(Np,σ) = id. And B′ = tu(B) is in the same connected component of PX with

AX . The unique ϕ ∈ WNp,σ , satisfying ϕ(B′) = AX , can be expressed as a composition

of reflections along −2 vectors and ϕ|l(Np,σ) = id as in the above case. Again, by the

crystalline Torelli theorem, ϕ ◦ tu ◦ g ∈ Aut(X) and ν(ϕ ◦ tu ◦ g) = g.

Corollary 3.6. The non-symplectic index of X is even.

Proof. Since − id ∈ O(l(Np,σ)) preserves every subspace of l(Np,σ)⊗ k, − id ∈ Im νX and

the order of − id is 2.
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4. Proof of Theorem 1.1

Let v1, . . . , v2σ be the basis of l(Np,σ)⊗ k defined as in Section 2 associated to the strictly

characteristic space K(X). The intersection matrix of l(Np,σ ⊗ k) is
(

0 A
At 0

)
, where A is

the matrix (3.1). For all α ∈ Aut(X), each vi is an eigenvector of νX(α). Assume n is

the non-symplectic index of X. Suppose νX(α)(v1) = ξv1 and the order of ξ in k∗ is n.

Then νX(α)(vi) = F i−1
k (ξ)vi and ξ determines νX(α). Let m be the smallest non-negative

integer such that Fmk (ξ) = ξ−1. Because F σk (ξ) = ξ−1 (see Theorem 2.4), we know m ≤ σ.

If m = 0, then ξ = −1 and n = 2. If m > 0, the order of p in (Z/n)∗ is 2m and

pm ≡ pσ ≡ −1 (mod n).

Therefore m is a divisor of σ and σ/m is an odd integer. The order of νX(α), n is a divisor

of pm + 1. Because νX(α) ∈ O(l(Np,σ)⊗ k),

ai = v1 · vσ+i+1 = νX(v1) · νX(vσ+i+1) = ξ1−piai.

Hence ai = 0 unless i is a multiple of n = 2m.

Conversely, assume m is a divisor of σ such that σ/m is an odd integer. Assume

n = pm + 1 and ξ ∈ k∗ is a primitive n-th root of unity. Suppose ai = 0 unless i is a

multiple of 2m. Let g be a linear operator of l(Np,σ) ⊗ k which sends vi to F i−1
k (ξ)vi

(i = 1, . . . , 2σ). It is clear that g preserves the subspace K(X). Because ai = 0 for 2m - i,
we have g(vi) · g(vj) = vi · vj for any i and j, so g ∈ O(l(Np,σ) ⊗ k). We claim that

g ∈ O(l(Np,σ)), in other words, g is rational over Fp. Note that g is rational over Fp if

and only if f(g(w)) = g(f(w)) for all w ∈ l(Np,σ)⊗ k. For that, it is enough to check that

f(g(vi)) = g(f(vi)) for i = 1, . . . , 2σ. Because f(vi) = vi+1 (i = 1, . . . , 2σ − 1),

f(g(vi)) = f(ξp
i−1
vi) = ξp

i
vi+1 = g(vi+1) = g(f(vi))

for i = 1, . . . , 2σ − 1. We let v′ = f(v2σ) and express v′ = b1v1 + b2v2 + · · · + b2σv2σ

(bi ∈ k). By the assumption, v2σ · vi = 0 unless i = σ − 2me for a non-negative integer e

and v2σ ·vσ = 1. Since the pairing of l(Np,σ)⊗k is defined over Fp, for any u,w ∈ l(Np,σ)⊗k,

we have Fk(u ·w) = f(u) ·f(w). Hence v′ ·vi = 0 for i 6= σ+1−2me (i ≥ 2) and v′ ·v′ = 0.

It is straightforward to see that bi = 0 unless i = 1 + 2me and g(v′) = ξv′, so

f(g(v2σ)) = f(ξp
2σ−1

v2σ) = ξp
2σ
v′ = ξv′ = g(f(v2σ)).

Therefore g ∈ O(l(Np,σ)) and, by Lemma 3.5, g ∈ Im νX . The non-symplectic index of X

is divisible by pm + 1.

Now we can see the non-symplectic index of X is pm + 1 for m = 0 or for a positive

integer m such that σ/m is an odd integer. The non-symplectic index NX is exactly pm+1
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for a positive integer m if and only if ai = 0 unless 2m - i and a2mj 6= 0 for some positive

integer j. The number of possibly non-zero variables a2me is (σ −m)/(2m), so the set of

all supersingular K3 surfaces of Artin invariant σ and non-symplectic index pm+ 1 form a

(σ −m)/(2m)-dimensional family. In particular, the non-symplectic index of X is pσ + 1

if and only if ai = 0 for all i. Hence a supersingular K3 surface of Artin invariant σ and

of non-symplectic index pσ + 1 is unique up to isomorphism. This completes the proof of

Theorem 1.1.

Let us say the unique supersingular K3 surface of Artin invariant σ with non-symplectic

index is pσ + 1 is the special supersingular K3 surface of Artin invariant σ. Because a

special supersingular K3 surface is defined over an algebraic closure of a finite field and it

is unique, every special supersingular K3 surface has a model over a finite field. We will

see some examples of special supersingular K3 surfaces below.

Corollary 4.1. The maximal value of the non-symplectic index of a K3 surface defined

over k is p10 +1. The only K3 surface with the maximal non-symplectic index is the special

supersingular K3 surface of Artin invariant 10.

5. Example

Let X be a complex algebraic K3 surface and NX be the non-symplectic index of X.

The rank of T (X) is divisible by φ(NX). If the rank of T (X) is equal to φ(NX), then X

is a CM K3 surface and X has a model over a number field (see [17, Corollary 3.9.4]).

Many examples of K3 surfaces satisfying this condition are known (see [2,11,12]). Assume

the rank of T (X) is equal to φ(N) and X is defined over a number field F . We choose

g ∈ Aut(X) such that the order of ρX(g) is NX . For almost all finite places υ of F , X has

good reduction Xυ over υ and g can be extended to Xυ. For such a υ, the height (and the

Artin invariant) of Xυ is determined by the congruence class of the residue characteristic

pυ of υ modulo NX . In particular, if m is the smallest positive integer such that pmυ ≡ −1

modulo NX , then Xυ is a supersingular of Artin invariant m (see [9, Theorem 4.7], [8,

Theorem 2.3]). Moreover, in this case, νXυ(g) ∈ O(l(Np,m)) has 2m distinct eigenvalues,

so ai = 0 for all i in (3.1) and Xυ is a special supersingular K3 surface of Artin invariant

m.

For example, a sextic double cover K3 surface

X50 : w2 = x6 + xy5 + yz5

has a purely non-symplectic automorphism of order 50,

α : (x, y, z, w) 7→ (x, ξ40
50y, ξ

2
50z,−w).
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Here ξ50 is a primitive 50-th root of unity. If a rational prime p does not divide 50,

X50 has good reduction over Z/p and α is extended to the reduction. Let (X50,p, αp) be

the reduction of (X,α) over Z/p. In the following cases, the reduction Xp is a special

supersingular K3 surface.

p (mod 50) Artin invariant

49 1

7, 43 2

9, 19, 29, 39 5

3, 13, 17, 23, 27, 33, 37, 47 10

Table 5.1

Because many complex K3 surfaces, for which the rank of transcendental lattice is equal

to the φ value of the non-symplectic index, are defined over Q, many special supersingular

K3 surfaces have models over a prime field Fp. We have the following question naturally.

Question 5.1. Does every special supersingular K3 surface have a model over a prime

field?
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