Schur Product with Operator-valued Entries

Oscar Blasco and Ismael García-Bayona*

Abstract

In this paper we characterize Toeplitz matrices with entries in the space of bounded operators on Hilbert spaces $\mathcal{B}(H)$ which define bounded operators acting on $\ell^{2}(H)$ and use it to get the description of the right Schur multipliers acting on $\ell^{2}(H)$ in terms of certain operator-valued measures.

1. Introduction

Throughout the paper X, Y and E are complex Banach spaces and H denotes a separable complex Hilbert space with orthonormal basis $\left(e_{n}\right)$. We write $\mathcal{L}(X, Y)$ for the space of bounded linear operators, X^{*} for the dual space and denote $\mathcal{B}(X)=\mathcal{L}(X, X)$. We also use the notations $\ell^{2}(E), C(\mathbb{T}, E), L^{p}(\mathbb{T}, E)$ or $M(\mathbb{T}, E)$ for the space of sequences $\mathbf{z}=\left(z_{n}\right)$ in E such that $\|\mathbf{z}\|_{\ell^{2}(E)}=\left(\sum_{n=1}^{\infty}\left\|z_{n}\right\|^{2}\right)^{1 / 2}<\infty$, the space of E-valued continuous functions, the space of strongly measurable functions from the measure space $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ into E with $\|f\|_{L^{p}(\mathbb{T}, E)}=\left(\int_{0}^{2 \pi}\left\|f\left(e^{i t}\right)\right\|^{p} \frac{d t}{2 \pi}\right)^{1 / p}<\infty$ for $1 \leq p \leq \infty$ (with the usual modification for $p=\infty$) and the space of regular vector-valued measures of bounded variation respectively. As usual, for $E=\mathbb{C}$ we simply write $\ell^{2}, C(\mathbb{T}), L^{p}(\mathbb{T})$ and $M(\mathbb{T})$.

Given two matrices $A=\left(\alpha_{k j}\right)$ and $B=\left(\beta_{k j}\right)$ with complex entries, their Schur product is defined by $A * B=\left(\alpha_{k j} \beta_{k j}\right)$. This operation endows the space $\mathcal{B}\left(\ell^{2}\right)$ with a structure of Banach algebra. A proof of the next result, due to J. Schur, can be found in 2 , Proposition 2.1] or [10, Theorem 2.20].

Theorem 1.1. (Schur, [12]) If $A=\left(\alpha_{k j}\right) \in \mathcal{B}\left(\ell^{2}\right)$ and $B=\left(\beta_{k j}\right) \in \mathcal{B}\left(\ell^{2}\right)$ then $A * B \in$ $\mathcal{B}\left(\ell^{2}\right)$. Moreover $\|A * B\|_{\mathcal{B}\left(\ell^{2}\right)} \leq\|A\|_{\mathcal{B}\left(\ell^{2}\right)}\|B\|_{\mathcal{B}\left(\ell^{2}\right)}$.

More generally, a matrix $A=\left(\alpha_{k j}\right)$ is said to be a Schur multiplier, to be denoted by $A \in \mathcal{M}\left(\ell^{2}\right)$, whenever $A * B \in \mathcal{B}\left(\ell^{2}\right)$ for any $B \in \mathcal{B}\left(\ell^{2}\right)$. For the study of Schur multipliers we refer the reader to [2, 10]. Recall that a Toeplitz matrix is a matrix $A=\left(\alpha_{k j}\right)$ such that there exists a sequence of complex numbers $\left(\gamma_{l}\right)_{l \in \mathbb{Z}}$ with $\alpha_{k j}=\gamma_{j-k}$. The study of

[^0]Toeplitz matrices which define bounded operators or Schur multipliers goes back to work of Toeplitz in [15]. The reader is referred to [1,2, 10] for recent proofs of the following results concerning Toeplitz matrices.

Theorem 1.2. (Toeplitz, 15$)$ Let $A=\left(\alpha_{k j}\right)$ be a Toeplitz matrix. Then $A \in \mathcal{B}\left(\ell^{2}\right)$ if and only if there exists $f \in L^{\infty}(\mathbb{T})$ such that $\alpha_{k j}=\widehat{f}(j-k)$ for all $k, j \in \mathbb{N}$. Moreover $\|A\|=\|f\|_{L^{\infty}(\mathbb{T})}$.

Theorem 1.3. (Bennet, [2]) Let $A=\left(\alpha_{k j}\right)$ be a Toeplitz matrix. Then $A \in \mathcal{M}\left(\ell^{2}\right)$ if and only if there exists $\mu \in M(\mathbb{T})$ such that $\alpha_{k j}=\widehat{\mu}(j-k)$ for all $k, j \in \mathbb{N}$. Moreover $\|A\|=\|\mu\|_{M(\mathbb{T})}$.

It is known the recent interest for operator-valued functions (see $[9]$) and for the matricial analysis (see 10) concerning their uses in different problems in Analysis. In this paper, we would like to formulate the analogues of the theorems above in the context of matrices $\mathbf{A}=\left(T_{k j}\right)$ with entries $T_{k j} \in \mathcal{B}(H)$. For such a purpose, we are led to consider operator-valued measures. We shall make use of several notions and spaces from the theory of vector-valued measures and the reader is referred to classical books [6, 7] or to [3] for some new results in connection with Fourier analysis.

In the sequel we write $\langle\cdot, \cdot\rangle$ and $\langle\langle\cdot, \cdot\rangle\rangle$ for the scalar products in H and $\ell^{2}(H)$ respectively, where $\langle\langle\mathbf{x}, \mathbf{y}\rangle\rangle=\sum_{j=1}^{\infty}\left\langle x_{j}, y_{j}\right\rangle$ and we use the notation $x \mathbf{e}_{j}=(0, \ldots, 0, x, 0, \ldots)$ for the element in $\ell^{2}(H)$ in which $x \in H$ is placed in the j-coordinate for $j \in \mathbb{N}$. As usual, $c_{00}(H)=\operatorname{span}\left\{x \mathbf{e}_{j}: x \in H, j \in \mathbb{N}\right\}$.

Definition 1.4. Given a matrix $\mathbf{A}=\left(T_{k j}\right)$ with entries $T_{k j} \in \mathcal{B}(H)$ and $\mathbf{x} \in c_{00}(H)$ we write $\mathbf{A}(\mathbf{x})$ for the sequence $\left(\sum_{j=1}^{\infty} T_{k j}\left(x_{j}\right)\right)_{k}$. We say that $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ if the map $\mathbf{x} \rightarrow \mathbf{A}(\mathbf{x})$ extends to a bounded linear operator in $\ell^{2}(H)$, that is

$$
\left(\sum_{k=1}^{\infty}\left\|\sum_{j=1}^{\infty} T_{k j}\left(x_{j}\right)\right\|^{2}\right)^{1 / 2} \leq C\left(\sum_{j=1}^{\infty}\left\|x_{j}\right\|^{2}\right)^{1 / 2}
$$

We shall write

$$
\|\mathbf{A}\|_{\mathcal{B}\left(\ell^{2}(H)\right)}=\inf \left\{C \geq 0:\|\mathbf{A} \mathbf{x}\|_{\ell^{2}(H)} \leq C\|\mathbf{x}\|_{\ell^{2}(H)}\right\}
$$

Definition 1.5. Given two matrices $\mathbf{A}=\left(T_{k j}\right)$ and $\mathbf{B}=\left(S_{k j}\right)$ with entries $T_{k j}, S_{k j} \in$ $\mathcal{B}(H)$ we define the Schur product $\mathbf{A} * \mathbf{B}=\left(T_{k j} S_{k j}\right)$ where $T_{k j} S_{k j}$ stands for the composition of the operators $T_{k j}$ and $S_{k j}$.

Contrary to the scalar-valued case this product is not commutative.

Definition 1.6. Given a matrix $\mathbf{A}=\left(T_{k j}\right)$, we say that \mathbf{A} is a right Schur multiplier (respectively left Schur multiplier), to be denoted by $\mathbf{A} \in \mathcal{M}_{r}\left(\ell^{2}(H)\right)$ (respectively $\mathbf{A} \in$ $\mathcal{M}_{l}\left(\ell^{2}(H)\right)$), whenever $\mathbf{B} * \mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ (respectively $\mathbf{A} * \mathbf{B} \in \mathcal{B}\left(\ell^{2}(H)\right)$) for any $\mathbf{B} \in$ $\mathcal{B}\left(\ell^{2}(H)\right)$. We shall write

$$
\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}=\inf \left\{C \geq 0:\|\mathbf{B} * \mathbf{A}\|_{\mathcal{B}\left(\ell^{2}(H)\right)} \leq C\|\mathbf{B}\|_{\mathcal{B}\left(\ell^{2}(H)\right)}\right\}
$$

and

$$
\|\mathbf{A}\|_{\mathcal{M}_{l}\left(\ell^{2}(H)\right)}=\inf \left\{C \geq 0:\|\mathbf{A} * \mathbf{B}\|_{\mathcal{B}\left(\ell^{2}(H)\right)} \leq C\|\mathbf{B}\|_{\mathcal{B}\left(\ell^{2}(H)\right)}\right\}
$$

Denoting by \mathbf{A}^{*} the adjoint matrix given by $S_{k j}=T_{j k}^{*}$ for all $k, j \in \mathbb{N}$, one easily sees that $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ if and only if $\mathbf{A}^{*} \in \mathcal{B}\left(\ell^{2}(H)\right)$ with $\|\mathbf{A}\|=\left\|\mathbf{A}^{*}\right\|$ and also that $\mathbf{A} \in \mathcal{M}_{l}\left(\ell^{2}(H)\right)$ if and only if $\mathbf{A}^{*} \in \mathcal{M}_{r}\left(\ell^{2}(H)\right)$ and $\|\mathbf{A}\|_{\mathcal{M}_{l}\left(\ell^{2}(H)\right)}=\left\|\mathbf{A}^{*}\right\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}$.

If X and Y are Banach spaces we write $X \widehat{\otimes} Y$ for the projective tensor product. We refer the reader to [6, Chapter 8], [11, Chapter 2] or [4] for all possible results needed in the paper. We recall that $(X \widehat{\otimes} Y)^{*}=\mathcal{L}\left(X, Y^{*}\right)$ and to avoid misunderstandings, for each $T \in \mathcal{L}\left(X, Y^{*}\right)$, we write $\mathcal{J} T$ when T is seen as an element in $(X \widehat{\otimes} Y)^{*}$. In other words, we write $\mathcal{J}: \mathcal{L}\left(X, Y^{*}\right) \rightarrow(X \widehat{\otimes} Y)^{*}$ for the isometry given by $\mathcal{J} T(x \otimes y)=T(x)(y)$ for any $T \in \mathcal{L}\left(X, Y^{*}\right), x \in X$ and $y \in Y$. Also, given $x^{*} \in X^{*}$ and $y^{*} \in Y^{*}$, we write $\widetilde{x^{*} \otimes y^{*}}$ for the operator in $\mathcal{L}\left(X, Y^{*}\right)$ given by $\widetilde{x^{*} \otimes y^{*}}(z)=x^{*}(z) y^{*}$ for each $z \in X$. In the paper we shall restrict ourselves to the case $\mathcal{L}\left(X, Y^{*}\right)=\mathcal{B}(H)$, that is $X=Y^{*}=H$. Using the Riesz theorem we identify $Y=Y^{*}=H$. Hence, for $T, S \in \mathcal{B}(H)$ and $x, y \in H$, we shall use the following formulae

$$
\begin{gathered}
\langle T(x), y\rangle=\mathcal{J} T(x \otimes y), \\
\widetilde{(x \otimes y)(z)}=\langle z, x\rangle y, \quad z \in H, \\
\widetilde{(x \otimes y)}=(\widetilde{x \otimes(T y)}), \quad \widetilde{(x \otimes y) T}=\left(\widetilde{\left.T^{*} x\right) \otimes y},\right. \\
\mathcal{J}(T S)(x \otimes y)=\mathcal{J} T(S x \otimes y)=\mathcal{J} S\left(x \otimes T^{*} y\right) .
\end{gathered}
$$

The paper is divided into four sections. The first section is of a preliminary character and we recall the basic notions on vector-valued sequences and functions to be used in the sequel. Next section contains several results on regular operator-valued measures which are the main ingredients for the remaining proofs in the paper. In Section 4 we are concerned with several necessary and sufficient conditions for a matrix \mathbf{A} to belong to $\mathcal{B}\left(\ell^{2}(H)\right)$ and we show that the Schur product endows $\mathcal{B}\left(\ell^{2}(H)\right)$ with a Banach algebra structure also in this case. The final section deals with Toeplitz matrices \mathbf{A} with entries in $\mathcal{B}(H)$, that is those matrices for which there exists a sequence $\left(T_{l}\right)_{l \in \mathbb{Z}} \subset \mathcal{B}(H)$ so that $T_{k j}=T_{j-k}$. We shall write \mathcal{T} the family of such Toeplitz matrices and we characterize $\mathcal{T} \cap \mathcal{B}\left(\ell^{2}(H)\right)$ as those matrices where $T_{k j}=\widehat{\mu}(j-k)$ for a certain regular operator-valued vector measure
μ belonging to $V^{\infty}(\mathbb{T}, \mathcal{B}(H)$) (see Definition 3.6 below). Concerning the analogue of Theorem 1.3 we shall show that $M(\mathbb{T}, \mathcal{B}(H)) \subseteq \mathcal{M}_{r}\left(\ell^{2}(H)\right) \subseteq M_{\text {SOT }}(\mathbb{T}, \mathcal{B}(H))$ where $M(\mathbb{T}, \mathcal{B}(H))$ stands for the space of regular operator-valued measures and $M_{\text {SOT }}(\mathbb{T}, \mathcal{B}(H))$ is defined, using the strong operator topology, as the space of vector measures μ such that $\mu_{x} \in M(\mathbb{T}, H)$ where $\mu_{x}(A)=\mu(A)(x)$ for any $x \in H$.

2. Preliminaries on operator-valued sequences and functions

Write $\ell_{\text {weak }}^{2}(\mathbb{N}, \mathcal{B}(H))$ and $\ell_{\text {weak }}^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)$ for the space of sequences $\mathbf{T}=\left(T_{n}\right) \subset \mathcal{B}(H)$ and matrices $\mathbf{A}=\left(T_{k j}\right) \subset \mathcal{B}(H)$ such that

$$
\|\mathbf{T}\|_{\ell_{\text {weak }}^{2}}(\mathbb{N}, \mathcal{B}(H))=\sup _{\|x\|=1,\|y\|=1}\left(\sum_{n=1}^{\infty}\left|\left\langle T_{n}(x), y\right\rangle\right|^{2}\right)^{1 / 2}<\infty
$$

and

$$
\|\mathbf{A}\|_{\ell_{\text {weak }}^{2}}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)=\sup _{\|x\|=1,\|y\|=1}\left(\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left|\left\langle T_{k j}(x), y\right\rangle\right|^{2}\right)^{1 / 2}<\infty .
$$

The reader can see that these spaces actually coincide with the ones appearing using notation in [5]. Of course $\ell^{2}(E) \subsetneq \ell_{\text {weak }}^{2}(E)$. In the case $\mathcal{B}(H)$ we can actually introduce certain spaces between $\ell^{2}(E)$ and $\ell_{\text {weak }}^{2}(E)$.

Definition 2.1. Given a sequence $\mathbf{T}=\left(T_{n}\right)$ and a matrix $\mathbf{A}=\left(T_{k j}\right)$ of operators in $\mathcal{B}(H)$, we write

$$
\|\mathbf{T}\|_{\ell_{\mathrm{SOT}}^{2}}(\mathbb{N}, \mathcal{B}(H))=\sup _{\|x\|=1}\left(\sum_{n=1}^{\infty}\left\|T_{n}(x)\right\|^{2}\right)^{1 / 2}
$$

and

$$
\|\mathbf{A}\|_{\ell_{\mathrm{SOT}}^{2}}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)=\sup _{\|x\|=1}\left(\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left\|T_{k j}(x)\right\|^{2}\right)^{1 / 2}
$$

We set $\ell_{\mathrm{SOT}}^{2}(\mathbb{N}, \mathcal{B}(H))$ and $\ell_{\mathrm{SOT}}^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)$ for the spaces of sequences and operators with $\|\mathbf{T}\|_{\ell_{\text {SOT }}^{2}(\mathbb{N}, \mathcal{B}(H))}<\infty$ and $\|\mathbf{A}\|_{\ell_{\text {SOT }}^{2}}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)<\infty$ respectively.

Remark 2.2. It is easy to show that

$$
\ell^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right) \subsetneq \ell^{2}\left(\mathbb{N}, \ell_{\mathrm{SOT}}^{2}(\mathbb{N}, \mathcal{B}(H)) \subsetneq \ell_{\mathrm{SOT}}^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right) .\right.
$$

As usual, we denote $\varphi_{k}(t)=e^{i k t}$ for $k \in \mathbb{Z}$, and, given a complex Banach space E, we write $\mathcal{P}(\mathbb{T}, E)=\operatorname{span}\left\{e \varphi_{j}: j \in \mathbb{Z}, e \in E\right\}$ for the E-valued trigonometric polynomials, $\mathcal{P}_{a}(\mathbb{T}, E)=\operatorname{span}\left\{e \varphi_{j}: j \in \mathbb{N}, e \in E\right\}$ for the E-valued analytic polynomials. It is well-known that $\mathcal{P}(\mathbb{T}, E)$ is dense in $C(\mathbb{T}, E)$ and $L^{p}(\mathbb{T}, E)$ for $1 \leq p<\infty$. Also, we
shall use $H_{0}^{2}(\mathbb{T}, E)=\left\{f \in L^{2}(\mathbb{T}, E): \widehat{f}(k)=0, k \leq 0\right\}$, where $\widehat{f}(k)=\int_{0}^{2 \pi} f(t) \overline{\varphi_{k}(t)} \frac{d t}{2 \pi}$ for $k \in \mathbb{Z}$. Recall that $H_{0}^{2}(\mathbb{T}, E)$ coincides with the closure of $\mathcal{P}_{a}(\mathbb{T}, E)$ with the norm in $L^{2}(\mathbb{T}, E)$. Similarly $H_{0}^{2}\left(\mathbb{T}^{2}, E\right)=\left\{f \in L^{2}\left(\mathbb{T}^{2}, E\right): \widehat{f}(k, j)=0, k, j \leq 0\right\}$, where $\widehat{f}(k, j)=\int_{0}^{2 \pi} \int_{0}^{2 \pi} f(t, s) \overline{\varphi_{k}(t) \varphi_{j}(s)} \frac{d t}{2 \pi} \frac{d s}{2 \pi}$ for $k, j \in \mathbb{Z}$.

Let us now introduce some new spaces that we shall need later on.
Definition 2.3. Let $\mathbf{T}=\left(T_{n}\right) \subset \mathcal{B}(H)$ and $\mathbf{A}=\left(T_{k j}\right) \subset \mathcal{B}(H)$. We say that $\mathbf{T} \in$ $\widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))$ whenever

$$
\|\mathbf{T}\|_{\tilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))}=\sup _{N}\left(\int_{0}^{2 \pi}\left\|\sum_{j=1}^{N} T_{j} \varphi_{j}(t)\right\|^{2} \frac{d t}{2 \pi}\right)^{1 / 2}<\infty
$$

We say that $\mathbf{A} \in \widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)$ whenever

$$
\|\mathbf{A}\|_{\widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)}=\sup _{N, M}\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\|\sum_{j=1}^{N} \sum_{k=1}^{M} T_{k j} \varphi_{j}(t) \varphi_{k}(s)\right\|^{2} \frac{d t}{2 \pi} \frac{d s}{2 \pi}\right)^{1 / 2}<\infty
$$

Remark 2.4. $\widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H)) \nsubseteq H_{0}^{2}(\mathbb{T}, \mathcal{B}(H))$.
Consider $T_{j}=\widehat{e_{j} \otimes e_{j}}$. Then for any $t \in[0,2 \pi)$ and $N \in \mathbb{N}$,

$$
\left\|\sum_{j=1}^{N}\left(\widetilde{e_{j} \otimes e_{j}}\right) \varphi_{j}(t)\right\|_{\mathcal{B}(H)}=\sup _{\|x\|=1}\left\|\sum_{j=1}^{N}\left\langle x, e_{j}\right\rangle \varphi_{j}(t) e_{j}\right\|_{H}=1 .
$$

Hence we have $\mathbf{T}=\left(e_{j} \otimes e_{j}\right)_{j} \in \widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))$. On the other hand, since $\left\|T_{j}\right\|=1$ for all j, we have $\lim _{j \rightarrow \infty}\left\|T_{j}\right\|=1 \neq 0$, which implies that $\mathbf{T} \notin L^{1}(\mathbb{T}, \mathcal{B}(H))$ and so $\mathbf{T} \notin H_{0}^{2}(\mathbb{T}, \mathcal{B}(H))$, as desired.

Proposition 2.5. (i) $\widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H)) \subsetneq \ell_{\mathrm{SOT}}^{2}(\mathbb{N}, \mathcal{B}(H))$ and $\widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right) \subsetneq \ell_{\mathrm{SOT}}^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)$.
(ii) $\widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H)) \nsubseteq \ell^{2}(\mathbb{N}, \mathcal{B}(H))$ and $\ell^{2}(\mathbb{N}, \mathcal{B}(H)) \nsubseteq \widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))$.

Proof. (i) Both inclusions are immediate from Plancherel's theorem (which holds for Hilbert-valued functions). It suffices to see that there exists $\mathbf{T} \in \ell_{\text {SOT }}^{2}(\mathbb{N}, \mathcal{B}(H)) \backslash \widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))$ because choosing matrices with a single row we obtain also a counterexample for the other inclusion. Now selecting $T_{n}=\widetilde{e_{n} \otimes x} \in \mathcal{B}(H)$ for a given $x \in H$ we clearly have $\mathbf{T}=\left(\widetilde{e_{n} \otimes x}\right)_{n} \in \ell_{\mathrm{SOT}}^{2}(\mathbb{N}, \mathcal{B}(H))$ with $\|\mathbf{T}\|_{\ell_{\mathrm{SOT}}^{2}}(\mathbb{N}, \mathcal{B}(H))=\|x\|$. However, for any $t \in[0,2 \pi)$ and $N \in \mathbb{N}$,

$$
\left\|\sum_{n=1}^{N}\left(\widetilde{e_{n} \otimes x}\right) \varphi_{n}(t)\right\|_{B(H)}=\left\|\left(\sum_{n=1}^{N} \widetilde{e_{n} \varphi_{n}(t)}\right) \otimes x\right\|_{\mathcal{B}(H)}=\|x\| \sqrt{N}
$$

showing that $\mathbf{T} \notin \widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))$.
(ii) The example in Remark 2.4 shows that $\widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H)) \nsubseteq \ell^{2}(\mathbb{N}, \mathcal{B}(H))$. Let us now find $\mathbf{T} \in \ell^{2}(\mathbb{N}, \mathcal{B}(H)) \backslash \widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))$. Consider $H=L^{2}(\mathbb{T})$ and $\mathbf{T}=\left(T_{j}\right)$ where $T_{j}: L^{2}(\mathbb{T}) \rightarrow L^{2}(\mathbb{T})$ is given by $T_{j}(f)=\frac{\varphi_{j}}{j} f$.

Clearly $\mathbf{T} \in \ell^{2}(\mathbb{N}, \mathcal{B}(H))$ since $\left\|T_{j}\right\|=1 / j$ for all $j \in \mathbb{N}$. On the other hand, for each $t \in[0,2 \pi)$ and $N \in \mathbb{N}$ one has that $\left(\sum_{j=1}^{N} T_{j} \varphi_{j}(t)\right)(f)=\left(\sum_{j=1}^{N} \frac{\varphi_{j}(t)}{j} \varphi_{j}\right) f$ and therefore

$$
\left\|\sum_{j=1}^{N} T_{j} \varphi_{j}(t)\right\|_{B(H)}=\left\|\sum_{j=1}^{N} \frac{\varphi_{j}(t)}{j} \varphi_{j}\right\|_{C(\mathbb{T})}=\sum_{j=1}^{N} \frac{1}{j} .
$$

This shows that $\mathbf{T} \notin \widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))$.

3. Preliminaries on regular vector measures

We recall some facts for vector measures that can be found in [6, 7. Let us consider the measure space $(\mathbb{T}, \mathfrak{B}(\mathbb{T}), m)$ where $\mathfrak{B}(\mathbb{T})$ stands for the Borel sets over \mathbb{T} and m for the Lebesgue measure on \mathbb{T}. Given a vector measure $\mu: \mathfrak{B}(\mathbb{T}) \rightarrow E$ and $B \in \mathfrak{B}(\mathbb{T})$, we shall denote $|\mu|(B)$ and $\|\mu\|(B)$ the variation and semi-variation of μ of the set B given by

$$
|\mu|(B)=\sup \left\{\sum_{A \in \pi}\|\mu(A)\|, A \in \mathfrak{B}(\mathbb{T}), \pi \text { is a finite partition of } B\right\}
$$

and

$$
\|\mu\|(B)=\sup \left\{\left|\left\langle e^{*}, \mu\right\rangle\right|(B): e^{*} \in E^{*},\left\|e^{*}\right\|=1\right\}
$$

where $\left\langle e^{*}, \mu\right\rangle(A)=e^{*}(\mu(A))$ for all $A \in \mathfrak{B}(\mathbb{T})$. Of course $|\mu|(\cdot)$ becomes a positive measure on $\mathfrak{B}(\mathbb{T})$, while $\|\mu\|(\cdot)$ is only sub-additive in general. We shall denote $|\mu|=|\mu|(\mathbb{T})$ and $\|\mu\|=\|\mu\|(\mathbb{T})$. For dual spaces $E=F^{*}$ it is easy to see that $\|\mu\|=\sup \{|\langle\mu, f\rangle|: f \in$ $F,\|f\|=1\}$ where $\langle\mu, f\rangle(A)=\mu(A)(f)$.

In what follows we shall consider regular vector measures, that is to say vector measures $\mu: \mathfrak{B}(\mathbb{T}) \rightarrow E$ such that for each $\varepsilon>0$ and $B \in \mathfrak{B}(\mathbb{T})$ there exists a compact set K, an open set O such that $K \subset B \subset O$ with $\|\mu\|(O \backslash K)<\varepsilon$. Let us denote by $\mathfrak{M}(\mathbb{T}, E)$ and $M(\mathbb{T}, E)$ the spaces of regular Borel measures with values in E endowed with the norm given the semi-variation and variation respectively. Of course $M(\mathbb{T}, E) \subsetneq \mathfrak{M}(\mathbb{T}, E)$ when E is infinite dimensional.

It is well known that the space $\mathfrak{M}(\mathbb{T}, E)$ can be identified with the space of weakly compact linear operators $T_{\mu}: C(\mathbb{T}) \rightarrow E$ and that $\left\|T_{\mu}\right\|=\|\mu\|$ (see [6, Chapter 6]). Hence, for each $\mu \in \mathfrak{M}(\mathbb{T}, E)$ and $k \in \mathbb{Z}$ we can define (see [3]) the k-Fourier coefficient by

$$
\widehat{\mu}(k)=T_{\mu}\left(\varphi_{-k}\right) .
$$

Also, the description of measures in $M(\mathbb{T}, E)$ can be done using absolutely summing operators (see [5]) and the variation can be described as the norm in such space (see [6]) but we shall not follow this approach. On the other hand, since we deal with either $E=\mathcal{B}(H)$ or $E=H$ we have at our disposal Singer's theorem (see for instance [8, 13, 14]), which in the case of dual spaces $E=F^{*}$ asserts that $M(\mathbb{T}, E)=C(\mathbb{T}, F)^{*}$. In other words there exists a bounded linear map $\Psi_{\mu}: C(\mathbb{T}, F) \rightarrow \mathbb{C}$ with $\left\|\Psi_{\mu}\right\|=|\mu|$ such that

$$
\Psi_{\mu}(y \phi)=T_{\mu}(\phi)(y), \quad \phi \in C(\mathbb{T}), y \in F
$$

In particular, for $k \in \mathbb{Z}$ one has $\widehat{\mu}(-k)(y)=\Psi_{\mu}\left(y \varphi_{k}\right)$ for each $y \in F$.
As mentioned above since $M\left(\mathbb{T}, \mathcal{L}\left(X, Y^{*}\right)\right)=C(\mathbb{T}, X \widehat{\otimes} Y)^{*}$, for each $\mu \in M\left(\mathbb{T}, \mathcal{L}\left(X, Y^{*}\right)\right)$ we can associate two operators T_{μ} and Ψ_{μ}. Of course the connection between them is given by the formula

$$
T_{\mu}(\phi)(x)(y)=\Psi_{\mu}((x \otimes y) \phi), \quad \phi \in C(\mathbb{T}), x \in X, y \in Y
$$

There is still one more possibility to be considered using the strong operator topology, namely $\Phi_{\mu}: C(\mathbb{T}, X) \rightarrow Y^{*}$ defined by

$$
\Phi_{\mu}(f)(y)=\Psi_{\mu}(f \otimes y), \quad f \in C(\mathbb{T}, X), y \in Y
$$

where $f \otimes y(t)=f(t) \otimes y$.
Therefore, given $\mu \in \mathfrak{M}\left(\mathbb{T}, \mathcal{L}\left(X, Y^{*}\right)\right)$, we have three different linear operators defined on the corresponding spaces of polynomials: $T_{\mu}: \mathcal{P}(\mathbb{T}) \rightarrow \mathcal{L}\left(X, Y^{*}\right), \Psi_{\mu}: \mathcal{P}(\mathbb{T}, X \widehat{\otimes} Y) \rightarrow \mathbb{C}$ and $\Phi_{\mu}: \mathcal{P}(\mathbb{T}, X) \rightarrow Y^{*}$ defined by the formulae

$$
\begin{gathered}
T_{\mu}\left(\sum_{j=-M}^{N} \alpha_{j} \varphi_{j}\right)=\sum_{j=-M}^{N} \alpha_{j} \widehat{\mu}(-j), \quad N, M \in \mathbb{N}, \alpha_{j} \in \mathbb{C}, \\
\Psi_{\mu}\left(\sum_{j=-M}^{N}\left(\sum_{n=1}^{n_{j}} x_{j n}\right) \otimes\left(\sum_{m=1}^{m_{j}} y_{j m}\right) \varphi_{j}\right)=\sum_{j=-M}^{N}\left(\sum_{n=1}^{n_{j}} \sum_{m=1}^{m_{j}} \widehat{\mu}(-j)\left(x_{j n}\right)\left(y_{j m}\right)\right), \\
\Phi_{\mu}\left(\sum_{j=-M}^{N} x_{j} \varphi_{j}\right)=\sum_{j=-M}^{N} \widehat{\mu}(-j)\left(x_{j}\right), \quad N, M \in \mathbb{N}, x_{j} \in X .
\end{gathered}
$$

When restricting to the case $Y^{*}=H$ we obtain the following connection between them:

$$
\mathcal{J} T_{\mu}(\psi)(x \otimes y)=\Psi_{\mu}((x \otimes y) \psi)=\left\langle\Phi_{\mu}(x \psi), y\right\rangle, \quad \psi \in \mathcal{P}(\mathbb{T}), x, y \in H
$$

Given $\mu \in \mathfrak{M}\left(\mathbb{T}, \mathcal{L}\left(X, Y^{*}\right)\right)$ and $x \in X$, let us denote by μ_{x} the Y^{*}-valued measure given by

$$
\mu_{x}(A)=\mu(A)(x), \quad A \in \mathfrak{B}(\mathbb{T}) .
$$

It is elementary to see that μ_{x} is a regular measure because one can associate the weakly compact operator $T_{\mu_{x}}=\delta_{x} \circ T_{\mu}: C(\mathbb{T}) \rightarrow Y^{*}$ where δ_{x} stands for the operator $\delta_{x}: \mathcal{L}\left(X, Y^{*}\right)$ $\rightarrow Y^{*}$ given by $\delta_{x}(T)=T(x)$ for $T \in \mathcal{L}\left(X, Y^{*}\right)$.

If $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H)), k \in \mathbb{Z}$ and $x, y \in H$ then $\mu_{x} \in \mathfrak{M}(\mathbb{T}, H)$,

$$
\left\langle\mu_{x}(A), y\right\rangle=\mathcal{J} \mu(A)(x \otimes y), \quad A \in \mathfrak{B}(\mathbb{T})
$$

and

$$
\langle\widehat{\mu}(k)(x), y\rangle=\left\langle\widehat{\mu}_{x}(k), y\right\rangle=\mathcal{J} \widehat{\mu}(k)(x \otimes y) .
$$

Let us introduce a new space of measures appearing in the case $E=\mathcal{B}(H)$.
Definition 3.1. Let $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$. We say that $\mu \in M_{\text {SOT }}(\mathbb{T}, \mathcal{B}(H))$ if $\mu_{x} \in M(\mathbb{T}, H)$ for any $x \in H$. We write

$$
\|\mu\|_{\text {SOT }}=\sup \left\{\left|\mu_{x}\right|: x \in H,\|x\|=1\right\} .
$$

Proposition 3.2. $M(\mathbb{T}, \mathcal{B}(H)) \subsetneq M_{\mathrm{SOT}}(\mathbb{T}, \mathcal{B}(H)) \subsetneq \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$.
Proof. The inclusions between the spaces follow from the inequalities

$$
|\langle\mu(A)(x), y\rangle| \leq\|\mu(A)(x)\|\|y\| \leq\|\mu(A)\|\|x\|\|y\|
$$

which leads to

$$
\left|\left\langle\mu_{x}, y\right\rangle\right| \leq\left|\mu_{x}\right|\|y\| \leq|\mu|\|x\|\|y\|
$$

and the corresponding embeddings with norm 1 trivially follow.
Let $H=\ell^{2}$. We shall find measures $\mu_{1} \in M_{\mathrm{SOT}}(\mathbb{T}, \mathcal{B}(H)) \backslash M(\mathbb{T}, \mathcal{B}(H))$ and $\mu_{2} \in$ $\mathfrak{M}(\mathbb{T}, \mathcal{B}(H)) \backslash M_{\mathrm{SOT}}(\mathbb{T}, \mathcal{B}(H))$. Both can be constructed relying on a similar argument. Let $y_{0} \in H$ with $\left\|y_{0}\right\|=1$ and select a Hilbert-valued regular measure ν with $|\nu|=\infty$ (for instance take a Pettis integrable, but not Bochner integrable function $f: \mathbb{T} \rightarrow H$ given by $t \rightarrow\left(f_{n}(t)\right)_{n}$ and $\nu(A)=\left(\int_{A} f_{n}(t) \frac{d t}{2 \pi}\right)_{n}$ for $\left.A \in \mathfrak{B}(\mathbb{T})\right)$. Denote $T_{\nu}: C(\mathbb{T}) \rightarrow H$ the corresponding bounded (and hence weakly compact) operator associated to ν with $\left\|T_{\nu}\right\|=\|\nu\|$.

Define

$$
\mu_{1}(A)(x)=\langle x, \nu(A)\rangle y_{0}, \quad A \in \mathfrak{B}(\mathbb{T})
$$

and

$$
\mu_{2}(A)(x)=\left\langle x, y_{0}\right\rangle \nu(A), \quad A \in \mathfrak{B}(\mathbb{T}) .
$$

In other words, if $J_{y}: H \rightarrow \mathcal{B}(H)$ and $I_{y}: H \rightarrow \mathcal{B}(H)$ stand for the operators

$$
J_{y}(x)(z)=\langle z, x\rangle y, \quad I_{y}(x)(z)=\langle x, y\rangle z, \quad x, y, z \in H
$$

then we have that $T_{\mu_{1}}=J_{y_{0}} T_{\nu}$ and $T_{\mu_{2}}=I_{y_{0}} T_{\nu}$ are weakly compact. Hence $\mu_{1}, \mu_{2} \in$ $\mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$.

Note that $\left|\left(\mu_{1}\right)_{x}\right|=|\langle x, \nu\rangle|$ and $\left|\left(\mu_{2}\right)_{x}\right|=\left|\left\langle x, y_{0}\right\rangle\right||\nu|, x \in H$. Hence

$$
\left\|\mu_{1}\right\|_{\mathrm{SOT}}=\|\nu\|, \quad\left\|\mu_{2}\right\|_{\mathrm{SOT}}=|\nu| .
$$

Also notice that $\left\|\mu_{1}(A)\right\|_{\mathcal{B}(H)}=\|\nu(A)\|_{H}$, and therefore $\left|\mu_{1}\right|=|\nu|$, which gives the desired results.

Definition 3.3. Let $\mu: \mathfrak{B}(\mathbb{T}) \rightarrow \mathcal{L}\left(X, Y^{*}\right)$ be a vector measure. We define "the adjoint measure" $\mu^{*}: \mathfrak{B}(\mathbb{T}) \rightarrow \mathcal{L}\left(Y, X^{*}\right)$ by the formula

$$
\mu^{*}(A)(y)(x)=\mu_{x}(A)(y), \quad A \in \mathfrak{B}(\mathbb{T}), x \in X, y \in Y
$$

In the case that $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$ with the identification $Y^{*}=H$, one clearly has that

$$
\left\langle x, \mu^{*}(A)(y)\right\rangle=\langle\mu(A)(x), y\rangle, \quad A \in \mathfrak{B}(\mathbb{T}), x, y \in H
$$

Remark 3.4. μ^{*} belongs to $\mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$ (resp. $\left.M(\mathbb{T}, \mathcal{B}(H))\right)$ if and only if μ belongs to $\mathfrak{M}(\mathbb{T}, \mathcal{B}(H))(\operatorname{resp} . M(\mathbb{T}, \mathcal{B}(H)))$. Moreover $\|\mu\|=\left\|\mu^{*}\right\|\left(\right.$ resp. $\left.|\mu|=\left|\mu^{*}\right|\right)$.

The results follow using that $T_{\mu^{*}}(\phi)=\left(T_{\mu}(\phi)\right)^{*}$ for any $\phi \in C(\mathbb{T})$ and $\|\mu(A)\|=$ $\left\|\mu^{*}(A)\right\|$ for any $A \in \mathfrak{B}(\mathbb{T})$.

Let us describe the norm in $M_{\text {SOT }}(\mathbb{T}, \mathcal{B}(H)$ using the adjoint measure.
Proposition 3.5. Let $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$. Then $\mu \in M_{\mathrm{SOT}}(\mathbb{T}, \mathcal{B}(H))$ if and only if $\Phi_{\mu^{*}} \in$ $\mathcal{L}(C(\mathbb{T}, H), H)$. Moreover $\|\mu\|_{\text {SOT }}=\left\|\Phi_{\mu^{*}}\right\|$.

Proof. By definition, $\mu \in M_{\mathrm{SOT}}(\mathbb{T}, \mathcal{B}(H))$ if and only if the operator $S_{\mu}(x)=\mu_{x}$ is well defined and belongs to $\mathcal{L}\left(H, M(\mathbb{T}, H)\right.$). Moreover, $\|\mu\|_{\text {SOT }}=\left\|S_{\mu}\right\|$. The result follows if we show that S_{μ} is the adjoint of $\Phi_{\mu^{*}}$. Recall that, identifying $H=H^{*}$, we have $\mu^{*} \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$. Hence $\Phi_{\mu^{*}}: \mathcal{P}(\mathbb{T}, H) \rightarrow H$ is generated by linearity using

$$
\Phi_{\mu^{*}}\left(x \varphi_{k}\right)=\widehat{\mu^{*}}(-k)(x)=\widehat{\mu}(-k)^{*}(x), \quad x \in H, k \in \mathbb{Z} .
$$

Therefore, if $k \in \mathbb{Z}, x, y \in H$, since $M(\mathbb{T}, H)=(C(\mathbb{T}, H))^{*}$, we have

$$
S_{\mu}(y)\left(x \varphi_{k}\right)=\Psi_{\mu_{y}}\left(x \varphi_{k}\right)=\left\langle\widehat{\mu_{y}}(-k), x\right\rangle=\langle\widehat{\mu}(-k)(y), x\rangle=\left\langle y, \Phi_{\mu^{*}}\left(x \varphi_{k}\right)\right\rangle .
$$

By linearity we extend to $\left\langle y, \Phi_{\mu^{*}}(x \phi)\right\rangle=S_{\mu}(y)(x \phi)$ for any polynomial ϕ and since $\mathcal{P}(\mathbb{T}, H)$ is dense in $C(\mathbb{T}, H)$ we obtain the result. This completes the proof.

Let us consider the following subspace of regular measures which plays an important role in what follows.

Definition 3.6. Let us write $V^{\infty}(\mathbb{T}, E)$ for the subspace of those measures $\mu \in \mathfrak{M}(\mathbb{T}, E)$ such that there exists $C>0$ with

$$
\|\mu(A)\| \leq C m(A), \quad A \in \mathfrak{B}(\mathbb{T})
$$

We define

$$
\|\mu\|_{\infty}=\sup \left\{\frac{\|\mu(A)\|}{m(A)}: m(A)>0\right\}
$$

It is clear that any $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ also belongs to $M(\mathbb{T}, \mathcal{B}(H))$ and it is absolutely continuous with respect to m.

Let us point out two more possible descriptions of $V^{\infty}(\mathbb{T}, E)$. One option is to look at $V^{\infty}(\mathbb{T}, E)=\mathcal{L}\left(L^{1}(\mathbb{T}), E\right)$ (see 7 , page 261]), that is to say that T_{μ} has a bounded extension to $L^{1}(\mathbb{T})$. Hence a measure $\mu \in \mathfrak{M}(\mathbb{T}, E)$ belongs to $V^{\infty}(\mathbb{T}, E)$ if and only if

$$
\left\|T_{\mu}(\psi)\right\| \leq C\|\psi\|_{L^{1}(\mathbb{T})}, \quad \psi \in C(\mathbb{T})
$$

Moreover $\left\|T_{\mu}\right\|_{L^{1}(\mathbb{T}) \rightarrow E}=\|\mu\|_{\infty}$.
In the case that $E=F^{*}$ also one has that $V^{\infty}(\mathbb{T}, E)=L^{1}(\mathbb{T}, F)^{*}$, that is the dual of the space of Bochner integrable functions. In this case a measure $\mu \in V^{\infty}(\mathbb{T}, E)$ if and only if Ψ_{μ} has a bounded extension to $L^{1}(\mathbb{T}, F)^{*}$, that is

$$
\left\|\Psi_{\mu}(p)\right\| \leq C\|p\|_{L^{1}(\mathbb{T}, F)}, \quad p \in \mathcal{P}(\mathbb{T}, F)
$$

Moreover $\left\|\Psi_{\mu}\right\|_{L^{1}(\mathbb{T}, F)^{*}}=\|\mu\|_{\infty}$.
Although measures in $V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ are absolutely continuous with respect to m, the reader should be aware that they might not have a Radon-Nikodym derivative in $L^{1}(\mathbb{T}, E)$ (see [6, Chapter 3]).

For the sake of completeness we give an example for $E=\mathcal{B}(H)$ of such a situation.
Proposition 3.7. Let $H=\ell^{2}$ and $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$ such that $T_{\mu} \in \mathcal{L}(C(\mathbb{T}), \mathcal{B}(H))$ is given by

$$
T_{\mu}(\phi)=\sum_{n=1}^{\infty} \widehat{\phi}(n) \widetilde{e_{n} \otimes e_{n}}
$$

Then $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ with $\|\mu\|_{\infty}=1$,

$$
\widehat{\mu}(k)= \begin{cases}\widetilde{e_{k} \otimes e_{k}} & \text { if } k \geq 1 \\ 0 & \text { if } k \leq 0\end{cases}
$$

but it does not have a Radon-Nikodym derivative in $L^{1}(\mathbb{T}, \mathcal{B}(H))$.

Proof. Let us show that T_{μ} defines a continuous operator from $L^{1}(\mathbb{T})$ to $\mathcal{B}(H)$ with norm 1 . In such a case, using that the inclusion $C(\mathbb{T}) \rightarrow L^{1}(\mathbb{T})$ is weakly compact, one automatically has that $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$. For $x=\left(\alpha_{n}\right) \in H$ and $y=\left(\beta_{n}\right) \in H$ one has

$$
\left|\left\langle T_{\mu}(\phi)(x), y\right\rangle\right|=\left|\sum_{n=1}^{\infty} \widehat{\phi}(n) \alpha_{n} \beta_{n}\right| \leq \sup _{n \geq 1}|\widehat{\phi}(n)|\|x\|\|y\| \leq\|\phi\|_{L^{1}(\mathbb{T})}\|x\|\|y\| .
$$

This gives that $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ and $\|\mu\|_{\infty} \leq 1$. Using that $T_{\mu}\left(\varphi_{j}\right)=\widetilde{e_{j} \otimes e_{j}}$ and $\left\|\widetilde{e_{j} \otimes e_{j}}\right\|_{\mathcal{B}(H)}=1$ we get the equality of norms.

The result on Fourier coefficients is obvious. To show that μ does not have a Bochner integrable Radon-Nikodym derivative follows now using that otherwise $\widehat{\mu}(k)=\widehat{f}(k)$ for some $f \in L^{1}(\mathbb{T}, \mathcal{B}(H))$ which implies that $\|\widehat{f}(k)\| \rightarrow 0$ as $k \rightarrow \infty$ while $\|\widehat{\mu}(k)\|=1$ for $k \geq 1$. This completes the proof.

We finish this section with a known characterization of measures in $M\left(\mathbb{T}, F^{*}\right)$ to be used later on, that we include for sake of completeness.

Lemma 3.8. Let $E=F^{*}$ be a dual Banach space and $\mu \in \mathfrak{M}(\mathbb{T}, E)$. For each $0<r<1$ we define

$$
\begin{equation*}
P_{r} * \mu(t)=\sum_{k \in \mathbb{Z}} \widehat{\mu}(k) r^{|k|} \varphi_{k}(t), \quad t \in[0,2 \pi) . \tag{3.1}
\end{equation*}
$$

Then
(i) $P_{r} * \mu \in C(\mathbb{T}, E)$ and $\left\|P_{r} * \mu\right\|_{C(\mathbb{T}, E)} \leq\|\mu\| \frac{1+r}{1-r}$ for any $0<r<1$.
(ii) $\mu \in M(\mathbb{T}, E)$ if and only if $\sup _{0<r<1}\left\|P_{r} * \mu\right\|_{L^{1}(\mathbb{T}, E)}<\infty$. Moreover

$$
|\mu|=\sup _{0<r<1}\left\|P_{r} * \mu\right\|_{L^{1}(\mathbb{T}, E)}
$$

Proof. (i) Observe that

$$
\sum_{k \in \mathbb{Z}}|\widehat{\mu}(k)| r^{|k|}\left\|\varphi_{k}\right\|_{C(\mathbb{T})} \leq\left\|T_{\mu}\right\|\left(1+2 \sum_{k=1}^{\infty} r^{k}\right)=\|\mu\| \frac{1+r}{1-r}
$$

This shows that the series in (3.1) is absolutely convergent in $C(\mathbb{T}, E)$ and we obtain (i).
(ii) Assume that $\mu \in M(\mathbb{T}, E)$. In particular $|\mu| \in M(\mathbb{T})$ and

$$
\int_{0}^{2 \pi}\left\|P_{r} * \mu(t)\right\| \frac{d t}{2 \pi} \leq \int_{0}^{2 \pi} P_{r} *|\mu|(t) \frac{d t}{2 \pi}
$$

Hence, using the scalar-valued result, we have

$$
\sup _{0<r<1}\left\|P_{r} * \mu\right\|_{L^{1}(\mathbb{T}, E)} \leq \sup _{0<r<1}\left\|P_{r} *|\mu|\right\|_{L^{1}(\mathbb{T})} \leq \sup _{0<r<1}|\mu|\left\|P_{r}\right\|_{L^{1}(\mathbb{T})}=|\mu|
$$

Conversely, assume that $\sup _{0<r<1}\left\|P_{r} * \mu\right\|_{L^{1}(\mathbb{T}, E)}<\infty$. Since $L^{1}(\mathbb{T}, E) \subseteq M(\mathbb{T}, E)=$ $C(\mathbb{T}, F)^{*}$, from the Banach-Alaoglu theorem one can find a sequence r_{n} converging to 1 and a measure $\nu \in M(\mathbb{T}, E)$ such that $P_{r_{n}} * \mu \rightarrow \nu$ in the w^{*}-topology. Selecting now functions in $C(\mathbb{T}, F)$ given by $y \varphi_{-k}$ for all $y \in F$ and $k \in \mathbb{Z}$ one shows that $\widehat{\nu}(k)=\widehat{\mu}(k)$. This gives that $\mu=\nu$ and therefore $\mu \in M(\mathbb{T}, E)$. Finally, notice that

$$
|\mu|=\sup \left\{\left|\Psi_{\mu}(p)\right|: p \in \mathcal{P}(\mathbb{T}, F),\|p\|_{C(\mathbb{T}, F)}=1\right\} .
$$

Given now $p=\sum_{k=-M}^{N} y_{k} \varphi_{k}$, one has $P_{r} * p=\sum_{k=-M}^{N} y_{k} r^{|k|} \varphi_{k}$ and

$$
\Psi_{\mu}\left(P_{r} * p\right)=\sum_{k=-M}^{N} \widehat{\mu}(k)\left(y_{k}\right) r^{|k|}=\int_{0}^{2 \pi} P_{r} * \mu(t)(p(t)) \frac{d t}{2 \pi} .
$$

Finally, since $p=\lim _{r \rightarrow 1} P_{r} * p$ is in $C(\mathbb{T}, F)$, we have

$$
\begin{aligned}
\left|\Psi_{\mu}(p)\right| & =\lim _{r \rightarrow 1}\left|\Psi_{\mu}\left(P_{r} * p\right)\right| \\
& \leq \sup _{0<r<1}\left|\int_{0}^{2 \pi} P_{r} * \mu(t)(p(t)) \frac{d t}{2 \pi}\right| \\
& \leq \sup _{0<r<1}\left\|P_{r} * \mu\right\|_{L^{1}(\mathbb{T}, E)}\|p\|_{C(\mathbb{T}, F)} .
\end{aligned}
$$

This gives the inequality $|\mu| \leq \sup _{0<r<1}\left\|P_{r} * \mu\right\|_{L^{1}(\mathbb{T}, E)}$ and the proof is complete.

4. Some results on matrices of operators

Throughout the rest of the paper, we write $\mathbf{A}=\left(T_{k j}\right) \subset \mathcal{B}(H), \mathbf{R}_{k}$ and \mathbf{C}_{j} the k-row respectively, that is

$$
\mathbf{R}_{k}=\left(T_{k j}\right)_{j=1}^{\infty}, \quad \mathbf{C}_{j}=\left(T_{k j}\right)_{k=1}^{\infty}
$$

and

$$
\mathbf{A}_{N, M}(s, t)=\sum_{k=1}^{M} \sum_{j=1}^{N} T_{k j} \overline{\varphi_{j}(s)} \varphi_{k}(t), \quad 0 \leq t, s<2 \pi, N, M \in \mathbb{N} .
$$

For each $\mathbf{x}=\left(x_{j}\right) \in \ell^{2}(H)$ we consider the function $h_{\mathbf{x}}$ given by

$$
h_{\mathbf{x}}(t)=\sum_{j=1}^{\infty} x_{j} \varphi_{j}(t), \quad t \in[0,2 \pi) .
$$

Remark 4.1. Observe that $\mathbf{A} \in \widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)$ if and only if

$$
\sup _{N, M}\left\|\mathbf{A}_{N, M}\right\|_{L^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)}<\infty .
$$

Note that $\mathbf{x} \in \ell^{2}(H)$ if and only if $h_{\mathbf{x}} \in H_{0}^{2}(\mathbb{T}, H)$. Moreover

$$
\|\mathbf{x}\|_{\ell^{2}(H)}=\left\|h_{\mathbf{x}}\right\|_{H^{2}(\mathbb{T}, H)}
$$

Proposition 4.2. Let $\mathbf{A}=\left(T_{k j}\right) \subset \mathcal{B}(H)$.
(i) If $\mathbf{A} \in \ell_{\mathrm{SOT}}^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)$ then $\mathbf{R}_{k}, \mathbf{C}_{j} \in \ell_{\mathrm{SOT}}^{2}(\mathbb{N}, \mathcal{B}(H))$ for all $k, j \in \mathbb{N}$.
(ii) If $\mathbf{A} \in \widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)$ then $\mathbf{C}_{j}, \mathbf{R}_{k} \in \widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))$ for all $j, k \in \mathbb{N}$.

Proof. (i) follows trivially from the definitions.
(ii) Let $k^{\prime} \in \mathbb{N}, M \in \mathbb{N}$ and $t \in[0,2 \pi)$. For $N \geq k^{\prime}$ we have

$$
\sum_{j=1}^{N} T_{k^{\prime} j} \varphi_{j}(t)=\int_{0}^{2 \pi}\left(\sum_{k=1}^{N} \sum_{j=1}^{M} T_{k j} \varphi_{j}(t) \varphi_{k}(s)\right) \overline{\varphi_{k^{\prime}}(s)} \frac{d s}{2 \pi}
$$

Therefore

$$
\int_{0}^{2 \pi}\left\|\sum_{j=1}^{N} T_{k^{\prime} j} \varphi_{j}(t)\right\|^{2} \frac{d t}{2 \pi} \leq \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\|\sum_{k=1}^{N} \sum_{j=1}^{M} T_{k j} \varphi_{j}(t) \varphi_{k}(s)\right\|^{2} \frac{d s}{2 \pi} \frac{d t}{2 \pi}
$$

Hence $\left\|\mathbf{R}_{k^{\prime}}\right\|_{\widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))} \leq\|\mathbf{A}\|_{\widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)}$. A similar argument shows that $\left\|\mathbf{C}_{j}\right\|_{\widetilde{H}^{2}(\mathbb{T}, \mathcal{B}(H))}$ $\leq\|\mathbf{A}\|_{\widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)}$ and it is left to the reader.

Definition 4.3. Let $\mathbf{A}=\left(T_{k j}\right) \subset \mathcal{B}(H)$. Define $B_{\mathbf{A}}: \mathcal{P}_{a}(\mathbb{T}, H) \times \mathcal{P}_{a}(\mathbb{T}, H) \rightarrow \mathbb{C}$ by

$$
\left(h_{\mathbf{x}}, h_{\mathbf{y}}\right) \rightarrow \int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathcal{J} \mathbf{A}_{N, M}(s, t)\left(h_{\mathbf{x}}(s) \otimes h_{\mathbf{y}}(t)\right) \frac{d s}{2 \pi} \frac{d t}{2 \pi}
$$

where $h_{\mathbf{x}}=\sum_{j=1}^{N} x_{j} \varphi_{j}$ and $h_{\mathbf{y}}=\sum_{k=1}^{M} y_{k} \varphi_{k}$ for $x_{j}, y_{k} \in H$.

We now give the characterization of bounded operators in $\mathcal{B}\left(\ell^{2}(H)\right)$ in terms of bilinear maps.

Proposition 4.4. If $\mathbf{A}=\left(T_{k j}\right) \subset \mathcal{B}(H)$ then

$$
\begin{equation*}
\langle\langle\mathbf{A}(\mathbf{x}), \mathbf{y}\rangle\rangle=B_{\mathbf{A}}\left(h_{\mathbf{x}}, h_{\mathbf{y}}\right), \quad \mathbf{x}, \mathbf{y} \in c_{00}(H) \tag{4.1}
\end{equation*}
$$

In particular, $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ if and only if $B_{\mathbf{A}}$ extends to a bounded bilinear map on $H_{0}^{2}(\mathbb{T}, H) \times H_{0}^{2}(\mathbb{T}, H)$. Moreover $\|\mathbf{A}\|=\left\|B_{\mathbf{A}}\right\|$.

Proof. To show (4.1) we observe that for $h_{\mathbf{x}}=\sum_{j=1}^{N} x_{j} \varphi_{j}$ and $h_{\mathbf{y}}=\sum_{k=1}^{M} y_{k} \varphi_{k}$ we have
$y_{k}=\int_{0}^{2 \pi} h_{\mathbf{y}}(t) \overline{\varphi_{k}(t)} \frac{d t}{2 \pi}$ and $x_{j}=\int_{0}^{2 \pi} h_{\mathbf{x}}(t) \overline{\varphi_{j}(s)} \frac{d s}{2 \pi}$. Hence

$$
\begin{aligned}
\sum_{k=1}^{M}\left\langle\sum_{j=1}^{N} T_{k j} x_{j}, y_{k}\right\rangle & =\int_{0}^{2 \pi}\left\langle\sum_{k=1}^{M}\left(\sum_{j=1}^{N} T_{k j} x_{j}\right) \varphi_{k}(t), h_{\mathbf{y}}(t)\right\rangle \frac{d t}{2 \pi} \\
& =\int_{0}^{2 \pi}\left\langle\sum_{k=1}^{M}\left(\sum_{j=1}^{N} T_{k j} \varphi_{k}(t)\right)\left(x_{j}\right), h_{\mathbf{y}}(t)\right\rangle \frac{d t}{2 \pi} \\
& =\int_{0}^{2 \pi}\left\langle\int_{0}^{2 \pi} \mathbf{A}_{N, M}(s, t)\left(h_{\mathbf{x}}(s)\right) \frac{d s}{2 \pi}, h_{\mathbf{y}}(t)\right\rangle \frac{d t}{2 \pi} \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathcal{J} \mathbf{A}_{N, M}(s, t)\left(h_{\mathbf{x}}(s) \otimes h_{\mathbf{y}}(t)\right) \frac{d s}{2 \pi} \frac{d t}{2 \pi}
\end{aligned}
$$

The equality of norms follows trivially.
From Proposition 4.4 one can produce some sufficient conditions for \mathbf{A} to belong to $\mathcal{B}\left(\ell^{2}(H)\right)$.

Corollary 4.5. If $\mathbf{A} \in \widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right) \cup \ell^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)$ then $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ and $\|\mathbf{A}\| \leq$ $\min \left\{\|\mathbf{A}\|_{\widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)},\|\mathbf{A}\|_{\ell^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)}\right\}$.
Proof. Assume first $\mathbf{A} \in \ell^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)$. Then

$$
|\langle\langle\mathbf{A}(\mathbf{x}), \mathbf{y}\rangle\rangle| \leq \sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\|T_{k j}\right\|\left\|x_{j}\right\|\| \| y_{k} \|
$$

and therefore, using Cauchy-Schwarz's inequality in $\ell^{2}\left(\mathbb{N}^{2}\right)$,

$$
\begin{aligned}
|\langle\langle\mathbf{A}(\mathbf{x}), \mathbf{y}\rangle\rangle| & \leq\|\mathbf{A}\|_{\ell^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)}\left\|\left(\left\|x_{j}\right\|\left\|y_{k}\right\|\right)\right\|_{\ell^{2}\left(\mathbb{N}^{2}\right)} \\
& =\|\mathbf{A}\|_{\ell^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)}\|\mathbf{x}\|\|\mathbf{y}\| .
\end{aligned}
$$

Assume now $\mathbf{A} \in \widetilde{H}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)$ and apply Cauchy-Schwarz in $L^{2}\left(\mathbb{T}^{2}\right)$

$$
\begin{aligned}
& \left|\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathcal{J} \mathbf{A}_{N, M}(s, t)\left(h_{\mathbf{x}}(s) \otimes h_{\mathbf{y}}(t)\right) \frac{d s}{2 \pi} \frac{d t}{2 \pi}\right| \\
\leq & \left\|\mathbf{A}_{N, M}\right\|_{H_{0}^{2}\left(\mathbb{T}^{2}, \mathcal{B}(H)\right)}\left\|h_{\mathbf{x}}\right\|_{H_{0}^{2}(\mathbb{T}, H)}\left\|h_{\mathbf{y}}\right\|_{H_{0}^{2}(\mathbb{T}, H)}
\end{aligned}
$$

Now the result follows from Proposition 4.4.
Actually a sufficient condition better than $\mathbf{A} \in \ell^{2}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)$ is given in the following result.

Proposition 4.6. Let $\mathbf{A}=\left(T_{k j}\right) \subset \mathcal{B}(H)$ such that \mathbf{C}_{j} for all $j \in \mathbb{N}$ or $\mathbf{R}_{k}^{*} \in \ell_{\mathrm{SOT}}^{2}(\mathbb{N}, \mathcal{B}(H))$ for all $k \in \mathbb{N}$ and satisfy

$$
\left.\min \left\{\left\|\left(\mathbf{C}_{j}\right)\right\|_{\ell^{2}\left(\mathbb{N}, \ell_{\mathrm{SOT}}^{2}\right.}(\mathbb{N}, \mathcal{B}(H))\right),\left\|\left(\mathbf{R}_{k}^{*}\right)\right\|_{\ell^{2}\left(\mathbb{N}, \ell_{\mathrm{SOT}}^{2}(\mathbb{N}, \mathcal{B}(H))\right)}\right\}=M<\infty
$$

Then $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ and $\|\mathbf{A}\| \leq M$.

Proof. Let $\mathbf{x}, \mathbf{y} \in \ell^{2}(H)$, we have

$$
\left.\begin{array}{rl}
|\langle\langle\mathbf{A}(\mathbf{x}), \mathbf{y}\rangle\rangle| & \leq \sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\|y_{k}\right\|\left\|T_{k j}\left(\frac{x_{j}}{\left\|x_{j}\right\|}\right)\right\|\left\|x_{j}\right\| \\
& \leq\left(\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left\|T_{k j}\left(\frac{x_{j}}{\left\|x_{j}\right\|}\right)\right\|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\|y_{k}\right\|^{2}\left\|x_{j}\right\|^{2}\right)^{1 / 2} \\
& \leq\|\mathbf{x}\|_{\ell^{2}(H)}\|\mathbf{y}\|_{\ell^{2}(H)}\left(\sum_{j=1}^{\infty}\left\|\mathbf{C}_{j}\right\|_{\ell_{\text {SOT }}^{2}}^{2}(\mathbb{N}, \mathcal{B}(H))\right.
\end{array}\right)^{1 / 2} .
$$

Similar argument works with \mathbf{R}_{k}^{*}, which completes the proof.
Let us now present some necessary conditions for $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$. Since $\left\langle\left\langle\mathbf{A}\left(x \mathbf{e}_{j}\right)\right.\right.$, y $\left.\left.\mathbf{e}_{k}\right\rangle\right\rangle$ $=\left\langle T_{k j}(x), y\right\rangle$, we have that if $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ then $\mathbf{A} \in \ell^{\infty}\left(\mathbb{N}^{2}, \mathcal{B}(H)\right)$ and $\sup _{k, j}\left\|T_{k j}\right\| \leq$ $\|\mathbf{A}\|$.

Lemma 4.7. Let $\mathbf{A}=\left(T_{k j}\right) \in \mathcal{B}\left(\ell^{2}(H)\right)$. Then $\left(\mathbf{C}_{j}\right)_{j},\left(\mathbf{R}_{k}\right)_{k},\left(\mathbf{C}_{j}^{*}\right)_{j},\left(\mathbf{R}_{k}^{*}\right)_{k}$ $\in \ell^{\infty}\left(\mathbb{N}, \ell_{\mathrm{SOT}}^{2}(\mathbb{N}, \mathcal{B}(H))\right)$.

Proof. Since for each $\mathbf{y} \in \ell^{2}(H), x, y \in H$ and $k, j \in \mathbb{N}$ we have

$$
\left\langle\left\langle\mathbf{A}\left(x \mathbf{e}_{k}\right), \mathbf{y}\right\rangle\right\rangle=\left\langle\left\langle\mathbf{R}_{k}(x), \mathbf{y}\right\rangle\right\rangle
$$

and

$$
\left\langle\left\langle\mathbf{A}(\mathbf{x}), y \mathbf{e}_{j}\right\rangle\right\rangle=\left\langle\left\langle\mathbf{x}, \mathbf{C}_{j}(y)\right\rangle\right\rangle,
$$

we clearly have

A similar argument allows to obtain $\left\|\mathbf{C}_{j}\right\|_{\ell_{\text {SOT }}^{2}(\mathbb{N}, \mathcal{B}(H))} \leq\|\mathbf{A}\|$. Now, since $\left\|T_{k j}\right\|=\left\|T_{k j}^{*}\right\|$, applying the fact that rows in \mathbf{A}^{*} correspond with the adjoint operators in the columns in \mathbf{A} we obtain the other cases.

Let us give another necessary condition for boundedness to be used later on.
Proposition 4.8. Let $\mathbf{A}=\left(T_{k j}\right) \in \mathcal{B}\left(\ell^{2}(H)\right)$. Then

$$
\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\|T_{k j} x_{j}\right\|^{2} \leq\|\mathbf{A}\|^{2} \sum_{j=1}^{\infty}\left\|x_{j}\right\|^{2}
$$

Proof. Let $\mathbf{x} \in \ell^{2}(H)$ and assume that $\sum_{j=1}^{\infty}\left\|x_{j}\right\|^{2}=1$. Denote by $F_{\mathbf{x}}:[0,2 \pi] \rightarrow$ $\ell^{2}(H)$ the continuous function given by $F_{\mathbf{x}}(s)=\left(x_{j} \varphi_{j}(s)\right)$. Trivially, we have $\|\mathbf{x}\|=$ $\left\|F_{\mathbf{x}}\right\|_{C\left(\mathbb{T}, \ell^{2}(H)\right)}$. Then

$$
\begin{aligned}
\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\|T_{k j} x_{j}\right\|^{2} & =\sum_{k=1}^{\infty} \int_{0}^{2 \pi}\left\|\sum_{j=1}^{\infty} T_{k j} x_{j} \varphi_{j}(s)\right\|^{2} \frac{d s}{2 \pi} \\
& =\int_{0}^{2 \pi} \sum_{k=1}^{\infty}\left\|\sum_{j=1}^{\infty} T_{k j} x_{j} \varphi_{j}(s)\right\|^{2} \frac{d s}{2 \pi} \\
& =\int_{0}^{2 \pi}\left\|\mathbf{A}\left(F_{\mathbf{x}}(s)\right)\right\|^{2} \frac{d s}{2 \pi} \\
& \leq\|\mathbf{A}\|^{2} \int_{0}^{2 \pi}\left\|F_{\mathbf{x}}(s)\right\|^{2} \frac{d s}{2 \pi}=\|\mathbf{A}\|^{2}
\end{aligned}
$$

This concludes the result.
From Proposition 4.8 we can get an extension of Schur theorem to matrices whose entries are operators in $\mathcal{B}(H)$.

Theorem 4.9. Let $\mathbf{A}=\left(T_{k j}\right)$ and $\mathbf{B}=\left(S_{k j}\right)$. If $\mathbf{A}, \mathbf{B} \in \mathcal{B}\left(\ell^{2}(H)\right)$ then $\mathbf{A} * \mathbf{B} \in \mathcal{B}\left(\ell^{2}(H)\right)$. Moreover

$$
\|\mathbf{A} * \mathbf{B}\|_{\mathcal{B}\left(\ell^{2}(H)\right)} \leq\|\mathbf{A}\|_{\mathcal{B}\left(\ell^{2}(H)\right)}\|\mathbf{B}\|_{\mathcal{B}\left(\ell^{2}(H)\right)}
$$

Proof. It suffices to show that if $\mathbf{x}, \mathbf{y} \in c_{00}(H)$ then

$$
\begin{equation*}
|\langle\langle\mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y}\rangle\rangle| \leq\|\mathbf{A}\|\|\mathbf{B}\|\|\mathbf{x}\|\|\mathbf{y}\| . \tag{4.2}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
|\langle\langle\mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y}\rangle\rangle| & =\left|\sum_{k=1}^{\infty}\left\langle\sum_{j=1}^{\infty} T_{k j} S_{k j}\left(x_{j}\right), y_{k}\right\rangle\right| \\
& =\left|\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\langle S_{k j}\left(x_{j}\right), T_{k j}^{*}\left(y_{k}\right)\right\rangle\right| \\
& \leq \sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\|T_{k j}^{*}\left(y_{k}\right)\right\|\left\|S_{k j}\left(x_{j}\right)\right\| \\
& \leq\left(\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\|T_{k j}^{*}\left(y_{k}\right)\right\|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\|S_{k j}\left(x_{j}\right)\right\|^{2}\right)^{1 / 2} .
\end{aligned}
$$

Using the estimate above and applying Proposition 4.8 to \mathbf{B} and \mathbf{A}^{*}, we obtain 4.2) immediately since $\|\mathbf{A}\|=\left\|\mathbf{A}^{*}\right\|$. The proof is then complete.

Given $S \subset \mathbb{N} \times \mathbb{N}$ and $\mathbf{A}=\left(T_{k j}\right)$, we write $P_{S} \mathbf{A}=\left(T_{k j} \chi_{S}\right)$, that is the matrix with entries $T_{k j}$ if $(k, j) \in S$ and 0 otherwise. In particular, matrices with a single row, column or diagonal correspond to $S=\{k\} \times \mathbb{N}, S=\mathbb{N} \times\{j\}$ and $D_{l}=\{(k, k+l): k \in \mathbb{N}\}$ for $l \in \mathbb{Z}$ respectively. Also, the case of finite or upper (or lower) triangular matrices coincides with $P_{S} \mathbf{A}$ for $S=[1, N] \times[1, M]=\{(k, j): 1 \leq k \leq N, 1 \leq j \leq M\}$ or $S=\Delta=\{(k, j): j \geq k\}$ (or $S=\{(k, j): j \leq k\}$) respectively.

It is well known that the mapping $\mathbf{A} \rightarrow P_{S} \mathbf{A}$ is not continuous in $\mathcal{B}(H)$ for all sets S (for instance, the reader is referred to [10, Chapter 2, Theorem 2.19] to see that $S=\Delta$ the triangle projection is unbounded) but there are cases where this holds true. Clearly we have that $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ if and only if $\|\mathbf{A}\|=\sup _{N, M}\left\|P_{[1, N] \times[1, M]} \mathbf{A}\right\|<\infty$. This easily follows noticing that

$$
\left\langle\left\langle P_{[1, N] \times[1, M]} \mathbf{A}(\mathbf{x}), \mathbf{y}\right\rangle\right\rangle=\left\langle\left\langle\mathbf{A}\left(P_{N} \mathbf{x}\right), P_{M} \mathbf{y}\right\rangle\right\rangle,
$$

where $P_{N} \mathbf{x}$ stands for the projection on the N-first coordinates of \mathbf{x}.
In general it is rather difficult to compute the norm of the matrix \mathbf{A}. Let us consider some trivial cases.

Corollary 4.10. Let $\mathbf{A}=\left(T_{k j}\right) \subset \mathcal{B}(H)$. Then
(i) $\left\|P_{\mathbb{N} \times\{j\}} \mathbf{A}\right\|=\left\|\mathbf{C}_{j}\right\|_{\ell_{\text {SOT }}^{2}(\mathbb{N}, \mathcal{B}(H))}$ for each $j \in \mathbb{N}$.
(ii) $\left\|P_{\{k\} \times \mathbb{N}} \mathbf{A}\right\|=\left\|\mathbf{R}_{k}\right\|_{\ell_{\text {SOT }}^{2}(\mathbb{N}, \mathcal{B}(H))}$ for each $k \in \mathbb{N}$.
(iii) $\left\|P_{D_{l}} \mathbf{A}\right\|=\sup _{k}\left\|T_{k, k+l}\right\|$ for each $l \in \mathbb{Z}\left(\right.$ where $T_{k, k+l}=0$ whenever $\left.k+l \leq 0\right)$.

Proof. (i) and (ii) follow trivially from Lemma 4.7 .
To see (iii), note that $\left(P_{D_{l}} \mathbf{A}(\mathbf{x})\right)_{k}=\left(T_{k, k+l} x_{k+l}\right)_{k}$. Hence $\left\|P_{D_{l}} \mathbf{A}(\mathbf{x})\right\| \leq$ $\left(\sup _{k}\left\|T_{k, k+l}\right\|\right)\|\mathbf{x}\|$. Since the other inequality always holds, the proof is complete.

5. Toeplitz multipliers on operator-valued matrices

In this section we shall achieve the operator-valued analogues to the Toeplitz and Bennet theorems presented in the introduction.

Theorem 5.1. Let $\mathbf{A}=\left(T_{k j}\right) \in \mathcal{T}$. Then $A \in \mathcal{B}\left(\ell^{2}(H)\right)$ if and only if there exists $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ such that $T_{k j}=\widehat{\mu}(j-k)$ for all $k, j \in \mathbb{N}$. Moreover, $\|\mathbf{A}\|=\|\mu\|_{\infty}$.

Proof. Assume that $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ and $T_{k j}=\widehat{\mu}(j-k)$ for all $k, j \in \mathbb{N}$. Then, for
$\mathbf{x}, \mathbf{y} \in c_{00}(H)$, we have

$$
\begin{aligned}
\langle\langle\mathbf{A}(\mathbf{x}), \mathbf{y}\rangle\rangle & =\sum_{k=1}^{M} \sum_{j=1}^{N}\left\langle T_{k j}\left(x_{j}\right), y_{k}\right\rangle=\sum_{k=1}^{M} \sum_{j=1}^{N}\left\langle T_{\mu}\left(\overline{\varphi_{j}} \varphi_{k}\right)\left(x_{j}\right), y_{k}\right\rangle \\
& =\sum_{k=1}^{M} \sum_{j=1}^{N} \Psi_{\mu}\left(\bar{\varphi}_{j} x_{j} \otimes \overline{\varphi_{k}} y_{k}\right)=\Psi_{\mu}\left(\sum_{k=1}^{M} \sum_{j=1}^{N} \bar{\varphi}_{j} x_{j} \otimes \bar{\varphi}_{k} y_{k}\right) \\
& =\Psi_{\mu}\left(\left(\sum_{j=1}^{N} \bar{\varphi}_{j} x_{j}\right) \otimes\left(\sum_{k=1}^{M} \bar{\varphi}_{k} y_{k}\right)\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
|\langle\langle\mathbf{A}(\mathbf{x}), \mathbf{y}\rangle\rangle| & \left.\leq\left\|\Psi_{\mu}\right\|_{L^{1}(\mathbb{T}, H \widehat{\otimes} H)^{*}} \int_{0}^{2 \pi} \| h_{\mathbf{x}}(-t) \otimes h_{\mathbf{y}}(-t)\right) \|_{H \widehat{\otimes} H} \frac{d t}{2 \pi} \\
& =\|\mu\|_{\infty} \int_{0}^{2 \pi}\left\|h_{\mathbf{x}}(-t)\right\|\left\|h_{\mathbf{y}}(-t)\right\| \frac{d t}{2 \pi} \\
& \left.\leq\|\mu\|_{\infty}\left(\int_{0}^{2 \pi}\left\|h_{\mathbf{x}}(-t)\right\|^{2} \frac{d t}{2 \pi}\right)^{1 / 2}\left(\int_{0}^{2 \pi} \| h_{\mathbf{y}}(-t)\right) \|^{2} \frac{d t}{2 \pi}\right)^{1 / 2} \\
& \leq\|\mu\|_{\infty}\|\mathbf{x}\|_{\ell^{2}(H)}\|\mathbf{y}\|_{\ell^{2}(H)} .
\end{aligned}
$$

Hence, $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ and $\|\mathbf{A}\| \leq\|\mu\|_{\infty}$.
Conversely, let us assume that $\mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ and $T_{k j}=T_{j-k}$ for a given sequence $\mathbf{T}=\left(T_{n}\right)_{n \in \mathbb{Z}}$ of operators in $\mathcal{B}(H)$. We define

$$
T\left(\sum_{n=-M}^{N} \alpha_{n} \varphi_{n}\right)=\alpha_{0} T_{1,1}+\sum_{n=1}^{M} \alpha_{-n} T_{n+1,1}+\sum_{n=1}^{N} \alpha_{n} T_{1, n+1}
$$

We are going to show that $T \in \mathcal{L}\left(L^{1}(\mathbb{T}), \mathcal{B}(H)\right)$. Since $L^{1}(\mathbb{T})=\overline{\operatorname{span}\left\{\varphi_{k}: k \in \mathbb{Z}\right\}}{ }^{\|} \cdot \|_{1}$, it suffices to show that

$$
\begin{equation*}
\left\|T\left(\sum_{n=-M}^{N} \alpha_{n} \varphi_{n}\right)\right\| \leq\|\mathbf{A}\| \int_{0}^{2 \pi}\left|\sum_{n=-M}^{N} \alpha_{n} \varphi_{n}(t)\right| \frac{d t}{2 \pi} . \tag{5.1}
\end{equation*}
$$

Let $x, y \in H$ and notice that

$$
\left\langle T\left(\sum_{n=-M}^{N} \alpha_{n} \varphi_{n}\right)(x), y\right\rangle=\sum_{n=-M}^{N} \alpha_{n} \beta_{n}(x, y),
$$

where $\beta_{n}(x, y)=\left\langle T_{n}(x), y\right\rangle$. Now taking into account that $A_{x, y}=\left(\left\langle T_{k j}(x), y\right\rangle\right)$ is a Toeplitz matrix and defines a bounded operator $A_{x, y} \in \mathcal{B}\left(\ell^{2}\right)$ with $\left\|A_{x, y}\right\| \leq\|\mathbf{A}\|\|x\|\|y\|$ we obtain, due to Theorem 1.2, that

$$
\psi_{x, y}=\sum_{n \in \mathbb{Z}} \beta_{n}(x, y) \varphi_{n} \in L^{\infty}(\mathbb{T})
$$

with $\left\|\psi_{x, y}\right\|_{L^{\infty}(\mathbb{T})} \leq\|\mathbf{A}\|\|x\|\|y\|$. Finally, we have

$$
\begin{aligned}
\left|\left\langle T\left(\sum_{n=-M}^{N} \alpha_{n} \varphi_{n}\right)(x), y\right\rangle\right| & =\left|\int_{0}^{2 \pi}\left(\sum_{n=-M}^{N} \alpha_{n} \varphi_{n}(t)\right) \overline{\psi_{x, y}(t)} \frac{d t}{2 \pi}\right| \\
& \leq\left\|\sum_{n=-M}^{N} \alpha_{n} \varphi_{n}(t)\right\|_{L^{1}(\mathbb{T})}\|\mathbf{A}\|\|x\|\|y\| .
\end{aligned}
$$

This shows (5.1) which gives $\|T\|_{L^{1}(\mathbb{T}) \rightarrow \mathcal{B}(H)} \leq\|\mathbf{A}\|$. Finally, from the embedding $C(\mathbb{T}) \rightarrow$ $L^{1}(\mathbb{T})$ we have that there exists $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ such that $T_{\mu}=T$ and $\|\mu\|_{\infty} \leq\|A\|$. The proof is then complete.

To prove the analogue of Bennet't theorem on Schur multipliers we shall need the following lemmas.

Lemma 5.2. Let $\mathbf{A}=\left(T_{k j}\right) \in \mathcal{M}_{l}\left(\ell^{2}(H)\right) \cup \mathcal{M}_{r}\left(\ell^{2}(H)\right)$ and $x_{0}, y_{0} \in H$ with $\left\|x_{0}\right\|=$ $\left\|y_{0}\right\|=1$. Denote by $A_{x_{0}, y_{0}}=\left(\gamma_{k j}\right)$ the matrix with entries

$$
\gamma_{k j}=\left\langle T_{k j}\left(x_{0}\right), y_{0}\right\rangle, \quad k, j \in \mathbb{N}
$$

Then $A_{x_{0}, y_{0}} \in \mathcal{M}\left(\ell^{2}\right)$ and $\left\|A_{x_{0}, y_{0}}\right\|_{\mathcal{M}\left(\ell^{2}\right)} \leq \min \left\{\|\mathbf{A}\|_{\mathcal{M}_{l}\left(\ell^{2}(H)\right)},\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}\right\}$.
Proof. Let $z_{0} \in H$ and $\left\|z_{0}\right\|=1$ and consider the bounded operators $\pi_{z_{0}}: \ell^{2}(H) \rightarrow \ell^{2}$ and $i_{z_{0}}: \ell^{2} \rightarrow \ell^{2}(H)$ given by

$$
\pi_{z_{0}}\left(\left(x_{j}\right)\right)=\left(\left\langle x_{j}, z_{0}\right\rangle\right)_{j}, \quad i_{z_{0}}\left(\left(\alpha_{k}\right)\right)=\left(\alpha_{k} z_{0}\right)_{k}
$$

Now, given $B=\left(\beta_{k j}\right) \in \mathcal{B}\left(\ell^{2}\right)$ with $\|B\|=1$, we define $\mathbf{B}=i_{z_{0}} B \pi_{z_{0}}$.
Hence $\mathbf{B} \in \mathcal{B}\left(\ell^{2}(H)\right)$. Moreover $\|\mathbf{B}\|=\|B\|$ because $\left\|i_{z_{0}}\right\|=\left\|\pi_{z_{0}}\right\|=1$ and $B\left(\left(\alpha_{j}\right)\right) z_{0}=$ $\mathbf{B}\left(\left(\alpha_{j} z_{0}\right)\right)$ for any $\left(\alpha_{j}\right) \in \ell^{2}$.

Let us write $\mathbf{B}=\left(S_{k j}\right)$ and observe that $S_{k j}=\beta_{k j} \widetilde{z_{0} \otimes z_{0}}$. Indeed,

$$
\left\langle S_{k j}(x), y\right\rangle=\left\langle\left\langle\mathbf{B}\left(x \mathbf{e}_{j}\right), y \mathbf{e}_{k}\right\rangle\right\rangle=\left\langle\left\langle\left(\left\langle x, z_{0}\right\rangle \beta_{k j} z_{0}\right)_{k}, y \mathbf{e}_{k}\right\rangle\right\rangle=\beta_{k j}\left\langle x, z_{0}\right\rangle\left\langle z_{0}, y\right\rangle .
$$

Recall that $T(\widetilde{x \otimes y})=x \widetilde{\otimes T(y)}$ and $(\widetilde{x \otimes y}) T=\widetilde{T^{*} x \otimes} y$ for any $T \in \mathcal{B}(H)$ and $x, y \in H$. In particular we obtain

$$
\left\langle\left(T_{k j} S_{k j}\right)\left(x_{0}\right), y_{0}\right\rangle=\beta_{k j}\left\langle T_{k j}\left(z_{0}\right), y_{0}\right\rangle\left\langle x_{0}, z_{0}\right\rangle
$$

and

$$
\left\langle\left(S_{k j} T_{k j}\right)\left(x_{0}\right), y_{0}\right\rangle=\beta_{k j}\left\langle T_{k j}\left(x_{0}\right), z_{0}\right\rangle\left\langle z_{0}, y_{0}\right\rangle .
$$

Therefore, choosing $z_{0}=x_{0}$ and $\mathbf{C}=\mathbf{A} * \mathbf{B}$ one has $C_{x_{0}, y_{0}}=A_{x_{0}, y_{0}} * B$, and using that $\left\|C_{x_{0}, y_{0}}\right\| \leq\|\mathbf{C}\|$ we obtain

$$
\left\|A_{x_{0}, y_{0}} * B\right\|_{\mathcal{B}\left(\ell^{2}\right)} \leq\|\mathbf{A} * \mathbf{B}\|_{\mathcal{B}\left(\ell^{2}(H)\right)} \leq\|\mathbf{A}\|_{\mathcal{M}_{l}\left(\ell^{2}(H)\right)}
$$

Similarly, choosing $z_{0}=y_{0}$ and $\mathbf{C}=\mathbf{B} * \mathbf{A}$ one obtains

$$
\left\|B * A_{x_{0}, y_{0}}\right\|_{\mathcal{B}\left(\ell^{2}\right)} \leq\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)} .
$$

This completes the proof.
Lemma 5.3. Let $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H)), \mathbf{A}=\left(T_{k j}\right) \in \mathcal{T}$ with $T_{k j}=\widehat{\mu}(j-k)$ for $k, j \in \mathbb{N}$, $\mathbf{B}=\left(S_{k j}\right) \subset \mathcal{B}(H)$ and $\mathbf{x}, \mathbf{y} \in c_{00}(H)$. Then

$$
\langle\mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y}\rangle\rangle=\Psi_{\mu}\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathbf{B}_{N, M}(s-\cdot, t-\cdot)\left(h_{\mathbf{x}}(s)\right) \otimes h_{\mathbf{y}}(t) \frac{d s}{2 \pi} \frac{d t}{2 \pi}\right) .
$$

Proof. Let $\mathbf{x}, \mathbf{y} \in c_{00}(H)$, say $h_{\mathbf{x}}=\sum_{j=1}^{N} x_{j} \varphi_{j}$ and $h_{\mathbf{y}}=\sum_{k=1}^{M} y_{k} \varphi_{k}$. Recall that $x_{j}=$ $\int_{0}^{2 \pi} h_{\mathbf{x}}(s) \overline{\varphi_{j}(s)} \frac{d s}{2 \pi}$ and $y_{k}=\int_{0}^{2 \pi} h_{\mathbf{y}}(t) \overline{\varphi_{k}(t)} \frac{d t}{2 \pi}$. Then

$$
\begin{aligned}
& \langle\mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y}\rangle\rangle \\
= & \sum_{k=1}^{M} \sum_{j=1}^{N}\left\langle\widehat{\mu}(j-k) S_{k j}\left(x_{j}\right), y_{k}\right\rangle \\
= & \int_{0}^{2 \pi}\left\langle\sum_{k=1}^{M}\left(\sum_{j=1}^{N} \widehat{\mu}(j-k) S_{k j}\left(x_{j}\right)\right) \varphi_{k}(t), h_{\mathbf{y}}(t)\right\rangle \frac{d t}{2 \pi} \\
= & \int_{0}^{2 \pi}\left\langle\sum_{l=-M}^{N} \widehat{\mu}(l)\left(\sum_{j-k=l} S_{k j}\left(x_{j}\right) \varphi_{k}(t)\right), h_{\mathbf{y}}(t)\right\rangle \frac{d t}{2 \pi} \\
= & \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\langle\sum_{l=-M}^{N} \widehat{\mu}(l)\left(\sum_{j-k=l} S_{k j} \overline{\varphi_{j}(s)} \varphi_{k}(t)\left(h_{\mathbf{x}}(s)\right)\right), h_{\mathbf{y}}(t)\right\rangle \frac{d s}{2 \pi} \frac{d t}{2 \pi} \\
= & \int_{0}^{2 \pi} \int_{0}^{2 \pi} \sum_{l=-M}^{N} \mathcal{J}^{2 \pi}(l)\left(\left(\sum_{j-k=l} S_{k j} \overline{\varphi_{j}(s)} \varphi_{k}(t)\right)\left(h_{\mathbf{x}}(s)\right) \otimes h_{\mathbf{y}}(t)\right) \frac{d s}{2 \pi} \frac{d t}{2 \pi} \\
= & \sum_{l=-M}^{N} \mathcal{J}^{2 \pi}(l)\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(\sum_{j-k=l} S_{k j} \overline{\varphi_{j}(s)} \varphi_{k}(t)\right)\left(h_{\mathbf{x}}(s)\right) \otimes h_{\mathbf{y}}(t) \frac{d s}{2 \pi} \frac{d t}{2 \pi}\right) \\
= & \Psi_{\mu}\left(\sum_{l=-M}^{N}\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(\sum_{j-k=l} S_{k j} \overline{\varphi_{j}(s)} \varphi_{k}(t)\right)\left(h_{\mathbf{x}}(s)\right) \otimes h_{\mathbf{y}}(t) \frac{d s}{2 \pi} \frac{d t}{2 \pi}\right) \varphi_{l}\right) \\
= & \Psi_{\mu}\left(\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 2 \pi } \left(\sum_{k=1}^{M} \sum_{j=l}^{N} S_{k j} \overline{\left.\left.\varphi_{j}(s) \varphi_{k}(t) \varphi_{j} \varphi_{-k}\right)\left(h_{\mathbf{x}}(s)\right) \otimes h_{\mathbf{y}}(t) \frac{d s}{2 \pi} \frac{d t}{2 \pi}\right)}\right.\right. \\
= & \Psi_{\mu}\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathbf{B}_{N, M}(s-\cdot, t-\cdot)\left(h_{\mathbf{x}}(s)\right) \otimes h_{\mathbf{y}}(t) \frac{d t}{2 \pi} \frac{d s}{2 \pi}\right) .
\end{aligned}
$$

The proof is complete.

Theorem 5.4. If $\mu \in M(\mathbb{T}, \mathcal{B}(H))$ and $\mathbf{A}=\left(T_{k j}\right) \in \mathcal{T}$ with $T_{k j}=\widehat{\mu}(j-k)$ for $k, j \in \mathbb{N}$ then $\mathbf{A} \in \mathcal{M}_{l}\left(\ell^{2}(H)\right) \cap \mathcal{M}_{r}\left(\ell^{2}(H)\right)$ and

$$
\max \left\{\|\mathbf{A}\|_{\mathcal{M}_{l}\left(\ell^{2}(H)\right)},\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}\right\} \leq|\mu|
$$

Proof. Since $\|\mathbf{A}\|_{\mathcal{M}_{l}\left(\ell^{2}(H)\right)}=\left\|\mathbf{A}^{*}\right\|_{\mathcal{M}_{l}\left(\ell^{2}(H)\right)}$ and $|\mu|=\left|\mu^{*}\right|$ then it suffices to show the case of left Schur multipliers. Let $\mathbf{x}, \mathbf{y} \in c_{00}(H)$ and $\mathbf{B}=\left(S_{k j}\right) \subset \mathcal{B}(H)$ such that $\mathbf{B} \in \mathcal{B}\left(\ell^{2}(H)\right)$. Define

$$
G(u)=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathbf{B}_{N, M}(s-u, t-u)\left(h_{\mathbf{x}}(s)\right) \otimes h_{\mathbf{y}}(t) \frac{d t}{2 \pi} \frac{d s}{2 \pi} .
$$

Hence we can rewrite, since $(\lambda x) \otimes y=x \otimes \bar{\lambda} y$,

$$
G(u)=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} S_{k j}\left(x_{j} \varphi_{j}(u)\right) \otimes y_{k} \varphi_{k}(u)
$$

In particular,

$$
\begin{aligned}
\|G(u)\|_{H \widehat{\otimes} H} & \leq \sum_{k=1}^{\infty}\left\|\sum_{j=1}^{\infty} S_{k j}\left(x_{j} \varphi_{j}(u)\right)\right\|\left\|y_{k} \varphi_{k}(u)\right\| \leq\left(\sum_{k=1}^{\infty}\left\|\sum_{j=1}^{\infty} S_{k j}\left(x_{j} \varphi_{j}(u)\right)\right\|^{2}\right)^{1 / 2}\|\mathbf{y}\| \\
& \leq\|\mathbf{B}\|\|\mathbf{x}\|\|\mathbf{y}\|
\end{aligned}
$$

From Lemma 5.3, we have

$$
|\langle\langle\mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y}\rangle\rangle| \leq\left\|\Psi_{\mu}\right\|_{C(\mathbb{T}, H \widehat{\otimes} H)^{*}} \sup _{0 \leq u<2 \pi}\|G(u)\|_{H \widehat{\otimes} H}=|\mu|\|\mathbf{B}\|\|\mathbf{x}\|\|\mathbf{y}\| .
$$

This finishes the proof.
Lemma 5.5. Let $\mu, \nu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H)), \mathbf{A}=\left(T_{k j}\right) \in \mathcal{T}$ with $T_{k j}=\widehat{\mu}(j-k), \mathbf{B}=\left(S_{k j}\right) \in \mathcal{T}$ with $S_{k j}=\widehat{\nu}(j-k)$ for $k, j \in \mathbb{N}$ and $\mathbf{x}, \mathbf{y} \in c_{00}(H)$. Then

$$
\langle\langle\mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y}\rangle\rangle=\Psi_{\mu}\left(\sum_{k=1}^{M}\left(\sum_{j=1}^{N} \widehat{\nu}(j-k)\left(x_{j}\right) \overline{\varphi_{j}}\right) \otimes y_{k} \varphi_{k}\right) .
$$

Proof. Denote $h_{\mathbf{x}}=\sum_{k=1}^{M} y_{k} \varphi_{k}$ and $h_{\mathbf{y}}=\sum_{j=1}^{N} x_{j} \varphi_{j}$. Then

$$
\begin{aligned}
\langle\langle\mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y}\rangle\rangle & =\sum_{k=1}^{M} \sum_{j=1}^{N}\left\langle\widehat{\mu}(j-k) \widehat{\nu}(j-k)\left(x_{j}\right), y_{k}\right\rangle=\sum_{l=-M}^{N} \sum_{k=1}^{M}\left\langle\widehat{\mu}(l) \widehat{\nu}(l)\left(x_{k+l}\right), y_{k}\right\rangle \\
& =\sum_{l=-M}^{N} \sum_{k=1}^{M} \mathcal{J} \widehat{\mu}(l)\left(\nu(l)\left(x_{k+l}\right) \otimes y_{k}\right)=\sum_{l=-M}^{N} \mathcal{J} \widehat{\mu}(l)\left(\sum_{k=1}^{M} \widehat{\nu}(l)\left(x_{k+l}\right) \otimes y_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\Psi_{\mu}\left(\sum_{l=-M}^{N}\left(\sum_{k=1}^{M} \widehat{\nu}(l)\left(x_{k+l}\right) \otimes y_{k}\right) \varphi_{-l}\right) \\
& =\Psi_{\mu}\left(\sum_{k=1}^{M}\left(\sum_{j=1}^{N} \widehat{\nu}(j-k)\left(x_{j}\right) \overline{\varphi_{j}}\right) \otimes y_{k} \overline{\varphi_{k}}\right) .
\end{aligned}
$$

The proof is complete.
Corollary 5.6. Let $\mathbf{A}=\left(S_{k j}\right) \in \mathcal{T}$ such that $S_{k j}=\widehat{\nu}(j-k)$ for some $\nu \in \mathfrak{M}(T, \mathcal{B}(H))$. For each $\mathbf{x}, \mathbf{y} \in c_{00}(H)$ we denote

$$
F_{\mathbf{x}, \mathbf{y}, \mathbf{A}}(t)=\sum_{k=1}^{\infty}\left(\sum_{j=1}^{\infty} \widehat{\nu}(j-k)\left(x_{j}\right) \overline{\varphi_{j}}(t)\right) \otimes y_{k} \overline{\varphi_{k}}(t)
$$

If $\mathbf{A} \in \mathcal{M}_{r}\left(\ell^{2}(H)\right)$ then

$$
\left\|F_{\mathbf{x}, \mathbf{y}, \mathbf{A}}\right\|_{L^{1}(\mathbb{T}, H \widehat{\otimes} H)} \leq\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}\|\mathbf{x}\|_{\ell^{2}(H)}\|\mathbf{y}\|_{\ell^{2}(H)}
$$

Proof. If $\mathbf{A} \in \mathcal{M}_{r}\left(\ell^{2}(H)\right)$ then $\mathbf{B} * \mathbf{A} \in \mathcal{B}\left(\ell^{2}(H)\right)$ for any $\mathbf{B} \in \mathcal{B}\left(\ell^{2}(H)\right) \cap \mathcal{T}$. In particular for any $\mathbf{B}=\left(T_{k j}\right)$ with $T_{k j}=\widehat{\mu}(j-k)$ for some $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ with $\|\mu\|_{\infty}=\|\mathbf{B}\|$. Since $L^{1}(\mathbb{T}, H \widehat{\otimes} H) \subseteq\left(V^{\infty}(\mathbb{T}, B(H))\right)^{*}$ isometrically, we can use Lemma 5.5 to obtain

$$
\begin{aligned}
\left\|F_{\mathbf{x}, \mathbf{y}, \mathbf{A}}\right\|_{L^{1}(\mathbb{T}, H \widehat{\otimes} H)} & =\sup \left\{\left|\Psi_{\mu}\left(F_{\mathbf{x}, \mathbf{y}, \mathbf{A}}\right)\right|:\|\mu\|_{\infty}=1\right\} \\
& =\sup \{|\langle\mathbf{B} * \mathbf{A}(\mathbf{x}), \mathbf{y}\rangle\rangle \mid:\|\mathbf{B}\|=1\} \\
& \leq\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}\|\mathbf{x}\|_{\ell^{2}(H)}\|\mathbf{y}\|_{\ell^{2}(H)} .
\end{aligned}
$$

This completes the proof.
Theorem 5.7. Let $\mathbf{A}=\left(T_{k j}\right) \in \mathcal{T} \cap \mathcal{M}_{r}\left(\ell^{2}(H)\right)$. Then there exists $\mu \in M_{\text {SOT }}(\mathbb{T}, \mathcal{B}(H))$ such that $T_{k j}=\widehat{\mu}(j-k)$ for all $k, j \in \mathbb{N}$. Moreover, $\|\mu\|_{\text {SOT }} \leq\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}$.

Proof. Let $\mathbf{A} \in \mathcal{M}_{r}\left(\ell^{2}(H)\right)$. For each $x_{0}, y_{0} \in H$, as above we consider the scalar-valued Toeplitz matrix $A_{x_{0}, y_{0}}=\left(\left\langle T_{k j}\left(x_{0}\right), y_{0}\right\rangle\right)$. Using Lemma 5.2, we have that $A_{x_{0}, y_{0}} \in \mathcal{M}\left(\ell^{2}\right)$ and $\left\|A_{x_{0}, y_{0}}\right\|_{\mathcal{M}\left(\ell^{2}\right)} \leq\|\mathbf{A}\|_{\mathcal{M}\left(\ell^{2}(H)\right)}$. This guarantees, invoking Theorem 1.3 , that there exists $\eta_{x_{0}, y_{0}} \in M(\mathbb{T})$ such that $\left\langle T_{k j}\left(x_{0}\right), y_{0}\right\rangle=\widehat{\eta_{x_{0}, y_{0}}}(j-k)$ for all $j, k \in \mathbb{N}$ and $\left|\eta_{x_{0}, y_{0}}\right|=$ $\left\|A_{x_{0}, y_{0}}\right\|_{\mathcal{M}_{r}\left(\ell^{2}\right)}$.

Now define $\mu(A) \in \mathcal{B}(H)$ given by

$$
\langle\mu(A)(x), y\rangle=\eta_{x, y}(A), \quad x, y \in H .
$$

Let us show that $\mu \in M_{\mathrm{SOT}}(\mathbb{T}, \mathcal{B}(H))$ and $\|\mu\|_{\mathrm{SOT}} \leq\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}$.

First we need to show that $\mu(A) \in \mathcal{B}(H)$ for any $A \in \mathfrak{B}(\mathbb{T})$. This follows using that

$$
\widehat{\eta_{\lambda x+\beta x^{\prime}, y}}(l)=\lambda \widehat{\eta_{x, y}}(l)+\beta \widehat{\eta_{x^{\prime}, y}}(l), \quad l \in \mathbb{Z}
$$

for any $\lambda, \beta \in \mathbb{C}$ and $x, x^{\prime}, y \in H$. This guarantees that $\eta_{\lambda x+\beta x^{\prime}, y}=\lambda \eta_{x, y}+\beta \eta_{x^{\prime}, y}$ and hence $\mu(A): H \rightarrow H$ is a linear map. The continuity follows from the estimate $\left|\eta_{x, y}\right| \leq\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}\|x\|\|y\|$. To show that it is a regular measure, select $\left\{x_{n}: n \in \mathbb{N}\right\}$ dense in H. Hence, for any $S \in \mathcal{B}(H)$ we have

$$
\|S\|=\sup \left\{\left\langle S\left(x_{n}\right), x_{m}\right\rangle: n, m \in \mathbb{N}\right\} .
$$

Denoting by $\eta_{n, m}=\eta_{x_{n}, x_{m}}$ we have that for each $B \in \mathfrak{B}(\mathbb{T})$, given $(n, m) \in \mathbb{N} \times \mathbb{N}$ and $\varepsilon>0$, there exists $K_{n, m} \subset B \subset O_{n, m}$ which are compact and open respectively so that

$$
\left|\eta_{n, m}\right|\left(O_{n, m} \backslash K_{n, m}\right)<\varepsilon .
$$

Now selecting $K=\overline{\bigcup_{n, m} K_{n, m}}$ and $O=\left(\bigcap_{n, m} O_{n, m}\right)^{\circ}$ we conclude that

$$
\|\mu\|(O \backslash K)<\varepsilon
$$

This shows that $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$.
Using now that

$$
\left\langle T_{\mu}(\phi)(x), y\right\rangle=T_{\eta_{x, y}}(\phi)
$$

for each $\phi \in C(\mathbb{T})$, where $T_{\eta_{x, y}} \in \mathcal{L}(C(\mathbb{T}), \mathbb{C})$ denotes the operator associated to $\eta_{x, y} \in$ $M(\mathbb{T})$, we clearly have that $T_{k j}=\widehat{\mu}(j-k)$ for all $j, k \in \mathbb{N}$.

Select $y_{k}=y \beta_{k}$ for some $\beta_{k} \in \mathbb{C}$ and $\|y\|=1$. From Corollary 5.6 we obtain that

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left\|\left(\sum_{k=1}^{M} \sum_{j=1}^{N} \widehat{\mu}(j-k)\left(x_{j}\right) \beta_{k} \bar{\varphi}_{j}(t) \varphi_{k}(t)\right) \otimes y\right\|_{H \widehat{\otimes} H} \frac{d t}{2 \pi} \\
= & \int_{0}^{2 \pi}\left\|\sum_{l=-M}^{N} \widehat{\mu}(l)\left(\sum_{k=1}^{M} x_{k+l} \beta_{k}\right) \varphi_{-l}(t)\right\| \frac{d t}{2 \pi} \\
\leq & \|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}\|\mathbf{x}\|_{\ell^{2}(H)}\left(\sum_{k=1}^{M}\left|\beta_{k}\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

Taking $x_{j}=x \alpha_{j}$ such that $\|x\|=1$, we get

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left\|\sum_{l=-M}^{N} \widehat{\mu}(l)(x)\left(\sum_{j-k=l} \alpha_{j} \bar{\varphi}_{j}(t) \beta_{k} \varphi_{k}(t)\right)\right\| \frac{d t}{2 \pi} \\
\leq & \|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}\left(\sum_{j=1}^{N}\left|\alpha_{j}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{M}\left|\beta_{k}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Using now

$$
\gamma(s)=\sum_{l=-M}^{N}\left(\sum_{j-k=l} \beta_{k} \alpha_{j}\right) \varphi_{l}(s) .
$$

Now recall that $\widehat{\mu}(l)(x)=\widehat{\mu}_{x}(l)$ and

$$
\sum_{l=-M}^{N} \widehat{\mu}_{x}(l)\left(\sum_{j-k=l} \alpha_{j} \bar{\varphi}_{j}(t) \beta_{k} \varphi_{k}(t)\right)=\int_{0}^{2 \pi}\left(\sum_{l=-M}^{N} \widehat{\mu}_{x}(l) \varphi_{l}(s)\right) \gamma(-t-s) \frac{d s}{2 \pi}
$$

Therefore, if $\alpha=\sum_{j=1}^{\infty} \alpha_{j} \varphi_{j}$ and $\beta=\sum_{k=1}^{\infty} \beta_{k} \varphi_{k}$ belong to $L^{2}(\mathbb{T})$, we have that $\gamma(t)=$ $\alpha(t) \beta(-t)$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left\|\mu_{x} * \gamma(-t)\right\| \frac{d t}{2 \pi} \leq\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}\|\alpha\|_{L^{2}(\mathbb{T})}\|\beta\|_{L^{2}(\mathbb{T})} \tag{5.2}
\end{equation*}
$$

To show that $\mu_{x} \in M(\mathbb{T}, H)$, due to Lemma 3.8 , it suffices to prove that

$$
\begin{equation*}
\sup _{0<r<1}\left\|\mu_{x} * P_{r}\right\|_{L^{1}(\mathbb{T}, H)}<\infty \tag{5.3}
\end{equation*}
$$

Choosing $\beta(t)=\alpha(t)=\sqrt{1-r^{2}} /\left|1-r e^{i t}\right|$ we obtain that $\gamma(t)=P_{r}(t)$ and from (5.2) we get (5.3) and the estimate $\left\|\mu_{x}\right\|_{M(\mathbb{T}, H)} \leq\|\mathbf{A}\|_{\mathcal{M}_{r}\left(\ell^{2}(H)\right)}$. This finishes the proof.

References

[1] A. B. Aleksandrov and V. V. Peller, Hankel and Toeplitz-Schur multipliers, Math. Ann. 324 (2002), no. 2, 277-327.
[2] G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), no. 3, 603-639.
[3] O. Blasco, Fourier analysis for vector-measures on compact abelian groups, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), no. 2, 519-539.
[4] J. Diestel, J. H. Fourie and J. Swart, The Metric Theory of Tensor Products, Grothendieck's Résumé Revisited, American Mathematical Society, Providence, RI, 2008.
[5] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge, 1995.
[6] J. Diestel and J. J. Uhl, Vector Measures, Mathematical Surveys 15, American Mathematical Society, Providence, RI, 1977.
[7] N. Dinculeanu, Vector Measures, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966.
[8] W. Hengsen, A simpler proof of Singer's representation theorem, Proc. Amer. Math. Soc. 124 (1996), no. 10, 3211-3212.
[9] T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces I: Martingales and Littlewood-Paley Theory, A Series of Modern Surveys in Mathematics 63, Springer, Cham, 2016.
[10] L.-E. Persson and N. Popa, Matrix Spaces and Schur Multipliers, Matriceal Harmonic Analysis, World Scientific, Hackensack, NJ, 2014.
[11] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer-Verlag London, London, 2002.
[12] J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28.
[13] I. Singer, Linear functionals on the space of continuous mappings of a compact Hausdorf space into a Banach space (in Russian), Rev. Roum. Math. Pures Appl. 2 (1957), 301-315.
[14] I. Singer, Sur les applications linéaires intégrales des espaces de fonctions continues I, Rev. Math. Pures Appl. 4 (1959), 391-401.
[15] O. Toeplitz, Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen, Math. Ann. 70 (1911), no. 3, 351-376.

Oscar Blasco and Ismael García-Bayona
Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjassot,
Valencia, Spain
E-mail address: oscar.blasco@uv.es, garbais@uv.es

[^0]: Received December 21, 2017; Accepted November 18, 2018.
 Communicated by Xiang Fang.
 2010 Mathematics Subject Classification. Primary: 46E40; Secondary: 47A56, 15B05.
 Key words and phrases. Schur product, Toeplitz matrix, Schur multiplier, vector-valued measures.
 This work was partially supported by MTM2014-53009-P (MINECO Spain) and FPU14/01032 (MCIU Spain).
 *Corresponding author.

